
1878 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 4, AUGUST 2018

Dynamic Fuzzy Rule Interpolation and Its
Application to Intrusion Detection

Nitin Naik , Ren Diao, and Qiang Shen

Abstract—Fuzzy rule interpolation (FRI) offers an effective ap-
proach for making inference possible in sparse rule-based systems
(and also for reducing the complexity of fuzzy models). However,
requirements of fuzzy systems may change over time and hence,
the use of a static rule base may affect the accuracy of FRI ap-
plications. Fortunately, an FRI system in action will produce in-
terpolated rules in abundance during the interpolative reasoning
process. While such interpolated results are discarded in existing
FRI systems, they can be utilized to facilitate the development of
a dynamic rule base in supporting subsequent inference. This is
because the otherwise relinquished interpolated rules may con-
tain possibly valuable information, covering regions that were un-
covered by the original sparse rule base. This paper presents a
dynamic fuzzy rule interpolation (D-FRI) approach by exploit-
ing such interpolated rules in order to improve the overall sys-
tem’s coverage and efficacy. The resulting D-FRI system is able
to select, combine, and generalize informative, frequently used
interpolated rules for merging with the existing rule base while
performing interpolative reasoning. Systematic experimental in-
vestigations demonstrate that D-FRI outperforms conventional
FRI techniques, with increased accuracy and robustness. Further-
more, D-FRI is herein applied for network security analysis, in
devising a dynamic intrusion detection system (IDS) through in-
tegration with the Snort software, one of the most popular open
source IDSs. This integration, denoted as D-FRI-Snort hereafter,
delivers an extra amount of intelligence to predict the level of
potential threats. Experimental results show that with the inclu-
sion of a dynamic rule base, by generalising newly interpolated
rules based on the current network traffic conditions, D-FRI-Snort
helps reduce both false positives and false negatives in intrusion
detection.

Index Terms—Dynamic rule generalization, fuzzy rule interpo-
lation (FRI), interpolated rules, intrusion detection, Snort, sparse
rule base.

I. INTRODUCTION

FUZZY rule interpolation (FRI) [1]–[4] offers the most ef-
fective reasoning mechanism to perform fuzzy reasoning

based on a sparse rule base. The classical fuzzy inference meth-
ods cannot work to their full potential in such circumstances

Manuscript received December 29, 2016; revised May 29, 2017 and August
14, 2017; accepted September 8, 2017. Date of publication December 4, 2017;
date of current version August 2, 2018. (Corresponding author: Qiang Shen.)

N. Naik is with the Defence School of Communications and Information
Systems, Ministry of Defence, U.K. (e-mail: nitin.naik100@mod.gov.uk).

R. Diao is with the Wandera Ltd., London W1W 8HJ, U.K. (e-mail: ren.
diao@wandera.com).

Q. Shen is with the Department of Computer Science, Institute of Mathe-
matics, Physics and Computer Science, Aberystwyth University, Aberystwyth
SY23 3DB, U.K. (e-mail: qqs@aber.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2017.2755000

because given knowledge does not cover the entire problem do-
main. However, requirements of fuzzy systems may change over
time and therefore, the use of a static rule base may affect the
effectiveness of FRI due to the absence of the most concurrent
(dynamic) rules. Designing a dynamic rule base yet needs ad-
ditional information. Fortunately, a fuzzy reasoning system that
utilizes FRI may produce a large number of interpolated rules
during the interpolative reasoning process. Such interpolative
results are always discarded once the required outcomes have
been obtained in the present applications of FRI. Nonetheless,
these relinquished interpolated rules may contain possibly valu-
able information, covering regions that were uncovered by the
original sparse rule base and thus, may be collected and utilized
to create a dynamic rule base through generalization.

Several approaches have been proposed for dynamic adapta-
tion of the rule base within conventional fuzzy systems where a
dense rule base is employed [5]–[7]. In particular, optimization-
based techniques have been developed for the automatic gen-
eration of fuzzy rule-based models [8]–[10]. These techniques
provide a dynamic and possibly, real-time dense rule base for the
system, thereby entailing more accurate reasoning results. Un-
fortunately, the learning methods developed for dense rule-based
systems cannot be directly applied to sparse rule-based systems
due to their notion of the rules fully covering the problem space,
and the underlying computational differences between the use
of classical fuzzy inference and that of FRI. Besides, a useful dy-
namic approach devised for sparse rule bases has to cope with
the demand of involving less computational overheads since
typically, the interpolation process already incurs significant
additional cost.

Inspired by the above observations and based on the ini-
tial results from preliminary investigations [11]–[13], this paper
presents a comprehensive approach to dynamic FRI (D-FRI).
The work is conceived such that it can improve not only the
overall interpolative coverage and efficacy, but also help reduce
the overheads of subsequent interpolation where dynamically
promoted rules match future observations. The development of
a dynamically enriched and revised rule base is enabled by ex-
ploiting previously experienced interpolated rules, which are
generated as a byproduct of the interpolative reasoning pro-
cess. In particular, the collection of the interpolated rules is
prepartitioned into hypercubes (or multidimensional blocks), in
order to reduce the complexity of required generalization pro-
cess. All those nonempty hypercubes (i.e., those hit by at least
one of the interpolated results) are discovered and fed as the in-
put into a GA-based clustering algorithm, which finds the “best”

1063-6706 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0659-9646
https://orcid.org/0000-0001-9333-4605

NAIK et al.: DYNAMIC FUZZY RULE INTERPOLATION AND ITS APPLICATION TO INTRUSION DETECTION 1879

cluster arrangement based on a predefined fitness function (here,
the Dunn Index (DI) [14] is adopted for implementation). The re-
sulting densest clusters that have accumulated a sufficient num-
ber of candidate rules are selected for rule aggregation and pro-
motion, and this is done through an iterative process. Systematic
comparative investigations are carried out against conventional
FRI that uses just the original sparse rule base, demonstrating
that D-FRI possesses higher accuracy and robustness level.

In addition to evaluation of D-FRI against benchmark
datasets, it is important to examine how it may work in a real-
world application setting. Security is one of the major concerns
of any organization regardless of their size and nature of work.
Security attacks and their types are countless, however, net-
work intrusion attack is one of the key concerns, being an illicit
attempt that compromises the confidentiality, integrity, or avail-
ability of the organizational IT infrastructure [15], [16]. Conse-
quently, D-FRI is employed herein to support network security
analysis, in building an intelligent intrusion detection system
(IDS). It is used in conjunction with Snort, one of the most
popular open source IDSs, resulting in a dynamic IDS named
D-FRI-Snort. Experimental studies show that the integration of
D-FRI and Snort delivers an extra level of intelligence in an ef-
fort to predict the level of potential threats. With a dynamic rule
base obtained by promoting newly interpolated rules that reflect
more relevant network traffic conditions, D-FRI-Snort helps re-
duce both the false positives and the false negatives produced
by the original Snort.

The remainder of this paper is organized as follows.
Section II briefly outlines the background techniques that are
useful to implement the proposed work, including: a specific
and popular form of FRI, termed scale and move transforma-
tion based FRI (T-FRI) [17], [18], genetic algorithms (GAs),
intrusion detection, and Snort. Section III presents the theoret-
ical design and implementation of D-FRI. Section IV provides
the simulation results of D-FRI on benchmark datasets, verify-
ing its correctness and accuracy by comparing it with T-FRI.
Section V describes the specification of D-FRI-Snort, apply-
ing D-FRI to network security analysis. Section VI presents the
experimental results of D-FRI-Snort, demonstrating its effec-
tiveness. Finally, Section VII concludes the paper and suggests
a number of future areas of extension.

II. BACKGROUND

A. FRI Approaches

Many fuzzy reasoning systems cannot contain a dense rule
base because of the nature of a particular application area and
therefore, they rely on a sparse rule base. Such reasoning tools
compute approximate conclusions by employing FRI, a well-
established technique in developing fuzzy systems. Over the
past 25 years, a number of important FRI techniques have been
introduced, reflecting a variety of viewpoints that are followed
in the implementation of the underlying approaches. These in-
clude pioneering work based on: exploiting fuzzy relations in
the Cartesian product of input and output space [1], extend-
ing classical linear interpolation from the object level to rules
[2], [3], computing interpolation over splines [4], minimizing

nonconvex conclusion issues [19], exploring vague environment
by the use of crisp sets [20], inferring from modified alpha-cuts
[21]–[23], ensuring the preservation of fuzziness [24], reinforc-
ing the modified alpha-cut technique over multidimensions [25],
manipulating the slopes of the fuzzy sets [26], transferring sim-
ilarity constraints to guarantee convex outcomes [27], perform-
ing transformation that preserves spatial geometric properties
[28], assuring the maintenance of graduality in representation
[29], working on the flank functions [30], utilizing scale and
move transformations of representative values [17], [18], inte-
grating cutting and transformation techniques [31], making use
of basis-spline (B-Spline) functions [32], conducting interpo-
lation via linguistic term shifting and polar cuts [33], ranking
values of fuzzy sets [34], and retaining conservation of shape
types specific to domain partition [35]. Note that while interpola-
tion is commonly used as a term in describing these approaches,
many of which can be equivalently applied to perform reasoning
with fuzzy rule extrapolation.

