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Abstract—Machine learning draws its power from various disci-
plines, including computer science, cognitive science, and statistics.
Although machine learning has achieved great advancements in
both theory and practice, its methods have some limitations when
dealing with complex situations and highly uncertain environ-
ments. Insufficient data, imprecise observations, and ambiguous
information/relationships can all confound traditional machine
learning systems. To address these problems, researchers have
integrated machine learning from different aspects and fuzzy
techniques, including fuzzy sets, fuzzy systems, fuzzy logic, fuzzy
measures, fuzzy relations, and so on. This article presents a sys-
tematic review of fuzzy machine learning, from theory, approach
to application, with the overall objective of providing an overview
of recent achievements in the field of fuzzy machine learning. To this
end, the concepts and frameworks discussed are divided into five
categories: 1) fuzzy classical machine learning; 2) fuzzy transfer
learning; 3) fuzzy data stream learning; 4) fuzzy reinforcement
learning; and 5) fuzzy recommender systems. The literature pre-
sented should provide researchers with a solid understanding of
the current progress in fuzzy machine learning research and its
applications.

Index Terms—Data stream learning, fuzzy logic, fuzzy sets
and systems, machine learning, recommender systems, transfer
learning.

I. INTRODUCTION

IN THE dynamic realm of technology, machine learning has
profoundly transformed various sectors. It leads innovation

by decoding complex data patterns, driving advancements in
artificial intelligence, and influencing how we engage with
information and understand the capabilities of computational
systems. However, with most of the existing machine learning
methods, accuracy suffers in scenarios characterized by uncer-
tainty, such as the only available observations are imprecise
or where the data are noisy or incomplete. In addition, many
real-world datasets contain uncertain relationships, and conven-
tional machine learning methods generally find it difficult to
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identify or work with these structures. To address these issues,
researchers have used fuzzy techniques to integrate into machine
learning called fuzzy machine learning (FML) [1] as a solution,
since fuzzy techniques are successful to deal with uncertainties.
FML systems fuse machine learning algorithms with fuzzy
techniques, such as fuzzy sets [2], fuzzy systems [3], fuzzy
clustering [4], fuzzy relations [5], fuzzy measures [6], fuzzy
matching [7], fuzzy optimization [8], and so on, to build new
models that are more robust to the many and varied types of
uncertainty found in real-world problems.

FML stands out as an invaluable ally in the realm of complex
and dynamic (uncertain) environments, presenting substantial
advantages that elevate its efficacy. Unlike traditional machine
learning approaches, fuzzy techniques that are generally based
on the concept of fuzzy sets [9] and fuzzy theory [10] excel
in capturing and navigating the nuanced shades of uncertainty
inherent in dynamic scenarios. Their inherent ability to model
uncertainty empowers it to gracefully adapt to the ever-changing
patterns that characterize dynamic environments. In situations
where traditional models might falter or struggle to keep pace,
fuzzy techniques emerge as robust problem solvers, providing
a more accurate representation of the inherent fuzziness present
in real-world data [11]. Furthermore, in the relentless quest for
interpretability, FML triumphs. Its models not only navigate
complexity but also offer clear insights into decision-making
processes. This interpretability proves to be a critical asset
in dynamic environments, where understanding the rationale
behind model decisions is paramount. Next, we summarize some
main successes of how fuzzy techniques can improve machine
learning algorithms.

1) Fuzzy sets [2] can be used to represent vague or am-
biguous concepts and data, such as that commonly found
with linguistic variables, noisy or incomplete data, and
interval-valued data. The fuzzy sets enhance the algo-
rithm’s ability to make decisions in uncertain and complex
situations, which can be particularly useful in applications
where real-world conditions can be unpredictable, such as
robotics or autonomous vehicles.

2) Fuzzy-rule-based systems [3] can provide a transparent
and interpretable prediction framework. Fuzzy-rule-based
systems use linguistic rules to represent knowledge and,
so, can be used to generate explanations for the decisions
made by the system. This can be useful in applications like
medical diagnosis.
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3) Fuzzy clustering [4], which is a well-known approach
to clustering, can improve machine learning algorithms
by identifying patterns in data that traditional clustering
methods may not easily identify. Fuzzy clustering not only
allows for overlapping clusters but can also handle data
points that may not belong to any particular cluster with
certainty. This can be useful in applications like image
recognition.

4) Fuzzy relations [5] can provide a more flexible and nu-
anced representation of the relationships between vari-
ables or data points. They can also capture nonlinear rela-
tionships to enable more accurate and expressive machine
learning models. In addition, fuzzy relations are useful
when handling multimodal data or data assembled from
multiple sources because researchers can define fuzzy
relations between the different modalities to result in a
more comprehensive and accurate model.

In the past decade, there have been over 500 000 articles in
high-quality journals and conference proceedings containing the
words “fuzzy” and “machine learning.” However, none of these
articles provides a comprehensive review of the recent literature
on FML. Several previous surveys in the area only offered valu-
able insights into certain subfields of FML. For example, Baraldi
and Blonda [12] provided a brief review of fuzzy clustering
algorithms for pattern recognition, while Škrjanc et al. [13] sum-
marized models based on evolving fuzzy rules and neuro-fuzzy
networks (NFNs) for clustering, regression, identification, and
classification problems. In addition, Zheng et al. [14] reviewed
recent work on fusing deep learning models with fuzzy systems.
Moreover, the last decade has witnessed the emergence of new
subfields in FML, such as fuzzy transfer learning and fuzzy
data stream learning. Providing an investigative report to outline
these new subfields is significant. For these reasons, a new,
more comprehensive, and more up-to-date survey of FML is
warranted. This article primarily targets researchers interested
in employing fuzzy techniques to enhance the performance of
machine learning methods, particularly in situations involving
complex or uncertain factors.

The studies included in this survey were selected in the
following three steps.

Step 1) Identify and determine an appropriate set of publica-
tion databases to search. We searched the well-known
databases of Science Direct, ACM Digital Library,
IEEE Xplore, and SpringerLink. These provided a
comprehensive bibliography of research papers on
machine learning and FML.

Step 2) Preliminary screening of articles: The first search
was based on keywords. The articles were then se-
lected for inclusion in the review if they: a) presented
a new theory, algorithm, or methodology in the area
of FML; or b) reported an application built around a
FML algorithm.

Step 3) Filtering the results for presentation: The articles se-
lected in Step 2 were then divided into five groups to
be summarized in separate sections: a) fuzzy classical
machine learning; b) fuzzy transfer learning; c) fuzzy
data stream learning; d) fuzzy reinforcement learning

Fig. 1. Main framework of this survey.

(RL); and e) fuzzy recommender systems. At this
point, we undertook one final screening of the articles
(see Fig. 1). A study was retained if it demonstrated
sufficient: a) novelty, i.e., it had been published
within the last decade; and b) impact, i.e., it had
been published in a high-quality journal/conference
or having high citations.

The main contributions of this article are as follows.
1) It comprehensively summarizes the developments and

achievements in the field of FML. Work in this field is
divided into five main categories for discussion.

2) The shortcomings of traditional machine learning methods
in real-world scenarios are analyzed for each category,
followed by an explanation of how FML has been used to
address these issues. The insights provided are designed to
help researchers understand the context of developments
in FML research and its applications.

