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Abstract—Graph-based Semi-Supervised Learning (GSSL) has become1

an indispensable tool for data classification recently, owing to its innate2

capability of efficient data structuring and representation. However, their3

reliance on predefined graphs constrains the efficacy of Label Propagation4

(LP) and interpretability in predictions, especially in high-dimensional5

feature spaces with limited information. Addressing these challenges,6

this paper employs a Fuzzy Graph-based Label Propagation (FGLP)7

model, which is inherently interpretable in exploring the similarities of8

the normalized histogram envelope-based scaled features assisting data9

categorization. FGLP initiates the structuring of an undirected fuzzy-10

weighted graph using the novel fuzzy distance matrix by exploiting11

the local data affinity with reduced influence of outliers. The learned12

information is then optimized using two distinct SoftMax-constrained13

objective functions coupled with cross-entropy and lasso regularization14

to construct the similarity and projection matrices in tandem assisting LP15

and Feature Selection in scarcely labeled high-dimensional feature space.16

Performance validation on heterogeneous datasets showcases FGLP’s17

superiority, achieving over 88% accuracy with just 10% labeled data,18

surpassing prior methods by an average enhancement of 18.29%.19

Index Terms—Fuzzy Distance Matrix (FDM), Fuzzy Graph (FG),20

Fuzzy Graph-based Label Propagation (FGLP), Feature Selection (FS),21

Graph-based Semi-supervised learning (GSSL), Normalized Histogram22

Envelope (NHE), Similarity matrix.23

I. INTRODUCTION24

THE daily expansion and exponential spread of social media25

networks across the globe generate tons of data, of which26

only a tiny percentage are labeled, as labeling is cost-intensive and27

incur more time with human labor [1]–[3]. Consequently, posing a28

significant challenge to the machine learning society in performing29

effective data exploration and structuring supplementing classification30

[2]. Over the years, Semi-Supervised Learning (SSL) faired handy31

owing to its simplicity with sophistication and has received significant32

attention in the area of label propagation (LP). Majorly, the problem33

with LP is the assignment of labels for the entire set of feature vectors34

(FV) with relatively lesser available labels in the FV subset [4]–[6].35

This elucidates SSL’s potency in addressing a wider variety of issues36

such as poor model generalization and low classification accuracy37

concerned with supervised and unsupervised learning [2].38

Among the diverse SSL variants, particularly, GSSL benefits39

data scientists in managing and analyzing exponentially growing40

unstructured data due to their inherent convexity, scalability, and41

unique suitability in detecting inherent connections among data points42

[7], [8]. Graphs serve as the building blocks in GSSL [9]–[12]43

covering subspace and manifold learning [13], [14] wherein, the44

affinity between FVs is modeled as pairwise edges [15], [16] assisting45

LP [8]. Generally, GSSL graphs a dataset with each sample denoted46

as a vertex and their relation defined by an edge [17] with its nodal47

affinity defined by the degree of closeness determined using the48

distance measure.49

Despite the numerous advantages and simplicity of GSSL, their50

reliability depends on the constructed similarity matrix [18] weighted51

by the Gaussian (Sx
ij = e−σ(d)2 ; d− is the Euclidean distance52

measure on X = {xi}i∈Z ; σ− scaling parameter) which in turn53
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relies on σ [12]. GSSL further insists that nearby nodes are strongly 1

related and are presumed to have comparable labels. Subsequently, 2

GSSL creates several manifolds that intersect or partially overlap 3

with each other [11], when dealing with the distribution of items in 4

diverse datasets. As the labels are allocated based on their proximity, 5

the class information on the graph gets smoothened by neglecting 6

the dissimilar edges [12]. However, GSSLs fail miserably, when the 7

labeled data is highly limited [19], [20] and increases the processing 8

cost while handling large-scale data. Moreover, the graph connectivity 9

built by Euclidean among samples during propagation is unreliable 10

[21]. In addendum, the accuracy of data categorization depends 11

critically on the quality of the initialized graph and is questionable, 12

as GSSLs tend to classify the data on a predetermined or fixed graph 13

with subjective label information. 14

Inferences from the erstwhile literature on GSSL applied to LP 15

reveal the following challenges: 1. graph structuring, 2. Reliability, 16

and 3. LP efficacy, demanding exhaustive investigations to deal 17

with. Especially, these challenges are notable when dealing with 18

high-dimensional feature spaces limited by the label information. 19

Accordingly, to address the aforementioned issues, this work proposes 20

the FGLP by replacing the conventional crisp graph (CG) with 21

FG for data representation offering interpretability, transparency, 22

dynamicity, and adaptivity [22], [23]. To begin with, FGLP initiates 23

graph structuring using a novel fuzzy distance matrix (FDM) instead 24

of the conventional Euclidean easing computational operations in 25

high-dimensional data spaces with simultaneous reduction of outliers 26

[21], [24]. The fuzzy-natured FDM realizes edges by capturing 27

the likelihood of two nodes sharing the same label which is in 28

contrast to the CG, relying heavily on the subjective label information 29

prone to misclassification [25], [26]. Further, the parameter-free 30

FGLP model ensures reliability by adaptive determination of cross- 31

entropy and lasso regularizers penalty parameters through recursive 32

tuning of the Lagrangian operator that mitigates the biases in label 33

prediction. Additionally, FGLP favors the downing of computational 34

complexity with enhanced interpretability using the introduced NHE- 35

based fuzzy Feature extraction and FS warranting reduced FV dimen- 36

sions. Moreover, the entire operations in fuzzy space enable reliable 37

prediction of data connections without solely relying on the subjective 38

label information, greatly enhancing the LP efficiency, even under 39

constrained circumstances with greater interpretability. To elevate the 40

appropriateness and help understand the significance of the proposal, 41

the issues in GSSL are orderly emphasized based on the recent 42

contributions in Section I-A. 43

A. Related Work 44

The quest for efficient data storage and management systems is on the 45

rise owing to the humongous volume of unstructured data delivered 46

across multiple domains catering to several real-world applications. 47

Scores of trending supervised and unsupervised models necessitate 48

higher computational demands with biased outcomes, and false 49

classification tarnishing data categorization. Therefore, a suitable 50

learning alternative in the form of inductive or transductive GSSL 51

encompassing convexity with connectivity is adopted to improve data 52
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classification. Induction learns a global representation of the data1

