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Υ-Values: Power Indices à La Orness
for Nonadditive Measures
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Abstract—Fuzzy measures, also known as capacities, nonaddi-
tive measures, and monotonic games, are increasingly used in all
kind of applications. Fuzzy measures are set functions. So, for a
given set X , we need to define 2|X| − 2 parameters (excluding
the measure on the empty set and on X itself). Because of that
they are difficult to visualize, and indices and metrics have been
defined. The Shapley value is an example. It permits us to deter-
mine weights of importance of each element in X . In this article,
we introduce an alternative index. We call it Υ-values. We provide
an axiomatic characterization. These values are inspired on the
Shapley values, and they are associated to set size, or position
(order statistics) in a chain. Thus, also position when the measure
is used in combination with a fuzzy integral. Andness and orness
are measures that permit to evaluate the degree of simultaneity
(conjunction) and substitutability (disjunction) of an aggregation
function. We show the connection between our value and these
concepts. In a way, Υ-values define a power index à la orness.

Index Terms—Aggregation operators, andness, fuzzy measures,
orness, Shapley values.

I. INTRODUCTION

SHAPLEY values [1] are one of the existing power indices
that were introduced for studying the worth of coalitions.

A set of winning coalitions is an example of games. Games
are set functions that for each set assign a value of its worth.
Fuzzy measures and capacities are equivalent names to denote
monotonic games. In this case, the set function needs to be
monotonic with respect to set inclusion.

Shapley values are extensively used to study these mathemat-
ical objects (winning coalitions, games, fuzzy measures, and
capacities). Given a set function, they assign a value to each
of the elements in the reference set in a way that the value
represents the importance of an element taking into account
the full measure. The Shapley value is characterized by a set
of properties. One of them is that the sum of the Shapley values
add to one (when the set function on the reference set X is one).
So, they distribute the measure on X over all the elements in X .

Fuzzy measures and fuzzy integrals have been used for data
aggregation [2], [3], [5] in different types of applications [6], [7],
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[8]. The aggregation of a set of values (i.e., a function) with a
fuzzy integral requires a fuzzy measure [9], [10], [11] (or more
than one when hierarchical models are used [12]). As fuzzy
measures μ are set functions, for their definition on a reference
set X , we need 2|X| values. As μ(∅) = 0 and, if μ is normalized,
μ(X) = 1, this means that2|X| − 2 arbitrary values are required.
This large number of values makes measures difficult to grasp
by users and practitioners. Indices have been proposed to help
users to understand the measures.

The Shapley value is one of these indices. It is a way to
determine the importance of each x ∈ X taking into account
the whole measure. Shapley values add to μ(X), so, they are a
distribution of μ(X) among the elements in X . They are useful
to define measures in applications.

In the context of data aggregation, other indices have been de-
fined as well. For example, interaction [13] between the elements
in X for a given measure μ. Interaction indices permit to know
which are the positive and the negative interactions between
elements inX . Andness and orness [14], [15] are other proposed
indices. Andness permits to evaluate the degree of simultaneity
or conjunction of an aggregation function. It is defined in terms
of the similarity between this function and the minimum. Orness
permits to evaluate the degree of substitutability (disjunction) of
an aggregation function. In this case, we calculate the similarity
between the function and the maximum. Orness and andness
have been computed for different aggregation functions [5], [16],
[17]. In particular, for OWA note that andness and orness is not
limited to means between minimum and maximum, but they can
be computed for t-norms and t-conorms [18] (i.e., conjunctions
and disjunction in fuzzy logic).

The concept of andness and orness, as well as importance
weights are key [5], [19], [20] in data aggregation. When mod-
eling decisions taking into account different criteria, we need to
use an aggregation that takes into account that different criteria
have different importances (i.e., weights), as well as implement
a certain level of conjunction / disjunction (i.e., in what degree
we can compensate a criteria with a bad score with a criteria
with a good score). Andness-directedness is about selecting an
appropriate aggregation function given the andness level.

In this article, we introduce Shapley-like values. These new
values are associated to set size. In the context of data aggre-
gation, when a Choquet integral [21] of a function with respect
to a measure is applied, these new values are associated to the
position of the smallest input, the second smallest,..., the largest
input of the function. As a consequence, these values can be
seen as power indices à la orness, and can naturally be linked to
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disjunction and conjunction. The larger the indices associated
to larger inputs, the larger the disjunction and orness. On the
contrary, the larger the indices associated to lower inputs, the
lower the disjunction and orness, the larger the conjunction and
andness.

For a given measure μ, we will denote the power indices
by Υμ. While Shapley power indices can be seen as similar to
weights for a weighted mean, our power indices can be seen as
weights for an OWA operator. Because of that, we also introduce
in this article the computation of the orness associated to such
indices. This is based on Yager’s expression [22] for orness of
OWA. Our definitions are illustrated with some examples.

The rest of this article is organized as follows. In Section II,
we provide some preliminaries that are needed later on. This in-
cludes some concepts related to aggregation, OWA, fuzzy mea-
sures, and power indices. Then, in Section III we introduce the
main definitions and results. We prove properties of the index and
a characterization, and also include an example. Section IV pro-
vides some experiments and analysis, the experiments also give
insight of this index. Finally, Section V concludes this article.

II. PRELIMINARIES

We begin this section reviewing some definitions related to
aggregation operators. We review the OWA operator introduced
by Yager [23]. It corresponds to a linear combination of order
statistics. We provide its definition in the following. To do so,
we begin defining weighting vector.

Definition 1: A vector v = (v1, . . . , vn) is a weighting vector
of dimension n if and only if weights are positive and add to one.
That is, 0 ≤ vi and

∑n
i=1 vi = 1.

Definition 2 (See [23]): Let w be a weighting vector of
dimension n. Then, a mapping OWA : Rn → R is an ordered
weighting averaging operator of dimension n if

OWAw(a1, . . . , an) =
n∑

i=1

wiaσ(i)

where σ defines a permutation of the inputs ai such that
aσ(i−1) ≥ aσ(i) for all i = 2, . . . , n.