3) It provides a critical discussion of the state-of-the-art
(SOTA) FML models and outlines directions for future
research.

The rest of this article is organized as follows. Section II
provides some relevant mathematical concepts to illustrate how
fuzzy logic can be integrated into machine learning. Sections III–
VII discuss the five categories of FML, respectively. Finally,
Section IX summarizes the material covered and goals of this
review and outlines future work.

II. BASIC CONCEPTS OF FML

In this section, we briefly introduce some relevant mathemat-
ical concepts to illustrate how fuzzy logic can be integrated into
transfer learning, data stream learning, RL, and recommender
systems. These concepts should help researchers to better un-
derstand the articles introduced in the following sections.

A. Fuzzy Transfer Learning

Transfer learning [15] tries to train a well-performed model
in one domain (target) by leveraging knowledge from another
domain (source) that has different distribution or learning tasks



LU et al.: FUZZY MACHINE LEARNING: A COMPREHENSIVE FRAMEWORK AND SYSTEMATIC REVIEW 3863

compared with the previous one. This section introduces two
representative fuzzy transfer learning frameworks: 1) fuzzy-
rule-based [16] and 2) fuzzy-equivalence-based [17].

1) Fuzzy-Rule-Based Transfer Learning Framework [16]:
Let S = {S1,S2, . . . ,SN} denote a set of source do-
mains, whereSn = {(xSn

i , ySn
i )|xSn

i ∈ Xn, ySn
i ∈ Y}mn

i=1, n ∈
[N ] and (xSn

i , ySn
i ) is the ith input–output data pair in the nth

source domain. Here,Xn ⊂ R
p denotes the feature space of each

source domain and Y is a response space (Y = {1, 2, . . . ,K}
given a classification task, and Y ⊂ R given a regression task).
T = {xT

i |xT
i ∈ X T }mt

i=1 is the unlabeled target domain (for
unsupervised scenario), where X T ⊂ R

p is the feature space of
the target domain. In homogeneous cases, X 1, . . . ,XN and X T

have the same number of features, while they contain different
number of features in heterogeneous cases.

We denote R = {R1,R2, . . . ,RN} as the constructed fuzzy
rules space of S , where Rn = {r(vSn

l , aSn

l )}lnl=1, n ∈ [N ] is the
nth rule set of Sn. Here, the rule r(vSn

l , aSn

l ) is represented as

if xSn
i is Al(x

Sn
i , vSn

l ),

then ySn
i is Pl(x

Sn
i , aSn

l ),

l = 1, 2, . . . , ln. (1)

Let RT denote the obtained fuzzy rules of target domain T .
Finally, Φ = {Φ1,Φ2, . . . ,ΦN} is denoted as the conclusion

of R (e.g., linear combination), where Φn(Rn,µn), n ∈ [N ]
is the nth conclusion of Rn. Hence, fuzzy-rule-based transfer
learning aims to use the knowledge from D = {S,R,Φ} to fit
the data in the target domain, i.e., obtain RT and the conclusion
of RT .

2) Fuzzy-Equivalence-Based Transfer Learning Frame-
work [17]: Different from fuzzy-rule-based transfer learning,
this framework applies the fuzzy equivalence relations among
features in source and target domains to replace the fuzzy
rules. Let U = {U1,U2, . . . ,UN} denote the membership func-
tion space of the features in S , where Un = {μSn

1 , μSn
2 , . . . ,

μSn
mn

}, n ∈ [N ] andμSn
i , i ∈ [mn] is the membership function of

xSn
i . RM

S = {RM
1 ,RM

2 , . . . ,RM
N } denotes as the fuzzy equiv-

alence relation space on S , where RM
n , n ∈ [N ], is the fuzzy

equivalence relation onSn. Here,RM
n , n ∈ [N ], is anmn ×mn

matrix (see [17] and [18] for details)(
RM

n

)
ij
= RSn

(
xSn
i ,xSn

j ;μSn
i , μSn

j

)
, i, j ∈ [mn] (2)

where RSn
is a fuzzy equivalence relation operator on Sn.

Hence, the fuzzy-equivalence-based transfer learning frame-
work aims to use the knowledge from D = {S,U ,RM

S } to fit
the data in the target domain.

B. Fuzzy Data Stream Learning

Data stream learning [19], [20], also known as stream mining,
refers to a set of techniques and algorithms designed to handle
and analyze data that arrive continuously over time in a stream-
ing fashion. However, in real-world scenarios, the statistical
properties of the data may change over time, making models
and algorithms that were previously accurate less effective over

time. This phenomenon is known as concept drift [21], [22],
[23]. A formal definition of concept drift follows.

Definition 1 (Concept drift [23]): Consider a time period
[0, t] and a set of samples, denoted as S0,t = {d0, . . . , dt},
where di = (Xi, yi) is one observation (or one data instance).
Xi is the feature vector, yi is the label, and S0,t follows a
certain distribution F0,t(X, y). Concept drift occurs at time
stamp t+ 1, if F0,t(X, y) �= Ft+1,∞(X, y), denoted as ∃t :
Pt(X, y) �= Pt+1(X, y).

Hence, when a concept drift occurs at t+ 1, we aim to adapt
the predictor Ht = arg minh∈H�(h,X, y|(X, y) ∈ Pt(X, y)) to
fit the new distribution Pt+1(X, y). Next, we briefly introduce a
fuzzy-clustering-based drift learning structure [24] to show how
fuzzy logic can be integrated into data stream learning.

In fuzzy-clustering-based drift learning [24], fuzzy clustering
is applied to learn how many patterns exist in the observed
data instances and the membership degree of each instance
belonging to each pattern during the process of learning the
parameters for the predictor. Let {μtk} be the membership of
the tth instance belonging to the kth cluster, {Ck} be the kth
cluster centroid, {Xt} be the input variable at time step t, and
{θt} be the parameter for the kth predictor. Then, the purpose
of fuzzy-clustering-based drift learning is shown as follows:

min
μtk,Ck,θt

N∑
t=1

(
K∑

k=1

μtkXtθk − yt

)2

+ λ1

K∑
k=1

N∑
t=1

μ2
tk ‖ Xt − Ck ‖22 +λ2

K∑
k=1

‖ θk ‖22

s.t.
K∑

k=1

μtk = 1, t ∈ [N ] (3)

where λ1 and λ2 are two preassigned parameters. Fuzzy cluster-
ing [25], [26] is utilized to optimize μtk and Ck.

C. Fuzzy Reinforcement Learning

RL [27] is the study of planning and learning in a scenario
where a learner (called an agent) proactively interacts with the
environment to achieve a certain goal. The agent’s aim is to
develop the optimal strategy for accumulating rewards. It does
this by learning from the feedback it receives. RL has been
successfully applied to a variety of real-world problems, such
as robotics control [28], game playing [29], and autonomous
driving [30]. In this section, we provide information of how
fuzzy logic can be integrated into RL.

