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Exploiting Data Reliability and Fuzzy Clustering
for Journal Ranking

Pan Su, Changjing Shang , Tianhua Chen, and Qiang Shen

Abstract—Journal impact indicators are widely accepted as pos-
sible measurements of academic journal quality. However, much
debate has recently surrounded their use, and alternative journal
impact evaluation techniques are desirable. Aggregation of multi-
ple indicators offers a promising method to produce a more robust
ranking result, avoiding the possible bias caused by the use of a
single impact indicator. In this paper, fuzzy aggregation and fuzzy
clustering, especially the ordered weighted averaging (OWA) op-
erators are exploited to aggregate the quality scores of academic
journals that are obtained from different impact indicators. Also,
a novel method for linguistic term-based fuzzy cluster grouping is
proposed to rank academic journals. The paper allows for the con-
struction of distinctive fuzzy clusters of academic journals on the
basis of their performance with respect to different journal impact
indicators, which may be subsequently combined via the use of
the OWA operators. Journals are ranked in relation to their mem-
berships in the resulting combined fuzzy clusters. In particular,
the nearest-neighbor guided aggregation operators are adopted to
characterize the reliability of the indicators, and the fuzzy clus-
tering mechanism is utilized to enhance the interpretability of the
underlying ranking procedure. The ranking results of academic
journals from six subjects are systematically compared with the
outlet ranking used by the Excellence in Research for Australia,
demonstrating the significant potential of the proposed approach.

Index Terms—Aggregation of indicators, data reliability,
Excellence in Research for Australia (ERA), fuzzy clustering,
journal ranking, ordered weighted averaging (OWA).

I. INTRODUCTION

THE assessment of a research output quality is a serious is-
sue which relates to many educational and financial prob-

lems, such as evaluation of research projects and distribution of
research funding. Recently, many countries have implemented
their own national projects for academic output assessment. Ex-
amples include the Research Excellence Framework in the U.K.
[1] and the Excellence in Research for Australia (ERA) [2].
One significant aspect of research quality assessment may in-
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volve academic journal ranking, though the efficacy of using
such information is not universally agreed upon [3]. However,
the rank of a journal typically implies its prestige, impact, and
even difficulty of having a paper accepted for publication in it.
Nevertheless, the general concept of academic journal quality
is a multifaceted notion. Conventionally, assessing the quality
of research publications is done through subjective peer-review,
which is carried out by experts in the relevant research areas. It
is almost inevitable that such expert-based assessment is expen-
sive and time consuming, despite the issue of subjectivity. For
example, in the ERA, over 700 experts were employed to make
a journal ranking list. Although the sophisticated results judged
by the experts can be very useful in, for instance, directing
government research funding and reflecting appropriate use of
public funds, the running costs involved make it impracticable
to implement such approaches frequently.

The most recent methods for the ranking of academic journals
rely on developments in computer and information technologies.
Many online academic publication databases allow for access
to not just the journals themselves, but the statistical informa-
tion regarding their impact. The impact of academic journals is
typically gauged using metrics, such as the Thomson Reuters
Impact Factor (IF) [4] (which is arguably the best known and
most used), the five-year IF [5], the Eigenfactor (Ei) [6], and the
SCImago Journal Rank [7]. A number of these factors have been
successfully applied in creating the popular Thomson Reuters
Journal Citation Report (JCR) [8], which provides a quantita-
tive tool for the ranking, evaluation, and comparison of academic
journals to be carried out in a potentially objective manner. How-
ever, each indicator has its own strengths and limitations, and
the results of their use can be quite diverse [9] and should be
considered with due caution.

Recent trends for the evaluation of the impact of academic
journals focus on utilizing advanced computational methods
rather than pure statistical indicators. For instance, the work
Holsapple et al. [10] examines the publishing behavior of full
time, tenured faculty members from leading universities in or-
der to rate journals (in the carefully selected area of information
science research). Such a behavior-based approach assumes that
the collective publication record of research members at a siz-
able set of leading research universities is representative of good
journals that make the greatest contributions to the research field
concerned. Also, in the work on Reader Generated Networks
(RGN) [11], interconnections amongst journals are captured on
the basis of the download sequence of their publications, ex-
tracted from a digital library download log. The journal impact
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rankings are then calculated from the resulting networks using
various social networking centrality metrics. Empirically, the
indicators derived from an RGN reflect different views from
conventional journal impact evaluation, and its final ranking list
may significantly deviate from that which is obtained by the
direct use of IF.

In general, although much debate surrounds the (over-)use
of journal impact indicators, especially in their individual forms
(for example, the IF may be subject to manipulation by interested
parties, including publishers or editors), they are nonetheless
widely accepted by scholars as an objective tool to balance the
drawbacks of pure human peer-review. As pointed out in [12]:
“the solution appears to be in a combination of peer review and
objective indicators. These indicators should be assessed for
relevance and reliability.”

An intuitive way to improve the reliability of indicators is
the integration of multiple metrics. In the literature, Choquet
integral classifiers [13] have been employed to integrate
different indicator scores which are reported in the JCR in
an effort to predict the journal ranks published by the ERA
2010 [14]. Another approach is to fuse various indicator
scores through the use of distance/similarity measures [15],
in which journals are placed in a multidimensional space and
each dimension reflects a certain impact indicator. In [16],
a statistical model is proposed to cluster journals which are
collected from the Italian research evaluation exercise over the
period of 2004–2010. It exploits an extended latent class model
(for polytomous item response data) to estimate the grades of
journals, and subsequently, to cluster and rank them. Whilst
promising, there is much to be done in making these techniques
more robust and generic in order to support activities, such as
the aforementioned research quality assessment.

The interpretability of the existing numeric indicators also
raises a practical issue. This is because direct use of precise
numerical values makes it difficult to integrate such objective
indicators and peer review results, with the latter typically be-
ing given in qualitative terms. To enhance both the relevance
and reliability of numeric indicators, this paper proposes an ap-
proach for building aggregated fuzzy clusters between journals
based on their indicator scores. For each individual indicator,
fuzzy clusters of journals which are labeled with qualitative lin-
guistic terms are generated. The ordered weighted averaging
(OWA) operators are then employed to aggregate various fuzzy
clusters according to their linguistic labels, thereby construct-
ing the final fuzzy clustering results. Further, two refinement
methods are introduced in order to derive a ranking of journals
according to their memberships in the resulting fuzzy clusters.
The overall ranking process is not only more reliable and inter-
pretable than ranking by the original indicator scores but also
very intuitive. The proposed approach is tested on six datasets
of journals representing different academic subject areas and
the ranking results are compared with those given by human
experts. Experimental results demonstrate that the techniques
developed in this paper help to reflect and assess the impact of
academic journals effectively.

The remainder of this paper is organized as follows.
Section II introduces the basics of the OWA aggregation

operators and fuzzy clustering. Section III describes the
details of the proposed fuzzy aggregation and cluster grouping
for journal ranking. Section IV presents the experimental
evaluation of the proposed approach, along with a discussion
of the empirical results. Finally, Section V concludes the paper,
including suggestions for further development.

II. PRELIMINARIES

A. OWA Aggregation

When dealing with real-world problems, the opinions of dif-
ferent experts are usually aggregated in order to provide more
robust solutions. Similarly, numeric measures of certain prop-
erties are also typically aggregated when addressing a given
problem, with the weighted average operator being popularly
adopted to implement the aggregation process [18], [19]. Apart
from classical aggregation mechanism (such as average, max-
imum, and minimum), another interesting and more general
type of aggregation operator is the family of OWA operators
[20]–[22]. OWA is a parameterized operator based on the or-
dering of extraneous variables that it is applied to. The funda-
mental aspect of this family of operators is the reordering step
in which the extraneous variables are rearranged in descending
order, with their values subsequently integrated into a single
aggregated one.

Formally, a mapping Aowa : Rm → R is called an OWA op-
erator if

Aowa(a1 , . . . , am ) =
m∑

i=1

wiaπ (i) (1)

where aπ (i) is a permutation of ai , which satisfies that aπ (i) is
the ith largest of the ai , and wi ∈ [0, 1] is a collection of weights
that satisfies

∑
i wi = 1, i = 1, . . . ,m,m > 1.