Observe that aσ(i) corresponds to the ith largest element in the
collection a1, . . . , an. So, aσ(i) is the n− i+ 1 order statistic.

Given a weighting vector p, the weighted mean of
(a1, . . . , an) with respect to p corresponds to

∑n
i=1 piai. The

weighted OWA (WOWA) operator is an operator that can be seen
as a generalization of both the OWA and the weighted mean. It
aggregates (a1, . . . , an) with respect to two weighting vectors.
One corresponding to the one of the OWA, say w as previous,
and another corresponding to the one of the weighted mean, say
p as previous. We denote this operator by WOWAp,w. A WOWA
with weights p and w is equivalent to a Choquet integral with
a distorted probability. The definition of the distortion w∗ from
the weights w was provided [24], [25] in the original definition
of the WOWA. We will not provide the definition of WOWA,
but refer the reader to, e.g., Torra and Narukawa [24], [26] for
details and properties.

Andness and orness were introduced by Dujmović [14], [15]
as a way to evaluate the level of conjunction and level of disjunc-
tion of an operator. Andness is the similarity to the minimum and
orness the similarity to the maximum. Yager [22] introduced an
expression for OWA based on the OWA weights. The expression
follows. This expression is equivalent to Dujmović’s orness
when we apply it to the OWA operator with weights w.

Definition 3 (See [22]): Let w be a weighting vector. Then,
the orness for OWAw is defined in terms of w as follows:

orness(OWAw) =
1

n− 1

n∑
i=1

(n− i)wi.

It was shown [27], [28] that the orness of the WOWAp,w

corresponds to the orness of OWAw. In other words, the orness
only depends on the OWA weights but not on the importance
of the inputs. Andness-directedness for the OWA and WOWA
families has also been studied [29].

A. Fuzzy Measures

Measures are set functions that are additive and can be seen
as generalizations of the idea of length and volume. Fuzzy mea-
sures, also known as nonadditive measures, monotonic games,
simple games, and capacities, are also set functions but the
additivity condition is replaced by a monotonicity one. The
formal definition follows.

Definition 4: Let X be a reference set. Then, a set function μ
on X is a fuzzy measure if it satisfies the following conditions.

1) μ(∅) = 0.
2) μ(X) = 1.
3) μ(A) ≤ μ(B) if A ⊆ B ⊆ X .
We will use the term just measure or game when the mono-

tonicity condition is dropped. Although this condition is relevant
in aggregation, it is not so in other contexts, and indices have
been defined for set functions.

The conditionμ(X) = 1 is a normalization. We call measures
satisfying this condition normalized measures. We assume that
measures are normalized unless stated otherwise.

There are different types of measures. In this article, we are
interested in the following ones.

1) A measure is additive when μ(A ∪B) = μ(A) + μ(B)
for A ∩B = ∅. Naturally, a probability is an example of
additive measure. Given a weighting vector p where pi
corresponds to the weight of xi, we can define μ(A) =∑

xi∈A pi.
2) A measure is symmetric when μ(A) = μ(B) if the car-

dinality of both sets is the same. That is, |A| = |B|. If
we have a weighting vector with weights wi, the measure
μ(A) =

∑|A|
i=1 wi is symmetric.

3) Given a nonempty subset T of X (i.e., ∅ ⊂ T ⊆ X), the
unanimity measure μT is the measure μT (A) = 1 if T ⊆
A and 0 otherwise.

It can be proven that an arbitrary fuzzy measure can be
expressed in terms of unanimity measures.

Proposition 1 (See [4], [30]): Any fuzzy measure can be
expressed as a linear combination of unanimity measures. In
other words, let μT denote the unanimity measure for a set ∅ ⊂
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T ⊆ X . Then, for any fuzzy measure μ there are coefficients cT
such that

μ =
∑

∅⊂T⊆X

cTμT .

The coefficients cT are the Möbius transform. There are equiv-
alent representations of fuzzy measures by means of transforms.
The Möbius transform is the most well-known one. Other trans-
forms exist. In this article we will use the (max,+)-transform.

Definition 5 (See [31]): Let μ be a nonadditive measure on
X . Then, we define the (Max,+)-transform as the set function
mμ : 2X → R+ such that

mμ(B) = μ(B)−max
A⊂B

μ(A). (1)

This definition provides a transform that is always positive.
More particularly, for normalized fuzzy measures, we have
that mμ(A) ∈ [0, 1] for any A ⊆ X . Compare with Möbius
transform that can take values arbitrarily large (positive and
negative).

Data can be aggregated using fuzzy measures. In this case,
measures represent our background information. Aggregation is
done using fuzzy integrals [26], [32], [33], [34], [35]. Choquet
and Sugeno integrals [21], [36] are the most well-known ones.
It is relevant here to mention that a Choquet integral with
respect to an additive measure corresponds to a weighted mean
with respect to the corresponding weights. Similarly, a Choquet
integral with respect to a symmetric measure corresponds to
an OWA operator. Finally, a Choquet integral with respect to
a distorted probability corresponds to the WOWA operator. In
particular, WOWA has a weighting vector p that corresponds to
the probability, or weights of the weighted mean; and a weighting
vector w that represents the distortion function (say w∗), or
weights of the OWA. Then, the associated fuzzy measure μ is
w∗ ◦ p.

B. Chains

We will use chains on a reference set X . Let us first consider
two sets A and B subsets of X with A 
= B. Then, we say that
A is covered by B when for all C such that A ⊆ C ⊆ B with
C 
= B, then C = A. We will denote A covered byB by A ≺ B
or B � A. In other words, when A ≺ B it means that there are
no other subsets of X between A and B.