Much of the aforementioned seminal work on FRI has in-
spired the present research as well as many recently reported
further developments that support more sophisticated FRI. The
latter include those using weighted [36], higher order [37]–[39]
or hierarchical [40] rule representation, and those allowing for
self error-correction [41], [42] or adaptation [43] of interpolative
results and for interpolation and extrapolation via backward rule
chaining [44]. A full coverage and detailed analysis of the FRI
literature is beyond the scope of this paper, but many recent algo-
rithms have followed the transformation-based approach which
exploits generalized modus ponens in fuzzy inference [17], [18].
Here, in developing D-FRI, the T-FRI approach is also adopted
to serve as the underlying FRI mechanism. However, other FRI
methods may be utilized as alternatives if preferred.

B. Transformation-Based FRI

This section provides a brief overview of T-FRI, including
both the underlying concepts and the interpolation procedure.
For simplicity and owing to their popularity, in this work, fuzzy
sets are represented using triangular membership functions.
Suppose that an original, sparse rule base R exists, with rules
Ri ∈ R and an observation O:

Ri : IF x1 is Ai,1 , . . ., and xj is Ai,j , . . ., and XN is Ai,N ,
THEN y is Bi

O: A◦,1 , . . ., A◦,j , . . ., A◦,N

where i indexes rule Ri in the sparse rule base, Ai,j = (a0 ,
a1 , a2) is the triangular linguistic term defined on the domain of
the antecedent variable xj , j ∈ {1, . . . , N}, with N being the
total number of antecedents, and Bi is the consequent.

Let a given observed fuzzy value of the variable xj be denoted
by A◦,j , and the representative value rep(A) of a triangular
fuzzy set A be defined as the mean of the X coordinates of the
triangle’s three odd points: the left and right extremities of the
support a0 , a2 (with membership values = 0), and the normal
point a1 (with membership value = 1)

rep(A) = (a0 + a1 + a2)/3. (1)

1880 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 4, AUGUST 2018

Given the above notations, the core of the T-FRI can be sum-
marized as follows, while more details can be found in [17],
[18].

1) Determine Closest Rules for New Observation: The dis-
tance between Ri and O is determined by computing the aggre-
gated distance of all antecedent variables

d(Ri,O) =
√∑N

j=1
d2

j , dj =
d(Ai,j , A◦,j)

rangexj

(2)

where d(Ai,j , A◦,j) = |rep(Ai,j) − rep(A◦,j)| is the distance
between the representative values of the two fuzzy sets in the
jth antecedent, with rangexj

= max xj − min xj over the do-
main of the variable xj . dj ∈ [0, 1] is therefore the normalized
result of the otherwise absolute distance measure, so that dis-
tances are compatible with each other across different variable
domains. The M , M ≥ 2 rules which have the least distance
measurements, with regard to the observed values A◦,j are then
chosen to perform the interpolation in order to obtain the re-
quired conclusion B◦.

2) Construct Intermediate Rule: Guided by the new obser-
vation, an intermediate rule is needed to approximately approach
the final outcome of the consequent, by linearly interpolating
the previously identified M closest rules to the observation. The
antecedents of this rule are initially estimated by manipulating
the antecedents of the M rules

A††
j =

M∑
i=1

ωi,jAi,j (3)

where

ωi,j =
ω†

i,j∑M
k=1 ω†

i,j

, ω†
i,j = exp−d(Ai , j ,A ◦, j) . (4)

These A††
j are then shifted to A†

j such that they have the same
representative values as those of A◦,j

A†
j = A††

j + δj rangexj
(5)

where δj is the bias between A◦,j and Aj
† on the jth variable

domain

δj =
rep(A◦,j) − rep(Aj

†)
rangexj

. (6)

From this, the shifted intermediate consequent B† can be com-
puted, with the parameters ωBi

and δB being aggregated from
those regarding the antecedents of Aj

†, such that

ωBi
=

1
N

N∑
j=1

ωi,j , δB =
1
N

N∑
j=1

δj . (7)

3) Scale and Move Transformations: The above intermedi-
ate rule ensures that the representative values of its antecedents
are the same as those of the corresponding elements in the given
observation. In order to make the fuzzy values in this rule also
the same as the observation (so that the observation matches the
resulting rule), scale and move transformations will be required.

Thus, guided by the observation, the current support of A†
j ,

(a0
†, a2

†) is first rescaled to a new support (a0
+ , a2

+), such
that a2

+ − a0
+ = sj × (a†

2 − a†
0)⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a+
0 = a0

†(1+2sj)+a1
†(1−sj)+a2

†(1−sj)
3

a1
+ = a0

†(1−sj)+a1
†(1+2sj)+a2

†(1−sj)
3

a2
+ = a0

†(1−sj)+a1
†(1−sj)+a2

†(1+2sj)
3

sj = a2
+ −a0

+

a2
†−a0

†

. (8)

From this, the scaling factor sB for the consequent can then be
calculated by

sB =

∑N
j=1 sj

N
. (9)

The resulting rescaled fuzzy values are subsequently moved
using the following move rate mj , so that the final transformed
fuzzy sets match the corresponding elements in the observation⎧⎨

⎩
mj = 3(a0 −a0

+)
a1

+ −a0
+ , a0 ≥ a0

+

mj = 3(a0 −a0
+)

a3
+ −a2

+ , otherwise
. (10)

From this, the move factor mB for the consequent is calculated
such that

mB =

∑N
j=1 mj

N
. (11)

The final interpolated result B◦ can now be estimated by
applying the scale and move transformation to B†, using the
parameters sB , and mB . Note that given both transformations
are linear operations, the order of applying the scale and move
transformations can be reversed.

C. Genetic Algorithms

A GA is a metaheuristic search method for solving con-
strained and unconstrained optimization problems, based on
Darwinian principle of survival of the fittest individuals in nat-
ural selection [45]. The computational implementation of a GA
chiefly depends on the two important operators: crossover and
mutation. In the beginning, the potential solution to the problem
is encoded in the form of a chromosome. The initial population,
a set of chromosomes, is generated randomly and their mem-
bers are then selected for the reproductive process based on
their fitness (or quality) values. The chromosomes with better
fitness values are more likely to take part in the reproduction
of offsprings. The reproductive process is repeated until certain
desired or limiting conditions are met, such as achieving the
desired fitness level for a candidate solution or reaching a maxi-
mum number of generations. The generic procedure of GAs can
be summarized as follows [46], [47]:

1) Initialization: Generate random population P of |P |
chromosomes [X1 ,X2 ,,X|P |], where each chromo-
some Xi, i = 1, ..., |P |, is an order collection of genes
= [xi

1 , . . . , x
i
r , x

i
r+1 , . . . , x

i
|Xi |].

2) Fitness Calculation: Evaluate the fitness f(Xi) of each
chromosome Xi in the population P , ∀i ∈ {1, ..., |P |},

NAIK et al.: DYNAMIC FUZZY RULE INTERPOLATION AND ITS APPLICATION TO INTRUSION DETECTION 1881

where the quality function f(.) is predefined in the do-
main.

3) Chromosome Selection: Select two parent chromosomes
Xp and Xq from a population P according to their fitness;
generally, the fitter, the bigger chance to be selected.

4) Crossover: With a crossover rate δc , cross over the parents
Xp and Xq to form new offsprings (X

′
p and X

′
q); in the

event that no crossover is performed, the offsprings are
exact copies of their parents.

5) Mutation: With a mutation rate δm , mutate the offsprings
(X

′
p and X

′
q) at each locus (position in chromosome).

6) Acceptance: The new offsprings (X
′
p and X

′
q) then to-

gether form the new population Pnew, and are used for the
subsequent generation.

7) Iteration: If the given condition is not satisfied, repeat the
process from the step-Fitness Calculation.

8) Termination: If the termination condition is satisfied, stop,
and return the best chromosome Xbest in the final popula-
tion (as the solution to the problem).

D. Intrusion Detection

An IDS is a software which monitors all inbound and out-
bound traffic and attempts to identify unauthorized, illicit, and
anomalous behavior in the traffic that may compromise system
and network security. Advanced IDSs may also differentiate
between insider attacks and external attacks [48]. An intru-
sion prevention system (IPS) is the enhanced version of an IDS
which can block threats in addition to detecting them. Unlike
IPS, an IDS is mostly a passive device used for gathering, iden-
tifying, logging, and alerting purposes. Plethora of IDSs/IPSs
are available, including: Snort, OSSEC, OSSIM, Suricata, Bro,
Fragroute, BASE, Kismet, and Sguil.