Without causing notational confusion, for simplicity, both the
variables and their values are herein denoted as ai , and are sim-
ply termed arguments. Also, the weights of an OWA operator are
hereafter denoted as a weighting vector W = (w1 , . . . , wm ), in
which the ith component is wi . Different choices of the weight-
ing vector W can lead to different aggregation results. The or-
dering of input arguments gives OWA a nonlinear feature. Three
special cases of the OWA operator are the classical mean, max,
and min. The mean operator results by setting wi = 1/m, the
max by w1 = 1 and wi = 0 for i �= 1, and the min by wm = 1
and wi = 0 for i �= m. These weighting vectors are denoted as
Wmean , Wmax , and Wmin respectively, in the remainder of the
paper. Obviously, an important feature of the OWA operator is
that it is a mean operator which satisfies

min{a1 , . . . , am} ≤
m∑

i=1

wiaπ (i) ≤ max{a1 , . . . , am}. (2)

Such an operator provides aggregation between the maxi-
mum and the minimum of the arguments. This bounded-
ness implies that it is idempotent; that is, if all ai = a then
A(a1 , . . . , am ) = a.

As such, different weighting vectors can be devised in order
to express different aggregation behaviors of the OWA used.



1308 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 5, OCTOBER 2017

A measure which is commonly employed to reflect the overall
behavior of an OWA operator is orness [23]. It captures the es-
sential design intention of whether an aggregation operator will
behave similarly to the interpretation of logical conjunction (in-
fluenced by smaller inputs) or that of disjunction (influenced by
larger inputs). In particular, an orness measure of an OWA oper-
ator with the weighting vector W (named attitudinal character
[20]) is defined by

orness(W ) =
1

m − 1

m∑

i=1

((m − i)wi). (3)

The higher the orness value, the more similar the aggre-
gated result is to that of disjunction. In particular, it can be
calculated that orness(Wmean) = 0.5, orness(Wmax) = 1, and
orness(Wmin) = 0.

B. OWA Aggregation With Dependent Weights

When combining multiple arguments using a predefined
weighting vector in OWA, the weights in aggregation are nor-
mally assumed to be argument-independent as they are not nec-
essarily related to the extraneous variables they are applied to.
Therefore, the use of unduly high or low weights should be
avoided. Otherwise, a typical OWA operator may suffer from
giving the highest priority to outlier variable values [24], leading
to the generation of false or biased judgments when the operator
is in action. To achieve more reliable outcomes, a type of OWA
operator with dependent weights has been introduced in the lit-
erature, in which the normal-distribution of argument values is
used to determine the weight vector. This type of OWA operator
helps reduce the risk of obtaining biased results due to extreme
outliers in the given extraneous variables.

In particular, the dependent OWA (DOWA) operators [25]
utilize weighting vectors that are derived in accordance with
the average of arguments. Let (a1 , a2 , . . . , am ) be the argument
vector, and μ = 1

m

∑m
i=1 ai . The similarity between any argu-

ment ai and the average value μ can be calculated as follows:

s(ai, μ) = 1 − |ai − μ|∑m
j=1 |aj − μ| . (4)

From this, a weighing vector can be generated by applying the
following:

wi =
s(ai, μ)∑m

j=1 s(aj , μ)
(5)

Adowa(a1 , . . . , am ) =
m∑

i=1

wiai. (6)

Apart from measuring the reliability of arguments by their
distances to the average value, there are alternative approaches.
In k NN-DOWA [26], for example, the reliability of an argument
is determined by its nearest neighbors. This type of reliability
helps differentiate amongst a collection of arguments such that
an argument whose value is similar to its k neighbors [27] is
deemed reliable and can be assigned a high weight. In contrast,
an argument that is largely different from its neighbors is dis-
criminated as an unreliable member. Formally, the reliability

measure of an argument ai , i = 1, . . . , m in k NN-DOWA is
defined as

Rk
i = 1 −

∑k
t=1d(ai, n

ai
t )/k

max
j,j ′∈{1,...,m}

d(aj , aj ′)
(7)

where nai
t is the value of tth nearest neighbor (t = 1, . . . , k) of

the argument ai , and the distance measure d used to perform
neighbor-searching is d(aj , aj ′) = |aj − aj ′ |. This absolute dis-
tance metric is adopted for computational simplicity, but any
other distance metric may be employed also.

Having obtained the reliability values of all arguments con-
cerned, they are normalized to form the weighing vectors in k
NN-DOWA. Given the reliability value Rk

i of each argument
ai , the corresponding k NN-DOWA operator Ak

dowa : Rm → R
can be specified by

Ak
dowa(a1 , . . . , am ) =

m∑

i=1

wk
i ai (8)

where wk
i = Rk

i /
∑m

j=1 Rk
j . k NN-DOWA and DOWA are order

independent (termed neat in the literature) [28], as they generate
the same outcome regardless of the order of argument values.
Another development, but of similar principle to k NN-DOWA,
is the work of Cluster-DOWA, where clusters of arguments are
exploited to detect outliers in order to improve data reliability
[24]. The common assumption made in all these methods is that
arguments which have high reliability values should be weighted
highly.

C. Fuzzy Clustering

Clustering is one of the important approaches within the
framework of unsupervised learning which aims to assign ob-
jects into groups (namely clusters) such that objects in the same
group are similar to each other, and dissimilar to those in the
other clusters [29]. If a crisp clustering algorithm such as k-
means [30] is used in the generation of clusters, the association
degree of a data point belonging to a specific cluster is either 1 or
0. However, there are other popular clustering algorithms such as
fuzzy c-means [31] that naturally produces clusters of data with
uncertain boundaries. Fuzzy c-means is effective in generating
fuzzy partitions for a given dataset. Each cluster in a fuzzy par-
tition π̃ is a fuzzy set C̃k , k = 1, . . . ,K where C̃k (x) ∈ [0, 1]
represents the degree of a data point x ∈ X belonging to the
corresponding fuzzy cluster. Usually, this degree is normalized
with all the clusters in a partition satisfying

∑K
k=1 C̃k (x) = 1.

Note that the key difference between a crisp clustering
and a fuzzy one is that the latter produces fuzzy clusters. If
the fuzzy clusters are defuzzified into crisp clusters, many
techniques working on crisp clusters may be directly used for
handling fuzzy clusters. Unfortunately, in doing so, invaluable
information may be lost during the defuzzification process and,
therefore, the quality of the results may be adversely affected
[32], [33]. Besides, the interpretability of the fuzzy linguistic
terms inherent to the fuzzy approach would be missed. Owing
to the nonbinary memberships, useful information, such as
k-nearest neighbors can be extracted. To reflect this observation
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Fig. 1. FAC: Fuzzy-aggregation and clustering-based journal ranking.

, this paper proposes a fuzzy-aggregation-based method for
aggregating fuzzy clusters, which is tailored for ranking
academic journals.

III. FUZZY-AGGREGATION AND CLUSTERING-BASED

JOURNAL RANKING

A. Outline of the Approach

With the aid of online academic publication databases such as
IEEE Xplore, Scopus, and DBLP, the calculation of individual
journal impact indicators can be carried out effectively. A num-
ber of indicators are widely accepted and applied by scholars,
which typically aim to evaluate a single journal or work on one
particular aspect of journal citations. Scores of journals gained
from various indicators can be directly aggregated by using the
aggregation methods mentioned previously. However, when hu-
man experts assess the quality of academic journals, linguistic
terms are commonly and sensibly used to support their judg-
ment. Therefore, the interpretable estimation of journal quality
with respect to labeled fuzzy clusters (rather than the numeri-
cal scores) is utilized in this paper in order to perform journal
ranking.

In addition to the classical IF and Ei metrics, other indicators
of different focusses can also be employed. However, none of
these is diverse enough to be able to individually characterize
all aspects of journal impact by itself in the real world. To
compensate for the potential bias of using single indicators,
thereby, enhancing the reliability and relevance of memberships
of journals to those labeled fuzzy clusters, a linguistic term-
based integration (i.e., consensus) method is proposed here,
to regroup the fuzzy clusters generated by different indicators.
Also, OWA operators with dependent weights are applied to
implement the integration of fuzzy memberships.