First, fuzzy sets can be used to represent uncertainty in state,
action, or reward spaces in RL. For instance, fuzzy reward sig-
nals [31] represent the uncertainty or imprecision in the reward
received by an agent. In addition, fuzzy controllers [32] that use
fuzzy logic to map inputs to control actions can be integrated into
RL systems to handle uncertain or qualitative control decisions.
Next, we give a general mathematical expression for a fuzzy
controller. Let X1, . . . , Xn be the input variables to the fuzzy
controller and Y be the output variable representing the control
action. The fuzzy sets associated with each variable are denoted
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as A1, . . . , An for inputs and B for the output. Let μAi
(xi)

represent the membership function for the fuzzy set Ai of input
Xi, and let μB(y) represent the membership function for the
fuzzy set B for output Y . Then, generic fuzzy rules that define
the mapping from inputs to outputs can be expressed as

ifXi isA1j and · · · andXn isAnj , thenY isBj . (4)

After applying the fuzzy rules, defuzzification is performed to
obtain a crisp output value.

Furthermore, a fuzzy inference system can be used to make
decisions in RL [33], such as determining the next action to take
based on fuzzy input signals representing uncertain states or
rewards. For example, fuzzyQ-learning [34] extendsQ-learning
by incorporating fuzzy logic to handle uncertain and imprecise
state–action pairs. Fuzzy rules and membership functions are
applied to update the Q-values.

D. Fuzzy Recommender System

A recommender system [35], [36] is a type of information
filtering system that analyzes user preferences or behavior to
provide suggestions personalized to that particular user. In this
section, we provide information of how fuzzy logic can be
integrated into recommender systems.

Let V = {v1, v2, . . . , vM} denote the item set and
U = {u1, u2, . . . , uN} denote the user set. In data
preprocess, a fuzzy set or linguistic variable can be used
to represent item/user terms and user-item rating matrix
R, (R)ij = rui,vj

, i ∈ [N ], j ∈ [M ] (rui,vj
is a rating of a user

for an item). The fuzzy set can help dealing with some types
of uncertainty in the description of item features. For example,
Yager [37] denotes a set of primitive assertions to describe
items, denoted as A = {A1, . . . , An}. For one item v, we can
view the item v as a fuzzy subset over the space A. If one item
v satisfies assertion Ai, the assertion has validity equal to one
otherwise zero. The membership degree on Ai in v is v(Ai).
Then, an item in a recommender system can be represented as a
fuzzy set over an assertion set. In addition, a linguistic variable
is widely used to generate the user-item linguistic-term-based
rating matrix R.

In the fuzzy user preference/profile generation process, the
fuzzy-rule-based system, such as Takagi–Sugeno–Kang fuzzy
system (TSK-FS), is usually applied to model the uncertainty
and imprecision inherent in users’ preferences. Finally, in order
to obtain the final predicted ratings r̂ui,vj

for unrated items,
fuzzy similarity is widely used for calculating the similarity
between items and users. For instance, S(vi, vj) [38] is a fuzzy
similarity to measure the similarity between item vi and vj

S(vi, vj) = ∑
u∈Uij

∫ 1

0 f([ru,vi
]α, [ru,vj

]α)dα√ ∑
u∈Uij

(
∫ 1

0 g([ru,vi
]α)dα)2

√ ∑
u∈Uij

(
∫ 1

0 h([ru,vj
]α)dα)2

(5)

where Uij represents the set of users that both rated items vi and
vj . [ru,vi

]α represent the α-cut of ru,vi
(linguistic variable), and

f, g, and h are predefined functions.

III. FUZZY CLASSICAL MACHINE LEARNING

Classical machine learning algorithms, such as decision trees,
support vector machines (SVMs), and neural networks, have
been responsible for remarkable achievements both theoretically
and from a practical point of view. Numerous articles involve
combining fuzzy techniques with classical machine learning
algorithms to overcome different types of problems with un-
certainty, such as incomplete information and imprecise obser-
vations. In this section, we summarize these works, dividing
the techniques into two categories: 1) non-deep-learning-based
method and 2) deep-learning-based method.

A. Non-Deep-Learning-Based Method

The non-deep-learning-based methods can be further divided
into three main types: clustering, regression, and classification.
Each is discussed in turn next.

1) Clustering: Fuzzy clustering has been widely researched
over the last 40 years, and several survey papers have already
been published summarizing prior work in this field [39], [40].
First, we summarize the main ascendancies of applying fuzzy
techniques in clustering as follows.

a) Soft assignment of data points: Traditional clustering algo-
rithms assign each data point to a single cluster, resulting
in a hard assignment. However, in many cases, some of
the data points may have ambiguous relationships with
the clusters or their memberships may overlap into multi-
ple clusters. Fuzzy clustering allows for soft assignment,
where a data point’s membership in a cluster is not simply
binary, but rather it is measured in degrees and can apply
to multiple clusters.

b) Flexibility in cluster shape: Unlike traditional hard cluster-
ing algorithms, such asK-means, which assume spherical
clusters of equal size, fuzzy clustering allows for more
flexible and irregular cluster shapes. Fuzzy logic allows
researchers and analysts to model overlapping clusters,
clusters of varying sizes and densities, and clusters with
complex boundaries. Thus, fuzzy clustering is highly suit-
able for datasets with complex structures.

c) Handling outliers and noise: Applying fuzzy logic makes
clustering more robust to outliers and noisy data than
traditional clustering methods. With fuzzy logic, a data
point can have a low membership degree to a cluster, which
effectively reduces the influence of outliers or noisy data
points on the overall clustering results.

d) Interpretability and granularity: The fuzzy membership
degrees assigned to data points offer a quantitative mea-
sure of their association with each cluster. This allows for
a more nuanced understanding of the data and provides
insights into the degree of similarity or dissimilarity be-
tween data points and clusters. Fuzzy logic also allows for
the representation of gradual transitions, providing a more
detailed and fine-grained view of the clustering.

One of the most powerful and well-known algorithms in fuzzy
clustering analysis is fuzzy c-means (FCM), developed by Dunn
in 1973 [25] and further developed by Bezdek et al. in 1984 [41].
In the intervening years, FCM has been widely used and revised
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many times to deal with different types of problems [42], [43],
[44], [45], [46]. Among the most recent of these achievements,
Ding and Fu [42] proposed a novel kernel-based FCM clustering
algorithm that uses genetic algorithm optimization to improve
clustering performance. To enhance the robustness of image
segmentation, Gao et al. [46] presented a new robust FCM clus-
tering method that combines an elastic FCM with a smoothing
method. This elastic FCM provides a sparser description for
reliable points and a fuzzier description of the marginal points
of clusters. Lei et al. [43] designed a more efficient and more
robust FCM algorithm for fast and reliable image segmenta-
tion. Their variant is based on morphological reconstruction
and membership filtering. Subsequently, Lei et al. [47] built a
fuzzy clustering framework around the above implementation
for image segmentation.

In research departing from FCM, Jiao et al. [48] developed
a fuzzy clustering algorithm that relies on unsupervised fuzzy
decision trees to improve model interpretability. To cluster mul-
tiple nominal data streams, Sangma et al. [49] proposed a fuzzy
hierarchical clustering method that involves the clustering-by-
variable approach. The method calculates the fuzzy affinity of
data streams to different clusters using normalized cosine simi-
larity and handles concept evolution by updating the hierarchical
clustering structure.