Definition 6: Let C = (C0, C1, . . . , Cn)withCi ⊆ X for i =
1, . . . , n. Then, we say that C is a maximal chain of subsets of
X if it satisfies the following:

∅ = C0 ≺ C1 ≺ · · · ≺ Cn−1 ≺ Cn = X.

We denote byM(X) the set of maximal chains defined on the
reference set X . We will use also M for the sake of conciseness
when the set X is clear.

We will need to denote the ith set of a chain C. We will denote
it by Ci. For any maximal chain |Ci| = i.

C. Power Indices

Given a fuzzy measure μ on a reference set X , a power index
assigns a value to each X . This index is a value of the power

or relevance for each x ∈ X . The Shapley value [1] is one of
the most well-known and used power index. When μ(X) = 1,
it assigns values in [0,1] such that add to one. Let φ denote the
Shapley power index, then

∑
x∈X φ(x) = 1, and φ(x) ≥ 0.

It is relevant to underline that when μ is an additive measure,
and μ(A) =

∑
x∈A p(x) for some probabilities p, then φ(x) =

p(x). More formally, the Shapley value is defined as

ϕi(μ) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
(μ(S ∪ {i})− μ(S)).

There is an equivalent definition of Shapley value in terms of
chains. In this case, Cxi

represents the largest set in the chain C
where xi is not present, and, thus, Cxi

∪ {xi} is the smallest set
in the chain with xi. The equivalent expression for the Shapley
value is

ϕi(μ) =
1

n!

∑
C∈M(X)

(μ(Cxi
∪ {xi})− μ(Cxi

)).

III. BEYOND POWER INDICES

Let X be a reference set and μ a measure on X . Then,
let us consider values related to set size, or order position in
{1, . . . , |X|}. We call it Υ-values and use Υ to denote them.
Then, Υi corresponds to power for including an ith element into
a set, or the given ith position in a chain of sets. In the context
of aggregation, the values give information about the tradeoff
between minimum and maximum when data is aggregated using
an integral with respect to μ. Therefore, they can be seen as
tradeoff values.

Definition 7: Let X be a reference set, let μ be a measure
on X , let M(X) be the set of maximal chains defined on the
reference set X . Then, we define the values Υ = (Υ1, . . . ,Υn)
as follows:

Υi =
1

|M(X)|
∑

C∈M(X)

(μ(Ci)− μ(Ci−1))

=
1

n!

∑
C∈M(X)

(μ(Ci)− μ(Ci−1)) .

A. Properties

We begin proving an equivalent expression for Υ-values.
Proposition 2: The following expression is equivalent to Υi,

as defined previously:

Υi(μ) =
1(
n
i

) ∑
|S|=i

μ(S)− 1(
n

i−1

) ∑
|S′ |=i−1

μ(S ′).

Proof: Let us consider the original expression for Υi

Υi =
1

n!

∑
C∈M(X)

(μ(Ci)− μ(Ci−1)) .

Now, we group all appearances of sets S of cardinality i and
all appearances of sets S ′ of cardinality i− 1. There are

(
n
i

)
different sets of cardinality i. Therefore, any of the sets appears
in n!/

(
n
i

)
chains. Similarly, any of the sets of cardinality i− 1
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appears inn!/
(

n
i−1

)
chains. Therefore, we can rewrite the above-

mentioned expression as

Υi =
1

n!

⎛
⎝∑

|S|=i

n!(
n
i

)μ(S)− ∑
|S′ |=i−1

n!(
n

i−1

)μ(S ′)

⎞
⎠ .

As this expression is equivalent to the one in the proposition, the
proof is completed.

Now, we prove some basic properties. Note that the property
below that

∑
i Υi = μ(X) is known as efficiency.

Proposition 3: Let μ be a normalized fuzzy measure on X ,
let n = |X|, and let Υ be defined as previous. Then:
� Υi ≥ 0 for all i = 1, . . . , n; and
�
∑n

i=1 Υi = 1.
When the measure is not normalized, we have

∑n
i=1 Υi =

μ(X), and if μ(∅) is not zero, then the total is μ(X)− μ(∅).
Proof: The first property follows from the monotonicity con-

dition of measures. As differences are always positive, the values
are positive. The second property corresponds to

n∑
i=1

Υi =

n∑
i=1

1

n!

∑
C∈M(X)

μ(Ci)− μ(Ci−1).

Let us swap the two summatories on the right
n∑

i=1

Υi =
1

n!

∑
C∈M(X)

n∑
i=1

μ(Ci)− μ(Ci−1).

It is easy to see that for a given chain, the total contribution is
μ(Cn = X)− μ(C0 = ∅) = μ(Cn) = μ(X). If the measure is
normalized, this is of course equal to one. So

n∑
i=1

Υi =
1

n!

∑
C∈M(X)

μ(Cn)− μ(C0)

=
1

n!

∑
C∈M(X)

μ(X) =
1

n!

∑
C∈M(X)

1.

As there are n! chains, this result is one, and the second property
is also proven. Therefore, the theorem is proven.

We will now prove a result about symmetric measures. They
are measuresμ of the formμ(A) = w(|A|) for a certain function
w. Symmetric measures can be expressed in terms of a weighted
vector w = (w1, . . . , wn). In particular, for any set A such that
|A| = i, μ(A) =

∑i
k=1 wk. Therefore, it is easy to see that for

a chain C
μ(Ci)− μ(Ci−1) = wi.

This implies the following result.
Corollary 1: Let w be a weighting vector, and let μ be a

symmetric measure defined from w. Then, for all i in 1, . . . , n
we have that the following equation holds:

Υi = wi.

Let us consider the case of additive measures. That is, the
measure of a set is the addition of the weights of elements in the
set. Let these weights be pi (i.e., pi is the weight of xi). Then,
μ(A) =

∑
xi∈A pi for any set A.

It is easy to see that

μ(Ci)− μ(Ci−1) = pi

when xi = Ci \ Ci−1.
Then, for any i, we have that we need to consider all elements

xi and their weights pi. As there are n of such elements, the
average of all weights pi will be

∑n
i=1 pi/n, and as

∑n
i=1

pi = 1. This is of course 1/n. Therefore, the following propo-
sition follows.