The proposed journal ranking method is named FAC to re-
flect the fact that it is based on fuzzy aggregation and fuzzy
clustering. Briefly, its working process starts by creating fuzzy
clusters, using fuzzy c-means individually on each of the jour-
nal impact indicators which are available (and selected) from
databases of academic publications. The resultant (fixed num-
ber of) fuzzy clusters, termed base clusters for easy reference,
are associated with predefined linguistic labels. The preference
relation amongst linguistic terms is then employed to group
the base clusters. The OWA operators are used to aggregate
the memberships of base clusters belonging to the same group,
forming the final fuzzy clusters. The method may also involve
the following two optional steps: 1) defuzzifying the resultant
fuzzy clusters such that each data point (i.e., journal) belongs
to just one final crisp cluster (which may still be associated
with a linguistic label) and, hence, introducing a relative rank-
ing amongst all journals; and 2) combining the memberships
of a given journal from all fuzzy clusters into a single index of
rank, thereby giving an absolute rank amongst all journals. An
illustrative flowchart of the FAC algorithm is shown in Fig. 1
and the following sections detail its key operations.

B. Indicator-Based Generation of Fuzzy Clusters

In translating a set of real-valued scores into a linguistic term
which is closer to the use of a natural language, it is a common
practice to employ fuzzification techniques. For this paper, fuzzy
c-means, which is able to retain the nonbinary memberships of
each data point in all clusters, is adopted to translate the numer-
ical indicator scores into predefined linguistic terms. Without
losing generality, suppose that a set of journals J is evaluated
with regard to m,m > 1 impact indicators I1 , . . . , Im , and
that each indicator Ih is a mapping Ih : J → R, h = 1, . . . ,m.
Also, it is intuitively presumed that a higher impact indicator
score is assigned to a journal with higher impact. For each



1310 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 5, OCTOBER 2017

Fig. 2. Filtering the fuzzy c-means result.

indicator Ih , fuzzy c-means is then utilized to form clusters
in J with respect to {Ih(j)|j ∈ J} and a prespecified number
K (which indicates the number of fuzzy subsets in J that are
required to be constructed). From this, K fuzzy sets are formed
with C̃h

1 (j), . . . , C̃h
K (j) representing the memberships of a jour-

nal j ∈ J belonging to the resulting individual fuzzy clusters,
respectively.

When linguistic terms are employed to describe a vari-
able, a preference ordering relation is usually defined on the
set of linguistic terms, such as Bad ≺ Acceptable ≺ Good or
Low ≺ Medium ≺ High. In the general application of fuzzy
clustering, such an ordered labeling scheme over the clusters is
not necessary. However, in FAC, labeling the clusters is not only
helpful to understand the relative quality of journals in a cluster,
but also important to organize base clusters in the subsequent ag-
gregation process. The required labeling may be accomplished
by consulting human experts in the field. Yet, since the fuzzy
clusters are herein generated according to a given individual
impact indicator whose values are totally ordered, the value of
each cluster center can be employed to signify the overall rela-
tive quality of that cluster. Thus, given a set of K(K > 1) pre-
defined linguistic terms L = {L1 , . . . , LK } which satisfy that
L1 ≺ · · · ≺ LK , the fuzzy clusters C̃h

1 , . . . , C̃h
K can be readily

sorted in ascending order with regard to their cluster centers,
and then, are labeled with L1 , . . . , LK , respectively.

A possible drawback of employing fuzzy c-means to imple-
ment fuzzification is that a data point’s membership to a cluster
is not monotonically decreasing with its distance to the cluster
center. This is caused by the mechanism of normalization which
is inherent in the fuzzy c-means algorithm. If the fuzzy clusters
are defuzzified into crisp clusters by assigning each object
to the cluster with which it has the maximum membership,
the nonmaximum (and nonmonotonic) memberships will
have no impact upon the final crisp result, and hence, will be
ignored. However, in FAC, memberships of a journal to all
those linguistically labeled clusters are useful in the subsequent
aggregation. Therefore, a filtering process is applied to the
resultant fuzzy memberships to ensure that the membership
of a journal to a cluster is monotonically deceasing with its

distance to the cluster center. Such a filtering process can be
implemented using the following two steps:

1) For each labeled fuzzy cluster C̃h
Lk

, k = 2, . . . ,K, set

membership C̃h
Lk

(j) = 0 for each j ∈ J where Ih(j)
is smaller than the center of C̃h

Lk −1
; and for each la-

beled fuzzy cluster C̃h
Lk

, k = 1, . . . ,K − 1, set member-

ship C̃h
Lk

(j) = 0 for each j ∈ J where Ih(j) is greater

than the center of C̃h
Lk + 1

;
2) For each journal j ∈ J , update its memberships to all the

clusters by normalization:

C̃h
Lk

(j) =
C̃h

Lk
(j)

∑K
i=1 C̃h

Li
(j)

. (9)

Fig. 2 shows an example of the above filtering process.
Fig. 2(a) is the fuzzy c-means result on a selective set of
journals in Computer Science which are evaluated with their
2010 IF values. Fig. 2(b) is the filtered result using this method.

Note that Otsu [34] is a common method employed for one-
dimensional clustering in many applications, such as image seg-
mentation. However, fuzzy c-means is adopted within this paper
instead of Otsu because it supports richer representation through
the use of fuzzy memberships in which each data point may be-
long to several clusters (to better reflect the imprecision issue
facing the current application problem). This allows more subtle
information to be utilized in the aggregation of base clusters.
Note also that instead of performing clustering with respect to all
indicators simultaneously (across all given data), the proposed
approach aims to initially obtain a number of base clusters with
regard to each individual indicator. This entails that the weights
to be used for aggregating the effects of individual indicators
can be assigned or learned through different means. In addi-
tion, it degenerates a task that otherwise requires simultaneous
multiobjective optimization to problems of single objective op-
timization. Furthermore, the resulting clusters are less difficult
to be labeled than those relying on the analysis of all indicators
together without consulting experts, thereby minimizing human
intervention in the learning process.
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Traditional statistical work on finite mixture models (FMM)
and the expectation maximization algorithm can also be
utilized to generate “soft” clusterings. It has been shown in [17]
that partitions found by statistical or probabilistic approaches
may be similar to those produced by fuzzy c-means on cer-
tain datasets. However, no matter what clustering algorithms
are employed, even if a dataset is well separated into several
recognizable subsets, the clustering methods may not always
discover such structures because the otherwise appropriate pa-
rameters that could lead to a successful interpretation of the data
are never used. As indicated previously, FMM has recently been
employed to rank journals [16]. Such work can help determine
the possibility of an instance belonging to a certain cluster, as-
suming that the distribution of data follows a certain statistical
format. In particular, it provides more modeling flexibility than
fuzzy c-means, by offering adaptable statistical parameters in
the model. Nevertheless, choosing appropriate parameters for
real-world data that will satisfy various modeling assumptions
(e.g., polytomous item response data) can be a challenging task.
By contrast, fuzzy c-means employs empirical heuristics and
distance measures that work on imprecisely described domain
values, not only facilitating the relaxation of otherwise required
crisp discretization, but also helping increase the interpretability
of the clustering results. As it can be seen from the following
sections, the proposed approach reflects a bottom-up modeling
strategy in obtaining journal clusters constructively, this differs
from FMM which works by making assumptions about the sta-
tistical model first, and subsequently, using the observed data to
fit the model in a top-down manner.

C. Base Cluster Grouping and Aggregation of Memberships

Having gone through the fuzzification process as described in
the preceding section, m × K fuzzy clusters are generated and
labeled. In this step, the m × K fuzzy base clusters are grouped
into K final clusters which are again labeled by the predefined
set of linguistic terms L. Generally, this process can be seen
as the consensus step in cluster ensemble [32]. However, clus-
ter ensemble algorithms involve unsupervised grouping of base
clusters, with many working methods available in the literature
to implement such grouping, including: feature-based, graph-
based, and voting-based, etc., [35]. Since the fuzzy clusters of
journals generated in FAC are automatically labeled (though
using predefined linguistic terms), an intuitive “supervised”
grouping of them becomes feasible (which is less challenging
in implementation than using the unsupervised methods). This
is described below.