2) Regression: Fuzzy regression models [50] perform a type
of regression analysis that incorporates both possibility theory
and fuzzy set theory [51]. They are particularly useful when
precise data are lacking or when the relationships between input
and output variables are complex and difficult to model using
classical regression methods. In addition, fuzzy regression mod-
els are good at expressing nonlinear relationships and dealing
with noisy data. Fuzzy logic handles the nonlinear relationships
between variables. Noisy or incomplete data are handled by
allowing for partial memberships and fuzzy sets. Thus, by
assigning lower membership values to outliers or inconsistent
data points, fuzzy regression models provide a mechanism
for mitigating the impact of this type of uncertainty. Another
technique for improving the performance of regression models
has been to integrate fuzzy techniques with classical machine
learning techniques, such as SVM [52], [53], [54] and neural
networks [55], [56], [57], [58]. Other solutions combine interval
regression analysis [59] with machine learning methods [60],
[61], [62], [63].

The latest developments in fuzzy regression analysis include
He et al. [64], [65], who developed a fuzzy nonlinear regression
model using a random weight network that takes triangular
fuzzy numbers as its inputs and outputs the same. Baser and
Demirhan [66] proposed a new method that combines fuzzy
regression models with an SVM to estimate the yearly mean
and daily values of horizontal global solar radiation. By applying
fuzzy regression functions, their method is robust to outlier ob-
servations and problems with overfitting. Chachi [67] designed
a robust fuzzy regression modeling technique based on weighted
least squares fuzzy regression to handle crisp input-fuzzy output
data. Choi et al. [68] addressed issues with multicollinear-
ity in fuzzy regression models by incorporating ridge regres-
sion. Naderkhani et al. [69] proposed an adaptive neuro-fuzzy

Fig. 2. Two different FNN structures.

inference system for analyzing and predicting nonparametric
fuzzy regression functions with crisp-valued inputs and symmet-
ric trapezoidal fuzzy outputs. Xia et al. [70] developed a novel
regression model built around a Takagi–Sugeno fuzzy regression
tree to address complex industrial modeling problems, while
Zhang et al. [71] introduced an interpretable model based on
graph community neural networks and time-series fuzzy deci-
sion trees for predicting the delays experienced by a high-speed
train.

3) Classification: Numerous studies have combined fuzzy
techniques with classical machine learning algorithms to ad-
dress classification problems. The techniques used include fuzzy
decision trees [72], [73], [74], [75], [76], neuro-fuzzy classifica-
tion [77], [78], [79], and support-vector-regression-based fuzzy
classification [80], [81]. Rabcan et al. [82], for example, have
recently introduced a new approach to signal classification that
includes a fuzzification procedure in the transformation process
and fuzzy decision trees to perform classifications. Xue et al. [83]
proposed an adaptive softmin model based on an enhanced TSK-
FS to classify high-dimensional datasets. An adaptive softmin
function overcomes the drawbacks of “numeric underflows” and
“fake minimums” that frequently arise in existing fuzzy systems.
However, although the enhanced TSK-FS maintains adequate
rules, it does not grow the number of rules exponentially with
features. Ma et al. [11], [84] put forward a novel framework
for addressing multiclass classification problems with imprecise
observations that provides a theoretical analysis of the problem
based on fuzzy Rademacher complexity. The imprecise obser-
vations can be either fuzzy-valued or interval-valued, and the
framework, which combines classical machine learning tech-
niques like neural networks and SVM with a fuzzy-membership-
based defuzzification method, extracts crisp-valued information
from these fuzzy- or interval-valued features.

B. Deep-Learning-Based Method

Fuzzy neural networks (FNNs), also known as NFNs, are a
type of hybrid neural network that combine fuzzy techniques
with neural networks to improve the efficiency and interpretabil-
ity of machine learning models. A standard FNN structure is
illustrated in Fig. 2. The fuzzy logic component of FNNs allows
them to handle imprecise or incomplete data and make decisions
based on uncertain inputs. In addition, using an FNN capitalizes
on the many significant advances achieved through deep learning
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TABLE I
SUMMARY OF THE SOTA DEEP-LEARNING-BASED FNN ACHIEVEMENTS

in fields such as computer vision, natural language processing,
and robotics.

Many researchers have fused deep learning methods with
fuzzy techniques to address different types of problems with
uncertainty. The most commonly used deep learning models in-
clude deep belief networks [85], convolutional neural networks
(CNNs) [86], and recurrent neural networks (RNNs) [87]. In this
section, we summarize the SOTA achievements in FNNs from
2020 to 2023. Earlier research successes can be found in prior
surveys like [14], [88], and [89].

Chen et al. [90] devised a fuzzy deep neural network (DNN)
with a sparse autoencoder as a way to try and predict human
intentions. The model is based on human emotions and identi-
fication information. Lu et al. [91] constructed a novel hashing
method that integrates DNNs and fuzzy logic to measure the
similarity between pairwise images. Zadeh [51] introduced the
concept of a type-2 fuzzy set as far back as 1975. These sets,
whose membership level themselves are type-1 fuzzy sets, can
be used when there is uncertainty about the membership function
itself—for example, if one does not know the shape of the
function or some of its parameters. The superior performance
of type-2 fuzzy sets has seen them used in a range of machine
learning tasks. For instance, to perform complex stock time-
series tasks, Cao et al. [92], [93] designed two multiobjective
evolution models. Both combine interval type-2 fuzzy sets with
rough FNNs.

Several fuzzy-based ensemble models have also been de-
veloped to address problems like load forecasting [94], image
classification [95], [96], [97], [98], and image fusion [99], [100].
For example, Khatter and Ahlawat [101] combined an RNN with
fuzzy techniques and a web blog searching method to enhance
classification performance, while Concepción et al. [102] pre-
sented a theoretical analysis of why fuzzy-rough cognitive net-
works delivered better performance than the SOTA classifiers.
Long short-term memory models have also been combined with
fuzzy techniques. Some example works include [103], [104],
[105], and [106]. Table I provides a summary of the SOTA
literature related to deep learning with FNNs.

TABLE II
SUMMARY OF THE SOTA PAPERS IN FUZZY TRANSFER LEARNING

In summary, combining fuzzy techniques with classical ma-
chine learning algorithms is not only useful for solving un-
certainty problems, like imprecise or noisy data, but can also
improve the interpretability and robustness of the algorithms.
Fuzzy sets are good at handling ambiguity and uncertainty and
typically provide a more realistic representation of the inherent
fuzziness and uncertainty present. In addition, fuzzy logic tends
to improve interpretability. These logics often rely on rule-based
systems, where the rules express relationships between the input
variables and the output decisions. The rules can either be
derived from expert knowledge or be learned from the data.

IV. FUZZY TRANSFER LEARNING

Notably, most current transfer learning [158] methods have
limitations when handling real-world situations with uncer-
tainty, such as when only a few labeled instances are available.
To overcome these problems, many researchers have turned to
fuzzy sets and fuzzy logic.

Existing studies on transfer learning can be divided into cate-
gories based on the type of knowledge that is being transferred.
These knowledge categories include instances [159], feature
representations [160], model parameters [161], and relational
knowledge [162]. Alternatively, in terms of the problem settings
tackled, studies can be grouped into four categories: multitask
learning [163], domain adaptation [164], [165], cross-domain
adaptation [166], and heterogeneous learning [167]. We have
divided our summary of recent works (2015–2023) into three
areas based on the fuzzy technique used. These are fuzzy sets,
fuzzy systems, and fuzzy relations. Table II summarizes recent
achievements in the field of fuzzy transfer learning.