space from the ”unknown” data, while transduction propagates labels2

by learning a local representation utilizing labeled and unlabeled data3

thereby making it progressive and hence adopted in this approach.4

Consequently, the below section outlines the issues related to the5

recent literature on transductive learning-based GSSLs employed for6

LP and embedding in the context of Dimensionality Reduction (DR)7

and graph structuring.8

At the onset, GSSLs such as the local-global consistency (LGC)9

[27] and Gaussian field-based harmonic functions (GFHF) [28]10

reduced FVs dimensions by smoothing the graph’s manifold that11

closed the gap between the predicted labels. Despite being straight-12

forward and effective, these models gradually lost relevance with13

the increase in dataset size, which was addressed by Marginal Fisher14

Analysis (MFA) [29] by compacting the interclass deviations using an15

intrinsic graph. However, graph construction and projection learning16

demanded two different procedures that increased the computational17

complexity. Likewise, the semi-supervised low-rank representation18

[1] significantly reduced DR by maintaining a trade-off between19

accuracy and representational complexity. Alternatively [11] tuned20

the similarity matrix with fixed and adaptive FV weighting followed21

by LP which was quite expensive and the method failed with22

lesser labeled samples. The variant of [11] termed Semi-supervised23

Projection with Graph Optimization (SPGO) [30] learned the graph24

similarity in low dimensional space by neglecting the labeled FVs25

that degraded feature projection. Consequently, the multi-category26

classification [31], [32] employed a pair of linearly modeled un-27

constrained minimization criteria for learning the graph structure28

and label prediction. The engaged criteria increased the model’s29

complexity proportional to the FVs size and datasets. The unification30

of LP with Structured Graph Learning (LPSGL) [33] reduced dataset31

dimensions using an iterative optimizer that demanded extensive32

computations and failed to perform well if the labeled samples33

are scarce. The probability-tuned similarity graph [2] performed LP34

using the Euclidean distance measure using iterative optimization35

that frequently altered the learned labels thereby, unsettling. The36

above discussions outline the need for an effective and adaptive LP37

mechanism functioning using a minimal number of computations.38

Similarly, recent and prevailing graph embedding models are39

surveyed and chronologically enunciated hereunder, to showcase40

the downfalls that are addressed by FGLP. The widely popular41

semi-supervised discriminant analysis (SDA) [34] optimized location42

preservation and discrimination using both labeled and unlabeled43

samples. However, in cases of higher levels of data non-linearity,44

its inherent geometric structure was ignored, while flexible manifold45

embedding (FME) [35] smoothened the former’s manifold for DR.46

Likewise, L1-Semi [36] constructed graphs by replacing the Gaussian47

weighting with for spectral embedding as the innate label details48

were neglected during propagation. Similarly, the margin-based dis-49

criminant embedding [37] constructed the non-negative sparse graph50

(NNSG) using Euclidean-tuned Laplacian that achieved discrimi-51

native non-linear data projection. NNSGs increased constructional52

complexity coupled with local information negligence led to the53

model failure. Few other embedding models aligning with NNSG54

such as FDEFS [38], DLA [39], GCSE [40], and DFEFP [41] effi-55

ciently projected FVs in low dimensional space for data classification.56

The strength of the available labeled information determined these57

models’ efficacy while their performance deteriorated when dealing58

with large datasets. Alternatively, [42] constructed graphs using an59

energy-based distance metric that neglected the data distribution.60

However, the highly time-consuming likelihood-learning failed to61

surpass the accuracies registered by recent GSSLs.62

As evident from the above discussions, the labeling accuracy of63

contemporary models highly relies on the availability of labeled data, 1

and the distance measure utilized for graph structuring. Moreover, the 2

increased propagation complexity is directly related to the dataset size 3

and complex learning modules incorporated into their structurization. 4

Furthermore, their operation in crisp space lessens flexibility and 5

adaptability thereby downing accuracies, rather, these characteristics 6

are deemed essential. Thus, from the literature reviewed above, the 7

following objectives are formulated to fill the gaps in the usage of 8

GSSL for LP and FS aiding data classification. 9

• Design a parameter-free dynamic graph structuring model re- 10

placing the widely popular and parametric Gaussian, KNN 11

graphs. Also, the intended graph model should be fair, trust- 12

worthy, and interpretable which is lacking in the conventional 13

CG. 14

• Develop a new distance measure demonstrating resilience toward 15

noise and outliers experienced by the traditional Euclidean 16

metric [21], [24]. 17

• Realize a unique graph regularization model to optimize the 18

similarity matrix easing LP. 19

• Implement a simple LP algorithm performing effective informa- 20

tion propagation with limited supervised labels. 21

• Adopt an optimal DR technique that downs the model’s com- 22

putational burden without compromising its performance. 23

To meet these research objectives the following contributions are 24

made in this proposal: 25

• Introduced a parameter-free FG approach combining scalability, 26

dynamicity, and interpretability into the graph structure that 27

overcomes the limitations of predefined CGs [22], [23]. 28

• Developed a novel fuzzy distance measure similar to geodesic 29

distance, enhancing interclass separability with increased intra- 30

class affinity. 31

• Improved FG learning using a SoftMax-tuned cross-entropy 32

regularizer bonding intraclass FVs with heightened LP perfor- 33

mance. 34

• Decomposition of optimal similarity matrix favoring efficient 35

prediction of unknown labels followed by label learning using 36

linguistically advanced soft computing technique offering im- 37

proved classification even with scarcely available labeled FVs. 38

• Reduce FV dimensions with realization complexity performed 39

in two stages: 40

– Extraction of scaled NHE-based fuzzy FVs using a 41

probability-tuned Membership Function retaining desired 42

data variations; 43

– Projection matrix learning using a Lasso regularized fuzzy 44

entropy objective function addressing overfitting with im- 45

proved interpretability. 46

To realize the aforementioned contributions mathematically the 47

related notations utilized in their formulation and along with the 48

characteristics are dealt below. 49

B. Mathematical Notations 50

A summary of mathematical notations denoting the diverse variables 51

used for realizing the proposed model is presented in Table I. 52

The rest of this paper is organized as follows: Fuzzy fundamentals 53

in the context of set theory, feature scaling, and FG learning are 54

dealt with in Section II. In Section III, learning validity on real- 55

world data sets is relatively analyzed in detail followed by complexity 56

and interpretability investigations in Section IV. Finally, Section V, 57

summarizes the novelty and efficacy of the proposed work. 58
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TABLE I
MATHEMATICAL NOTATIONS WITH THEIR DESCRIPTIONS

Notations Description
X Dataset
n Number of FVs in X
m Length of the FV
f Arbitrary FV
L Number of levels in the FV f

|g (x)| Magnitude of an arbitrary function g

∥g (x)∥2 l2− norm of an arbitrary function g

Nm
Number of pixels with a particular intensity
level (histogram counts)

H (f) Normalized Histogram Envelope (NHE)
µh (x) NHE in fuzzy space
| Set notation for ’such that’
Xl labeled data point set
Xul unlabeled data point set
yl Vector with class label information for first l FVs
dxij Distance matrix calculated on X for FVs xi & xj

σxi & σxj Standard deviation of ith and jth FV

G Fuzzy Graph (FG)
V Vertices of FG

µe & µv Membership Functions edges and vertices in FG
Sij Similarity Matrix
wij Projection Matrix
L Lagrangian Function
Sii Diagonal elements in the similarity matrix
γ, λ Regularization parameter
η, η1, β Lagrangian Multipliers

II. METHODOLOGY1

To address the research objectives formulated from the shortcomings2

of standard GSSL elucidated in the literature review, a novel FGLP3

is introduced in this section which is expected to be interpretable4

for enabling downstream applications [42]. Existing research mainly5

focuses on the inferred graph by circumventing each node’s vicinity6

based on existing metrics [44]. In contrast, the proposed model7

constructs a graph by defining edges based on membership values8

generated by the distance matrix in the fuzzy space. As the degree of9

membership lies in the range [0 1], the edge formation is completely10

based on the probability of closeness, thereby, making the graph11

highly interpretable. The graphical representation of the proposed LP12

is shown in Fig. 1.
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Fig. 1. A Fuzzy Graph-based Label Propagation Model
13

At the onset, the scaled fuzzy FVs are extracted by the Normalized14

Histogram Envelope (NHE) by exploiting the inherent flexibility and15

adaptability qualities of fuzzy logic. FG is then structured using the 1

novel FDM to ease data categorization followed by the construction 2

of the optimal similarity matrix on the resultant data by fitting a 3

simple cost function. Later the higher dimensional FVs are projected 4

to lower dimensional space using Lasso Regularization (LR)-based 5

minimization tuned by fuzzy entropy for optimal FS. Finally, a 6

unified framework is realized addressing similarity learning, and FS 7

followed by LP. To better understand the fuzzy mathematics involved 8

in developing different modules of the FGLP framework, firstly, a 9

brief introduction to fuzzy sets is provided followed by discussions 10

on other modules. 11

A. Fuzzy Sets 12

Fuzzy rule-based system modeling bestows easy interpretability [45], 13

rather their accuracies diminish on par with their peers. Therefore, 14

fuzzy variables with minimal rules are desired for making a trade-off 15

between interpretability and accuracy [46]. Generally, these systems 16

are equivalent to FG defined as granular representations of functional 17

dependencies and relations [47]. FG with lesser nodes represents a 18

fuzzy system with a minimalistic rule set offering improved inter- 19

pretability while maintaining consistent accuracy. Additionally, the 20

highly flexible nature of fuzzy-based learning supplements labeling 21

with reduced computations when compared to its peers [48]–[50] 22

thereby, motivating FG’s engagement in this learning framework. Ac- 23

cordingly, the following fuzzy definitions are adopted to understand 24

the presented learning model: 25

Definition 1: A fuzzy set A in universal set X is mathematically 26

represented as a set of ordered pairs [47], [48] defined in (1) 27

A = {(x, µA (x)) |x ∈ X} |∀x ∈ R, µA (x) ∈ [0 1] (1)

µA (x) → degrees of membership of x concerning A; µC
A (x) = 28

1 − µA (x) → Fuzzy complement of µA (x) representing the non- 29

membership values of x. 30

Definition 2: A fuzzy set A is said to be convex if it satisfies the 31

condition in (2) 32

A (αx+ (1− α) y) ≥ min {µA (x) , µA (y)} ; ∀α ∈ [0 1] (2)

α → constant that cuts the membership function and is hence termed 33

as α−cut which is necessary for determining the convexity of the 34

membership function. 35

Definition 3: If A and B are the fuzzy sets from universes X 36

and Y , then the relation R between the sets A and B is a cartesian 37

product represented as R → A × B, and the membership function 38

of the relation R is given in (3) 39

µR (x, y) = µA×B (x, y) = min (µA (x) , µB (y)) (3)