Proposition 4: Let p be a weighting vector, and let μ be an
additive measure built from p. Then, for all i in 1, . . . , n we have
that the following equation holds:

Υi = 1/n.

B. Relation With Aggregation Functions

Proposition 4 shows that for additive measures Υi is 1/n, and
Corollary 1 shows that for symmetric measures Υi corresponds
to weightswi. Let us rewrite this sentence in terms of aggregation
functions. Corollary 1 establishes that Υ corresponds to OWA
weights, and Proposition 4 establishes that Υ is not affected by
the weighted mean weights.

This can be contrasted with Shapley values. It is known
that for additive measures built from weights p, Shapley values
correspond to weights. In contrast, Shapley values of symmetric
measures are 1/n.

These results show that both types of indices are comple-
mentary and in short, Shapley mainly corresponds to weighted
mean weights, and Υ to OWA weights. We then can observe
the case of WOWA operators (i.e., a Choquet integral with a
distorted probability) and the associated measure. We have that,
in general, both Shapley andΥ-values will be different than 1/n.
One that approximates the probability (i.e., Shapley values) and
another that approximates the distortion or OWA weights (i.e.,
Υ-values). We provide an example in the following.

Example 1: Let X = {x1, x2, x3, x4}. Then, let us con-
sider a distorted probability on X defined by the quantifier
q(x) = 1 if x ≥ 0.75 and x/0.75 otherwise, and the probability
p = (0.5, 0.3, 0.15, 0.05). That is, μ = q ◦ p or, equivalently,
μ(A) = g(P (A)) with P (A) =

∑
x∈A p(x). This produces the

following measure (see [26], Table 6.4):
� μ(∅) = 0.0, μ({x4}) = 0.0666
� μ({x3}) = 0.2, μ({x3, x4}) = 0.2666
� μ({x2}) = 0.4, μ({x2, x4}) = 0.4666
� μ({x2, x3}) = 0.6, μ({x2, x3, x4}) = 0.6666
� μ({x1}) = 0.6666, μ({x1, x4}) = 0.7333
� μ({x1, x3}) = 0.8666, μ({x1, x3, x4}) = 0.9333
� μ({x1, x2}) = 1.0, μ({x1, x2, x4}) = 1.0
� μ({x1, x2, x3}) = 1.0, μ(X) = 1.0.
For this measure we have that the Shapley value is

φ = (0.5445, 0.2778, 0.1333, 0.0444)

and the Υ-values are

Υ = (0.3333, 0.3222, 0.24446, 0.10003)

with an orness equal to 0.6296.
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We want to underline that this distorted probability below used
in combination with a Choquet integral is mainly equivalent to
a WOWA operator with weights p = (0.5, 0.3, 0.15, 0.05) and
w = (1/3, 1/3, 1/3, 0).

C. Additional Properties and Axiomatic Characterization

In this section we review additional properties for power
indices. We show that some of them which are satisfied by
Shapley values are also satisfied by Υ-values but not all of
them. Then, we introduce new definitions which are satisfied
by Υ-values. We conclude the section providing an axiomatic
characterization of the new values.

We begin reviewing and discussing the definitions of dummy
and null player, which are important properties for the Shapley
value, and used in its characterization.

Definition 8: Let X be a reference set and μ be a fuzzy mea-
sure. Then, an element x is a dummy player whenμ(S ∪ {x}) =
μ(S) + μ({x}) for all S ⊆ (X \ {x}).

Definition 9: Let X be a reference set and μ be a fuzzy
measure. Then, an elementx is a null player whenμ(S ∪ {x}) =
μ(S) for all S ⊆ (X \ {x}).

There are two properties associated to dummy player and null
player. We define the one associated to dummy player. The one
for null player is analogous.

Definition 10: An index f satisfies the dummy player prop-
erty when for all dummy players x ∈ X , fi(x)(μ) = μ({x}) for
all measures μ. Here, i(x) refers to the position in f associated
to the element x.

This property holds for the Shapley value but cannot be
satisfied by the Υ-values because there is no index associated to
any particular x. As an alternative, we define the concept of null
cardinality and dummy cardinality and the null (and dummy)
cardinality position property. They are analogous to the previous
ones but associated to set sizes instead of particular elements.

Definition 11: Let X be a reference set and μ be a measure.
Then:
� a cardinality i is a null cardinality when μ(S ∪ {x}) =
μ(S) for all |S ∪ {x}| = i, such that S ⊆ (X \ {x});

� a cardinality i is a dummy cardinality when μ(S ∪ {x}) =
μ(S) + hi for all |S ∪ {x}| = i, such that S ⊆ (X \ {x}),
and hi a certain constant.

Definition 12: An index f satisfies the dummy cardinality
property when for all dummy cardinality i, fi(μ) = hi for all
measures μ. Similarly, an index f satisfies the null cardinality
property when for all null cardinality i, fi(μ) = 0 for all mea-
sures μ.

Proposition 5: The Υ-values satisfy the null cardinality and
dummy cardinality properties.

Proof: It is clear that the dummy cardinality property is
stronger than the null cardinality. Therefore, we prove the latter.

Let us consider the Υ-values of a measure μ with a dummy
cardinality i. That is

Υi = (1/n!)
∑
C∈M

(μ(Ci)− μ(Ci−1)).

Then, the definition of a dummy cardinality i implies, for all C,
that μ(Ci) = μ(Ci−1) + hi for some constant hi. Therefore

(μ(Ci)− μ(Ci−1)) = μ(Ci−1) + hi − μ(Ci−1) = hi

it follows that:

Υi = (1/n!)
∑
C∈M

(μ(Ci)− μ(Ci−1)) = (1/n!)
∑
C∈M

hi = hi.