A. Transfer Learning Based on Fuzzy Sets

Behbood et al. [168] proposed an innovative fuzzy-based
transfer learning framework to predict long-term bank failures.
The framework relies on fuzzy sets, as well as similarity and
dissimilarity, to modify the labels of target instances predicted
by an FNN classifier. Wu et al. [169] developed OwARR, a new
algorithm that combines fuzzy sets with domain adaptation. The
aim is to reduce the amount of object-specific calibration data so
as to solve the important regression problem of estimating online
drowsiness in drivers from EEG signals in brain–computer inter-
faces. Gargees et al. [170] proposed a transfer learning method
for the possibilistic c-means clustering problem with insufficient
data, overcoming a crucial problem for clustering tasks where the
source and target domains have a different number of clusters.
Based on the idea of fuzzy sets, the proposed algorithm employs
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historical cluster centers of the data in the source domain as a
reference to guide the clustering of data in the target domain.

In terms of applying type-2 fuzzy sets to transfer learning
models, Sun et al. [171] proposed a new transfer learning model
to address the uncertainty caused by conflicting implications in
text sequence recognition. The proposed model uses FCM to
transform the correspondences among words into information
granules. By integrating type-2 fuzzy sets into a hidden Markov
model, this granular information can be used for sequence
recognition. To reliably estimate gross domestic product (GDP)
from only CO2 emission data, Shukla et al. [172] proposed a
new approach to a kernel extreme learning machine (KELM)
that combines transfer learning with interval type-2 fuzzy sets.
Interval type-2 fuzzy sets are used to improve the efficiency
of the knowledge transfer. To consider the uncertainty in input
datasets, Kumar et al. [173] presented a novel transfer learning
approach that incorporates type-1 and interval type-2 fuzzy sets
into a KELM framework. The aim is to predict GDP based on
uncertain carbon emissions data.

In general, fuzzy sets have been widely applied to address
uncertainty in data in transfer learning scenarios, and, experi-
mentally, they have been shown to improve both the efficiency
and accuracy of knowledge transfer in comparison to nonfuzzy
methods.

B. Transfer Learning Based on Fuzzy Systems

Most of the existing transfer learning methods have a number
of drawbacks. For instance, the performance of model-based
transfer learning algorithms is heavily dependent on the selected
classifier. In addition, feature-based transfer learning methods
can negatively impact the discriminant information and geomet-
ric properties of instances from both the source and target do-
mains. Furthermore, the lack of interpretability and an inability
to handle uncertainty are two significant flaws. To address these
issues, researchers have turned to fuzzy-rule-based systems to
improve interpretability and handle uncertainty. Notably, the
TSK-FS [3] has received significant attention in this regard.

Shell and Coupland [174] proposed FuzzyTL, a novel struc-
ture that combines transfer learning with a fuzzy-rule-based
system. This structure is designed to bridge the knowledge gap
between contexts that lack prior direct contextual knowledge.
Meher and Kothari [175] developed an interpretable domain
adaptation method, named the rule-based fuzzy extreme learning
machine (ELM) classification model, that uses a fuzzy inference
system to design an ELM architecture for remote sensing image
classification. The model uses the maximum fuzzy membership
grade of features, which is characterized by class-belonging
fuzzification, to construct the fuzzy rules and two rule extraction
matrices. Moreover, Deng et al. [176], [177] proposed two
novel transfer learning approaches for regression tasks using the
Mamdani–Larsen fuzzy system and the TSK-FS coupled with a
new fuzzy logic algorithm and its objective functions. However,
they noticed that the antecedent parameters of the TSK-FS model
constructed in the target domain were directly inherited from
the source domain, which meant that they could not leverage
enough knowledge from the source domain. To address this

problem, Deng et al. [178] proposed a new transfer learning
method that contains two knowledge-leveraging strategies to
better learn the antecedent and consequent parameters in the
TSK-FS model. First, they applied an FCM-based clustering
transfer technique to the antecedent parameters, which means
that the antecedent parameters can be learned from both the
source and target domains. Second, they introduced an enhanced
knowledge-leverage mechanism to learn the consequent param-
eters. Another knowledge-leverage term is then introduced to
make more effective use of the knowledge in the source domain.
Furthermore, they applied and modified these methods so that
they could be used for analysis in scenarios with insufficient
data, such as recognizing EEG signals [179], [180], [181],
[182], [183], [184] or with situations involving multiple-source
domains [183]. The aim of transfer representation learning is to
learn a shared space that matches the distributions of instances
from both domains. However, transfer representation learning
based on kernels suffers from some shortcomings, such as a lack
of interpretability and difficulties with selecting a kernel func-
tion. To overcome these issues, Xu et al. [185] proposed a new
transfer representation learning method that uses the TSK-FS
instead of kernel functions to realize nonlinear transformations.
In this approach, instances from both domains are transformed
into a fuzzy feature space to minimize the differences between
the distributions. Meanwhile, any discriminant information or
geometric properties are preserved using latent Dirichlet alloca-
tion and principal component analysis.

Notably, Zuo et al. [186] devised a new way of constructing a
TSK-FS model for regression tasks. This model uses data from
the source domain to construct fuzzy rules and then modifies
these rules using a nonlinear continuous function based on
sigmoid functions to estimate values in the target domain. To ad-
dress any significant difference in the label distribution between
the source and target domains, Zuo et al. [187] developed some
fuzzy-system-based domain adaptation models for classification
tasks. In [188], they applied granular computing techniques
to transfer learning and proposed a comprehensive domain
adaptation framework based on a Takagi–Sugeno fuzzy model
to handle three different regression scenarios: one where the
source and target domains share different conditions, one where
they share different conclusions, and one where both apply.
Moreover, they identified two issues in fuzzy transfer learning
that had not yet been resolved: how to choose an appropriate
source domain and how to efficiently select labeled data for
the target domain when the target data structure is unbalanced.
The solutions, which involve an innovative method again based
on a Takagi–Sugeno fuzzy model [189], combine an infinite
Gaussian mixture model with active learning to improve the per-
formance and generalizability of the initial model. Li et al. [190]
designed a new transfer learning model for multisource domain
adaptation that relies on a fuzzy-rule-based DNN. To address
the more challenging problem in multisource domain adaptation
where no source data are available, Li et al. [191] proposed a
new model based on a DNN with fuzzy rules.

Importantly, all the domain adaptation studies mentioned so
far only work when both domains have identical feature spaces
and the same number of fuzzy rules, i.e., they are all methods
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of homogeneous domain adaptation. Zuo et al. [192], however,
devised a novel approach to heterogeneous scenarios based on
a Takagi–Sugeno fuzzy model. In this framework, fuzzy rules
are constructed in the source domain and then transferred to
the target domain using canonical correlation analysis so as
to minimize the discrepancy between the feature spaces of the
two domains. This was the first article to solve heterogeneous
domain adaptation problems using a fuzzy-rule-based system.
Subsequently, Lu et al. [16] addressed the more challenging
scenario of when the only available instances to build the model
span multiple source domains. They proposed two novel transfer
learning methods for regression tasks based on a Takagi–Sugeno
fuzzy model—one for when the feature spaces are homogeneous
and one for when the spaces are heterogeneous. In the former,
knowledge from multiple source domains is merged in the form
of fuzzy rules, while, in the latter, knowledge is merged in the
form of both data and fuzzy rules. Che et al.’s [193] fuzzy transfer
learning method addresses multioutput regression problems in
both homogeneous and heterogeneous scenarios. Their approach
applies fuzzy rules to accurately capture the commonalities and
characteristics of multiple numerical output variables.