B. NHE-based Fuzzy Feature Extraction with Scaling 40

Large-sized FVs are a serious problem in computer vision, data 41

mining, machine learning, and pattern recognition and require greater 42

computational effort and storage space [51], [52]. Therefore, to 43

reduce their space and process complexity, this work prescribes 44

a straightforward approach to capture the highly prioritized local 45

variations. Accordingly, each FV denoted by f of size 1 × m with 46

levels fm lying in the range [0 L) |L ≪ m, are fabricated into 47

histograms. These histograms represent the probability distribution 48

of levels in terms of Nm defined by the count of each level in f 49

to extract its envelope termed normalized histogram envelope (NHE) 50

(H (f)) given in (4) 51

H (f) =
Nm

m
(4)

H (f) obtained from (4) formulates membership function (µh (x)) 52

as in [43] for converting the crisp FVs {f = fm|0 ≤ fm < L} to 53
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fuzzy FV with its elements representing the degrees of membership1

[48]–[50]. The extracted FVs are constrained by the number of2

elements in µh (x) that is very much less than the number of elements3

in f , thereby reducing the feature dimensions and the computational4

cost. Accordingly, the transformed H (f) is given in (5)5

µh (x) = µ (H (f)) |µh (x) ∈ [0 1] (5)

µh (x) constitutes a dataset X =6

{x1, x2, x3, ..., xl, xl+1, ..., xn }, and xi represents a fuzzy7

FV. Among n data points only the first l samples are labeled as8

yl = {1, 2, 3, ..., c} with the remaining considered as unlabeled ul9

bounded between l ≪ ul, and n = l + ul as defined in (6) and (7)10

Xl = {(x1, y1) , (x2, y2) , ..., (xl, yl)} (6)
11

Xul = {xl+1, ..., xl+u} (7)

This arrangement facilitates the construction of a n × n matrix12

defining the affinity between nodes in the graph G. Node affinity is13

quantified using the initial similarity matrix {S = sij |0 ≤ sij ≤ 1}14

using an appropriate distance measure d on X . According to GSSL if15

d (xi, xj) is very small then the labels yi ≈ yj and this assumption16

holds for both labeled and unlabeled data as defined in (8).17

X = {Xl,Xul} = {xi} ; i = 1, 2, ..., n (8)

C. Fuzzy Graph (FG) Structuring18

The relation between fuzzy FVs µh (x) in the dataset X play an19

important role in LP, and to determine these relations G is constructed20

with each node representing a fuzzy FV or a fuzzy set µh (x) |x ∈ X .21

FG is formally given in Definition 4.22

Definition 4: The FG [53] G = (V, α, µ), is a non-empty vertex23

set V defined by the membership values of vertices {α|V ∈ [0 1]}24

and edges {µ|V × V ∈ [0 1]}, ∀ (p, q) ∈ V satisfying the condition25

given in (9)26

µ (p, q) ≤ min {α (p) , α (q)} (9)

where α (p), µ (p, q) are the membership values of the vertex p and27

edge pq in G respectively as shown in Fig. 2.

Fig. 2. An example of a Fuzzy Graph
28

Definition 5: A CG G∗ is a special case of an FG with vertices29

{α|V = 1} and edges {µ|V × V = 1}.30

Definition 6: An FG G = (V, α, µ) is said to be a strong graph if31

if it satisfies (10)32

µ (p, q) = min {α (p) , α (q)} (10)

FG adopted in this work corresponds to fuzzy relations with in-33

duced interpretability. Also, FG structuring is simpler when compared34

to the conventional CG as the data relations are determined using35

the probability-based membership values lying in the range [0 1]. To36

better understand the significance of swapping CG with FG, a few37

distinguishing points are given below:38

• Conventional GSSLs consider graphs as stationary observations 1

[25], [26]. When the graph is assumed to be random, the 2

additional correlations between data characteristics, labels, and 3

structure may be extracted from the joint distribution. Accord- 4

ingly, the proposed FGLP considers various forms of uncertainty 5

connected to the data and class/label information. This quality 6

induces dynamicity into the graph for learning the relation 7

between FVs. 8

• Likewise, Graph regularization using GSSLs demands detailed 9

investigations particularly in the scaling aspect when the in- 10

put size is large. Especially, many such models available in 11

the literature either concentrate on reducing the computational 12

complexity or improving the propagation accuracy. Rather in 13

the proposed FGLP, almost half of the work is done by graph 14

structuring as the node affinities are determined by considering 15

the local variations in the data on a probability basis. 16

• Also, existing GSSLs completely trust the available subjective 17

label information which is highly prone to misclassification [25], 18

[26]. Instead, FGLP predicts the probability of two nodes sharing 19

the same label to minimize misclassification. 20

The aforementioned advantages motivate the replacement of CG 21

with FG and are adopted in this work for label learning. Later, the 22

node affinity of G is determined by constructing the FDM of n× n 23

dimensions from the dataset X as discussed below. 24

25

1) Fuzzy Distance Matrix (FDM): GSSLs accuracy is highly influ- 26

enced by the local connectivity or affinity between FVs [11]. If there 27

is no local linearity in a neighborhood then the Euclidean distance- 28

based affinity fails to accurately represent the relationship between 29

data points. Furthermore, the affinity between data points is impacted 30

by the data distribution, which is mandatory while constructing the 31

affinity matrix [21]. To address this issue, a new FDM (d) is proposed 32

fulfilling the properties of conventional geodesic distance measures. 33

Initially for FDM construction, the Euclidean metric evaluating the 34

node similarity is used by rationalizing the samples using the standard 35

deviation (σ) given in (11) to localize their variations, as they remain 36

highly distinctive. 37

dxij =
1

n

{∣∣∣∣∣
n∑

i,j=1

(
xi

σxi

− xj

σxj

)2

−max

(
xi

σxi

+
xj

σxj

)∣∣∣∣∣
} 1

2

(11)

Equation (11) calculates the distance between the FVs in dataset X . 38

The first term in (11) represents the Euclidean distances between the 39

FVs normalized by their respective standard deviations σxi , σxj .This 40

normalization aids in reducing the effect of outliers [54], [55]. While 41

the second term minimizes the intraclass heterogeneity and increases 42

the interclass FVs deviations in the dataset X . To constrain the 43

values of fuzzy geodesic distance obtained in (11) the resultant 44

is then normalized by adopting the fuzzification procedure [56]– 45

[58]. A numerical instance of the fuzzification in attaining FDM is 46

demonstrated in Example 1 of the Appendix by considering the fuzzy 47

features defined in (12), with each row corresponding to FV elements 48

packed in the interval [0 1]. 49

X =

 0.1 0 0.5 0.8 0.3
0.5 0.8 0 0.3 0.1
0.1 0 0 0.5 0.9

 (12)

The FDM constructed from the FVs X in (12) using (11) is 50

presented in (13) 51

dxij =

 0 1 0.4
1 0 0.7
0.4 0.7 0

 (13)
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Equations (11) and (13) outline a few mathematical facts related1

to the FDM with its corollaries presented below.2

Corollary 1: The fuzzy geodesic distance d (a, b) between two3

non-empty vectors a, b is always positive for all 0 ≤ a, b ≤ 14

0 ≤ d (a, b) ≤ 1; ∀ (a, b) ∈ [0 1] (14)

Corollary 2: The developed FDM d (a, b) satisfies the separability5

property of cartesian geodesic distances6

d (a, b) = 0 iff a = b; ∀ (a, b) ∈ [0 1] (15)

Corollary 3: The FDM in (11) satisfies the symmetry property of7

conventional geodesic distance8

d (a, b) = d (b, a) ; ∀ (a, b) ∈ [0 1] (16)

Corollary 4: For any fuzzy FVs a, b, c | a ⊆ b ⊆ c, then the9

developed FDM satisfies triangular inequality.10

d (a, b) ≤ max {d (a, c) , d (b, c)} (17)

Corollary 5: The proposed distance metric is equal to classical11

geodesic distance if the vectors a and b are in crisp form.12

Corollaries 1 to 5 assist in understanding the data affinity captured13

by FDM from which FG is constructed. FGs’ choice is mainly14

attributed to their ability in dealing with uncertain and ambiguous15

data existing in many real-world phenomena [59], whilst, the crisp16

counterparts obscure the ambiguity, interpretability, and validity17

[25]. The above-demonstrated FG construction process is extended18

to FVs in the dataset X , wherein each FV corresponds to a vertex19

with dxij representing the edges.20

21

2) Similarity Learning: The similarity matrix (Sij) constructed22

using the relation (18) should satisfy the positivity, symmetry, and23

separability properties.24

Sij = 1− dxij (18)