Therefore, the proposition is proven.
Proposition 6: Let μT be the unanimity measure (unanimity

game) for T ⊂ X and T 
= ∅. Let n = |X|, t = |T |. Then:
1) if i < |T | then, Υi = 0;
2) if i = |T | then

Υi =
1

n!
t!(n− t)!;

3) if i > |T | then

Υi =
1

n!

(
t

1

)(
n− t

i− t

)
(i− 1)!(n− i)!.

We have considered the case of i = |T | as independent of
i > |T | but note that the expression of the latter case reduces to
the one of the former when i = |T |.

Proof: We consider the proof of each case separately. Then,
for each i we need to consider the chains for which μT (Ci) = 1
and μT (Ci−1) = 0, as they are the only ones that influence the
result.

Let us begin with the case i < t. It is clear that in this case,
for any chain, we have both μ(Ci) = 0 and μ(Ci−1) = 0. We
need to have at least t elements to have a measure equal to one.
Therefore, the index will be always zero. So, Υi = 0.

Let us consider the case i = |T |. We can build all the relevant
chains as follows. The first t sets of a chain will be formed
adding elements of T in an arbitrary order. There are t! of these
possible chains. Then, for the remaining part of a chain, we will
use the elements from X \ T in any arbitrary order. Therefore,
we have (n− t)! of such chains. So, the total number of chains
is t!(n− t)! and, therefore

Υi(μT ) =
1

n
t!(n− t)!.

Let us complete the proof with the case i > |T |. We will use
k = i− t. As we need to count the chains with μ(Ci) = 1 while
μ(Ci−1) = 0 it means that the last element to be added to the
chain at position i (i.e., Ci \ Ci−1) is one of the elements in T .
This means that in Ci−1 we have t− 1 elements of T and the
rest k elements are from X \ T . Then, in Ci, we will have all
the t elements of T and the k elements from X \ T . So, to build
the chains we proceed as follows:

1) Select an element t0 from T that is the one to be added in
position i.

2) Consider k elements from n− t elements in X \ T .
3) Construct the (t+ k − 1)! possible chains with the avail-

able t+ k − 1 elements (the t− 1 from T \ {t0} and the
other k selected).

4) Add t0 to each of the chains.
5) Complete the chains with any of the (n− t− k)! chains

obtained with the remaining (n− t− k) objects.
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This results into the following number of chains:(
t

1

)(
n− t

k

)
(t+ k − 1)!1(n− t− k)!.

Expressing this equation in terms of i (instead of k) and dividing
by n! be obtain

Υi(μT ) =
1

n!

(
t

1

)(
n− t

i− t

)
(i− 1)!(n− i)!.

Definition 13: Let π be a permutation of X . We define the
measure μπ as μπ(π(A)) = μ(A) for all A ⊆ X . Equivalently,
we can define μπ(B) = μ(π−1(B)).

Definition 14: Let X be a set, μ a measure on this set, and f
a measure index. Then, f satisfies the anonymity property when
given a permutation π on X , we have

f(μπ) = π∗(f(μ))

whereπ∗(x) = (π∗
π(1)(x), . . . , π

∗
π(|X|)(x)) andπ∗

π(k)(x) = xK .
This property holds for the Shapley value. In contrast, it is easy

to prove that the Υ-values do not satisfy the anonymity property.
In contrast, when we apply a permutation to the elements in
X , the Υ-values do not change. We call this property absolute
anonymity. We define it below and prove that it holds for the
definition of Υ-values.

Definition 15: Let X , μ and f be defined as previous. Then,
an index f satisfies the absolute anonymity property when given
a permutation π on X , we have

f(μπ) = f(μ).

Proposition 7: The Υ-values satisfy absolute anonymity.
Proof: The definition of Υ considers all maximal chains on

X . Given a permutation π on X , the set Mπ of maximal chains
on the permutation π of X will result into the same chains as
M. Therefore, for each C in M there will be a chain C′ in Mπ

such that μπ(C′
i) and μπ(C′

i−1) are precisely μ(Ci) and μ(Ci−1).
Definition 16: Let X be a reference set. Then, an index f

satisfies the additivity property when for any pair of measures μ
and ν on X it holds that

f(μ+ ν) = f(μ) + f(ν).

Proposition 8: The Υ-values satisfy the additivity property.
Proof: Let μ′ be μ+ ν. We will denote the index for μ′ by

Υ′.
Let us begin considering a chain C on X , and the computation

of the ith index. Then, for μ+ ν we have that:
� (μ+ ν)(Ci) = μ(Ci) + ν(Ci);
� (μ+ ν)(Ci−1) = μ(Ci−1) + ν(Ci−1).
Therefore

(μ+ ν)(Ci)− (μ+ ν)(Ci−1)

= μ(Ci) + ν(Ci)− μ(Ci−1)− ν(Ci−1).

We can use this expression to compute Υ′
i, so

Υ′
i =

1

n!

∑
C∈M

((μ+ ν)(Ci)− (μ+ ν)(Ci−1))

=
1

n!

∑
C∈M

(μ(Ci) + ν(Ci)− μ(Ci−1)− ν(Ci−1))

=
1

n!

∑
C∈M

((μ(Ci)− μ(Ci−1)) + (ν(Ci)− ν(Ci−1)))

=
1

n!

∑
C∈M

(μ(Ci)− μ(Ci−1)) +
1

n!

∑
C∈M

(ν(Ci)− ν(Ci−1))

= Υi(μ) + Υi(ν).

This completes the proof.
Theorem 1: An index f : GN → RN satisfies additivity, ab-

solute anonymity, dummy cardinality, and efficiency if and only
if f correspond to the Υ-values.