Given the m × K labeled base clusters C̃1
L1

, . . . , C̃1
LK

,

C̃2
L1

, · · · , C̃m−1
LK

, C̃m
L1

, . . . , C̃m
LK

, owing to their inherent order-

ing, they can be (re-)categorized into K groups C1 = {C̃h
Lk

|k =
1, h = 1, . . . , m}, . . . , CK = {C̃h

Lk
|k = K,h = 1, . . . ,m},

where C̃h
Lk

is the fuzzy cluster which is generated by the IF Ih

and labeled with Lk . Ck is a set of clusters, which contains all
the clusters with the label Lk , k = 1, . . . ,K.

To illustrate the construction of Ck , for simplicity, a crisp
counterpart of CK is addressed first. Consider a voting system in

which each indicator votes for the top-rated “excellent” journals,
for example. Those in Ch

LK
(i.e., the crisp counterpart of C̃h

LK
)

are the journals voted by Ih , and hence, CK contains all the
journals that are each regarded as an “excellent journal” by
at least one of I1 , . . . , Im . Similarly, in general, Ck contains
all those journals in the vote which are deemed to be of the
quality level expressed by Lk . In such a crisp voting system,
the votes can be summed for each journal and the winners can
be ranked by how many ballots they have attracted. In FAC,
however, each journal is not necessarily voted to have just one
single quality level in a Boolean way, but can have multiple
explicit partial memberships assigned, indicating that it may be
of different quality levels (though to various degrees). To make
the best use of such information contained within such a voting
system, more advanced aggregation operators rather than the
simple sum/average are employed here to summarize the (both
full and partial) votes, thereby deriving the final membership of
a journal to a certain labeled fuzzy cluster Ck .

From this, given the K groups C1 = {C̃h
Lk

|k = 1, h =
1, . . . ,m}, . . . , CK = {C̃h

Lk
|k = K,h = 1, . . . , m}, the mem-

bership of a journal j(j ∈ J) to the final, labeled fuzzy cluster
C̃∗

Lk
, k = 1, . . . ,K can be computed by

C̃∗
Lk

(j) = A(C̃1
Lk

(j), . . . , C̃m
Lk

(j)) (10)

where A is an aggregation operator. Then, C̃∗
Lk

is normalized by

C̃∗
Lk

(j) = C̃∗
Lk

(j)/
∑K

l=1 C̃∗
Ll

(j). The full algorithm of FAC is
shown in Algorithm 1.

What is required now is the choice of a method to implement
the aggregation operator A. As one of the possible mechanisms
to perform the task of information aggregation, the concept of
data reliability has been introduced [24], with successful ex-
tended applications for classification and feature selection. It
works by exploiting the proximity to clusters of arguments, and
hence, can be rather inefficient. Recently, an enhanced version,
termed k NN-DOWA, has been proposed in [26], where a hier-
archical clustering process required by the original approach is
replaced by a search of nearest neighbors. Whilst a number of
aggregation operators are available in the literature and many of
them have been applied to decision making [36], [37], they typi-
cally require subjective specification of the aggregation weights.
Here, k NN-DOWA is adopted to aggregate the memberships
of journals voted by different impact indicators. This is feasi-
ble because: 1) the weights used in the aggregation are learned
from the arguments automatically; and 2) the weights assigned
to the arguments represent their reliability, which can be col-
lected as useful “by-products” to further analyze and interpret
the reliability of the underlying impact indicators.

For a dataset with n points and m features, the time com-
plexity of the original fuzzy c-means is O(nmK), where K
is the number of clusters [38]. Since FAC employs fuzzy
c-means on a one-dimensional dataset for m (the number of
impact indicators) times, the time complexity of FAC in gen-
erating the base clusters is also O(nmK). The time complex-
ity of the consensus step depends on the aggregation operator
A. Suppose that the complexity of aggregation is O(A), then
the overall time complexity of FAC is O(nmK) + O(A).
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Algorithm 1: FAC.

Inputs: J = {j1 , · · · , ji , · · · , jn}: a dataset of n journals,
where ji = (I1(ji), · · · , Ih(ji), · · · , Im (ji)) ∈ Rm and
Ih(ji) is the score of journal ji evaluated by the impact
indictor Ih ;
L = {L1 ≺ · · · ≺ Lk ≺ · · · ≺ LK }: a set of K linguistic
terms with a preference relation;
Outputs: {C̃∗

L1
, · · · , C̃∗

LK
}: K labeled fuzzy clusters over

J ;
1: for h = 1 : m do
2: create sub-dataset Jh = {Ih(j1), · · · , Ih(jn )}
3: create base clusters π̃h = {C̃h

1 , . . . , C̃h
K } using fuzzy

c-means on Jh

4: sort C̃h
1 , . . . , C̃h

K to C̃h
π (1) , . . . , C̃

h
π (K ) so that the

cluster center of C̃h
π (k) is smaller than the cluster

center of C̃h
π (k ′) , for k < k′ (k, k′ = 1, . . . ,K)

5: label C̃h
π (1) , . . . , C̃

h
π (K ) with L1 , · · · , LK

respectively, and gain C̃h
L1

, . . . , C̃h
LK

6: end for
7: regroup all the fuzzy clusters

⋃m
h=1 π̃h to create K

groups of fuzzy base clusters C1 = {C̃1
L1

, . . . , C̃m
L1
},

· · · , CK = {C̃1
LK

, . . . , C̃m
LK

}
8: for k = 1 : K do
9: for i = 1 : n do

10: C̃ ′
Lk

(ji) = A(C̃1
Lk

(ji), . . . , C̃m
Lk

(ji)) where A is
an aggregation operator

11: end for
12: end for
13: for k = 1 : K do
14: for i = 1 : n do
15: normalize C̃∗

Lk
(ji) by

C̃∗
Lk

(ji) = C̃ ′
Lk

(ji)/
∑K

l=1 C̃ ′
Ll

(ji), such that
∑K

k=1 C̃∗
Lk

(ji) = 1
16: end for
17: end for

Take k NN-DOWA as an example, the time complexity
of k NN-DOWA is O(m2) [26]. Therefore, if it is adopted
to aggregate the memberships of journals, the complexity of the
consensus step is O(nm2K), and the overall time complexity
of FAC is O(nmK) + O(nm2K) = O(nm2K).

D. Refinement for Ranking

Consider an example where the predefined set of lin-
guistic terms is {Acceptable,Good, V eryGood, Excellent}
and the preference ordering relation is Acceptable ≺ Good ≺
V eryGood ≺ Excellent. Suppose that the evaluation result
of a journal using FAC is represented as a vector such as
(0.1, 0.1, 0.3, 0.5), whose elements denote the degrees of the
journal belonging to the four (quality level) clusters, respec-
tively. This form of result gives a “soft” evaluation of the quality
of journals and is generally more informative than simply as-
signing journals to just one crisp cluster. Nevertheless, in many

practical research quality assessment scenarios, it is not the ab-
solute classification of journal qualities that is sought after, but
the relative ranking amongst possible competitors. In order to
decide on a rank of journals, using the information contained
within the evaluation result vectors, two methods of transform-
ing soft partition to ranks are provided here.

The first is to assign a journal to the cluster(s) in which it has
the maximum membership. That is, taking the strategy of the
winner taking all. In doing so, the linguistic label associated with
the final fuzzy cluster that possesses the maximum membership
degree becomes the quality level of that journal, i.e.,

rank of j = arg max
Lk ∈L

C̃∗
Lk

(j). (11)

Noted that LK is the highest rank available for all journals while
L1 represents the lowest rank. Obviously, this method can only
provide a fixed number of (i.e., K) ranks amongst the journals.