According to GSSL [2], [11], [60], if the distance between the FVs25

xi and xj quantified in dxij is large then their similarities in Sij is26

reduced. Also, the diagonal elements of Sij are zeroed for eliminating27

the self-loops in FG (Sii = 0). Lastly, Sij is normalized using the28

SoftMax to constrain the row-wise sum to 1

 n∑
j=1

e
Sij

n∑
j=1

e
Sij

= 1

29

with the resultant equivalently interpreted as a probability distribution30

matrix. Application of the SoftMax function improvises the intraclass31

firmness and separability in the features of interclass data points32

[61]. To optimize Sij , the formulated FG and the realized dxij33

are combined by tuning the overall cost function (19) covering the34

aforementioned constraints.35

J = min
Si

n∑
i,j=1

Sij .d
x
ij + γ

n∑
i,j=1

Sij · log
Sij

dxij

∀i, Si ≥ 0, Sii = 0 &

n∑
j=1

eSij

n∑
j=1

eSij

= 1
(19)

γ− Regularization parameter.36

The first term in (19) represents the loss function responsible for37

determining similarities between the samples, while, the second cor-38

responds to the cross-entropy determining the dissimilarity measure39

in data points. In combination with SoftMax, this cross-entropy term40

achieves better interclass separability [62], [63]. Minimizing (19)41

produces Sij in terms of dxij defined in (20)42

dJ

dSij
= 0 ⇒ dxij + γ + γ log

Sij

dxij
= 0

1

Sij = dxij .e
−
(
1+

dxij
γ

)
(20)

Reorganizing (19) in vector form using (20) given in [33] produces 2

(21) 3

J = min
Si

∥∥∥∥∥Sij − dxij .e
−
(
1+

dxij
γ

)∥∥∥∥∥
2

2

∀i, Si ≥ 0, Sii = 0&
n∑

j=1

e
Sij

n∑
j=1

e
Sij

= 1
(21)

The minimization problem in (21) is solved using the Lagrangian 4

function given in (22) 5

L (Sij , η, βi) =
1

2

(
Sij − dxij · e

−
(
1+

dxij
γ

))2

− η

 n∑
j=1

eSij

n∑
j=1

eSij

− 1

− βiSi

(22)

η, β ≥ 0 are the Lagrangian multipliers. Solving (22) for 6

Sij , η, and β yields (23), (24), and (25). 7

dL
dSij

= 0 ⇒

(
Sij − dxij · e

−
(
1+

dxij
γ

)

− η

n∑
j=1

eSij

n∑
j=1

eSij

1−
n∑

j=1

eSij

n∑
j=1

eSij

− βi

(23)

8

dL
dη

= 0 ⇒
n∑

j=1

eSij

n∑
j=1

eSij

= 1 (24)

9
dL
dη

= 0 ⇒ Si = 0 (25)

The optimal Sij satisfying Karush–Kuhn–Tucker (KKT) conditions 10

is determined using [11], [16], [33] constrained by the parameters 11

η, γ is determined using (26) 12

Sij =

(
−dxije

−
(
1+

dxij
γ

)
+ η

(
n− 1

n2

))
+

(26)

To determine η, γ, a sparse Sij is constructed using (23) – (26) 13

with the consideration that u non-zero elements (closest neighbors) 14

of FG are selected adaptively based on known labels in the dataset 15

represented by Siu > 0 and the remaining n − u elements are 16

denoted as Siu+1 ≤ 0. Later, Sij is sorted in the ascending order to 17

select the first u elements, and the rest are zeroed. This process is 18

mathematically presented in (27), (28) 19

Siu = dxiu · e
−
(
1+

dxiu
γ

)
+ η

(
n− 1

n2

)
> 0 (27)

20

Siu+1 = dxiu+1 · e
−
(
1+

dxiu+1
γ

)
+ η

(
n− 1

n2

)
≤ 0 (28)

Also from (26), the value of the Lagrangian multiplier η is obtained 21

by exploiting the constraint that the row-wise sum of Sij is unity. 22

u∑
j=1

dxij · e
−
(
1+

dxij
γ

)
+ η

(
n− 1

n2

)
= 1 (29)
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Upon simplifying (29) the Lagrangian multiplier η for u closest1

neighbors is determined using (30)2

η =

 u∑
j=1

dxij · e
−
(
1+

dxij)
γ

)
− 1

 n2

u(n− 1)
(30)

Substituting (30) in (25) produces (31) from which the regulariza-3

tion parameter γ is calculated as in (32)4

dxi,u+1 · e
−
(
1+

dxi,u+1
γ

)
+ η

(
n− 1

n2

)
= 0 (31)

5

γ =

∑u
j=1 d

x
ij − dxiu

1 + u−
u∑

j=1

log
(
dxij
) (32)

Finally, by substituting (30), (32) in (22), the Sij is obtained in6

(33)7

Sij =

 dxij · s1 + 1
u
− 1

u

u∑
j=1

dxijs1, for j ≤ u

0, for j > u
(33)

where S1 = e

1+

dxij

1+u−
u∑

j=1
log(dxij)


u∑

j=1
dx
ij

−dx
ij


.8

D. Feature Selection (FS) and Projection Matrix Learning9

In the case of high dimensional FVs, the computational complexity10

in learning the graph similarity is large, to compensate for this,11

FS is incorporated into the framework, which additionally improves12

its interpretability. Also, FS plays an important role in retaining or13

dropping FV elements based on their significance in the learning14

perspective. Accordingly, in this contribution, it is highly essential15

to assess the importance of data attributes extracted from the het-16

erogeneous datasets and establish FGLPs’ uniformity in dealing with17

diverse applications.18

Accordingly, FS is performed using a novel fuzzy entropy-based19

optimization function tuned by LR for constructing the projection ma-20

trix wij of dimensions m×ω. The rationale is to exploit DR through21

FS which is accomplished by the LR’s penalty term (responsible22

for the selection of relevant features) with simultaneous reduction of23

FV dataset dimensions from n×m to n× ω, supplemented by the24

introduced importance score, thereby, emphasizing the role of data25

attributes in classification.26

Accordingly, the projection matrix wij for minimizing FV size is27

recursively tuned using (34)28

min
wij

n∑
j=1

vj ∥xjwij − pj∥22 + λ
n∑

j=1

∥wij∥|

wij ≥ 0;
n∑

j=1

e
wij

n∑
j=1

e
wij

= 1
(34)

xj →jth FV with importance score vj ; λ → penalty parameter;29

pj → the predicted label of xj , determined from the pseudo labels30

matrix comprising of available labels and predicted labels represented31

as P =

(
Pl

Pul

)
. To ensure error-free wij the predicted labels are32

initially assumed zero (Pul = 0 ).33

The first term in (34) is the cost function approximating wij while34

the second corresponds to the penalty responsible for FS. The first35

term adjusted by the importance score vj is formulated using the36

fuzzy entropy to capture the FVs uncertainty and potentially enhances37

FS by up-sizing or downsizing the FV length during learning. Also,38

it effectively distinguishes the supervised and unsupervised samples39

thereby, offering accurate label prediction. The second term in (34) 1

biases optimization by effectively removing less informative or redun- 2

dant features favoring representational sparsity [64]. λ’s magnitude 3

directly influences FS, if high very less features are selected while 4

lower values result in the selection of more features thereby leading to 5

underfitting or overfitting. Therefore, striking a balance in adaptively 6

fitting λ is determined using the Lagrangian multiplier that overcomes 7

the aforesaid issues with simultaneous reduction of FV dimensions. 8

Accordingly, (34) is minimized to produce wij in vector form as in 9

(35) 10

wij =
2vjpj − λ

2vjxj
(35)

Lagrangian representation of the lasso problem in (34) is simplified 11

in (36) using (35) 12

L (wij , η1) =
1

2

(
wij −

2vjpj − λ

2vjx2
j

)2

−η1


n∑

j=1

ewij

n∑
j=1

ewij

− 1

 (36)

The positive definite Lagrangian multiplier η1 > 0 is determined 13

by following the procedure adopted in evaluating Sijfollowed by the 14

construction of wij meeting KKT conditions and stated in (37) 15

wij =

(
−2vjpj − λ

2vjx2
j

− η1

(
n− 1

n2

))
+

(37)

η1 in (37) is determined utilizing the constraint
n∑

j=1

e
wij

n∑
j=1

e
wij

= 1, for 16

u closest neighbors and presented in (38) 17

η1 =

[
u∑

j=1

2vjpj − λ

2vjxj
− 1

]
n2

u (n− 1)
(38)

Finally, the penalty parameter λ is determined upon substituting 18

(38) in (37) with the consideration that u non-zero elements (closest 19

neighbors) of FG are selected adaptively based on unknown labels 20

in the dataset and stated in (39) 21

λ = −


u− u

n∑
j=1

(
pj
xj

)
− pj

xj

1
2vjxj

− u
n∑

j=1
vjxj

 (39)

Substituting λ, η1 in (35) produces the optimal projection matrix that 22

helps in addressing the dimensionality issues in GSSL. The aforesaid 23

mathematical process is outlined in Algorithm 1.

Algorithm 1 Algorithm for Feature Selection
Input:

1) Scaled and Fuzzified Dataset µh (x) comprising of l labeled
FVs, and ul unlabeled FVs constrained as l ≪ ul.