The proof of this theorem is based on functional equations. In
particular, we will use a generalization of the Cauchy’s equation.
This is in its simplest form g(x+ y) = g(x) + g(y)which under
appropriate conditions can only correspond to a function of
the form g(x) = αx for a constant α. In our case, we apply
Cauchy’s equation to a measure (i.e., a vector in R2n ) and the
function is bounded assuming e.g. efficiency. Then, a similar
result applies (see Proposition 1 and Corollary 2 of Chapter 4 in
Aczél and Dhombres [37]) and the function g : Rm → R needs
to be g(x) =

∑m
j=1 αixi.

In the proof we need to consider the 2n values of the measure.
We will assume that we have ordered them in a given particular
order. This order is arbitrary, we assume that sj is the set
associated to the jth position, and mS will be the value of the
measure associated to the position for set S.

Proof: We have already proven in previous propositions that
Γ-values satisfy the properties in the theorem. Therefore, we
only need to prove here that if these properties are satisfied for
an index f then the index f exactly corresponds to the Υ-values.

Let f be a power index that is additive for any measure. Then,
this means that for any pair of arbitrary measures μ1 and μ2 we
have f(μ1 + μ2) = f(μ1) + f(μ2). The index is such that f :
R2n → Rn. We denote by fi the ith component of f . Naturally,
fi is also additive.

Let us focus on one of the components. This component fi
is also additive, otherwise f would not be so. Then, it satisfies
Cauchy’s equation. Because of that, fi is a linear combination
of the values in the measure, and it should be of the form

fi(μ) =

2n−1∑
j=0

ci,jmj

where mj corresponds to the jth coefficient of the measure for
set sj , and ci,j is an arbitrary constant for the jth coefficient.

Note that the coefficients of fi are not necessarily the ones
for fi′ for i 
= i′.

Let us consider the property of dummy cardinality. This means
that for all |S ∪ {x}| = i such that S ⊆ (X \ {x}), if μ(S ∪
{x}) = μ(S) + hi we need to have fi(μ) = hi.

As our index is valid for any measure it also applies to
measures that satisfy the property of dummy cardinality. Let us
consider now one of these measures. In particular, let us consider
a measure μ that satisfies dummy cardinality for cardinality
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i, and a value hi, and let μ0 be a measure that is zero in all
sets except for an arbitrary set sj0 for which is one. This set is
required to have a cardinality different to i and to i− 1. Then,
if μ′ = μ+ μ0 we need to have

fi(μ
′) = fi(μ) + ci,j0 · 1.

Nevertheless as μ satisfies the property of dummy cardinality
for i, this is also the case for μ′. Therefore, fi(μ′) = fi(μ) = hi,
which implies ci,j0 = 0. As the selection of sj0 is arbitrary, we
can infer that ci,j0 = 0 for all cardinalities j0 different to i and
i− 1.

This means, that the only coefficients for fi that can be
different to zero are the ones for cardinalities i and i− 1. So,
we can express fi as follows:

fi(μ) =
∑
|S|=i

ciSmS +
∑

|S′ |=i−1

ciS′mS′ (2)

where mS just corresponds to μ(S).
As the index applies to any measure, we can consider again

its application to another particular measure. Let us take the
measure μ that satisfies the property of dummy cardinality for
i and as such that mS′ = 0 for the sets S ′ of cardinality i− 1
and mS = hi for the sets S of cardinality i. Then, the above-
mentioned expression should be equal to hi and removing the
values equal to zero reduces to the following:

fi(μ) =
∑
|S|=i

ciShi = hi.

So,
∑

|S|=i ciS = 1.
In addition, the condition of absolute anonymity implies that

all these coefficients should be equal. To prove this, take a set S0

of cardinality i, and define a measure zero everywhere except
one at S0 where it is one. Then, the index fi will be ciS0

. If we
consider a permutation so S ′

0 = π(S0), then, the index will be
ciS′

0
. So, we need ciS0

= ciS′
0
.

Let us denote this equal value as ci. So, ciS = ci. Then, as the
number of sets of cardinality i are

(
n
i

)
we have

∑
|S|=i ciS =∑

|S|=i ci = ci
∑

|S|=i 1 = ci
(
n
i

)
= 1, from which we infer

ciS = ci = 1/
(
n
i

)
.

We can do similarly to determine the coefficients for setsS ′ of
cardinality i− 1. In this case we take a measure μ that satisfies
the property of dummy cardinality for i and as such that mS′ =
−hi for the sets S ′ of cardinality i− 1 and mS = 0 for the
sets S of cardinality i. In this case, the fi(μ) should be hi and,
as previous, removing the values equals to zero we obtain the
following expression:

fi(μ) =
∑

|S′|=i−1

ciS′(−hi) = hi

which implies
∑

|S′ |=i−1 ciS′ = −1. As there are
(

n
i−1

)
sets of

cardinality i− 1 and using, as previous, the condition of absolute
anonymity, we obtain ciS′ = 1/

(
n

i−1

)
.

Now, we just need to replace in (2) the coefficients by the ex-
pressions we have just determined. This, naturally, corresponds

to

fi(μ) =
∑
|S|=i

1(
n
i

)μ(S) + ∑
|S′ |=i−1

1(
n

i−1

)μ(S ′).

As this expression corresponds to the one in Proposition 2, the
theorem is proven.

D. Orness From Υ-Values

We have reviewed the definition of orness for OWA. Let us
introduce an orness-like measure for measures based on OWA
orness and the Υ-values.

Definition 17: LetX be a reference set,μ be a fuzzy measure,
andΥ be theΥ-values ofμ. Then, we defineΥ-orness forμ using
Definition 3 as follows:

orness(Υμ) =
1

n− 1

n∑
i=1

(n− i)Υi.

Observe that this definition follows the structure of
orness(OWAw) =

1
n−1

∑n
i=1(N − i)wi replacing Υi = wi.

Let us consider the following fuzzy measures.
� μn(A) = 0 for all A 
= X , and μn(X) = 1.
� μx(A) = 1 for all A 
= ∅, and μx(∅) = 0.
When the Choquet integral aggregates values with respect to

the measure μn, it results into the minimum of these values.
In contrast, when the Choquet integral aggregates values with
respect to the measure μx, it results into the maximum of these
values.