IDSs can be categorized into anomaly-based, misuse/signa
ture-based, network-based, and host-based [49]. In an anomaly-
based IDS, the system administrator defines the baseline state
of the network. Subsequently, the IDS monitors network traffic
and compares it against stored patterns of normal behavior. It
alerts the administrator or user when traffic is detected which
is significantly different from the normal behavior. In misuse-
based IDSs, the system administrator maintains a large database
of known attack signatures. Subsequently, the IDS monitors net-
work traffic and compares it against stored patterns of signatures
or attributes from known malicious threats. In network-based
IDSs (NIDS), the alert software is installed only at specific
points, such as servers, switch, gateway, or router, which act as
an interface between the outside environment and the network
segment to be protected. Subsequently, an NIDS processes and
flags any suspicious traffic through captured packets. In host-
based IDSs (HIDS), the alert agent/application is installed on
every network computer that has two-way access to the out-
side environment, such as the Internet. Subsequently, an HIDS
monitors traffic and also produces an active response.

E. Snort

Snort is one of the most popular open source network in-
trusion detection and prevention systems. It was inducted into

Fig. 1. Process of D-FRI.

InfoWorld’s open source hall of fame in 2009 [50], capable of
performing real-time traffic analysis and packet-logging on IP
networks [51]. Snort is based on libpcap (library packet capture)
package, which is a system-independent interface for user-level
packet capture and widely used in TCP/IP traffic sniffers and
analyzers [52]. It is mainly a signature-based IDS, however, it
can also act as an anomaly-based IDS and protocol analyzer
by employing certain extra mechanisms. Snort uses various pre-
processors and performs protocol analysis and content searching
and matching for detecting several attacks, such as denials of ser-
vice, buffer overflows, CGI attacks, port scanning attacks, SMB
probes, worms, and OS fingerprinting attempts [53]. Whenever
Snort detects suspicious activity, it sends a real-time alert to sys-
log file, a user-specified file, a UNIX socket, an alert database
or screen/dashboard depending on its configuration.

III. D-FRI: DESIGN AND IMPLEMENTATION

A. D-FRI Outline

The overall D-FRI process is shown in Fig. 1. It starts with
the initial running of a certain FRI system (here, T-FRI), which
contains a set of original (sparse) rules R. It generates an in-
creasingly large number of interpolated rules which are accu-
mulated as a pool of interpolated rules R′. The domains of all
the antecedents of R′ are jointly divided into a set of hypercubes
H. Among all hypercube, only those nonempty hypercubes H∗

(i.e., those being hit by at least one interpolated rule) are se-
lected as input to the GA-based clustering algorithm, which
helps reduce the computational complexity of the GA (with
superfluous hypercubes removed). The GA-based clustering al-
gorithm finds the “best” clustering arrangement that provides a
set of strong hypercubes H1 and another set of weak hypercubes
H0 . Here, each strong hypercube contains many rules (over a

1882 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 4, AUGUST 2018

certain predefined number) while each weak hypercube is less
densely populated with rules. After this, weak hypercubes are
merged to become strong hypercubes. The benefit of using such
an approach is that the GA can find the best clusters without
assigning a predetermined number of emerging clusters. Once
the clustering process is completed, only those clusters contain-
ing adequate interpolated rules (again, with the number higher
than a certain threshold) are selected for the subsequent rule
promotion process, through an aggression procedure to update
the rule base R.

Such a D-FRI process is of intuitive appeal by taking ad-
vantage of the interpolated results produced by an FRI system
over time. In doing so, it reduces the interpolation overheads
for frequent and similar observations once they have been dealt
with, by directly employing the compositional rule of inference
(CRI). As outlined above, D-FRI is a flexible and generalized
approach with no restriction of using any particular FRI, fitness
function, and rule promotion scheme. The various stages within
a D-FRI process, including input space partitioning, interpo-
lated rule clustering, and dynamic rule promotion are detailed
below.

B. Partitioning of Antecedent Space

A grid decomposition approach is employed to discover the
regions delimited by antecedents that are uncovered by the orig-
inal sparse rules in R; and the regions that are covered by the
collection R′ of interpolated rules. Based on the value ranges
of the antecedent variables, the product space of the antecedent
domains is thus divided into a set of hypercubes H. Subse-
quently, the antecedent values of a rule R (an original rule Rk

or an interpolated rule R
′
k) is checked whether it lies within the

boundaries of a certain Hp . If so, it is said to hit the hypercube
Hp

R ∈ Hp if rep(Ak,j) ∈ [min Hp,j ,max Hp,j), j ∈ {1, . . . , N}
(12)

where Ak,j is the value of the jth antecedent of the rule R.
Depending on the requirement of a sparse rule-based sys-

tem, the size and number of hypercubes can be adjusted. While
there is no such specific domain-dependent knowledge is avail-
able, the initial setting is determined by the underlying numbers
of possible fuzzy values per individual antecedent variables.
Without losing generality, in the present work, each antecedent
dimension is evenly divided into η intervals. Therefore, the total
number of hypercubes is |H| = ηN . Initially, all the hypercubes
are examined, but in performing the clustering of the interpo-
lated results, only nonempty hypercubes H∗ (i.e., those with at
least one hit) are to be used.

H∗ ⊆ H ∀H ∈ H∗, |H| 	= 0. (13)

C. Clustering of Interpolated Rules

A GA-based algorithm is proposed for the clustering of in-
terpolated rules, which is shown in Algorithm 1. It forms the
clusters of similar interpolated rules R′ ∈ H by utilizing only
nonempty hypercubes, reducing its computational complexity
by discarding all the empty hypercubes. The implementation

Fig. 2. Chromosome representation in D-FRI.

procedure of the proposed GA-based clustering algorithm is
detailed below.

1) Representation of Chromosome and Population: As pre-
viously mentioned, the GA-based clustering algorithm utilizes
only all the nonempty hypercubes. Thus, the length of a chro-
mosome |X| can be determined by the initial total number of
nonempty hypercubes |H∗|, represented as gene series of 0s and
1s. In illustration, the structure of a chromosome can be shown
in Fig. 2, where a gene 0 denotes a weak cluster at that location
(with the number of hits being lower than a given threshold),
and a gene 1 denotes a strong cluster at that location (where
the number of hits is higher than the threshold). The thresh-
old is provided by the knowledge engineer to determine how
frequently a hypercube is hit may be worth considering being
promoted into a future inference rule, namely signalling the
potential presence of a cluster. To begin the GA optimization
process, the first population P [X1 ,X2 ,,X|P |] is generated
randomly. A population size of between 20 and 30 chromosomes
is commonly used, however, a bigger population size may also
be utilize if preferred [54], [55]. Here, a fixed population size |P |
is intuitively determined according to the number of nonempty
hypercubes H∗ for the present investigation.

2) Fitness of Chromosomes: In GAs, the fitness function
is the most important parameter as it decides the quality and

NAIK et al.: DYNAMIC FUZZY RULE INTERPOLATION AND ITS APPLICATION TO INTRUSION DETECTION 1883

selection criteria for all chromosomes, but it is specified depend-
ing upon the given problem. Here, the chromosome denotes a
potential cluster arrangement; therefore, the fitness function is
used to assess the quality of clusters. Consequently, it is designed
to be derived from the DI [14], which is popular to capture and
reflect the concepts of cluster isolation and compactness. The
greater value of DI indicates better clustering result

f(Xi) = min
p,q∈{1,...,i},p 	=q

{
mpq

maxr∈{1,...,i} sr

}
(14)

where sr and mpq are the intracluster (compactness) and inter-
cluster (isolation) distance measurement, respectively

sr =

√∑
R ′∈Cr

d(R′, μr)2

|Cr | , mpq = d(μp, μq). (15)

In the above, Cr is the rth emerging cluster, the distance between
a given interpolated rule R′ and the centroid μq of a cluster Cq

is calculated in a way similar to the distance measure d(Rp,Rq)
between any two given rules Rp and Rq , with the latter defined
by (though alternative distance metrics may be used for the same
purpose)

d(Rp,Rq) =

√∑N

i=1

(rep(Ap,i) − rep(Aq,i))2

rangexi

(16)

where rangexi
stands for the domain range of the variable xi .

Thus,

∀R′
j , R

′
k ∈ R′, d(R′

j , μq) = d(R′
k , μq) (17)

where

d(R′, μq) =

√∑N

i=1
(rep(A′

i) − μq,i)2 , R′ ∈ R′. (18)

3) Selection of Chromosomes: The standard roulette wheel
selection algorithm [56], as depicted in Algorithm 2, is used for
the selection of parent chromosomes to produce offsprings of
the next round of population. Each chromosome is allocated a
portion of roulette wheel based on its fitness value. Inherently,
the higher the fitness value, the bigger the portion of the wheel.

4) Crossover and Mutation of Chromosomes: The contribu-
tion of the two selected parent chromosomes in the production
of offsprings is governed by the two core genetic operators:
crossover and mutation. The crossover process governs the way
information is exchanged between two parent chromosomes

for the production of the two offsprings, which is depicted in
Algorithm 3. The commonly used crossover rate δc in GA opti-
mization is about 70 − 95% [54]. The mutation process decides
how different offsprings can be produced while avoiding the
possibility of the same offsprings in the next round, which is de-
picted in Algorithm 4. It is desirable to set a very low value of the
mutation operator because a high mutation rate can adversely
affect GA’s performance [54].