2) Pseudo Label Matrix P =

(
Pl

Pul

)
; Pl = yl is the known

label matrix and Pul = 0 are the pseudo predicted labels.
Output: Projection Matrix wij with reduced dimensions m× ω

Step 1: Compute the fuzzy entropy (Importance Score vj)
Step 2: Determine the Lagrangian and LR parameters λ, η1

meeting KKT conditions
FGLP framework for LP
for ∀ FVs in X do

Step 3: Update wij using (35)
end for

24

FS algorithm introduced above reduces the dimensions of the 25

dataset X and Sij , is utilized for label learning as discussed below. 26
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E. Label Learning1

Labeling unlabeled samples present in dataset X depends on the2

constructed FG, the information of labeled nodes, and the member-3

ship values of graph edges capitulated in Sij . The optimized Sij4

upon FS strictly confines the learning process to u nearest neighbors5

by eliminating outliers to acquire highly correlated FVs, thereby6

improving the classification accuracy. Later, to propagate the label xl7

to xul in X , a simple prediction matrix P =

(
Pl

Pul

)
is formulated8

by decomposing Sij as in (40)9 (
Pl

Pul

)
=

(
sl,l sl,ul
sul,l sul,ul

)(
yl
0

)
(40)

where sl,l, sl,ul, sul,l, sul,ul are the local similarity features10

of labeled–labeled, labeled–unlabeled, unlabeled–labeled, and unla-11

beled–unlabeled FVs respectively. Using (40), the predicted labels12

for unlabeled FVs are determined using (41)13

Pul = sul,lyl (41)

FG learns the local similarity between the FVs based on easily14

accessible label information corresponding to the sl,l components15

before LP using (42)16

sl,l =

{
sij , if yi and yj are known and i = j
0, Otherwise

(42)

The labeled–labeled similarity feature component sl,l stated in (42)17

helps in grouping Sij into c block diagonal elements [33], thereby,18

eliminating the need for additional graph-cutting, hence boosting LP.19

Later, the label information Pul for unlabeled FVs with u non-zero20

row elements is predicted using (43)21

Pul =

{
|pi − pj | , sul,l ̸= 0
0, Otherwise

(43)

where i ∈ [0, l] & j ∈ [l + 1, n] with u constraining the search22

range. This FGLP arrangement propagates label information yl of sl,l23

directly to the first u element in each column of non-zero elements in24

sul,l. After completion of each class LP, the j value is incremented25

to j + u to search for a new region, and the label information is26

propagated to the complete dataset using the optimized Sij .27

All the operations such as label learning, similarity, and projection28

matrix learning are done simultaneously. The mechanism discussed29

above is outlined in Algorithm 2 and also, mathematical explanation30

for an instance of the FV dataset is provided in Example 2 of the31

Appendix.32

Finally, the rendered FDM is capable of handling multi-labels33

owing to the compaction of intraclass FVs with simultaneous decor-34

relation of interclass FVs an attribute owed to the standard deviation-35

based normalization of the FVs presented in (11). This discrimination36

characteristic is extended to the construction of optimal Sij for37

handling the multiclass data. Also, when combined with LP, it38

warrants consistent scores for classifying multiclass or multi-label39

data by exploring the effect of label information, correlation, and40

local graph structure with the criteria that there should be at least41

one labeled FV for each class. To demonstrate the multiclass handling42

ability of FGLP, it is rigorously validated and relatively analyzed on43

the UCI and a few other datasets in Section III.44

III. RESULTS AND DISCUSSION45

A. Experimental Settings46

The performance of the proposed FGLP on different datasets on47

par with the traditional and recent contemporaries is investigated48

using relevant validation metrics and elaborated in the below sections.49

50

Algorithm 2 Optimization Algorithm for FGLP
Input:

1) Dataset Xn×m = {Xl,Xul} = {xi} | l ≪ ul for i =
1, 2, ..., n where Xl corresponds to l labeled FVs, Xul cor-
responds to ul unlabeled FVs, and n = l + ul.

2) Known Label Matrix yl

Output:
1) Projection Matrix wij of dimensions m× ω

2) Predicted Labels P =

(
Pl

Pul

)
; where Pl corresponds to

available labels, and Pul corresponds to learned/predicted labels
Step 1: NHE-based fuzzy feature extraction with scaling
Step 2: Compute the fuzzy entropy (Importance Score vj)
Step 3: Determine FDM dxij using (11), for the dataset X
Step 4: Determine the similarity Matrix Sij = 1 − dxij ;

| Sii = 0 and set wij = 0m×ω; where ω is the
size of FV after FS

Step 5: Determine the following parameters by meeting
KKT conditions
• η, η1 from (30) and (38)
• γ, λ from (32) and (39)

Step 6: Initialize pseudo label matrix P with given labels
Pl by treating Pul as zeros

for ∀ classes in X do
Step 7: Update Sij using (33)
Step 8: Update wij using (35)
Step 9: Update P using (43)

end for

1) Dataset Description: FGLPs effectiveness is examined by 1

conducting numerous tests on heterogeneous real-world datasets in 2

the context of LP for data categorization and FS. Especially the 3

model is evaluated on 23 UCI datasets [65] with 14 being multiclass 4

datasets and the other 9 corresponding to binary datasets. To analyze 5

the suitability of the proposed model when extended to real-time 6

applications, along with UCI datasets, a few other image, text, and 7

digit heterogeneous-natured datasets are additionally engaged. The 8

details of these datasets with the number of classes and size are 9

briefly described in Table II. 10

The datasets engaged for investigation are composed of diverse 11

entities with different categories defined with a varying number 12

of FVs, lengths, and the number of classes as listed in Table 13

II. Columns 4 and 5 listed under “Length of FV” in Table II 14

demonstrate the potential of the introduced NHE-based feature 15

extraction that has downed the FV length significantly, especially 16

for the face, object, scene, and text datasets. Particularly, the data 17

redundancy in FVs belonging to these datasets is well exploited by 18

the introduced NHE-based feature extraction. 19

20

2) Implementation & Comparison Approaches: FGLPs efficacy 21

is investigated by analyzing the test results obtained for the 32 22

diverse datasets listed in Table II with those obtained using various 23

baseline and prevailing GSSL models like LGC [27], GFHF [28], 24

MFA [29], SDA [34], FME [35], L1-Semi [36], NNSG [37], S2LRR 25

[1], AWSSL [11], ANSSL [11], FDEFS [38], DLA [39], SSWTDS 26

[31], SPGO [30], LPSGL [33], GCSE [40], and DFEFP [41]. The 27

traditional graph-based models LGC [27], and GFHF [28], attained 28

the affinity matrix using the Gaussian weighting that requires the 29

tuning of hyper-parameter σ for structuring. Also, the diagonal ele- 30

ments of the affinity matrix are set to zero to avoid self-looping in the 31

graph. Similarly for SDA and FME, KNN graphs were constructed 32
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TABLE II
DESCRIPTION OF DATASETS

S. No. Dataset # Samples
(FVs)

Length
of FV # Classes

Before
Scaling

After
Scaling

1 Breast 699 9 9 2
2 German 1000 20 20 2
3 Ionosphere 351 34 34 2
4 Pima 768 8 8 2
5 Vote 435 16 16 2
6 Crx 690 15 15 2
7 Heart 270 13 13 2
8 Isolet 1560 617 256 2
9 Monkl 432 6 6 2
10 Balance 147 4 4 3
11 Dermatology 120 34 34 6
12 E-Coli 100 7 7 5
13 Glass 54 9 9 6
14 Iris 150 4 4 3
15 Seeds 210 7 7 3
16 Soybean 40 35 35 4
17 Wine 144 13 13 3
18 Zoo 28 16 16 7
19 Multi-Features 2000 216 216 10
20 Page Blocks 140 10 10 5
21 Optical Digits 1566 64 64 9
22 Segments 2310 19 19 7
23 Pen Digits 3024 16 16 9
24 ORL 400 644 256 40
25 MSRA25 1799 256 256 12
26 Yale 165 1024 256 15
27 Coil-20 1440 1024 256 20
28 USPS 1854 1024 256 10
29 8 Sports 1040 1024 256 8
30 Scene 15 1950 1024 256 15
31 Dig1-10 1797 64 64 10
32 CANE-9 1080 856 256 9

with k being set to 10, and edge weights are calculated utilizing the1

Gaussian kernel. The hyper-parameters for NNSG are taken from the2

set
{
10−4, 10−3, 10−2, 10−1, 1

}
and for SPGO and LPSGL from3 {

10−6, 10−5, ..., 105, 106
}

similar to [33]. Also, the importance4

score and regularization parameters for LPSGL and DFEFP are fixed5

and taken from the set
{
1, 10, 102, 103, 104

}
respectively. As the6

proposed framework is parameter-free, herein, the importance score7

is tuned by the fuzzy entropy, and the value of u is varied dataset-wise8

based on the number of unlabeled FVs in a class.9

B. Relative Analysis10

Apart from the parameter setting, the quantity of randomly selected11

labeled and unlabeled samples from the dataset remains the same12

for all methodologies used for relative analysis. Herein, the mean13

classification accuracy along with standard deviation over 10 random14

splits are reported for uniform relative analysis. Accordingly, if xi15

is the unlabeled FV from the dataset X , and gi, yi are the predicted16

and ground truth labels, then the task of labeling is set as in (44) and17

the model’s accuracy is assessed using (45)18

δ (xi, gi) =

{
1 if gi = yi
0 elsewhere

(44)