We can observe (or prove) that for the first measure μn, we
obtain Υ = (0, . . . , 0, 1). That is, Υi = 0 for all i 
= |X| and
Υ|X| = 1. In contrast, for the second measure μx we obtain
Υ = (1, 0, . . . , 0). That is, Υ1 = 1 and Υi = 0 for all i 
= 1.

Then, orness(Υ(μn)) = 0 and orness(Υ(μx)) = 1, as ex-
pected.

In Proposition 8 we have proven that Υ satisfies the additivity
property. If Υ is linear with respect to Υ, Υ-orness is also linear
with respect to additivity of μ.

Proposition 9: Let X be a reference set. Then, for any pair
of measures μ and ν, Υ-orness satisfies

orness(Υμ+ν) = orness(Υμ) + orness(Υν).

IV. EFFECT OF A VALUE IN A MEASURE IN ITS ORNESS

In this section, we study how changing the value of a measure
for a set affects the orness of this measure. For this, we use the
definition of orness in terms of the Υ-values.

Let us denote the fuzzy measure by μ and the particular
set of our study by A. We use the (max,+)-transform [31]
(see Definition 5). We know that this transform is always pos-
itive, and that increasing the transform for A will increase the
value of μ(A) and will not decrease the value of μ(B) for all
B 
= A. That is, the resulting measure is nondecreasing with
respect to positive changes to the transform of A.

The process is as follows for a given measure μ and a set A.
1) mμ := Compute the (max,+)-transform of measure μ.
2) Define a new transform m′

m,A,α as follows:
� m′

m,A,α(B) := mμ(B) for all B 
= A;
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� m′
m,A,α(A) := α.

3) μ′ := the measure associated to transform m′
m,A,α.

4) Compute orness of μ′.
Note that given a fuzzy measure μ, all values α will produce a

fuzzy measure μ′ but not all these measures will be normalized.
Say, if we use a value α = 1 we may produce μ′(X) > 1, and
if we use a value α = 0 we may produce μ′(X) < 1. We will
restrictα in the range that produces a normalized fuzzy measure.

As the measure μ′ is nondecreasing with respect to α, this
range of values is an interval. We will use Iμ to denote the interval
of values of α that produce a normalized fuzzy measure.

The following example illustrates this fact.
Example 2: LetX = {x1, x2}. Then, letμbe a fuzzy measure

on the reference set X defined as follows:

μ(∅) = 0, μ({x1}) = 0.7, μ({x2}) = 0.2, μ({x1, x2}) = 1.

The (max,+)-transform of this measure is

mμ(∅) = 0,mμ({x1}) = 0.7

mμ({x2}) = 0.2,mμ({x1, x2}) = 0.3.

It is easy to see that if we consider the set A = {x1} for any
α < 0.7 we will have μ′(X) < 1.0 because

μ(X) = max(m({x1}),m({x2})) +m({x1, x2}).
Similarly, for any α > 0.7, we have μ′(X) > 1.0.

Therefore, for this measure, only the value α = 0.7 provides
a normalized fuzzy measure. That is, Iμ = [0.7, 0.7].

To study the effects of changing a value in the orness we will
consider several fuzzy measures defined using the reference set
X . We consider the effects for element x1 in X .

We begin considering μn and μx, as defined previously. It is
easy to see that for μn, its transform coincides with the measure
as mμn

(A) = 0 for all A 
= X , and mμn
(X) = 1. Then, any

α 
= 0 will produce a nonnormalized fuzzy measure. Therefore,
Iμn

= [0.0, 0.0]. That is, the only possible value for m′(A) is
preciselymμn

(A). In this case, the orness for the measure is 0.0,
as already discussed previously.

In contrast, for μx, we have Iμx
= [0.0, 1.0] as any value is

possible. In this case, the range of orness depends on the cardi-
nality of the set X . For m′({x1}) = 1, we have that orness is 1.
Nevertheless, for m′({x1}) = 0, we have that orness depends
on the cardinality of X . When X contains four elements, the
orness ranges from 0.916 to 1.0 when α goes from 0.0 to 1.0.
The more elements we have, the largest the minimal orness when
m′({x1}) = 0.

In Fig. 1 (top), we show the value of orness for different
values of α when X contains 4, 5, and 6 elements. We see that
for any α the orness is high, larger than 0.9. In Fig. 1 (bottom),
we illustrate the value of minimal orness when the cardinality
of X increases from 4 to 10. The larger the dimension of X ,
the largest the orness as the relevance of a single object is less
and less. That is, the larger the dimension, the less orness is
changed, and the lesser the influence of the measure of a single
object.

These two measures are the most extreme ones. So, we
have also considered some other more realistic measures. They

Fig. 1. Orness for the fuzzy measure μx for different cardinalities of X and
different values of α for m({x1}). In the top figure, the case of dimensions 4,
5, and 6 and α in [0,1]. In the bottom figure, the minimum orness achieved for
dimensions 4–10.

confirm the findings of these extreme cases. We have considered
two sets of three measures. First, they are the measures μG, μT

and μ4. μG is defined on a set X with three elements. It is the
Grabisch measure in Example 5.12 in Torra and Narukawa’s [26]
work. μT is a measure on a set X with five elements. It corre-
sponds to the one in Example 5.66 (Table 5.9) in Torra and
Narukawa’s [26] work. The measure μ4 is a measure defined by
the values in the following. The other two measures are provided
in the appendix
� μ(∅) = 0.0, μ({x1}) = 0.1
� μ({x2}) = 0.2, μ({x1, x2}) = 0.2
� μ({x3}) = 0.3, μ({x3, x1}) = 0.31
� μ({x3, x2}) = 0.32, μ({x3, x1, x2}) = 0.4
� μ({x4}) = 0.4, μ({x4, x1}) = 0.41
� μ({x4, x2}) = 0.42, μ({x4, x1, x2}) = 0.42
� μ({x4, x3}) = 0.7, μ({x4, x3, x1}) = 0.70
� μ({x4, x3, x2}) = 0.70, μ({X}) = 1.00.
Then, we also consider the three measures μCI , μSI , and