5) Termination of Optimization Process: The termination of
a GA’s operation process is generally dependent on the given
problem. Without domain-specific information, in this work, the
termination condition is set to a prescribed maximum number
of generations kmax in the reproduction of offsprings. Once it is
terminated, the best chromosome Xbest of the final population
is considered as the final clustering outcome.

6) Merging and Filtering of Clusters/HyberCubes: The GA
optimization process returns the best clustering arrangement.
This arrangement contains a number of strong and weak hy-
percubes, where strong hypercubes H1 ∈ H1 are considered
candidate cluster centers and weak hypercubes H0 ∈ H0 are to
be merged with their closest strong hypercubes. The merging
process of the strong and weak hypercubes/clusters is outlined
in Algorithm 5, guided by the clustering metric, DI as shown
before. This merging process constructs the final clustering out-
come. After which, a filtering process is performed to select
one or more clusters of rules as the candidate for the next rule
promotion process. The selection of the clusters is based on the
predefined threshold that was used previously above which a
hypercube is deemed dense.

D. Dynamic Rule Promotion

Resulting from the aforementioned partitioning, clustering,
merging, and filtering process, a set of informative rules R′ ∈
Cq ⊆ H∗ is obtained for further generalization to create new,

1884 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 4, AUGUST 2018

aggregated rules. Without losing generality, denote such a newly
created rule as R∗.

To generate an R∗, a weighted aggregation method is em-
ployed that calculates the contribution of every candidate rule
in the selected cluster with respect to the cluster centroid μq .
This process is similar to the construction of intermediate rules
in T-FRI, where a matrix wij of the rank Cq × (N + 1) is in-
volved. It reflects the weighting of the antecedent A′

ij of an
interpolated rule R′

i ∈ Cq in relation to the jth antecedent A∗
j

of R∗ such that

wi,j =
1

d(A′
i,j , μq,j)

, i ∈ {1, . . . , |Cq |}, j ∈ {1, . . . , N}
(19)

and similarly, that of B′
i of the interpolated rule to B∗

wi,N +1 =
1

d(B′
i , μq,N +1)

. (20)

The weights are then normalized, resulting in

w′
i,j =

wi,j∑|Cq |
i=1 wi,j

. (21)

With the resultant calculated weights, a new rule R∗ is thus,
dynamically constructed, such that

A∗
j =

|Cq |∑
i=1

w′
i,jA

′
i,j , j ∈ {1, . . . , N}, B∗ =

|Cq |∑
i=1

w′
i,N +1B

′
i .

Once constructed, each new rule R∗ is added to the orig-
inal (sparse) rule base so that R := R ∪ {R∗}, and that the
corresponding interpolated rules included in the aggregation
process are eliminated from the pool of interpolated rules:
R′ := R′ \ Cq . This process iterates until each selected cluster
has been promoted into a rule. That is, when the above pro-
cedure of partitioning, clustering, merging, filtering, and pro-
motion will have been applied to all the hypercubes which are
dense. For completeness, Algorithm 6 summarizes the entire
D-FRI algorithm.

E. Complexity Analysis of D-FRI

The computational complexity of D-FRI can be estimated on
the basis of its three core subprocedures:

1) partitioning of antecedent space,
2) clustering of interpolated rules, and
3) dynamic rule promotion.

The complexity of the first subprocedure is

Opartition = O(|R′ |Nη). (22)

It is dependent on the total number of rules in the interpolated
rule base |R′ |, the total number of rule antecedents N , and the
total number of possible fuzzy values per antecedent η.

The complexity of the second subprocedure is

Oga = O(|P |kmax) · Ofitness (23)

where

Ofitness = O

(
|H| + |R′ |2 +

|R′ |2
|H|2 + |H|2

)
. (24)

This is because the complexity of this procedure is mainly de-
pendent on the maximum number of generations kmax , the size
of the population |P |, and the complexity of the fitness evalu-
ation Ofitness. However, the genetic operators also affect it, al-
though their impact varies depending on how they are employed.
For simplicity, the above fitness complexity Ofitness takes into
consideration of the complexity of these chromosome trans-
formations: O(|H|), that of the hypercube merging process:
O(|R′ |2), and that of the DI computation.

Finally, the complexity of the last subprocedure (of rule pro-
motion) is

Opromotion = O

(|R′ |N
|C|

)
. (25)

It depends upon the total number of clusters |C| (obtained from
the output of GA-based clustering), the total number of inter-
polated rules |R′ |, and the total number of antecedent dimen-
sions N . Putting the above three estimates together, the overall
computational complexity of the proposed D-FRI algorithm is:
Opartition + Oga + Opromotion.

NAIK et al.: DYNAMIC FUZZY RULE INTERPOLATION AND ITS APPLICATION TO INTRUSION DETECTION 1885

TABLE I
COMPARATIVE EVALUATION OF FRI AND D-FRI

η = 4 η = 5 η = 6

ε% dv i ε% dv t ε% iv t ε% dv i ε% dv t ε% iv t ε% dv i ε% dv t ε% iv t

AVG 2.68 2.24 2.07 2.38 1.24 2.45 3.47 2.06 3.74
SD 2.77 2.01 3.35 2.70 1.25 2.63 3.03 1.97 3.73

IV. D-FRI: SIMULATION-BASED EVALUATION

This section presents the experimental simulation of D-FRI
for comparative evaluation of its efficacy. Initially, a numerically
sampled sparse rule base R of size 100 is generated using the
function of three crisp input variables as given below:

y = 1 +
√

x1 +
1
x2

+
1√
x3

3

, x1 , x2 , x3 ∈ [1, 20]. (26)

This is then transformed into a fuzzy sparse rule base by fuzzi-
fying the crisp inputs and their corresponding function outputs.
In this transformation, a numerical value a is changed to a
fuzzy set A with a support length of 1: A = (a − 0.5, a, a +
0.5), Rep(A) = a. This process delivers a basic nonlinear sparse
rule base appropriate for the purpose of this simulation.

To ensure the generality of this experimental investigation,
the simulations to be carried out using three different η values:
4, 5, 6. That is, the antecedent variable domains are evenly di-
vided for 3 times, into 3 different numbers of intervals, resulting
in 43 = 64, 53 = 125, and 63 = 216, hypercubes, respectively.
The GA parameters are set as typically adopted in the literature,
to the following values: crossover rate δc = 0.7, mutation rate
δm = 0.05, population size |P | = 20, and maximum generation
kmax = 100.

A. Comparative Evaluation of FRI and D-FRI

D-FRI is applied on a pool of 500 interpolated rules for three
different values of η ∈ {4, 5, 6}, and 90, 132, and 167 new
rules have been dynamically promoted for these three cases,
respectively. From this, the representative values of all the con-
sequents of the dynamically promoted rules are calculated in
order to compare against the results of conventional (T-FRI)
interpolation (ε%dvi), and with the ground truths that are calcu-
lated using the base function (ε%dvt). For completeness of anal-
ysis, the comparison between conventional interpolation and the
ground truths (e% iv t) is also performed. The percentage error
ε% = ε/rangey is calculated corresponding to the range of the
consequent variable. D-FRI is repeated 50 times for each set of
the parameter values due to the presence of stochastic elements
in the preliminary rule generation and within the GA-based clus-
tering procedure. Table I illustrates the comparative evaluation
of FRI and D-FRI on the basis of the averaged value of ε% and
the standard deviation of ε% .

It can be seen from this table that for η = 5 and 6, D-FRI
produces significantly more accurate results than T-FRI, the
conventional interpolation. Also, the resulting consequent val-
ues of the dynamic rules in D-FRI are closer to the ground
truths as compared to the results achievable by T-FRI. In these

experiments, the most accurate and stable dynamically pro-
moted rules are generated for the parameter configuration with
η = 5. When the parameter configuration with η = 6 is used,
very good performance is also obtained with more accurate and
closer to the ground truth results as compared to the use of
T-FRI. Importantly, if these dynamically generated rules using
intervals η = 5 or η = 6 are added to the original sparse rule
base, then, the system will not only improve the overall rea-
soning accuracy (i.e., the quality of the sparse rule base), but
also reduce the interpolation overheads by avoiding the need of
interpolations for similar observations in the future.

Note that however, when the parameter setting with a large
interval (η = 4) is assumed, the approach does not generally
produce high quality dynamic rules, but the rules produced are
still rather stable (giving the much smaller standard deviation
in comparison with the use of the original sparse rules by T-
FRI). This is of course expected and indeed, rather obvious
since large hypercubes are less likely to form any meaningful
clustering arrangement. Nevertheless, one benefit of using GAs
for optimizing the clustering process is to start clustering with-
out specifying exact starting conditions given their stochastic
properties. Thus, overall, the system is insensitive to such initial
settings, as confirmed below.