In summary, most of the above methods share a common
model construction framework: they begin by constructing a
fuzzy-rule-based model on the source data (e.g., a TSK-FS)
and subsequently modify the existing model (fuzzy rules) to
establish a new fuzzy model for the target domain. Fuzzy-rule-
based systems provide a linguistic representation of knowledge,
enabling generalization and adaptation, while also making the
model more robust to domain shift. Their power to transfer rele-
vant knowledge also helps to improve a model’s interpretability.
All these characteristics make fuzzy-rule-based systems well
suited to transfer learning tasks—particularly, the more chal-
lenging tasks, such as heterogeneous domain adaptation and
source-free domain adaptation.

C. Transfer Learning Based on Fuzzy Relations

Most studies mentioned so far focus on supervised or semisu-
pervised transfer learning in homogeneous scenarios, where
both the source and target domains have labeled instances and
only their data distributions are different. However, it is not
uncommon in the real world for there to be no available labeled
instances in the target domain. Furthermore, the feature spaces
of the source and target domains will usually be different. This
scenario, which is characterized by a high degree of uncertainty,
is commonly referred to as heterogeneous unsupervised domain
adaptation (HeUDA). Recently, researchers have developed n-
dimensional fuzzy geometry theory [194] and fuzzy equivalence
relations [195] to analyze and handle such problems with uncer-
tainty.

Liu et al.’s [18] solution to HeUDA problems, called F-
HeUDA, is to use fuzzy geometry to measure the similarity of
features between the source and target domains. Shared fuzzy
equivalence relations are then introduced, which means that both
domains will share the same number of clustering categories.
Hence, knowledge can be transferred from a heterogeneous

source domain to a target domain with only unlabeled data. Us-
ing these techniques, F-HeUDA outperformed the SOTA models
on four real datasets and performed especially well when the
target domain had very few instances. Moreover, Liu et al. [17],
[196] focused on a more realistic problem called the multisource
HeUDA problem. Solving this problem involves transferring
knowledge from several different source domains that have
labeled data but heterogeneous dimensions and one target do-
main with unlabeled data. Their approach, called a shared fuzzy
equivalence relations neural network, improves upon previous
work in shared fuzzy equivalence relations to extract the shared
fuzzy information contained in multiple heterogeneous domains.

In summary, because there is a high degree of uncertainty
when transferring knowledge from a heterogeneous source do-
main to a target domain with only unlabeled data, nonfuzzy
models will not usually perform well. Fuzzy relations offer a
flexible, interpretable, and adaptable framework for represent-
ing and transferring knowledge between such domains. Hence,
researchers tend to apply fuzzy relations to improve transfer
efficiency in heterogeneous situations.

V. FUZZY DATA STREAM LEARNING

Learning from data streams [19], [20] involves developing al-
gorithms and techniques to adaptively and incrementally process
and learn from continuously arriving data. Unlike traditional
machine learning scenarios where a static dataset is available
for offline training, data stream learning deals with dynamic,
evolving data streams that may not be stored entirely. However,
data streams often exhibit concept drift, which refers to changes
in the statistical properties of the data. Detecting and adapting
to concept drift are two important challenges in data stream
learning. One approach is to continuously monitor the data
and update models or retrain them periodically to account for
changes. Another approach is to use online learning techniques
that can adapt to changes in the data stream in real time. While
concept drift often come with some uncertainty problems—for
example, making predictions from data streams with mixed
drift problems and detecting drift in data streams with missing
values—researchers are considering the application of fuzzy
techniques to address these challenges.

The aim of concept drift detection is to identify when concept
drift has occurred so that appropriate measures can be taken to
update or retrain the models in question. Several research teams
have turned to FCM-based methods to detect concept drift [201],
[202]. These two methods derive fuzzy membership functions
from the data stream and use the membership results to mine
concept drift patterns. Zhang et al. [206] designed a new drift
detection model based on fuzzy set theory to address drift prob-
lems associated with user interests for recommender systems,
while Dong et al. [207] developed a data-distribution-based
drift detection method for business intelligence and data-driven
decision support systems that incorporates fuzzy set theory.
In both these methods, fuzzy set theory is used to handle the
challenging issue of where an item’s features and its related
information are usually incomplete and imprecise. Along these
lines, Liu et al. [222] proposed a robust drift detection algorithm
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that can handle missing values. This algorithm comprises a
masked distance learning algorithm to reduce the cumulative
errors caused by missing values and a fuzzy-weighted frequency
method to identify discrepancies in the data distribution.

Concept drift adaptation refers to the process of updating or
modifying a machine learning model in response to concept drift
so that it remains accurate and effective over time. Over the past
five years, many new adaptation models that fuse fuzzy tech-
niques with machine learning algorithms have been built to deal
with the phenomenon of concept drift. The applied fuzzy tech-
niques include fuzzy clustering algorithms [24], [203], [204],
[205], fuzzy-rule-based systems [208], [209], [210], [211], and
fuzzy time series (FTS) [220], [221]. Song et al. [24], [203],
[204] proposed a series of kernel FCM-based adaptive models
to handle data stream regression problems with concept drift.
In [203] and [204], kernel FCM is used to determine the most
relevant learning set, while, in [24], kernel FCM is used to
measure the degree to which upcoming examples belong to
different patterns. These fuzzy membership values are then
embedded in the learning process to handle mixed drift data
streams.

In terms of applying fuzzy-rule-based systems, Gar-
cia et al. [210] developed a modified evolving granular fuzzy-
rule-based model that incorporates an incremental learning
algorithm to simultaneously impute missing data as well as
adapt the model’s parameters and structure over time. García-
Vico et al. [211] proposed an evolutionary fuzzy system to
extract knowledge from data streams as a way to adapt to concept
drift. Both these methods use type-1 fuzzy systems; however,
by contrast, Pratama et al. [208] proposed an evolving type-2
recurrent FNN to simultaneously address three challenges: data
uncertainty, temporal behavior, and system absence. FTS [228]
is a mathematical framework that combines fuzzy logic and
time-series analysis to model and forecast uncertain and im-
precise data over time. FTS is particularly useful in situations
where the data have missing values, outliers, or noise, and where
traditional time-series models may not perform well. de Lima e
Silva et al. [220] introduced a nonstationary FTS, while Severi-
ano et al. [221] introduced an evolving forecasting model based
on FTS to deal with concept drift. Moreover, Liu et al. [223]
proposed a new concept drift adaptation method based on a fuzzy
windowing approach. Unlike traditional windowing methods,
this approach employs sliding windows with an overlapping
period to enable precise identification of the data instances that
belong to different concepts. Focusing on multiple relevant data
stream regression with concept drift, Song et al. [224] developed
a new adaptation model based on fuzzy drift variance, where
the variance is designed to measure the correlated drift patterns
among streams.