19

A (y, g) =

n∑
i=l+1

δ (xi, gi)

n
(45)

1) Label Propagation Models: To evaluate FGLPs proficiency, 1

tests were widely conducted on 23 datasets representing binary and 2

multiclass data from the UCI machine learning repository with the 3

achievements relatively recorded with the trending and conventional 4

predecessors. Initially, the FGLP model operates on binary datasets, 5

and the achieved outcomes are rated with the graph-based models 6

[11]. Subsequently, a maximum of 10% of FVs are selected as seed 7

labels by fixing u as the number of unlabeled images per class. As 8

the FVs count in every class is different, the labeled information is 9

fixed for each class and is graphically illustrated in Fig. 3. 10

The accuracy curves presented in Fig. 3 outperform their counter- 11

parts which are owed to the fuzzy-based edge and node characteriza- 12

tion ensuring interpretability, flexibility, and adaptability irrespective 13

of the diverse-natured datasets. Moreover, the probability-based edge 14

formation in FGs plays an important role in LP with the propagation 15

of only the first u elements, leading to a reduction in the false 16

classification. To demonstrate the inherent characteristics of FGLP 17

aligning with the aforesaid qualities this analysis is performed as 18

the data intricacies of multiclass UCI datasets are extremely high in 19

comparison with the binary counterparts. Accordingly, the efficacy 20

analysis is extended with the labeled information confined between 21

10% to 70% followed by the achieved accuracy tabulation in Table 22

III along with the recent semi-supervised multi-category classification 23

[31]. 24

FGLPs accuracies recorded in Table III demonstrate its effective- 25

ness in the context of available labels. If the label information is 26

more than 30% of the dataset size FGLP dominates both linear and 27

non-linear versions of SSL and even with 10% labels its performance 28

matches with the non-linear SSWTDS. This dominance is owed to 29

FDM which bounds the data distribution within the standard deviation 30

thereby, reducing outliers. Also, the fuzzy-based characterization of 31

edges and nodes in structuring FG confines their membership value 32

in the range [0 1] ensuring interpretability. 33

FGLPs’ suitability and applicability in real-world applications are 34

investigated by engaging heterogeneous datasets namely MSRA25, 35

ORL, Coil-20, and USPS consisting of face and object images along 36

with text and digit datasets like CNAE-9 and Digi-1-10. Specifically, 37

for the text dataset CNAE-9 the FVs are extracted utilizing term 38

frequency and inverse document frequency (TFIDF) followed by 39

NHE-based processing and later subjected to accuracy assessment. 40

The accomplishments are compared with the recent graph-based LP 41

models [30], [33]–[36] and reported in Table IV. 42

Table IV numerically depicts the dominance of FGLP with the 43

other 8 models, while, the case of single labeled sample in Dig 44

1-10 and Coil-20 declines due to the global scaling nature of NHE 45

which neglects data intricacies if the labels are very less thereby, 46

insisting the need for adaptive FV scaling constrained by local data 47

characteristics. Rather, FGLPs accuracy surpasses its peers when 48

the labeled samples were increased. However, a steady increase in 49

the accuracy is witnessed in the other datasets and remains very 50

high even with less labeled information which is owed to FG and 51

the similarity matrix. Also, the tuned similarity matrix combining 52

SoftMax with cross-entropy ensured swift data adaptability that 53

increases propagation accuracy. As the overall model building 54

and processing is done in the fuzzy domain, the data values are 55

constrained in [0 1] which makes the prediction and propagation 56

model more flexible by prioritizing edge formation and determining 57

the nearest neighbor at ease. 58

59

2) Embedding Models: Additionally, the analysis is extended to 60

a few other image datasets like 8 sports, Scene 15, Coil-20, and 61

Extended YALE from the scene, object, and face categories and 62

compared with the recent embedding models [38]–[41] in Table V. 63
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Fig. 3. Relative comparison of 9 different two-class UCI datasets

Accuracies registered by the proposed model have outperformed1

the others as illustrated in Table V. This quality is attributed to2

the standard deviation-based normalization and the max term in3

(11) that had promised better accuracies by reducing outliers and4

ensuring interclass separability in FVs. Also, the cross-entropy-based5

cost function with SoftMax is another major reason for increasing6

propagation accuracy.7

8

3) Ranking by Statistical Testing: To justify these relative analyses9

additionally, a pairwise analysis using a non-parametric statistical10

hypothesis test namely the Wilcoxon signed ranked test was con-11

ducted on all the datasets. To test the hypothesis a significance level12

(α) is assumed 0.05 and later inferences were made based on the13

obtained probability values (p− values) [66]. The choice α = 0.0514

denotes the labeled sample size which is fair for relative analysis and15

if decreased adds to the sample strength which makes LP complex.16

Also, if the attained p − value for a pair of models in a dataset17

is less than α then it indicates that there is a difference in the18

models’ performance outlining the superiority over the other. Table VI19

presents the Wilcoxon signed rank results (p−values) corresponding20

to the datasets and models from Table III.21

The superiority of FGLP is witnessed in Table VI over its22

peers with the attained p − values (row-wise) lesser than α. Also,23

a graphical ranking based on Wilcoxon’s notations is given as24

FGLP > Non− Linear SSWTDS > Linear SSWTDS. The25

ranking test is extended to the other LP [30], [33]–[35], [37] and 1

embedding [38]–[41] methodologies with FGLP and tabulated in 2

Table VII, and Table VIII respectively. 3

From Table VII, it is inferred that the FGLP is performing better 4

when compared to all its predecessors accordingly the models are 5

ranked as FGLP > LPSGL > FME > SPGO LRR > 6

SDA > SPGO ADP > SPGO SSC > SPGO KNN . 7

The same superiority is observed in Table VIII with the models 8

ranked as FGLP > GCSE > DFEFP > DLA > FDEFS. 9

From these Wilcoxon tests, it is inferred that the performance of the 10

proposed FGLP is consistent with different types of data, irrespective 11

of the number of classes, and size of the dataset. This consistency 12

is owed to the optimal similarity matrix, which is responsible for 13

decorrelating the interclass FVs by maintaining intraclass firmness 14

that makes LP effective. 15

C. Effect of Feature Selection 16

To investigate the strength of the introduced FS in Section II-D, 17

it is specifically validated on the Coil20, ORL, and, YALE image 18

datasets as their FVs are larger in dimensions compared with the FVs 19

of the other datasets. Relatively, the experiments are conducted by 20

randomly selecting 10% of the labeled FVs from the dataset followed 21

by the selection of the top {10%, 30%, 50%, 70%, 90%} features 22

to maintain uniformity with its peers [67]–[69], and presented in 23

Table IX. 24
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From Table IX, it is evident that the proposed label learning process 1

attains higher accuracies even at reduced dimensions. Irrespective 2

of the FS percentage FGLP dominates its predecessors in the ORL 3

and YALE datasets and particularly in Coil20 for the 30% case it 4

supersedes others. However, for the other cases in Coil20, FGLP 5

closely tails top performers and falls marginally behind them. Upon 6

observing the dominators in Coil20, it can be seen that they are 7

majorly KNN-based FS schemes whose fixed choice of K has 8

influenced the achievement, whereas they largely decline in the other 9

FS cases to the FGLP-based FS in the other datasets which is an 10

indication of the optimization introduced across every stage of FS. 11

Upon analyzing experiments, it is further inferred that to have a 12

better balance between the FV size, and accuracy, at least 10% of 13

features should be selected whereas no such significance is noticed 14

in its competitors. Overall, it is claimed that the introduced fuzzy 15

entropy clearly distinguished the labeled FVs from unlabeled FVs. 16

Also, the introduced lasso penalty tuned by the Lagrangian assists in 17

efficient learning of the thereby effectively minimizing the FV size 18

without compromising on the accuracy. Further to justify the model’s 19

simplicity and amicability for real-world scenarios computational 20

complexities along the time and space are dealt with in Section IV. 21

IV. COMPLEXITY AND INTERPRETABILITY ANALYSIS 22

The computational complexity of the presented method is described 23

with the O− for analyzing the incurred time and space. The presented 24

method’s complexity considers the mathematical steps involved in 25

different stages dealing with feature extraction followed by learning 26

of similarity, projection, and label matrices. In contrast, most SSL 27

approaches involve individual data training and testing that highly 28

escalates these complexities. The suggested methodology’s complex- 29

ity is detailed in Sections IV-A and IV-B. 30

A. Time Complexity 31

Formulating time complexity commences with the extraction of NHE- 32

based feature extraction based on the data entity being handled. For 33

instance, when dealing with images, the n images of the dataset (face 34

dataset and handwritten numbers) having the dimensions p× q incur 35

the time complexity prescribed in (46) to compute the NHE 36

O (n (pq + b)) (46)

b− Number of bins. 37

Similarly, for n text documents firstly, the TFIDF features are 38

extracted in O (ng log (ng)), where g is the length of sequence 39

or N−gram. Later, NHE scales these TFIDF features that incur 40

O (n (a+ b)) operations, where a is the number of elements in the 41

TFIDF vector. Thus, the total time required for feature scaling of text 42

documents is stated in (47) 43

O (n (a+ b)) +O (ng log (ng)) ≈ O (n (a+ b)) (47)