The alternative method is to assign a significance score to
each of the linguistic terms and then, to sort the journals with
respect to the weighted sum of the scores and journal (quality
level) cluster memberships. For example, the scores can be set
to Lk = k, reflecting the order of these quality levels. Then, the
ranking over a set of journals can be obtained by sorting the
journals in a descending order, according to

rank index of j =
K∑

k=1

kC̃∗
Lk

(j). (12)

Compared with the first method, this second approach can
provide a more detailed ranking of the journals. The final ranks
produced by the two methods are, however, not necessarily in
the same order. That is, journal j may be ranked higher than j′

using the first method, but it may be ranked lower than j′ if the
second method is applied. The actual ranking outcomes depend
on which method is used which in turn, depends on the results of
the clustering. For example, suppose that the fuzzy evaluation
of j is (0.4, 0.0, 0.0, 0.6) and that of j′ is (0.0, 0.0, 0.6, 0.4),
then j is ranked higher than j′ using (11) and lower using (12).
This is not a surprise, as these methods reflect different focuses
of attention, similar to the use of conventional defuzzification
techniques, where a different defuzzification method may result
in a different defuzzified inference outcome. In a real applica-
tion, so long as an approach is consistently utilized throughout,
the ranking results will be consistent.

IV. EXPERIMENTATION AND EVALUATION

A. Experimental Setup

JCR [39] has a long history of applications for researchers and
librarians in choosing their reading lists. All impact indicator
score calculations in JCR are based on the same set of journals,
namely journals which are indexed by the Web of Science.
In order to test the performance of FAC, six indicators that are
reported in JCR (2010) are selected as the indicators to construct
base fuzzy clusters. These are as follows [13]:

1) Total Cites (TC): number of times the journal was
cited in a year;
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2) Impact Factor: ratio of cites to recent articles to the
number of recent articles, with the recency being
defined within a two-year window;

3) Five-year (5-IF): the same as IF, but covering articles
within a five-year window;

4) Immediacy Index (II): ratio of cites to the current
articles over the number of those articles;

5) Eigenfactor: similar to IF, but eliminating self-
referencing and weighting journals by the amount
of time elapsed before being cited.

6) Article Influence (AI): ratio of the Ei score to the
total number of articles considered.

Generally, all these six indicators assign greater scores to
journals with more citations. Apart from the indicators included
in JCR, many other indicators are available from various aca-
demic publication databases. Note that in this paper, it is the
methods that aggregate individual impact indicators together
with data reliability that are investigated, rather than the selec-
tion of the underlying impact indicators themselves. Therefore,
without losing generality, only the indicators reported in JCR
are employed for testing here.

Note that these indicators have their own characteristics. As
briefly defined above, Ei is developed to eliminate the effect of
self-citation while IF and 5-IF include self-citation. AI is devel-
oped to offset the size effect of journals while TC does not take
the size of a journal into consideration. No matter how complex
the interactions between these indicators may appear, they are
more likely to be complementary to one another than to cause
contradictions between each other. For example, an excellent
journal can have high scores both in Ei and IF, and a journal
which performs badly in TC may also perform badly in IF. In
other cases, a journal could have higher scores in several indi-
cators than in others. Due to the fact that they are proposed to
measure journal quality with different focuses, direct compari-
son of the individual scores owing to their use can be difficult.
After fuzzy clustering on each indicator, although the inherent
characteristics of each indicator have not been changed, their
numerical results have been mapped onto a new domain with
interpretable linguistic meanings (e.g., excellent, good, etc.).
The resulting labeled clusters can therefore, help users to bet-
ter understand the performance of journals from an integrated
viewpoint of different perspectives.

In terms of datasets used for the experiments, six subject
categories in JCR are selected, covering: Chemistry (Analytical,
Applied, Inorganic & Nuclear, Medicinal, Multidisciplinary,
Organic, Physical); Computer Science (Artificial Intelligence,
Cybernetics, Hardware & Architecture, Information Systems,
Interdisciplinary Applications, Software Engineering, Theories
& Methods); Materials Science (Biomaterials, Ceramics,
Characterization & Testing, Coatings & Films, Composites,
Multidisciplinary, Paper & Wood, Textiles); Mathematics
(Applied, Interdisciplinary Applications); Medicine (General
& Internal, Legal, Research & Experimental, Medical Ethics,
Medical Informatics, Medical Laboratory Technology); and
Physics (Applied, Atomic, Molecular & Chemical, Condensed
Matter, Fluids & Plasmas, Mathematical, Multidisciplinary,
Nuclear, Particles & Fields).

TABLE I
SUMMARY OF DATASETS USED

Number of Journals

ID Dataset A* A B C Total

D1 Chemistry 37 70 95 143 345
D2 Computer Science 44 101 108 67 320
D3 Material Science 26 61 80 61 228
D4 Mathematics 52 84 127 69 332
D5 Medicine 20 39 73 107 239
D6 Physics 30 50 73 56 209

In order to demonstrate the performance of the proposed ap-
proach, the professional report on Ranked Journal List (RJL)
[40] is adopted as a benchmark for comparison. The RJL
provided by ERA 2010 involved a large group of scholars to
rank a large number of academic journals. Despite that much de-
bate surrounds the end result of RJL and other subjective forms
of journal ranking, the ranking results provided by human ex-
perts have been frequently employed as benchmarks to compare
journal ranking outcomes produced by automated mechanisms
[13], [16]. RJL is also employed in this paper, although it is
not to serve as the gold standard for evaluating the performance
of the proposed approach. Instead, it is used to demonstrate
comparable ranking results with those provided by human ex-
perts, showing the potential similarity and difference between
the result of the proposed data-driven method and that of peer-
reviews. Indeed, RJL may involve biased human subjectivity
which the present data-driven approach is to help avoid.

Each journal in an RJL has a rank in the (ordered) domain
Ranks = {C, B, A, A*}, where rank A* indicates the top cate-
gory of journals in a certain research area, and the significance
and popularity of journals are decreasing from A* to C. When
examining the selected indictor scores from JCR and the ranked
result from RJL, only those journals that are both indexed by
JCR and ranked in RJL are considered as valid experimental
data. This is necessary to ensure that each journal used in the
experiments has an external reference rank, to entail fair com-
parison. If a journal is missed from either RJL or JCR, then it is
removed from the experimental data. A summary of the resul-
tant datasets is shown in Table I. Each of these datasets contains
over two hundred journals.

B. Prior Analysis on Indicator Correlations

In statistics, Spearman’s rank correlation coefficient rs is a
nonparametric measure of a statistical dependence between two
given variables [41]. It assesses how well the relationship be-
tween the two variables can be described using a monotonic
function. If there are no identical data points, a perfect Spear-
man correlation of +1 or − 1 occurs when each of the variables
is a perfect monotonic function of the other. The sign of rs in-
dicates the direction of association between one variable, say
x (calling it the independent variable) and the other, say y (the
dependent variable). If y tends to increase when x increases, rs

is positive, and if y tends to decrease when x increases, rs is
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TABLE II
rs COEFFICIENTS BETWEEN INDIVIDUAL INDICATORS AND RJL RANKS

ID TC IF 5-IF II Ei AI

D1 0.6665 0.7962 0.8152 0.7557 0.7019 0.8125
D2 0.4914 0.4603 0.5023 0.3188 0.4130 0.5480
D3 0.6463 0.6153 0.6413 0.6045 0.6634 0.7185
D4 0.5923 0.5610 0.5884 0.5262 0.6427 0.7287
D5 0.5401 0.4961 0.5010 0.5083 0.5368 0.5375
D6 0.4501 0.6659 0.7299 0.5586 0.5095 0.7614

Ave. 0.5645 0.5991 0.6297 0.5454 0.5779 0.6844

TABLE III
rs COEFFICIENTS BETWEEN INDICATORS—CHEMISTRY

TC IF 5-IF II Ei AI

TC 1 0.6844 0.6697 0.6906 0.9595 0.6340
IF 1 0.9805 0.8900 0.7512 0.9565
5-IF 1 0.8834 0.7301 0.9801
II 1 0.7416 0.8679
Ei 1 0.7036
AI 1

TABLE IV
rs COEFFICIENTS BETWEEN INDICATORS—COMPUTER SCIENCE

TC IF 5-IF II Ei AI

TC 1 0.6105 0.6581 0.4786 0.9162 0.6429
IF 1 0.9367 0.6397 0.5625 0.7367
5-IF 1 0.6047 0.6128 0.8378
II 1 0.4560 0.5230
Ei 1 0.7002
AI 1

negative. rs = 0 indicates that there is no tendency for y to either
increase or decrease as x increases. rs between scores of each
individual indicator and the RJL ranks are listed in Table II. It
shows that these indicators have a positive rs value with respect
to the RJL scores. This indicates that generally, if the scores of
a journal on these indicators tend to increase, then their ranks in
RJL increase also. However, for each indicator, its correlation
levels to RJL are different from dataset to dataset. From their
average performance on these datasets, it can be seen that AI is
the most correlated indicator to the rank of RJL, while II is the
least relevant indictor. IF and 5-IF, which are commonly used in
many real-world quality assessment scenarios, are more highly
relevant to the results of RJL, as compared to TC and Ei.