In addition, several works simultaneously address concept
drift detection and adaptation [212], [213], [225], [226]. For
example, Dong et al. [225] introduced an adaptive ensemble
algorithm based on fuzzy instance weighting to handle data
streams involving concept drift. Yu et al. [213] presented an
evolving neuro-fuzzy system for streaming data regression that
employs an online topology learning algorithm to self-organize
each layer of the proposed system. To effectively detect drift

TABLE III
SUMMARY OF THE SOTA ACHIEVEMENTS IN FUZZY DATA STREAM LEARNING

and adapt the learned model, Zhang et al. [226] proposed a novel
approach that combines a dynamic intuitionistic fuzzy cognitive
map scheme and a concept drift detection algorithm.

More recently, researchers have used fuzzy techniques to ad-
dress data stream classification and regression problems. These
techniques include evolving fuzzy systems [214], [215], [216],
neuro-fuzzy systems [217], granular fuzzy-rule-based sys-
tems [218], [219], and the fuzzy time-matching method [227].
Not only can these techniques help to improve the performance
of streaming data classification and regression in uncertain envi-
ronments, they can also be applied to handle the phenomenon of
concept drift. Table III summarizes these recent achievements
in the field of fuzzy data stream learning.

In summary, fuzzy techniques are applied in data stream
learning, especially to handle concept drift scenarios, owing to
their capacity to handle uncertainty, adapt to changing patterns,
and provide interpretable models. These features make fuzzy
techniques valuable for detecting, understanding, and adapting
to concept drift, leading to better performance than nonfuzzy
methods.

VI. FUZZY REINFORCEMENT LEARNING

RL [27] represents a powerful paradigm in machine learning,
where agents learn to make decisions through interaction with
an environment, guided by a system of rewards or penalties.
However, the traditional RL framework is not without its chal-
lenges, especially in scenarios where the training process is in-
herently slow due to complex and uncertain environments [229]
or sparse reward signals [230]. Fuzzy RL emerges as a promising
approach to address these limitations, leveraging fuzzy logic to
enhance training efficiency and overcome the hurdles associated
with slow reinforcement processes.

One of the primary advantages of fuzzy RL lies in its adapt-
ability to dynamic (uncertain) environments. In traditional RL,
slow training processes can be exacerbated by the challenges
posed by dynamic scenarios where the optimal strategy may
change rapidly. Fuzzy logic allows the system to gracefully
adapt to these changes, incorporating fuzzy rules that capture
the gradual transitions and uncertainties in the environment. In
addition, in many RL applications, the scarcity of meaningful
rewards can impede the learning process, leading to slow con-
vergence or even stagnation. Fuzzy RL introduces the concept
of fuzzy rewards [31], enabling the system to consider partial or
intermediate successes that may not be fully captured by binary
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reward signals. This approach helps mitigate the challenge of
sparse rewards by providing a more nuanced and continuous
feedback mechanism, allowing the agent to learn from a broader
spectrum of experiences.

Fuzzy Sarsa learning (FSL) [31] is a critic-only fuzzy RL
algorithm that combines the Sarsa algorithm with fuzzy logic.
In traditional Sarsa learning, an agent learns to take actions
through trial and error that maximize a reward signal in a given
environment. In FSL, the state and action spaces are represented
as fuzzy sets, which allows for a more gradual transition between
states and actions, rather than strict boundaries. The algorithm
updates the Q-value function based on the fuzzy membership
functions of the current state and action, as well as the fuzzy
reward function. The use of fuzzy logic allows FSL to handle
more complex environments with uncertain or imprecise infor-
mation, while still maintaining a high level of performance.
As an example, Fathinezhad et al. [237] proposed a novel
method of robot navigation that combines supervised learning
and FSL. Their method applies a zero order Takagi–Sugeno
fuzzy controller with some candidate actions for each rule as
the main module. Also, Hein et al. [238] developed a new
particle swarm approach to RL based on fuzzy controllers. This
approach builds fuzzy RL policies by training parameters on
world models that simulate real system dynamics. Furthermore,
Shi et al. [240] developed an adaptive fuzzy comprehensive
evaluation method that integrates a fuzzy analytical hierarchy
process, a Bayesian network, and RL. The authors successfully
applied this method to a robot soccer system, which is a typical
complex time-sequence decision-making system.

In the field of control systems, Zhang et al. [231] designed
a new fault-tolerant control algorithm by combining RL with
a fuzzy augmented model for partially unknown systems with
actuator faults. The fuzzy augmented model was inspired by the
well-known Takagi–Sugeno fuzzy model. With this algorithm,
less information needs to be transmitted, which reduces compu-
tational loads during the learning process, even when dynamic
matrices are partially unknown. Similarly, Zhang et al. [232] pro-
posed a novel parallel tracking control optimization algorithm
using fuzzy RL techniques for partially unknown fuzzy inter-
connected systems. This algorithm uses the precompensation
technique to treat working feedback controls as reconstructed
dynamics with virtual controls. This approach to building the
model results in a new augmented and interconnected fuzzy
tracking system where a valid performance index is guaranteed
for optimal control. In the realm of traffic light control systems,
Kumar et al. [233] proposed a novel system that is both dynamic
and intelligent to overcome issues with long waiting times,
fuel waste, and rising carbon emissions. Traditional traffic light
systems operate on a fixed duration mode, whereas Kumar’s
proposed system uses a deep RL model to switch the lights and
a fuzzy inference system to select one among three modes based
on current traffic information. To mitigate frequency deviations
caused by power fluctuations, Yin and Li [239] developed a fuzzy
vector RL approach to control how much power a power sys-
tem generates. The framework also considers flywheel energy
storage systems.

TABLE IV
SUMMARY OF THE SOTA ACHIEVEMENTS IN FUZZY RL

Fig. 3. Fuzzy recommender system framework.

Turning to large-scale multiagent RL, Li et al. [234] in-
troduced the concept of fuzzy agents to be used for training
homogeneous agents. They also proposed a new RL method
that uses fuzzy logic to learn abstract policies. In comparison to
other simplification methods, their fuzzy agents both reduce the
computing resources required to train a model and ensure that an
effective policy is learned. Zhu et al. [235] devised a new control
strategy based on RL and a fuzzy wavelet network. The aim here
is to improve the stability of the hybrid system’s buffer compli-
ance control. To reduce the negative effects of noisy information
in communication channels on multiagent RL, Fang et al. [236]
developed a two-stream fused fuzzy DNN by applying a fuzzy
inference module and a DNN module. Experiments with two
large-scale traffic signal control environments demonstrate the
proposed method’s superior performance. Table IV summarizes
these recent achievements in the field of fuzzy RL.

In general, by combining RL and fuzzy logic, fuzzy RL can
handle the complexity of real-world environments that involve
uncertain information and imprecise data, making it a promising
technique for solving problems in fields such as robotics, control
systems, and game theory.