Therefore, the computational time for calculating the distance 44

between every FV with all FVs in the dataset requires O (nm) 45

operations. n− Number of FVs in the data, m− Number of features 46

for each FV. The complexity rises to O
(
n2m

)
when constructing the 47

distance matrix from the FVs. As the proposed work considers only, 48

L features for data distinction based on their intensity variations, 49

hence, the computational time for determining dxij is given in (48) 50

O
(
n2L

)
(48)

For calculating the similarity matrix this computational time is 51

again reduced to a very large extent based on u nearest neighbors 52

constrained by u ≪ L and presented in (49) 53

O
(
n2u

)
(49)
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TABLE IV
PERFORMANCE COMPARISON ON FACE, OBJECT, TEXT, AND DIGIT DATASETS (BOLD CORRESPONDS TO BEST, AND ITALICS CORRESPOND TO SECOND

BEST)

Type Dataset
Labeled
Samples

Accuracy (Mean ± Standard Deviation) for 10 Folds

FGLP
LPSGL
(2021)

SPGO KNN
(2020)

SPGO SSC
(2020)

SPGO LRR
(2020)

SPGO ADP
(2020)

NNSG
(2015)

FME
(2010)

SDA
(2007)

Face

MSRA25
1 80.0 ± 2.3 81.4 ± 4.5 69.0 ± 5.9 72.4 ± 4.7 72.2 ± 5.8 69.2 ± 7.0 59.8 ± 4.4 56.5 ± 4.8 56.5 ± 5.1
2 93.4 ± 0.4 91.8 ± 4.5 82.1 ± 4.5 85.7 ± 5.3 85.5 ± 4.7 83.1 ± 5.5 80.9 ± 4.5 77.6 ± 7.0 78.0 ± 5.6
3 96.2 ± 2.6 95.9 ± 2.5 90.0 ± 5.1 89.5 ± 3.8 91.6 ± 4.2 89.9 ± 4.1 89.6 ± 3.9 88.1 ± 6.2 88.7 ± 4.2

ORL
1 71.5 ± 3.1 69.8 ± 4.3 52.4 ± 4.5 59.0 ± 4.1 59.2 ± 3.8 64.0 ± 2.4 58.7 ± 3.9 47.8 ± 4.1 43.0 ± 5.2
2 81.0 ± 0.3 80.5 ± 3.5 63.7 ± 4.4 73.1 ± 3.4 73.4 ± 4.3 73.0 ± 4.1 76.1 ± 3.8 66.2 ± 3.5 66.5 ± 4.8
3 90.0 ± 3.2 86.9 ± 3.2 73.9 ± 4.3 77.3 ± 4.1 79.9 ± 3.6 78.1 ± 3.8 82.4 ± 5.5 75.3 ± 5.3 79.6 ± 4.1

Object

Coil-20
1 78.0 ± 3.1 81.4 ± 2.3 77.0 ± 4.8 71.8 ± 4.1 65.9 ± 3.6 79.7 ± 3.0 76.2 ± 2.5 67.4 ± 3.0 65.2 ± 2.6
2 93.2 ± 2.3 84.4 ± 1.7 79.1 ± 2.9 75.2 ± 2.0 70.9 ± 2.9 81.3 ± 2.6 80.0 ± 2.6 77.0 ± 2.5 74.4 ± 2.5
3 95.1 ± 2.6 87.3 ± 1.7 84.0 ± 2.8 80.0 ± 3.5 79.3 ± 3.6 85.6 ± 2.2 83.6 ± 1.7 80.8 ± 2.2 79.2 ± 1.7

USPS20
1 74.2 ± 1.9 69.6 ± 6.0 33.7 ± 4.2 39.0 ± 4.9 56.7 ± 5.6 37.3 ± 4.6 57.8 ± 6.8 63.3 ± 4.6 61.4 ± 4.1
2 81.3 ± 2.1 78.7 ± 3.3 41.9 ± 5.1 40.0 ± 3.8 67.7 ± 5.1 42.5 ± 4.7 65.4 ± 3.9 71.4 ± 3.9 71.5 ± 3.9
3 89.8 ± 5.1 83.0 ± 2.1 45.5 ± 3.7 44.7 ± 4.1 71.5 ± 3.7 45.9 ± 2.9 72.6 ± 3.0 76.1 ± 3.7 76.2 ± 3.1

Text CNAE-9
1 79.1 ± 3.1 70.0 ± 3.8 38.0 ± 4.8 31.1 ± 5.9 45.0 ± 9.2 36.7 ± 4.7 30.7 ± 7.5 51.8 ± 5.9 50.5 ± 8.1
2 83.5 ± 2.8 77.0 ± 4.0 47.0 ± 6.6 41.4 ± 6.6 54.0 ± 3.4 46.9 ± 5.2 46.3 ± 8.1 68.0 ± 5.5 59.2 ± 8.7
3 88.9 ± 3.6 80.0 ± 3.6 51.6 ± 4.2 45.9 ± 5.3 56.8 ± 3.9 52.7 ± 4.6 56.9 ± 7.1 72.4 ± 3.9 67.1 ± 7.0

Hand
Written
Digit

Dig 1-10
1 78.7 ± 0.4 79.9 ± 4.9 44.1 ± 3.6 47.9 ± 5.0 67.1 ± 5.4 45.6 ± 4.3 64.5 ± 4.7 74.8 ± 4.9 68.4 ± 5.2
2 89.1 ± 5.1 86.5 ± 2.2 51.8 ± 4.7 53.7 ± 4.6 75.2 ± 4.9 55.8 ± 3.7 74.0 ± 4.4 79.2 ± 4.2 78.8 ± 4.1
3 93.8 ± 3.4 88.8 ± 1.5 58.3 ± 4.3 59.3 ± 4.9 79.6 ± 2.3 59.0 ± 4.1 79.4 ± 3.3 82.2 ± 3.0 82.3 ± 2.4

TABLE V
PERFORMANCE COMPARISON ON SCENE, OBJECT, AND FACE DATASETS
(BOLD CORRESPONDS TO BEST, AND ITALICS CORRESPOND TO SECOND

BEST)

Type Dataset
Labeled
Samples
(in %)

Accuracy (Mean) for 10 Folds

FGLP
DFEFP
(2022)

GCSE
(2021)

DLA
(2020)

FDEFS
(2019)

Scene
8-Sports

50 66.35 67.41 67.04 65.05 65.3
70 73.08 70.6 69.97 66.98 68.5

Scene-15
50 76.67 67.07 67.26 64.15 66.18
70 88 69.52 70.36 67.9 66.75

Object Coil-20
10 96.96 95.1 96.6 94.55 94.03
20 99.93 98.2 99.5 96.46 93.26

Face
Extended

Yale
20 92.12 96.05 94.74 93.75 94.14
40 95.52 98.32 98.53 97.81 97.2

TABLE VI
WILCOXON SIGNED RANK TESTS WITH α = 0.05 FOR THE METHODS

FROM TABLE III

Linear
SSWTDS

Non-Linear
SSWTDS

FGLP

FGLP 0.0119 0.0332 1
Non-Linear
SSWTDS

0.0005 1 0.6922

Linear
SSWTDS

1 0.9996 0.9899

Similarly wij learning with u nearest neighbors requires O (nωu)1

with n×ω being its dimensions. Further, the incorporated optimiza-2

tion model downscales the computing time to finally achieve the total3

time (Ttotal) for LP using FG given in (50).4

Ttotal = O (n (pq + b)) +O
(
n2L

)
+O

(
n2u

)
+O (nωu)