To examine the results further, the correlations between in-
dividual indicators are computed as listed in Tables III–VIII. It
can be seen from these tables that amongst the six indicators
provided by JCR 2010, IF and 5-IF have the highest rs coef-
ficient and AI is also highly rs-correlated to 5-IF, while TC is
highly rs -correlated to Ei. Both indicators of TC and Ei are bi-
ased toward journals which publish more papers, since they are
not normalized with regard to the number of papers published
within a certain period. The calculation of TC does not exclude
self-citations while that of Ei does. However, it can be seen from

TABLE V
rs COEFFICIENTS BETWEEN INDICATORS—MATERIAL SCIENCE

TC IF 5-IF II Ei AI

TC 1 0.7232 0.7347 0.6939 0.9672 0.7074
IF 1 0.9772 0.8384 0.7611 0.9072
5-IF 1 0.8367 0.7702 0.9356
II 1 0.7168 0.8172
Ei 1 0.7614
AI 1

TABLE VI
rs COEFFICIENTS BETWEEN INDICATORS—MATHEMATICS

TC IF 5-IF II Ei AI

TC 1 0.7313 0.7324 0.6740 0.9426 0.5789
IF 1 0.9710 0.8077 0.7243 0.7355
5-IF 1 0.8027 0.7310 0.7770
II 1 0.6757 0.6596
Ei 1 0.6765
AI 1

TABLE VII
rs COEFFICIENTS BETWEEN INDICATORS—MEDICINE

TC IF 5-IF II Ei AI

TC 1 0.6919 0.6956 0.6808 0.9483 0.7034
IF 1 0.9770 0.8284 0.7694 0.9447
5-IF 1 0.8294 0.7748 0.9766
II 1 0.7296 0.8201
Ei 1 0.7902
AI 1

TABLE VIII
rs COEFFICIENTS BETWEEN INDICATORS—PHYSICS

TC IF 5-IF II Ei AI

TC 1 0.5701 0.5481 0.5499 0.9424 0.4287
IF 1 0.9671 0.8299 0.6414 0.8871
5-IF 1 0.8024 0.6262 0.9348
II 1 0.6164 0.7869
Ei 1 0.5348
AI 1

the rs coefficient between TC and Ei (and also that between 5-IF
and AI), self-citations do not lead to any significant difference
in ranking journals on these datasets. It can also be seen from
these tables that TC and Ei form one neighborhood while AI,
5-IF, and IF form another, if trying to cluster these indicators.
Finally, it is worth noticing that, in general, the indicator II forms
a neighborhood of its own, though regarding the Mathematics
dataset, it is closer to 5-IF and IF than AI.

To support systematic comparison, the quality levels of the
journals that are awarded with respect to each of the individual
indicators are aggregated using five different operators, namely:
DOWA, kNN-DOWA, and OWA with Wmean , Wandness , and
Worness . Scores of each indicator are (separately) normalized
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TABLE IX
AVERAGING WEIGHT OF EACH INDICATOR IN OWA WITH ANDNESS

WEIGHTING VECTOR

ID TC IF 5-IF II Ei AI

D1 0.0002 − 0.0045 − 0.0478 − 0.0194 0.0349 0.0366
D2 0.0470 − 0.0045 − 0.0333 0.0043 0.0061 − 0.0196
D3 − 0.0152 − 0.0073 − 0.0081 − 0.0119 0.0080 0.0345
D4 − 0.0011 − 0.0023 0.0010 − 0.0009 0.0072 − 0.0039
D5 0.0021 0.0174 − 0.0362 − 0.0162 0.0214 0.0115
D6 − 0.0083 − 0.0015 − 0.0183 0.0156 0.0161 − 0.0036

Ave. 0.0041 − 0.0005 − 0.0238 − 0.0048 0.0156 0.0093

TABLE X
AVERAGING WEIGHT OF EACH INDICATOR IN DOWA

ID TC IF 5-IF II Ei AI

D1 − 0.0062 − 0.0055 − 0.0018 0.0096 − 0.0090 0.0129
D2 − 0.0098 0.0099 0.0140 − 0.0173 − 0.0063 0.0095
D3 − 0.0097 0.0048 0.0003 0.0030 − 0.0058 0.0074
D4 − 0.0076 0.0078 0.0059 0.0029 − 0.0036 − 0.0054
D5 − 0.0080 0.0053 0.0033 − 0.0045 − 0.0117 0.0156
D6 − 0.0072 0.0159 0.0110 − 0.0210 − 0.0054 0.0067

Ave. − 0.0081 0.0064 0.0055 − 0.0046 − 0.0070 0.0078

to [0, 1] before clustering and aggregation. The weighting vec-
tors in the OWA operators are not weight-dependent, thus a
predefinition of them is required. Instead of using the simple
Wmax and Wmin , Worness and Wandness are employed (which
are derived from the so-called linear stress functions [42]).
In particular, Worness = (0.29, 0.24, 0.19, 0.14, 0.09, 0.05),
Wandness = (0.05, 0.09, 0.14, 0.19, 0.24, 0.29), and Wmean =
(1/6, 1/6, 1/6, 1/6, 1/6, 1/6), given that there are six indica-
tors to be aggregated in each of the experiments carried out.
Note that Wandness is directly implemented as the reverse of
Worness [43].

C. Comparative Analysis of Ranking Results

Both DOWA and kNN-DOWA use dependent weighting vec-
tors, and the resulting weights represent the reliability of the
corresponding arguments. In DOWA, the reliability is measured
by the similarity of an argument to the average of all arguments,
while in kNN-DOWA, the reliability is done by the similarity
of an argument to its k-nearest neighbors. Since there are six
indicators to be aggregated, the k in kNN-DOWA is set to 3,
indicating that the majority of all five neighbors are consid-
ered. Tables IX–XI show the average weights that are computed
for each impact indicator in OWA with Wandness , DOWA, and
3NN-DOWA, respectively. Every entry in these tables is sub-
tracted by 1/6 (the average weight of each indicator) from its
real value, so that a positive number means that the indicator is
more highly weighted than the average, and that a negative one
means that it is weighted lower than the average.

It can be seen from Table IX that Ei, AI, and TC have positive
weights, while 5-IF, II, and IF have negative weights when a con-
junctive aggregation is run. These results indicate that on most

TABLE XI
AVERAGING WEIGHT OF EACH INDICATOR IN 3NN-DOWA

ID TC IF 5-IF II Ei AI

D1 − 0.0040 − 0.0015 0.0029 0.0075 − 0.0063 0.0014
D2 − 0.0046 0.0114 0.0162 − 0.0312 − 0.0011 0.0093
D3 − 0.0172 0.0092 0.0062 0.0050 − 0.0111 0.0079
D4 − 0.0093 0.0120 0.0094 0.0060 − 0.0050 − 0.0131
D5 − 0.0100 0.0119 0.0120 − 0.0087 − 0.0152 0.0100
D6 − 0.0069 0.0174 0.0157 − 0.0345 − 0.0017 0.0100

Ave. − 0.0087 0.0101 0.0104 − 0.0093 − 0.0067 0.0043

journals, Ei, AI and TC tend to give lower scores as compared
to the other three indicators. More specifically, Tables X and XI
demonstrate that when either DOWA or 3NN-DOWA is utilized,
the indicators IF, 5-IF, and AI lead to higher scores, showing
that they are considered more “reliable” when used with these
two aggregation operators. Note that individually, each of these
three indicators also gains a relatively high rs coefficient to the
RJL result (see Table II).