B. Dynamic Rule Promotion and Rule Base Fulfilment

This second set of simulations is focused on the dynamic
rule promotion process of D-FRI and its efficiency. It is again
carried out with a different number of interpolation rules 250,
500, and 750, corresponding to different numbers of initial in-
terval settings: η ∈ {4, 5, 6}, respectively. This examination of
the dynamic rule promotion process is to observe the effects
of D-FRI running over time and the level of fulfilment of the
regions within the original sparse rule base. The experimental
process is based on the (correct) presumption that the D-FRI
process is running normally (i.e., performing interpolation un-
interruptedly).

Fig. 3 shows the number of fulfilled regions H∗ in R, and
the number of rules |R| in relation to the number of iterations.
The plots within this figure illustrate the continuous variation in
the values of |R| and |H∗| throughout the dynamic rule promo-
tion process. It clearly indicates that certain rules which have
been given or promoted previously may be removed later due to
the new interpolated rules are logged in the subsequent process.
This is important to ensure rules are up to date while the rule
base is maintained without duplications.

Examining more closely, this gradual and continuous rule
promotion process improves the coverage of R by dynamically

1886 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 4, AUGUST 2018

Fig. 3. Dynamic rule promotion and rule base fulfilment in D-FRI.

promoting and adding new rules to it. In particular, for the case
of having an initial setting of the interval size η = 4, all of the
potential 64 regions associated with the sparse rule base are filled
in 38 iterations, and the final rule base consists of 238 rules. For
the cases with η = 5 and η = 6, not all but a great majority of
the regions are filled: 1) for η = 5, 120 regions are filled out of
125 regions in 118 iterations, and the final rule base consists of
525 rules; and 2) for η = 6, 193 regions are filled out of 216
regions in 127 iterations, and the final rule base consists of 570
rules. Thus, while keeping the rules up to date, the rule base is
to steadily enriched to provide better coverage of the underlying

problem domain, avoiding the overheads otherwise required to
perform interpolative computation when a new observation is
not matched.

Note that as shown in all three cases above, with continued
rule base enrichment through dynamic learning, D-FRI may be
employed to generate a dense fuzzy rule base required for clas-
sical fuzzy reasoning methods, such as the CRI. Of course, there
is a tradeoff to balance between the potential efficiency gained
from direct rule firing via CRI with the resulting ever richer rule
base and the possible efficiency loss due to searching through an
increasingly more complex dense rule base. An interesting way

NAIK et al.: DYNAMIC FUZZY RULE INTERPOLATION AND ITS APPLICATION TO INTRUSION DETECTION 1887

Fig. 4. Architectural diagram of D-FRI-Snort.

to investigate such a balance is to consider closed-form FRI as
with [57], but this is beyond scope of this paper.

V. D-FRI FOR INTRUSION DETECTION: D-FRI-SNORT

To demonstrate the real success of D-FRI, it is herein ap-
plied to addressing a challenging real-world problem: network
intrusion detection. Security is one of the major concerns of any
organization regardless of their size and nature of work. Security
attacks and their types are countless, however, network intrusion
attack is one of the key concerns, being an illicit attempt that
compromises the confidentiality, integrity, or availability of the
organizational IT infrastructure [15], [16]. In this application,
D-FRI is integrated with Snort to construct an intelligent and
dynamic IDS, called D-FRI-Snort. The framework of this inte-
gration is shown in Fig. 4, consisting of three main subsystems:
an IDS - Snort, a conventional fuzzy inference subsystem, and
a D-FRI subsystem.

In implementation, Snort is installed on the host computer,
on which the attacks are to be carried out. Prior to actual appli-
cation of D-FRI, a network baselining process is performed
to determine the normal traffic conditions of the host com-
puter and network, including the normal values for: the aver-
age packet time, the number of packets sent, and the number
of packets received. A number of artificial attacks with various
levels of severity are introduced on the host computer for data
collection in support of the design of the fuzzy inference system
(i.e., fuzzy sets and the original fuzzy rule base). In doing on, the
fuzzy inference system offers an extra amount of intelligence to
predict the level of potential attacks if it finds a suitable match-
ing rule in the existing rule base, which is not possible by the
standard Snort [58]. The D-FRI system provides further infor-
mation to detect the attack level by running FRI if it does not
find a suitable matching rule in the existing rule base. It stores
all the interpolated results as a pool of training rules for running
GA-based dynamic rule generation and promotion. As such the
integrated system is expected to significantly improve its per-
formance over the standard Snort, reducing both false positive
detections and false negatives. Detailed designs of this system
are presented below.

A. Network Baselining and Background Analysis

In network security analysis, it is a common prerequisite to
determine the normal working condition of the network/host,

and this process is called network baselining. It relies on the
use of a set of metrics used in network performance monitoring
to define the normal working conditions of a network infras-
tructure [59]. These metrics and their values may differ for the
similar type of network due to varying network environment
and organizational requirements. Snort baselining (and hence,
the baselining for D-FRI-Snort) is carried out on the particular
host to study its normal traffic conditions before it may detect
any malicious attacks.

As indicated previously, in this investigation, Snort cap-
tures network traffic containing the following three parameters
(though more may be utilized if desired):

1) the average time between received packets by the destina-
tion/victim in milliseconds (ATP);

2) the number of packets sent by the source in seconds (NPS);
and

3) the number of packets received by the destination/victim
in seconds (NPR).

The baseline values of these three parameters are determined
on the basis of local proxy network traffic and are set to: ATP >
18 ms, NPS < 270 packets/s, and NPR < 1000 packets/s. They
are hereafter regarded as fuzzy input variables and used in the
specification of the fuzzy rule base.

D-FRI-Snort is devised to focus on port scan attack (PSA)
activities through analyzing collected data. Network scanning
tools NMAP [60], Advanced Port Scanner [61], and Ping [62]
are used to carry out the PSA, and traffic data is collected by
Snort itself. In particular, five rounds of port scanning attack
activities are performed on the host machine. In the first round,
the PSA on the host computer is carried out by one computer; in
the second round, the attack is done by two computers; and so
on. Experiment on each round is repeated ten times to acquire the
average values of the selected parameters (ATP, NPS, and NPR).
The entire experimental activity lasts for one week, during which
the final abnormal traffic data for the three chosen parameters
are, respectively, recorded as: ATP ≈ 4.4–18 ms, NPS ≈ 270–
1700 packets/s, and NPR ≈ 1000–4000 packets/s.

Data analysis is performed mainly using the Wireshark anal-
yser [63] and Snort. In each round, the values of the selected
parameters are analyzed in order to understand the attack pat-
terns and statistics. Time is one of the most important factors
in analyzing the PSA [58], therefore, the average time between
packets is considered as one of the decisive criteria for this in-
vestigation. In the first round, when the port scanning activity
is very low, ATP shows a very high value, then, it gradually
decreases as the number of rounds increases. The other two pa-
rameters, NPS and NPR, also show a very low value in the first
round each, but they steadily increase their values as the round
number increases.

B. Generation of Fuzzy Sets and Fuzzy Rules

From the aforementioned background analysis of collected
data, and also following practical advice of domain experts, the
values of three parameters ATP, NPS, and NPR can be separated
into different ranges. Five ranges are herein set with respect
to the five attack rounds, indicating the different levels of a

1888 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 4, AUGUST 2018

Fig. 5. Fuzzy membership functions used for D-FRI-Snort.

potential attack. The underlying fuzzy sets and fuzzy rules are
designed using the fuzzy logic toolbox in Matlab, based on
Mamdani’s fuzzy inference method [64]. For simplicity, all three
variables take values from the same quantity space of normalized
fuzzy sets—very low (VL), low (L), medium (M), high (H) and
very high (VH), are used whose membership functions as shown
in Fig. 5. The output fuzzy variable is the level of PSA, and it is
also divided into five fuzzy sets on the scale of 0–1, as given in
the same figure.

These fuzzy variables and their corresponding fuzzy sets are
employed in the design of original fuzzy rule base. All the rules
are generated based on the following artefacts: recorded value
ranges; expert knowledge of detecting the PSA; and relationship
between the parameters used to detect the underlying attack.
Example fuzzy rules are shown in Fig. 6, and the (original)
sparse fuzzy rule base, containing 30 rules, is shown in Fig. 7,
in terms of the fuzzy sets involved.

C. Fuzzy Inference and D-FRI Operation

With the given sparse rule base, D-FRI-Snort is ready to per-
form monitoring the network traffic on the host. It generates

Fig. 6. Example fuzzy rules used by D-FRI-Snort.

Fig. 7. Original sparse fuzzy rule base and dynamically promoted interpolated
rules.

an alert with an extra level/sensitivity of a potential attack if
it finds a suitable matching rule in the existing rule base with
the given observation. However, it is challenging to acquire an
exhaustive set of rules to cover all the input conditions from
the captured traffic data. Fortunately, D-FRI-Snort can generate
alerts for those observations that are not covered by the sparse
rule base through interpolation, unlike the use of only a conven-
tional fuzzy inference system. This substantially reduces, if not
completely resolves, the main failure of the most fuzzy IDSs.
Thus, it helps minimize the possibility of generating false results
due to a lack of sufficient knowledge.