VII. FUZZY RECOMMENDER SYSTEMS

In real-world recommender systems, descriptions of user
preferences and item features, item values, and business knowl-
edge are often vague, imprecise, and plagued with uncertainty.
And, further, these issues can occur across the entire recom-
mendation process from collecting the data to generating the
recommendations. Other key problems that can occur with rec-
ommender systems include sparsely populated user-item matri-
ces and problems with measuring the similarity of items and
users (see Fig. 3). Commonly used fuzzy techniques to deal
with these issues include intuitionistic fuzzy sets [241], fuzzy
user profiles [242], fuzzy-rule-based systems [243], and fuzzy
similarity [244]. This section provides a summary of recent
articles focused on these techniques.
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TABLE V
SUMMARY OF THE SOTA FUZZY-TECHNIQUE-BASED RECOMMENDER

SYSTEM ACHIEVEMENTS

Collaborative filtering is a key approach to recommender sys-
tems. However, traditional collaborative filtering methods, such
as unsupervised clustering, are quite sensitive to uncertainty
and therefore often experience high error rates. Once again,
FCM or modified FCM algorithms have been implemented to
eliminate these issues [245], [246], [247]. For example, FCM
has been used to classify the users in a dataset according to
the similarity of their item ratings. To improve the quality of
recommender systems with sparse datasets, Nilashi et al. [248]
designed a hybrid item similarity model that combines an ad-
justed Google similarity with an intuitionistic Kullback–Leibler
similarity based on fuzzy sets. This approach essentially makes
a tradeoff between prediction accuracy and efficiency.

In terms of content-based filtering recommender systems,
Yera et al.’s [249] solution uses a fuzzy decision tree to match
the most appropriate function in the individual recommenda-
tion aggregation step. Other researchers have also relied on
fuzzy-rule-based systems to extract relevant knowledge from
uncertain data to improve the performance of knowledge-based
recommender systems [250], [251], [252].

Hybrid recommender systems are another area of research
progress. Here, Walek and Fajmon [253] designed a new hybrid
recommender system that combines a collaborative filtering
system, a content-based filtering system, and a fuzzy expert sys-
tem to enhance recommendation performance. The fuzzy expert
system is used to evaluate the importance of the recommended
products with vague information and rank them appropriately
for users. Table V summarizes these recent studies in the field
of fuzzy-based recommender systems.

In summary, fuzzy techniques provide a rich spectrum of
methods for managing uncertainty, vagueness, and imprecision
in data both during the learning process and when making rec-
ommendations. Particularly, fuzzy techniques are well suited to
handling imprecise user preference descriptions (e.g., in linguis-
tic terms), knowledge description, and the gradual accumulation
of user preference profiles. Therefore, applying fuzzy techniques
in the recommender system can bring more efficient and accurate
performance than nonfuzzy models.

VIII. FUTURE RESEARCH DIRECTIONS

So far, we have summarized recent achievements of FML. In
this section, we aim to give further discussion of FML’s current

research trends and share some insights on future research
directions.

A. Fuzzy Classic Machine Learning

Most current research in fuzzy classic machine learning
mainly focuses on the following aspects: 1) handling noisy or
incomplete data; 2) addressing imbalanced datasets; and 3) en-
hancing algorithms’ interpretability and robustness. Analyzing
imprecise data (fuzzy-valued or interval-valued) [84] has not
received widespread attention. However, in many real-world sce-
narios, we will inevitably encounter this kind of data. Therefore,
it would be a promising direction to investigate how to apply
fuzzy logic to analyze imprecise data.

Moreover, deep learning [86] has made significant strides,
but it still faces several challenges. DNNs, particularly complex
architectures like deep convolutional or recurrent networks, are
often viewed as black boxes. Understanding how these models
arrive at specific decisions is crucial, especially in applications
where interpretability is essential, such as health care and fi-
nance. In addition, deep learning models are vulnerable to adver-
sarial attacks [276], where small carefully crafted perturbations
to input data can lead to misclassification. Fuzzy techniques are
potential tools to overcome these challenges. We suggest future
work that uses fuzzy techniques to overcome these challenges.

B. Fuzzy Transfer Learning

Recent fuzzy transfer learning works [191], [277] mainly
focus on applying fuzzy-rule-based systems to model the un-
certainty and variability between different source and target
domains, enabling more effective adaptation of knowledge
from the source to the target domain. However, open-set prob-
lems [165], [278] have gain more and more attention in transfer
learning, where target domain contain private categories. De-
tecting unknown classes is a challenging problem that contains
a large degree of uncertainty. We believe that applying fuzzy
techniques to address this challenge problem is worth investi-
gating for future work.

C. Fuzzy Data Stream Learning

A couple of recent works [222], [224] in fuzzy data stream
learning are focused on developing adaptive fuzzy models that
can effectively handle concept drift in data streams. Learning
from multiple stream [20] is a crucial and challenge problem
in data stream learning, especially when streams have differ-
ent rates, arrive asynchronously, or experience delays. Streams
may vary in terms of data types, formats, and modalities. In
addition, there is an uncertain relationship between each pair of
streams. Traditional machine learning algorithms face difficulty
in addressing these challenges. Therefore, we recommend that
researchers use fuzzy techniques in future studies to tackle these
issues.

D. Fuzzy Reinforcement Learning

Recent research [233], [237] is mainly focused on integrating
fuzzy systems with RL for improved performance in complex
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and dynamic environments. Research is exploring the integra-
tion of fuzzy logic into Q-learning algorithms to handle uncer-
tainties in estimating state–action values. Furthermore, fuzzy
logic is applied to model and handle uncertain or imprecise re-
ward signals in RL. However, in multiagent RL [234], capturing
complex relationships and dependencies between agents while
maintaining a scalable and efficient learning process is a key
challenge. In addition, agents in a multiagent system may have
diverse capabilities, objectives, or learning speeds. Coordinating
heterogeneous agents and ensuring fair and effective collabora-
tion is another challenging problem. We believe that it would be a
promising direction to investigate how to apply fuzzy techniques
to address these challenges.

E. Fuzzy Recommender Systems

Fuzzy techniques are mainly used to handling imprecise user
preference descriptions (e.g., in linguistic terms), knowledge
description, and the gradual accumulation of user preference
profiles in fuzzy recommender systems [260], [264]. Cross-
domain recommendations [279], where recommendations are
made across different domains or platforms, present several chal-
lenges due to the diversity and heterogeneity between domains.
Different domains may have distinct characteristics, user behav-
iors, and item features. Moreover, there will be uncertain rela-
tionships between different domains. Applying fuzzy techniques
to address these challenges in cross-domain recommendations
is promising in future work.

IX. SUMMARY

In this article, we reviewed recent developments across the
five main research streams of FML. Our review shows that
fuzzy techniques can significantly improve machine learning
algorithms by providing a way to handle different uncertainty
situations. The main improvements are reflected in the following
five aspects: 1) enhancing the representation of the inputs;
2) improving the learning process of different machine learning
algorithms; 3) enhancing measurement accuracy and reliabil-
ity; 4) improving the accuracy of the matching function; and
5) enhancing the performance (e.g., accuracy, robustness, and
interpretability) of the output results.

In future research, several new directions in the field of FML
warrant thorough consideration; for instance, applying fuzzy
techniques to address open-set transfer learning problems, where
the target domain encompasses classes that are unknown in the
source domain. In addition, multistream learning, multiagent
RL, and cross-domain recommendations are three challenge
problems that are far from being solved. They all involve intricate
relationships and heterogeneous information, posing difficulties
for traditional machine learning algorithms. Fuzzy techniques
emerge as promising tools for investigating and addressing these
complex problems.

We believe that this survey can provide researchers with SOTA
knowledge on machine learning based on fuzzy techniques and
give a guide on future research directions in the field of FML.
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