The rs coefficients between the aggregated scores and the
RJL results are depicted as the dot-lines in Fig. 3. On five out of
the six datasets, 3NN-DOWA achieves the best or second best
rs results across all the five aggregation operators. However, its
performance on the Mathematics dataset is not as good as those
obtained using other aggregation operators. A possible reason is
that the most RJL-relevant indicators are Ei, AI, and TC on the
Mathematics dataset, whereas 3NN-DOWA puts more weight
on IF, 5-IF, and II. Similar to 3NN-DOWA, OWA with Wandness
also shows good results on these datasets, which indicates that
the ranks produced by RJL are more like a conjunctive outcome
of the impact indicators as opposite to a disjunctive outcome of
them.

The solid lines in Fig. 3 show the rs coefficients between the
journal ranks obtained by FAC and those by RJL. The number
of base clusters on each impact indicator is consecutively set
from 2 to 11 (to support a wide range of comparative examina-
tions). Since the direct aggregation of pure scores can provide
a detailed rank, to entail an unbiased comparison, (12) is em-
ployed to produce a ranking of the journals based on the final
fuzzy clusters returned by FAC. As the fuzzy c-means algorithm
starts with a random initialization, each point on the solid lines
is the average of 30 independent runs. However, as the impact
of the initialization of fuzzy c-means to any one-dimensional
dataset is small, the standard deviation of the results is very tiny.
Therefore, standard deviations are omitted from Fig. 3.

The first result to notice is that on five out of the six datasets,
the solid lines can reach above the highest dotted lines. This
indicates that using an appropriately selected number of base
clusters, FAC can outperform the direct aggregation of individ-
ual indicator scores. These results also show that when FAC is
employed, the highest rs values on five out of the six datasets
are achieved by the use of 3NN-DOWA. Overall, the results
of 3NN-DOWA are better than those achievable using other
aggregation operators on the following datasets: Computer
Science, Medicine, and Physics. Unfortunately, similar to the
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Fig. 3. Spearman’s Correlation to RJL Results.

situation when 3NN-DOWA is applied to directly aggregate
indicator scores, its performance on the Mathematics dataset is
not as good as those obtained using other aggregation operators.
Nevertheless, 3NN-DOWA generally achieves better results
than DOWA both in direct aggregation and in FAC. According
to Table II, AI has the highest rs coefficient with RJL amongst
all the six indicators. However, it can be seen from Table VI
that the rs coefficients between AI and other indicators are
relatively low. In other words, AI cannot form a neighborhood
by itself to support its ranking, making the nearest neighbor

approaches (both FAC+3NN-DOWA and 3NN-DOWA) fail
to fit RJL.

In general, Fig. 3 does not show strictly monotonically de-
creasing or increasing patterns. Testing with more clusters may
help further reveal the relationship between the number of
base clusters and the ranking performance of the aggregated
approach. However, there is a practical limitation on increas-
ing the number of base clusters, especially in real-application
settings. Too many linguistic labels in use may hinder users’
understanding of the differences between two adjacent labels.
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TABLE XII
ROBUSTNESS OF FAC WITH DIFFERENT NUMBER OF BASE CLUSTERS

Number of Base Clusters (#Cluster)

ID 2 3 4 5 6 7 8 9 10 11

D1 0.9190 0.9588 0.9737 0.9783 0.9786 0.9782 0.9781 0.9747 0.9773 0.9745
D2 0.9378 0.9628 0.9737 0.9742 0.9752 0.9736 0.9753 0.9686 0.9665 0.9665
D3 0.9132 0.9506 0.9628 0.9740 0.9742 0.9740 0.9732 0.9744 0.9684 0.9712
D4 0.8989 0.9440 0.9667 0.9711 0.9706 0.9685 0.9711 0.9703 0.9682 0.9674
D5 0.9116 0.9354 0.9579 0.9672 0.9682 0.9701 0.9673 0.9648 0.9682 0.9632
D6 0.8929 0.9290 0.9576 0.9674 0.9634 0.9684 0.9695 0.9684 0.9670 0.9674

Avg. 0.9122 0.9468 0.9654 0.9720 0.9717 0.9721 0.9724 0.9702 0.9693 0.9684

TABLE XIII
COMPARISON OF rs COEFFICIENTS WITH OR WITHOUT TC

FAC versus RJL (#Cluster) FAC no-TC versus RJL (#Cluster) FAC versus FAC no-TC

D1 0.8311 (5) 0.8280 (5) 0.9883 ± 0.0077
D2 0.5389 (9) 0.5245 (7) 0.9748 ± 0.0138
D3 0.6974 (11) 0.6780 (6) 0.9777 ± 0.0192
D4 0.6492 (11) 0.6383 (10) 0.9831 ± 0.0150
D5 0.5611 (6) 0.5460 (6) 0.9881 ± 0.0065
D6 0.7176 (9) 0.7138 (8) 0.9881 ± 0.0065

Therefore, the largest number of base clusters is set to 11 in
the experimentation, which means that each base cluster will
on average contain about 18 elements on a dataset with 200
journals.

Fig. 3 shows that the results may vary when the number of the
base clusters employed is increased. However, the differences
between the highest and lowest Spearman’s correlations to RJL
are generally less than 0.1 in value across all datasets. That
is, such variations are generally not significant. Examining the
results more closely, it can be seen that the lowest values are
always obtained when the number of base clusters is set to 2.
When the defuzzication [defined by (11)] is employed to refine
the ranking results of FAC, the number of final clusters generated
is the same as the number of base clusters for each indicator.
When the weighted sum [defined by (12)] is employed, the final
ranks become stable if the number of base clusters is not too
low.

To reflect this robustness property of the approach further,
Table XII shows the averaged Spearman’s correlation between
the rank obtained by a given number of base clusters to that
obtained by the use of a different number of base clusters (e.g.,
the robustness with #Cluster = 2 is evaluated by the averaged
Spearman’s correlation between the rank of #Cluster = 2 and
each of those of #Cluster = 3, 4, . . ., 11). Clearly, the aver-
aged Spearman’s correlation values are in general very high.
In particular, when the number of base clusters is above 4, the
resultant ranks are very close to each other for all datasets, with
the coefficients being greater than 0.96. If the number of base
clusters is just 2, the ranking results deviate slightly from those
obtained otherwise. However, practically speaking, it is not nat-
ural to employ only two base clusters in the first place. Thus,
Table XII demonstrates that the number of base clusters does

not affect the final ranks very much. In other words, the present
approach is robust to the settings of this parameter. As such, plus
the observation that each base cluster is labeled by a linguistic
term in FAC, when given an application problem, the number
of base clusters can be subjectively specified without adversely
affecting the final ranking results significantly.

To facilitate further analysis of the experimental results on
the proposed approach, Table XIII summarizes the outcomes
given in Fig. 3. Its first data column shows the best achieved rs

coefficients between FAC+3NN-DOWA and RJL, including an
indication of where they have been achieved. The next column
shows the same content except that the TC indicator is removed
from each dataset. The last column shows the mean and standard
deviation of the rs coefficients between the normal FAC+3NN-
DOWA and that without TC. It can be seen from this table that
the achieved results of the proposed method does not mirror
the RJL results as much as the individual indicator scores (e.g.,
AI in Table II). This is expected because RJL is gained from
subjective assessment and may contain biased human views that
the proposed data-driven approach is to help avoid in the first
place.