NAIK et al.: DYNAMIC FUZZY RULE INTERPOLATION AND ITS APPLICATION TO INTRUSION DETECTION 1889

TABLE II
ATTACK ALERT GENERATION FROM D-FRI-SNORT

Obs. Input Output - Attack Alert

No. ATP NPS NPR D-FRI-Snort PSA

1 15.9 322 1206 Very low attack alert
2 10.48 565 1918 Low attack alert
3 7.84 1032 2458 Medium attack alert
4 5.8 1398 3068 High attack alert
5 4.5 1500 3300 Very high attack alert

Furthermore, D-FRI-Snort accumulates and learn from the
interpolated results of repeatedly observed attack conditions,
generating new rules to modify the original rule base dynam-
ically. This enables D-FRI-Snort to possess and utilize a most
updated (dynamic) fuzzy rule base for traffic monitoring. The
dynamically learned rule base allows the system not only to
perform inferences with reduced false positives and false nega-
tives, but also to enjoy increased efficiency over time when its
coverage is enlarged. This is because the dynamically enriched
rule base can better support direct rule firing with improved
likelihood of matching an observation than the use of the origi-
nal sparse rule base.

VI. D-FRI-SNORT: EXPERIMENTAL RESULTS

This experimental investigation covers a wide range of test-
ing and evaluation to confirm the success of D-FRI-Snort (and
henceforth, that of D-FRI) in the real world application. Five
sets of experiments are discussed here, respectively, on:

1) potential attack conditions upon which D-FRI-Snort gen-
erates alerts,

2) comparison between the standard Snort and D-FRI-Snort,
3) effects of dynamically promoting new rules,
4) accuracy of newly promoted rules, and
5) effectiveness of the dynamic rules upon the detection of

attack conditions.

A. Attack Alert Generation: D-FRI-Snort

The first set of experiments demonstrate that D-FRI-Snort
is capable of monitoring and alerting across a range of attack
conditions. A number of PSAs are carried out with different
parameter settings. Table II illustrates the five different attack
conditions for which D-FRI-Snort has generated attack alerts. In
effect, D-FRI-Snort has acted as an anomaly-based IDS in this
case, which is a new feature added onto the standard Snort. It
is clear from the results that D-FRI-Snort can produce detailed
and easy to understand attack alerts.

B. False Negatives and False Positives: D-FRI-Snort Versus
Snort

This set of experiments compare the standard Snort and D-
FRI-Snort, showing that Snort may miss attack alerts (false
negatives) under several conditions, from low to very high risk
level of attack, if it merely matches them with its own rules.

TABLE III
COMPARISON ON ATTACK ALERT GENERATION

Obs. Input Output - Attack Alert

No. ATP NPS NPR Snort PSA D-FRI-Snort PSA

1 17.78 283 1167 No alert Very low attack alert
2 11.21 605 1764 No alert Low attack alert
3 8.03 1105 2506 No alert Medium attack alert
4 6.57 1317 3068 No alert High attack alert
5 5.28 1642 3657 No alert Very high attack alert

Since port scanning may be conducted in numerous ways, if a
particular form of scanning activity is not explicitly encoded as a
Snort rule, then Snort can easily miss that type of PSA. Besides,
due to the likely erroneous configuration and parameter settings
of its inherent snort.config file or the nature of its rules, Snort
may not be able to detect certain PSAs (such as stealth/slow
port scan) or modified signature attacks [65]. This is reflected
in Table III, where the standard Snort is shown to have failed
in generating attack alerts because it could not find abnormality
based on its original rules. However, D-FRI-Snort can act as
an anomaly-based IDS, being able to detect attack alerts in
all these abnormal conditions. Thus, D-FRI-Snort improves the
performance of the standard Snort by helping to reduce its false
negatives.

The standard Snort generates alerts based on its given rule
base. Thus, in theory, certain false negatives (including above)
may be removed by hard-wiring specific rules directly related
to the particular types of clandestine PSA, if such knowledge is
indeed available. However, there are several downsides of using
this Sort of highly specific rules, causing the problems of hav-
ing increased size of rule base, increased processing power and
overheads, increased processing time, and above all, increased
false positives in generating attack alert. In extremity this can
lead to the generation of continuous attack alerts for every valid
activity. Fortunately, D-FRI-Snort offers the use of only a sparse
rule base, controlling the size of the default knowledge that Snort
possesses. If it fails to find any matching rule it can dynamically
promote a new rule for that situation. This helps Snort in reduc-
ing false positives based on enumerating abnormal behaviors of
the host/network while maintaining a reasonable size of its rule
base.

C. Dynamic Rule Promotion and Enrichment of Rule Base

The third set of experiments show the effects of dynamically
promoting new rules for the enrichment of the D-FRI-Snort rule
base. D-FRI-Snort uses FRI to generate alerts if it does not find
a suitable matching rule in the existing rule base. These inter-
polated rules are accumulated to conduct GA-based learning.
Here, 200 accumulated interpolated rules are utilized for the
purpose of dynamic rule promotion. The other GA parameters
are set to the following values: crossover rate δc = 0.7, muta-
tion rate δm = 0.05, population size |P | = 20, and maximum
generation kmax = 100. As a result, 10 new rules are promoted

1890 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 4, AUGUST 2018

TABLE IV
DYNAMIC RULE PROMOTION ACCURACY

η = 5

ε% dv i ε% dv t ε% iv t

AVG 2.40 1.31 2.56
SD 2.72 1.32 2.68

TABLE V
ATTACK ALERT GENERATION AFTER RULE PROMOTION

Obs. Input Attack Alert

No. ATP NPS NPR D-FRI-Snort PSA

1 6.95 1267 2385 High attack alert
2 5.23 643 1875 Low attack alert
3 4.61 996 3010 High attack alert
4 7.91 1005 2805 Medium attack alert
5 15.64 310 2266 Low attack alert

into the original sparse rule base, significantly improving its
coverage as shown in Fig. 7.

D. Accuracy of Dynamically Promoted Rules

This set of experiments evaluate the accuracy of the newly
promoted rules in comparison with that of interpolated rules
(ε%dvi) and also, that of the corresponding ground truth rules
(ε%dvt). Interpolation results are also compared with the ground
truths (e% iv t). The percentage error ε% = ε/rangey is com-
puted with respect to the consequent variable. Table IV lists
the outcomes of average and standard deviation comparisons,
once again confirming that D-FRI leads to more accurate re-
sults than the use of T-FRI. Also, the consequent values ob-
tained from firing the dynamic rules are closer to the ground
truths.

E. Attack Alert Generation After Dynamic Rule Promotion

The fifth and final set of experiments test the effectiveness
of the newly promoted 10 dynamic rules under different poten-
tial attack conditions. As summarized in Table V, D-FRI-Snort
successfully generates five attack alerts owing to the newly cre-
ated rules, which were not possible without D-FRI. Importantly,
this time, D-FRI-Snort has generated these attack alerts based
on firing the (enriched) rules using the classical fuzzy infer-
ence without recarrying out interpolative reasoning. Of course,
as previously mentioned, D-FRI-Snort can also generate attack
alerts in the absence of any matching rule using fuzzy inter-
polation and gradually improves its sparse rule base using the
interpolated results.

VII. CONCLUSION

This paper has presented a D-FRI approach for designing a
dynamic rule-based fuzzy system and its application to network
security analysis, building an intelligent dynamic IDS. D-FRI

is used to select, combine, and promote informative, frequently
used interpolated rules into an existing sparse rule base. Sys-
tematic experimental results have shown that D-FRI can achieve
higher accuracy and robustness than those achievable by the use
of conventional FRI. While developing a dynamically enriched
rule base, D-FRI helps significantly reduce the interpolation
overheads for frequent and similar observations once they have
been dealt with, by directly employing the CRI. In conjunction
with Snort, one of the most popular open source software sys-
tems for intrusion detection, the resulting D-FRI-Snort system
can deliver an extra level of intelligence to accurately predict
the level of potential threats, with decreased false positives and
false negatives.

D-FRI is a flexible and general approach, with no theoret-
ical restriction over the employment of any particular FRI in
performing interpolation nor in the computational mechanisms
to implement fitness evaluation and rule promotion. Although
the current experimental investigation is based on popularly
adopted settings (e.g., using scale and move transformation-
based method for FRI), they may be replaced with alternative
techniques available in the literature. Exactly how such alter-
natives may practically affect the run-time performance of the
system requires further evaluation.