5

Ttotal ≈ O
(
n2L

)
(50)

To signify the reduced realization time of FGLP additionally, LP6

experiments are performed on MATLAB R2021a running on Intel(R)7

TABLE VII
WILCOXON SIGNED RANK TESTS WITH α = 0.05 FOR THE LP METHODS

(IN TABLE IV)

SDA FME NNSG
SPGO
ADP

SPGO
LRR

SPGO
SSC

SPGO
KNN

LPSGLFGLP

FGLP 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1
LPSGL 0.018 0.018 0.018 0.018 0.018 0.018 0.018 1 0.990
SPGO
KNN

0.953 0.953 0.953 0.982 0.953 0.663 1 0.990 0.990

SPGO
SSC

0.953 0.953 0.990 0.982 0.970 1 0.417 0.990 0.990

SPGO
LRR

0.050 0.896 0.050 0.015 1 0.015 0.017 0.990 0.990

SPGO
ADP

0.896 0.929 0.896 1 0.896 0.030 0.030 0.990 0.990

NNSG 0.663 0.799 1 0.147 0.583 0.018 0.071 0.990 0.990
FME 0.018 1 0.265 0.104 0.147 0.071 0.071 0.990 0.990
SDA 1 0.990 0.042 0.015 0.206 0.047 0.047 0.990 0.990

TABLE VIII
WILCOXON SIGNED RANK TESTS WITH α = 0.05 FOR THE EMBEDDING

METHODS (IN TABLE V)

FDEFS DLA GCSE DFEFP FGLP
FGLP 0.0106 0.0106 0.0291 0.0291 1

DFEFP 0.05 0.05 0.7081 1 0.8193
GCSE 0.05 0.05 1 0.4276 0.8193
DLA 0.5724 1 0.9777 0.9777 0.9498

FDEFS 1 0.5724 0.9777 0.9777 0.9498

Core i3-6100U CPU @ 2.30GHz and 8GB RAM with the outcomes 1

relatively presented in Table X along with time complexities. 2

The complexities of the widely popular and recent methods are 3

extremely higher in comparison with FGLP as witnessed in Table X. 4

FGLPs’ reduced complexity highly benefits implementation thereby, 5

signifying the models’ simplicity, which is an essential quality desired 6

for real-time extensions. 7
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TABLE IX
EFFECT OF FS ON PROPAGATION ACCURACY

Methodology/ Datasets
Accuracy with various FV lengths for 10 random splits with 10% of known labels

10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Coil20 ORL YALE

SemiFree-CART 85.876 90.46 87.42 88.2 86.57 55.56 55 56.22 58.62 58.57 39.79 54.88 50.03 44.94 43.34
SemiFree-KNN 96.23 95.71 95.34 94.78 94.66 71.36 75.01 76.97 77.58 77.12 41.86 54.88 53.41 50.22 51.65
SFS-CART 89.466 89.11 88.35 88.16 88.03 36.99 46.68 48.93 55.26 54.34 28.31 36.53 34.94 39.97 39.85
SFS-KNN 93.77 95.76 95.12 95.96 95.15 71.2 69.92 75.22 75.22 79.02 46.71 45.12 51.53 53.37 54.96
AGLRM-CART 82.456 86.43 86.45 87.57 87.14 42.6 50.05 57.55 57.6 55.61 31.63 41.38 38.5 39.91 38.07
AGLRM-KNN 90.525 96.03 95.69 95.15 94.73 68.32 73.16 76.81 77.02 76.81 41.74 51.65 50.06 51.74 51.53
FGLP (Proposed) 96.04 96.74 94.65 92.85 93.68 94.25 93.00 95.50 92.75 91.50 74.36 76.36 79.39 76.97 78.18

TABLE X
COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF DIFFERENT

METHODS

Methodology
Computational

Complexity
CPU Runtime
(milliseconds)

MFA [29] O
(
n3
)

725
SDA [34] O

(
d3
)

898
FME [35] O

(
2cn2

)
915

NNSG [37] O

 (
n3 + max

{
n3, n2c

}
+ in3

)
t

+ (ndc) +
(
2d2n + d3 + n2d + n3

)  4698

SPGO [30] O
(
max

{
n3, d3, clu

}
t
)

1088
LPSGL [33] O

(
max

{
n2, u3

}
t
)

962
GNMFLD [70] O

(
t (mnk) + n2m+ lk

)
2518

FGLP
(Proposed)

O
(
n2L

)
657

B. Space Complexity1

Similar to the time complexity, the space complexity of the proposal2

is also determined across all stages. In the first stage, the extracted3

NHE-based features (for n images or text documents) occupy O (nL)4

space. Later, FDM requires O
(
n2
)

space for storing the similarity5

matrix. Thus, the overall space occupancy(Stotal) is evaluated in (51)6

Stotal = O (nL) +O
(
n2)

7

Stotal ≈ O
(
n2) (51)

The evaluated time and space complexities in (50) and (51) of the8

proposed model are in quadratic order and are highly less in compar-9

ison with its peers having higher orders. Also, it is established that10

despite the computational reduction, the method does not compromise11

the classification accuracy, thereby, making it more favorable for real-12

time heterogeneous data classification.13

C. Interpretability Analysis14

The projection matrix wij learning minimizes the FV size, re-15

ducing computational complexity thereby increasing the FGLP’s16

interpretability as both complement each other. Therefore, a math-17

ematical metric defining interpretability index I of the fuzzy system18

is introduced in [43] is engaged in this work and presented in (52)19

I = 1−QF (52)

QF representing the overall fuzzy complexity and is determined using20

(53)21

QF =
Qrules +QFS +Qinputs

3
(53)

Herein, QF completely rely on FG structuring encompassing the22

number of fuzzy relations for edge formations characterized by the23

number of fuzzy rules and sets. Based on these discussions QF is 1

finally reduced to (54) 2

QF =
Qrules +QFS

2
(54)

Wherein Qrules is the complexity related to the number of rules 3

firing one at a time and QFS is the ratio of the number of fuzzy sets 4

utilized at a time (fsi) to the total number of fuzzy sets (Tfs), as 5

presented in (55) and (56) respectively 6

Qrules =
1

Trules
(55)

7

QFS =
fsi
Tfs

(56)

Trules = n(n−1)
2

correspond to the total number of rules utilized in 8

decisioning the edge formation and Tfs represents n fuzzy sets each 9

of length L. By considering these factors, and utilizing 2 fuzzy sets 10

at a time, QF is finally reorganized in (57) 11

QF =

2
n2−n

+ 2L
n

2
12

QF =
Ln2 − Ln+ n

n3 − n2
(57)

To better understand FGLPs reliability and expressiveness, the de- 13

veloped interpretability measure is examined on 8 datasets presented 14

in Table XI.

TABLE XI
INTERPRETABILITY ANALYSIS

Dataset
# Samples

(FVs)
Length of FV I

Before
Scaling

After
Scaling

Before
Scaling

After
Scaling

Isolet 1560 617 256 0.6045 0.8359
USPS 1854 1024 256 0.4477 0.8619
Wine 144 13 13 0.9097 0.9097
Seeds 210 7 7 0.9666 0.9666
Monkl 432 6 6 0.9861 0.9861

8 Sports 1040 1024 256 0.6045 0.8359
Scene 15 1950 1024 256 0.0154 0.7538
CNAE-9 1080 856 256 0.4749 0.8687

15

From Table XI, it is evident that the interpretability involved in FG 16

structuring is highly dependent on dataset dimensions, especially the 17

reduction in FV size that led to the hike in interpretability thereby 18

outlining FGLPs enhanced fairness in LP. 19
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V. CONCLUSION1

This research proposed a simple yet versatile FG-based paradigm2

for LP. The key contribution is the creation of the FDM that assists3

in grouping intraclass samples and deviating interclass data samples4

which is extremely crucial in the design of the FG for LP. Later to5

attain the optimal similarity matrix, the newly framed cost function6

engages the SoftMax function coupled with cross-entropy to offer7

wider data deviations in the interclass FVs. The coalescence of8

these techniques makes it more efficient than its predecessors, as9

evidenced in the accuracy analyses by a factor of 20% done on10

diverse heterogeneous datasets. Furthermore, the complexity analysis11

strongly demonstrates the appropriateness of this model for real-time12

applications without sacrificing performance. Although FGLP show-13

cases higher accuracy values with and without FS even with lesser14

label information, the model’s computational complexity increases15

with the dataset size. Also, it is observed that the model’s accuracy16

decay if the labeled information is less in large datasets. Moreover,17

the interpretability, flexibility, and adaptability characteristics of FG18

require deep exploration for accelerating simultaneous learning to19

reduce the model’s computational complexity.20
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