μLi. The latter three measures were learned from examples.
Each corresponds to the solution of a measure identification
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Fig. 2. Orness for several fuzzy measures for different values of α. In the top
figure, measuresμG,μT , andμ4 are considered, and in the right measuresμCI ,
μSI , and μLi are considered.

problem using the same input data. In other words, they are
data-driven solutions of the same data. The data-driven problem
is established by Li et al. [38]. Then, μLi corresponds to the
solution using the means square error on a model based on
the Choquet integral. Quadratic optimization software is used
to find the solution. Therefore, this corresponds to the best
possible solution, as the software finds the optimal solution of
the problem. In contrast, μCI and μSI correspond to the best
solution found using genetic algorithms when we use either a
model based on the Choquet integral or the Sugeno integral. So,
in this case, global optimum is not ensured. The algorithms and
solutions are described in Torra’s [31] work. The measures are
provided in the appendix.

For these measures, we have considered again the modifica-
tion of μ({x1}), and observe how the global orness changes.
We observe in all cases that the influence on the global orness of
changing the measure of a single singleton is limited. In the case
of μCI , μSI , and μLi, the orness of the three measures are quite
similar. As explained previously, all three measures solve the
same problem. Nevertheless, although the measures are similar
they are not equal and some sets differ with a value up to 0.2.

In all these figures we illustrate how changes in the mea-
sure associated to μ({x1}) influence the Υ-orness. We have
proven in Proposition 9 that Υ-orness satisfies the additivity

property. In the figures we see linearity (see Fig. 1) when we
increase μ({x1}). Nevertheless, we also see piecewise linearity
(see Fig. 2). The latter is because increasing μ({x1}) can be
expressed as addition of two measures when for all x1 ∈ A we
have μ({x1}) ≤ μ(A). After this point, our algorithm, to update
the measure, will also increase μ(A). This is the point in which
we have in the figure that linearity changes. It is easy to see that
the slope of the orness should increase at this point (as we are
increasing the measure for additional sets). Fig. 2 shows clearly
this property.

V. CONCLUSION

In this article, we have proposed a power index for fuzzy
measures related to set size. We called it Υμ. We have shown
its relationship with orness and andness, and also to OWA.
We have studied some properties, introduced a characterization,
and provided some examples. As future work we plan to study
additional properties, in particular, Υ and Υ-orness when there
are communication structures, and also games with community
controls [39].

In relation to aggregation functions, we have shown that the
index corresponds to OWA weights when the fuzzy measure
is the one associated to OWA. Then, we have discussed that
this index and the Shapley index are complementary. We have
seen that in the case of WOWA and distorted probabilities,
both indices Shapley and Υ have a different role. This is also
inferred from the characterization. In general, for arbitrary fuzzy
measures, both indices have a role. This permits to consider both
indices useful for analysis of fuzzy measures. As future work, we
will consider the approximation of arbitrary fuzzy measuresμ in
terms of distorted probabilities constructed from both Shapley
and Υ indices from μ.

We have also defined the orness of a measure in terms of
the indices Υ, using Yager expression of orness. Then, it is
of relevance to compare the orness in these terms (i.e., only
considering the measure and the Υ indices) and orness in terms
of the volume of the fuzzy integral. Note that for this, we need
to know which is the fuzzy integral used. Choquet and Sugeno
integrals would lead to different results. The experiments show
that the value obtained for our orness is similar to the one of the
Choquet integral. This needs further analysis.
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APPENDIX

We reproduce here for convenience the measures used in this
article. The values of the measure are given representing the sets
in dyadic form. That is position 0 corresponds to the empty set,
position 1 corresponds to the set {x1}, position 2 (with binary
representation 10) corresponds to the set {x2}, position 3 (with
binary representation 11) corresponds to the set {x2, x1}, etc.
The position 2n − 1 with n = |X| (with a binary representation
of n values of 1) corresponds to the set X
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1) μG= [0,0.3,0.45,0.9,0.45,0.9,0.5,1] (three elements in
X);

2) μT = [0.0, 0.04296875, 0.1375, 0.2375, 0.06909722,
0.1375, 0.3, 0.5, 0.18333333, 0.3, 0.61666666,
0.7625, 0.38333333, 0.61666666, 0.81666666, 0.9,
0.1, 0.18333333, 0.38333333, 0.61666666, 0.2375,
0.38333333, 0.7, 0.81666666, 0.5, 0.7, 0.8625,
0.93090277, 0.7625, 0.8625, 0.95703125, 1.0] (five
elements in X);

3) μLi = [0, 0.11902721152246414, 0.2192511179972149,
0.36944035435601363, 0.278254585089656,
0.4216047035265328, 0.38662134767666456,
0.4859785348532103, 0.40336076705004414,
0.5130985615950798, 0.5008868475489031,
0.6440459784023589, 0.5477764557651374,
0.6801695626428382, 0.5592789623500151, 1.0];

4) μCI = [0.0, 0.13274336283185842,
0.17699115044247787, 0.336283185840708,
0.19469026548672566, 0.4247787610619469,
0.415929203539823, 0.48672566371681414,
0.2743362831858407, 0.5132743362831859,
0.49557522123893805, 0.6814159292035398,
0.5398230088495575, 0.7522123893805309,
0.6548672566371682,1.0];

5) μSI = [0.0, 0.11688311688311688,
0.06493506493506493, 0.16883116883116883,
0.03896103896103896, 0.5064935064935064,
0.19480519480519481, 0.5064935064935064,
0.3116883116883117, 0.6883116883116883,
0.6233766233766234, 0.7142857142857143,
0.4935064935064935, 0.8831168831168831,
0.8961038961038961,1.0].
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