The present implementation assumes a prespecified threshold
for determining strong or weak clustering partition and also, an
initial grid definition. It would be very interesting to develop
a data-driven approach to construct a fully automated grid de-
composition mechanism, in support of dynamic partitioning of
the underlying domain. In addition, instead of utilizing GAs to
optimize the generalization of the interpolated rules, it may be
worthwhile to examine the use of different dynamic rule learn-
ing techniques [8]–[10]. Similarly, it would be useful to employ
and test other evolutionary algorithms [66], [67] and nature-
inspired clustering algorithms [46], [47], [68] for the further
enhancement of D-FRI. Furthermore, to improve the accuracy
of dynamically promoted rules, rule aggregation methods [69],
[70] may be introduced to facilitate more effective combination
of the selected rules, be they interpolated or original. Finally, the
present work has focused on rule promotion (addition); nonethe-
less, it is important to also consider the removal of redundant
and inconsistent rules, for making D-FRI and D-FRI-Snort more
efficient. This is possible because FRI can be used in a reverse
manner to simplify a given rule base by replacing a neighbor-
hood of rules with their interpolated one(s).

REFERENCES

[1] D. Dubois and H. Prade, “On fuzzy interpolation,” Int. J. Gen. Syst.,
vol. 28, no. 2/3, pp. 103–114, 1999.

[2] L. Koczy and K. Hirota, “Approximate reasoning by linear rule interpo-
lation and general approximation,” Int. J. Approx. Reason., vol. 9, no. 3,
pp. 197–225, 1993.

[3] L. Koczy and K. Hirota, “Interpolative reasoning with insufficient evidence
in sparse fuzzy rule bases,” Inf. Sci., vol. 71, no. 1/2, pp. 169–201, 1993.

[4] S. Saga, H. Makino, and J. I. Sasaki, “A method for modelling free-
hand curves—The fuzzy spline interpolation,” Syst. Comput. Jpn., vol. 26,
pp. 77–87, 1995.

[5] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Reading, MA,
USA: Addison-Wesley, 1995.

NAIK et al.: DYNAMIC FUZZY RULE INTERPOLATION AND ITS APPLICATION TO INTRUSION DETECTION 1891

[6] S. Mohan and S. Bhanot, “Comparative study of some adaptive fuzzy
algorithms for manipulator control,” Int. J. Comput. Intell., vol. 3, pp. 303–
311, 2006.

[7] H. Zhang and Z. Bien, “Adaptive fuzzy control of MIMO nonlinear sys-
tems,” Fuzzy Sets Syst., vol. 115, no. 1, pp. 191–204, 2000.

[8] S. Wu and M. Joo, “A fast approach for automatic generation of fuzzy
rules by generalized dynamic fuzzy neural networks,” IEEE Trans. Fuzzy
Syst., vol. 9, no. 4, pp. 578–594, Aug. 2001.

[9] P. Angelov and R. Buswell, “Automatic generation of fuzzy rule-based
models from data by genetic algorithms,” Inf. Sci., vol. 150, no. 1/2,
pp. 17–31, 2003.

[10] P. Angelov, “An evolutionary approach to fuzzy rule-based model syn-
thesis using rules indices,” Fuzzy Sets Syst., vol. 137, no. 3, pp. 325–338,
2003.

[11] N. Naik, R. Diao, C. Quek, and Q. Shen, “Towards dynamic fuzzy rule
interpolation,” in Proc. IEEE Int. Conf. Fuzzy Syst., 2013, pp. 1–7.

[12] N. Naik, R. Diao, and Q. Shen, “Genetic algorithm-aided dynamic fuzzy
rule interpolation,” in Proc. IEEE Int. Conf. Fuzzy Syst., 2014, pp. 2198–
2205.

[13] N. Naik, R. Diao, and Q. Shen, “Choice of effective fitness functions for
genetic algorithm-aided dynamic fuzzy rule interpolation,” in Proc. IEEE
Int. Conf. Fuzzy Syst., 2015, pp. 1–8.

[14] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detect-
ing compact well-separated clusters,” J. Cybern., vol. 3, no. 3, pp. 32–57,
1973.

[15] N. Naik, “Fuzzy inference based intrusion detection system: FI-Snort,”
in Proc. IEEE Int. Conf. Dependable, Autonomic Secure Comput., 2015,
pp. 2062–2067.

[16] N. Naik, R. Diao, and Q. Shen, “Application of dynamic fuzzy rule inter-
polation for intrusion detection: D-FRI-Snort,” in Proc. IEEE Int. Conf.
Fuzzy Syst., 2016, pp. 78–85.

[17] Z. Huang and Q. Shen, “Fuzzy interpolative reasoning via scale and move
transformations,” IEEE Trans. Fuzzy Syst., vol. 14, no. 2, pp. 340–359,
2006.

[18] Z. Huang and Q. Shen, “Fuzzy interpolation and extrapolation: A practical
approach,” IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 13–28, 2008.

[19] G. Vass, L. Kalmoar, and L. T. Koczy, “Extension of the fuzzy rule
interpolation method,” in Proc. Int. Conf. Fuzzy Sets Theory Appl., 1992,
pp. 1–6.

[20] S. Kovacs and L. T. Koczy, “Approximate fuzzy reasoning based on
interpolation in the vague environment of the fuzzy rulebase as a practical
alternative of the classical CRI,” in Proc. 7th Int. Fuzzy Syst. Assoc. World
Congr., 1997, pp. 144–149.

[21] P. Baranyi, D. Tikk, Y. Yam, L. T. Koczy, and L. Nadai, “A new method for
avoiding abnormal conclusion for α-cut based rule interpolation,” in Proc.
IEEE Int. Fuzzy Syst. Conf. Proc., vol. 1, Aug. 22–25, 1999, pp. 383–388.

[22] D. Tikk and P. Baranyi, “Comprehensive analysis of a new fuzzy rule
interpolation method,” IEEE Trans. Fuzzy Syst., vol. 8, no. 3, pp. 281–
296, Jun. 2000.

[23] Y. Yam and L. T. Koczy, “Representing membership functions as points in
high-dimensional spaces for fuzzy interpolation and extrapolation,” IEEE
Trans. Fuzzy Syst., vol. 8, no. 6, pp. 761–772, Dec. 2000.

[24] T. D. Gedeon and L. T. Koczy, “Conservation of fuzziness in rule inter-
polation,” in Proc. Symp. New Trends Control Large Scale Syst., 1996,
pp. 13–19.

[25] K. W. Wong, T. D. Gedeon, and D. Tikk, “An improved multidimensional
α-cut based fuzzy interpolation technique,” in Proc. Int. Conf. Artif. Intell.
Sci. Technol., 2000, pp. 29–32.

[26] W. Hsiao, S. Chen, and C. Lee, “A new interpolative reasoning method
in sparse rule-based systems,” Fuzzy Sets Syst., vol. 93, no. 1, pp. 17–22,
1998.

[27] S. Yan, M. Mizumoto, and W. Z. Qiao, “An improvement to Koczy and
Hirota’s interpolative reasoning in sparse fuzzy rule bases,” Int. J. Approx.
Reason., vol. 15, pp. 185–201, 1996.

[28] P. Baranyi, L. T. Koczy, and T. D. Gedeon, “A generalized concept for
fuzzy rule interpolation,” IEEE Trans. Fuzzy Syst., vol. 12, no. 6, pp. 820–
837, Dec. 2004.

[29] B. Bouchon-Meunier, C. Marsala, and M. Rifqi, “Interpolative reasoning
based on graduality,” in IEEE Int. Conf. Fuzzy Syst., 2000, pp. 483–487.

[30] S. Jenei, E. P. Klement, and R. Konzel, “Interpolation and extrapolation
of fuzzy quantities—(II) The multiple-dimensional case,” Soft Comput.,
vol. 6, pp. 258–270, 2002.

[31] Y. K. Ko and S. M. Chen, “Fuzzy interpolative reasoning via cutting and
transformations techniques,” in Proc. Int. Conf. Ind., Eng., Other Appl.
Appl. Intell. Syst., 2007, pp. 238–249.

[32] M. F. Kawaguchi and M. Miyakoshi, “A fuzzy rule interpolation technique
based on bi-spline in multiple input systems,” in Proc. IEEE Int. Conf.
Fuzzy Syst., 2000, pp. 488–492.

[33] Z. C. Johanyak and S. Kovacs, “Fuzzy rule interpolation based on polar
cuts,” Comput. Intell., Theory Appl., vol. 4, pp. 499–511, 2006.

[34] L. W. Lee and S. M. Chen, “Fuzzy interpolative reasoning for sparse fuzzy
rule-based systems based on the ranking values of fuzzy sets,” Expert Syst.
Appl., vol. 35, no. 3, pp. 850–886, 2008.

[35] Z. C. Johanyak and S. Kovacs, “Fuzzy rule interpolation by the least
squares method,” in Proc. Int. Symp. Hung. Researchers Comput. Intell.,
2006, pp. 495–506.

[36] S. H. Cheng, S. M. Chen, and C. L. Chen, “Weighted fuzzy interpolative
reasoning for sparse fuzzy rule-based systems based on piecewise fuzzy
entropies of fuzzy sets,” Inf. Sci., vol. 329, pp. 503–523, 2016.