As an unsupervised approach, it is not surprising that the
aggregated results deviate more from RJL than the most
RJL-relevant indicators do. For example, as reflected in
Table II, TC has the second-lowest average rs coefficient with
RJL amongst the selected indicators. When TC is removed
from the set of candidate indicators for aggregation, the rs

coefficient between the proposed method and RJL significantly
decreases. A paired t-test is carried out between the results with
or without TC, by changing the number of clusters from 2 to
11 across all datasets, and the t-test result is: 5.51 × 10−6 . This
shows that removing TC will deviate the result of the proposed



1318 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 5, OCTOBER 2017

TABLE XIV
TOP-10 JOURNALS IN D2 (COMPUTER SCIENCE)

Rank Abbreviated Journal Title ISSN TC IF 5-IF II Ei AI RJL

1 IEEE T Pattern Anal 0162-8828 25060 5.308 7.534 0.625 0.04969 2.802 A*
2 MIS Quart 0276-7783 7419 5.041 9.821 0.737 0.00926 2.760 A*
3 Int J Comput Vision 0920-5691 9898 5.151 6.986 0.808 0.02168 2.648 A
4 ACM Comput Surv 0360-0300 2888 8.000 10.91 0.867 0.00567 4.366 A*
5 IEEE T Inform Theory 0018-9448 28880 2.728 4.313 0.423 0.06987 1.691 A*
6 IEEE T Med Imaging 0278-0062 11114 3.639 4.438 1.012 0.01877 1.258 A*
7 J Chem Inf Model 1549-9596 9556 3.822 3.722 0.756 0.01894 0.797 A
8 IEEE T Image Process 1057-7149 12774 2.918 4.205 0.333 0.03571 1.560 A*
9 J Mach Learn Res 1532-4435 4766 2.974 4.967 0.456 0.02175 2.448 A
10 J ACM 0004-5411 6116 3.375 4.019 0.500 0.00706 2.347 A*

approach from RJL. However, comparing the rs coefficients
between the results with or without TC, it is clear that TC is
not highly weighted in the proposed ranking. A possible reason
for this is that TC only has one close neighbor (Ei), while
AI, 5-IF, and IF form the dominating neighborhood (when the
FAC+3NN-DOWA method is used).

Finally, it is worth noting that on datasets such as Computer
Science and Medicine, none of the selected individual indicators
has a high rs coefficient to RJL. Therefore, the relatively low
rs of the aggregated results is not unexpected. This is partially
because the RJL ranking is based on ratios of journals in a sub-
category of each subject, such that an A* ranked journal in one
subcategory could have a lower indicator score than an A ranked
journal in another subcategory. After all, most of the journals are
not significantly better or worse than others, although their ranks
are more likely to be affected by the preference of the human
assessors. In order to illustrate the eventual ranking results, as an
example, Table XIV presents the top-10 ranked journals by the
proposed method FAC+3NN-DOWA over the dataset D2 with
the number of clusters set to 5. The ranking generally matches
that as given by the human experts in ERA.

V. CONCLUSION AND FUTURE WORK

This paper has presented a fuzzy-aggregation and clustering-
based method for academic journal ranking, focusing on the
aggregated use of the impact indicators that appear in the JCR
provided by the Web of Science. The proposed method works
by exploiting data-reliability-based aggregation of fuzzy clus-
ters that are generated from scores returned by individual im-
pact indicators. It helps strengthen the interpretability of the
assessment outcomes for academic journals, thanks to the use
of quality level terms with inherent linguistic meaning. Exper-
imental results on real-world journals from six subject areas
have shown that the ranking results of the proposed method are
generally consistent with those by RJL, which are produced by
a large group of journal-ranking specialists. Importantly, this is
achieved without directly mirroring the rankings of RJL as the
use of individual indicators may do, thereby helping to reduce
the potential adverse impact of the bias introduced by subjective
peer-reviews.

This promising research also opens up an avenue for signifi-
cant further investigation. For instance, it would be useful to de-
velop a method which would support aggregation of indicators
involving different numbers of linguistic terms (i.e., different

granularities of evaluation) [44]. Also, this paper is centered on
the evaluation of journal impact indicators; it would be inter-
esting to investigate whether the resultant techniques could be
extended to coping with a broader range of problems, e.g., the
assessment of the overall research quality of higher education
institutions.

ACKNOWLEDGMENT

The authors would like to thanks the Associate Editor and
the reviewers for their constructive comments on the original
manuscript which have helped improve this paper significantly.

REFERENCES

[1] Research excellence framework. Higher Education Funding Council for
England (HEFCE), the Scottish Funding Council (SFC), the Higher
Education Funding Council for Wales (HEFCW), the Department for Em-
ployment and Learning, Northern Ireland (DEL). 19 Apr. 2014, [Online].
Available: http://www.ref.ac.uk/

[2] Excellence in Research for Australia (ERA). The Australian Research
Council (ARC). 19 Apr. 2014, [Online]. Available: http://www.arc.gov.au/
excellence-research-australia

[3] I. R. Dobson, “Using data and experts to make the wrong decision,” in
Using Data to Improve Higher Education. New York, NY, USA: Springer,
2014, pp. 229–242.

[4] J. Stegmann et al., “How to evaluate journal impact factors,” Nature,
vol. 390, no. 6660, 1997, Art. no. 550.

[5] E. Garfield, “The history and meaning of the journal impact factor,” JAMA:
J. Am. Med. Assoc., vol. 295, no. 1, pp. 90–93, 2006.

[6] C. Bergstrom, J. West, and M. Wiseman, “The Eigenfactor metrics,”
J. Neurosci., vol. 28, no. 45, pp. 11433–11434, 2008.

[7] J. Jamali, M. Salehi-Marzijarani, and S. M. T. Ayatollahi, “Factors affect-
ing journal quality indicator in scopus (scimago journal rank) in obstet-
rics and gynecology journals: A longitudinal study (1999-2013),” Acta
Informatica Medica, vol. 22, no. 6, pp. 385–388, 2014.

[8] J. Stegmann and G. Grohmann, “Citation rates, knowledge export and
international visibility of dermatology journals listed and not listed in the
journal citation reports,” Scientometrics, vol. 50, no. 3, pp. 483–502, 2001.

[9] R. Rousseau, “Journal evaluation: Technical and practical issues,” Library
Trends, vol. 50, no. 3, pp. 418–439, 2002.

[10] C. W. Holsapple, “A new map for knowledge dissemination channels,”
Commun. ACM, vol. 52, no. 3, pp. 117–125, 2009.

[11] J. Bollen, H. Van de Sompel, J. A. Smith, and R. Luce, “Toward alternative
metrics of journal impact: A comparison of download and citation data,”
Inf. Process. Manage., vol. 41, no. 6, pp. 1419–1440, 2005.

[12] B. Meyer, C. Choppy, J. Staunstrup, and J. van Leeuwen, “Viewpoint
research evaluation for computer science,” Commun. ACM, vol. 52, no. 4,
pp. 31–34, 2009.

[13] G. Beliakov and S. James, “Citation-based journal ranks: the use of fuzzy
measures,” Fuzzy Sets Syst., vol. 167, no. 1, pp. 101–119, 2011.

[14] S. Cooper and A. Poletti, “The new era of journal ranking,” Australian
Univ. Rev., vol. 53, no. 1, pp. 57–65, 2011.

[15] P. Su, C. Shang, and Q. Shen, “Link-based approach for bibliometric
journal ranking,” Soft Comput., vol. 17, no. 12, pp. 2399–2410, 2013.



SU et al.: EXPLOITING DATA RELIABILITY AND FUZZY CLUSTERING FOR JOURNAL RANKING 1319

[16] F. Bartolucci, V. Dardanoni, and F. Peracchi, “Ranking scientific journals
via latent class models for polytomous item response data,” J. Roy. Statist.
Soc.: Series A (Statist. Soc.), vol. 178, no. 4, pp. 1025–1049, 2015.

[17] D. T. Anderson, J. C. Bezdek, M. Popescu, and J. M. Keller, “Comparing
fuzzy, probabilistic, and possibilistic partitions,” IEEE Trans. Fuzzy Syst.,
vol. 18, no. 5, pp. 906–918, Oct. 2010.

[18] R. Diao and Q. Shen, “Feature selection with harmony search,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 6, pp. 1509–1523,
Dec. 2012.

[19] Q. Shen, R. Diao, and P. Su, “Feature selection ensemble,” in Alan Turing
Centenary, A. Voronkov, Ed. EPiC Series in Computing, vol. 10, 2012,
pp. 289–306.

[20] R. Yager, “On ordered weighted averaging aggregation operators in multi-
criteria decisionmaking,” IEEE Trans. Syst., Man, Cybern., vol. 18, no. 1,
pp. 183–190, Jan./Feb. 1988.

[21] J. Malczewski, “Ordered weighted averaging with fuzzy quantifiers: Gis-
based multicriteria evaluation for land-use suitability analysis,” Int. J.
Appl. Earth Observation Geoinf., vol. 8, no. 4, pp. 270–277, 2006.

[22] C. Rinner and J. Malczewski, “Web-enabled spatial decision analysis using
ordered weighted averaging (OWA),” J. Geographical Syst., vol. 4, no. 4,
pp. 385–403, 2002.
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