[37] S. Chen, Y. Chang, and J. Pan, “Fuzzy rules interpolation for sparse fuzzy
rule-based systems based on interval type-2 gaussian fuzzy sets and genetic
algorithms,” IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 412–425, 2013.

[38] S. M. Chen, S. H. Cheng, and Z. J. Chen, “Fuzzy interpolative reasoning
based on the ratio of fuzziness of rough-fuzzy sets,” Inf. Sci., vol. 299,
pp. 394–411, 2015.

[39] C. Chen, N. MacParthalain, Y. Li, C. Price, C. Quek, and Q. Shen, “Rough-
fuzzy rule interpolation,” Inf. Sci., vol. 351, pp. 1–17, 2016.

[40] K. Balazs and L. T. Koczy, “Hierarchical-interpolative fuzzy system con-
struction by genetic and bacterial programming algorithms,” in Proc. IEEE
Int. Conf. Fuzzy Syst., 2011, pp. 2116–2122.

[41] L. Yang and Q. Shen, “Adaptive fuzzy interpolation,” IEEE Trans. Fuzzy
Syst., vol. 19, no. 6, pp. 1107–1126, Dec. 2011.

[42] L. Yang, F. Chao, and Q. Shen, “Generalised adaptive fuzzy rule interpo-
lation,” IEEE Trans. Fuzzy Syst., vol. 25, no. 4, pp. 839–853, Aug. 2017.

[43] S. M. Chen and Z. J. Chen, “Adaptive fuzzy interpolation based on ranking
values of polygonal fuzzy sets and similarity measures between polygonal
fuzzy sets,” Inf. Sci., vol. 342, pp. 176–190, 2016.

[44] S. Jin, R. Diao, C. Quek, and Q. Shen, “Backward fuzzy rule interpolation,”
IEEE Trans. Fuzzy Syst., vol. 22, no. 6, pp. 1682–1698, Dec. 2014.

[45] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI, USA: Univ. Michigan Press, 1975.

[46] B. B. Chaudhuri and G. Garai, “Grid clustering with genetic algorithm and
tabu search process,” J. Pattern Recognit. Res., vol. 4, no. 1, pp. 152–168,
2009.

[47] H. L. Lin, F. W. Yang, and Y. T. Kao, “An efficient ga-based clustering
technique,” Tamkang J. Sci. Eng., vol. 8, no. 2, pp. 113–122, 2005.

[48] J. Barnes, Intrusion detection system, 2009. [Online]. Available:
http://www.brainia.com/essays/Intrusion-Detection-System/22016.html

[49] M. Biswanath, L. H. Todd, and N. Karl, “Network intrusion detection,”
IEEE Netw., vol. 8, no. 3, pp. 26–41, May/Jun. 1994.

[50] B. Claypool, Stealth port scanning methods, 2002. [Online]. Available:
http://www.giac.org/paper/gsec/1985/stealth-port-scanning-methods/
103446

[51] N. Horn, Snort (2.9.5.6), 2014. [Online]. Available: http://slackbuilds.
org/repository/14.1/network/snort/

[52] M. Rouse, Snort, 2014. [Online]. Available: http://searchmidmarketsecu
rity.techtarget.com/definition/Snort

[53] M. Roesch, Snort, 2014. [Online]. Available: https://www.snort.org/
[54] M. Younes, M. Rahli, and L. A. Koridak, “Economic power dispatch using

evolutionary algorithm,” J. Electr. Eng., vol. 57, no. 4, pp. 211–217, 2006.
[55] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, MA, USA: Addison-Wesley, 1989.
[56] R. Kumar and Jyotishree, “Economic power dispatch using evolutionary

algorithm,” Int. J. Mach. Learn. Comput., vol. 2, no. 4, pp. 365–370, 2006.
[57] L. Yang and Q. Shen, “Closed form fuzzy interpolation,” Fuzzy Sets Syst.,

vol. 225, pp. 1–22, 2013.
[58] W. El-Hajj, H. Hajj, Z. Trabelsi, and F. Aloul, “Updating snort with a

customized controller to thwart port scanning,” Secur. Commun. Netw.,
vol. 4, no. 8, pp. 807–814, 2010.

[59] M. Brandenburg, How to set a network performance baseline for
network monitoring, 2010. [Online]. Available: http://searchnetworking.
techtarget.com/How-to-set-a-network-performance-baseline-for-
network-monitoring

[60] Nmap, Chapter 15: Nmap Reference Guide, 2014. [Online]. Available:
http://nmap.org/book/man.html

[61] Famatech, Advanced Port Scanner, 2016. [Online]. Available: http://www.
advanced-port-scanner.com/

[62] Microsoft, Ping. [Online], 2016. Available: https://www.microsoft.com/
resources/documentation/windows/xp/all/proddocs/en-us/ping.mspx?
mfr=true

1892 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 4, AUGUST 2018

[63] J. Bone, Wireshark, 2011. [Online]. Available: http://download.cnet.com/
Wireshark/3000–2085_4-10668290.html

[64] E. H. Mamdani and S. Assilina, “An experiment in linguistic synthesis
with a fuzzy logic controller,” Int. J. Man-Mach. Stud., vol. 7, no. 1,
pp. 1–13, 1975.

[65] M. Richard, Intrusion detection FAQ: Are there limitations of intru-
sion signatures?, 2001. [Online]. Available: http://www.sans.org/security-
resources/idfaq/limitations.php

[66] M. Drobics and J. Botzheim, “Optimization of fuzzy rule sets using a
bacterial evolutionary algorithm,” Mathware Soft Comput., vol. 15, no. 1,
pp. 21–40, 2008.

[67] Z. C. Johanyak and P. G. Ailer, “Particle swarm optimization based tuning
for fuzzy cruise control,” in Proc. IEEE 15th Int. Symp. Comput. Intell.
Informat., 2014, pp. 21–26.

[68] B. Gabrys and A. Bargiela, “General fuzzy min-max neural network for
clustering and classification,” IEEE Trans. Neural Netw., vol. 11, no. 3,
pp. 769–783, May 2000.

[69] T. Boongoen and Q. Shen, “Nearest-neighbor guided evaluation of data
reliability and its applications,” IEEE Trans. Syst., Man, Cybern., Part B
(Cybern.), vol. 40, no. 6, pp. 1622–1633, Dec. 2010.

[70] P. Su, C. Shang, T. Chen, and Q. Shen, “Exploiting data reliability and
fuzzy clustering for journal ranking,” IEEE Trans. Fuzzy Syst., vol. 25,
no. 5, pp. 1306–1319, Oct. 2017.

Nitin Naik received the B.Sc. degree in electronics
from Devi Ahilya University, Indore, India in 1994,
the Polytechnic in electrical engineering from MP
Technical Board, Bhopal, India in 1994, the M.Sc.
degree in electronics and communications from Devi
Ahilya University, Indore, India in 1997, the MSW
degree in social work from Devi Ahilya University,
Indore, India in 2000, the M.Tech. degree in com-
puter science from Devi Ahilya University, Indore,
India in 2006, the MBA degree in finance from Birm-
ingham City University, Birmingham, U.K., in 2009,

the PGCTHE in higher education from Aberystwyth University, Aberystwyth,
U.K., in 2014, and the Ph.D. degree in computer science from Aberystwyth
University, Aberystwyth, U.K., in 2015.

He is currently an Associate Professor and the Head with Cyber Security
& Big Data, IT Wing, Defence School of Communications and Information
Systems at the Ministry of Defence, UK. He has authored approximately 40
peer-reviewed papers in the areas of artificial intelligence, systems security, big
data, cloud computing, and internet of things.

Ren Diao received the B.A. and M.A. degrees in
computer science from the University of Cambridge,
Cambridge, U.K., in 2007 and 2011, respectively,
and the Ph.D. degree from Aberystwyth University,
Aberystwyth, U.K., in 2013.

He is currently the Director of Data Science with
Wandera, Ltd., London, U.K. By leveraging a mix-
ture of machine learning algorithms and big data tech-
nologies, he, together with a group of scientists and
engineers, designs and builds innovative products in
the mobile security domain. He has authored approx-

imately 30 peer-reviewed papers in the areas of fuzzy systems, nature-inspired
metaheuristics, and machine learning.

Qiang Shen received the Ph.D. degree in computing
and electrical engineering from Heriot-Watt Univer-
sity, Edinburgh, U.K., in 1990 and the D.Sc. degree
in computational intelligence from Aberystwyth Uni-
versity, Aberystwyth, U.K., in 2013.

He is appointed as the Chair of computer sci-
ence and the Director of the Institute of Mathematics,
Physics and Computer Science, Aberystwyth Univer-
sity. He has authored two research monographs and
over 360 peer-reviewed papers.

Prof. Shen was recipient of an Outstanding Trans-
actions Paper Award from the IEEE. He is a long-serving Associate Editor for
the IEEE TRANSACTIONS ON CYBERNETICS and the IEEE TRANSACTIONS ON

FUZZY SYSTEMS, among other editorial roles.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

