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Semi-Supervised Fuzzy Clustering
Kamil Kmita , Katarzyna Kaczmarek-Majer , and Olgierd Hryniewicz

Abstract—Controlling the impact of partial supervision on
the outcomes of modeling is of uttermost importance in semi-
supervised fuzzy clustering. Semi-Supervised Fuzzy C-Means (SS-
FCMeans), a specific model we consider, uses a single hyperpa-
rameter called a scaling factor α to weigh the impact of partially
labeled data. This concept became widespread and was reused
directly in many works building on SSFCMeans, or even applied
to other fuzzy clustering algorithms, such as Possibilistic C-Means.
However, none of the works challenged the original interpretation
ofα, which suggests that the impact of partial supervision is directly
proportional to the scaling factor. We fill the above-mentioned
research gap and thoroughly analyze this relationship. We provide
novel explanations of the scaling factor α in terms of the key
element of fuzzy clustering—the membership values. We prove that
the impact of partial supervision is a nonlinear function of α. Our
approach is rooted in the explainability framework, which distin-
guishes interpretation from an explanation and treats the latter as
superior. Explaining the scaling factor leads to an explainable im-
pact of partial supervision and enables greater control of it. Finally,
built on the novel explanations, we propose a unified, analytically
justified framework for selecting the value of the hyperparameter
α that is based on the cross-validation approach. We illustrate that
the proposed framework enables an extensive analysis of the impact
of partial supervision in SSFCMeans with a simulation experiment.

Index Terms—Explainable artificial intelligence, Fuzzy C-Means
(FCM), fuzzy clustering, partial supervision, Possibilistic C-Means
(PCM), semi-supervised learning (SSL).

I. INTRODUCTION

s EMI-SUPERVISED learning (SSL) is often said to be
“halfway between supervised and unsupervised learning” [1,

p. 2]. Considering such a description, it does matter from which
end we look at the problem: the unsupervised or the supervised
one. Let us thus consider fuzzy clustering, one of the major
unsupervised learning tasks. The aim is to groupN unlabeled ob-
servations into c subgroups (clusters) so that observations in the
same cluster are similar to each other while being dissimilar to
observations from the other clusters. The unsupervised problem
becomes semi-supervised when new information about a part of
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M observations out of all N observations (M < N ) is obtained.
This additional information is hence called partial supervision.
In our scenario, it is given in the form of a label y ∈ {y1, . . . , yc}
denoting the class to which an observation belongs.

The class of semi-supervised fuzzy clustering (SSFC) models
adapted to handle this type of partial supervision that we regard
1) is based on the partitioning approach where the number of
clusters c ≥ 2 is fixed and 2) defines similarity as a distance
between observations and clusters’ prototypes measured by a
metric d. These models are thus referred to as to distance-based
SSFC models in the literature [2]. The fundamental design
choice of any SSFC model is how to manage the impact of
partial supervision on the results of clustering: estimated degrees
of memberships and clusters’ prototypes. One technique of
controlling the impact of partial supervision that we call the
additive combination was introduced in [3]. It relies on a special
construction of the associated objective function that combines
two components in an additive manner: the unsupervised one
and the supervised one. Pedrycz and Waletzky [3] proposed
the additive combination as an element of the Semi-Supervised
Fuzzy C-Means (SSFCMeans) model, the adaptation of the
famous unsupervised Fuzzy C-Means (FCM) described in [4].

Works in [5], [6], [7], [8], [9], [10], [11], [12], [13] extended
SSFCMeans in different ways and modified the mechanism
of handling partial supervision to various extents, but did not
change the core idea of additive combination nor its interpre-
tation. Works in [14], [15], [16], [17] wrapped SSFCMeans to
analyze data streams, primarily in the problem of monitoring
bipolar disorder. Works in [18], [19], [20], [21], [22] explored
safe semi-supervised clustering aiming at handling mislabeled
instances (label errors). Kmita et al. [23] developed a procedure
to estimate the uncertainty of labels resulting from an indirect
annotation process. Last but not least, the very idea of the
additive combination was applied to unsupervised fuzzy clus-
tering models alternative to FCM. These include Possibilistic
C-Means (PCM) proposed in [24], and a mixture of FCM and
PCM called Possibilistic Fuzzy C-Means (PFCM) [25]. The core
unsupervised models, FCM and PCM differ in the implementa-
tion and interpretation of the soft assignment mechanism. PCM,
just like FCM, was studied and modified by many researchers,
including [26] who proposed repulsive PCM. A semi-supervised
version of repulsive PCM was proposed in [27], and a semi-
supervised adaptation of PFCM was described in [28].

All the aforementioned SSFC models share the same way of
controlling the impact of partial supervision formulated origi-
nally in [3], although it may not be phrased directly (as different
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naming conventions are used). This impact is controlled with
a single hyperparameter of the algorithm that we call a scaling
factor after [3] and denote it with α. Pedrycz and Waletzky
described the role of this hyperparameter α “(...) is to maintain
a balance between the supervised and unsupervised component
within the optimization mechanism” [3, p. 789]. They did not
quantify the impact nor discuss the relationship between the
value ofα and the key outcome of the SSFCMeans algorithm: the
degrees of membership, and none of the positions in the literature
that reused the additive combination technique in the sense of
Pedrycz and Waletzky’s [3] work explained this relationship
either.

The main contribution of this work is to comprehensively
explain the role of the scaling factor α in SSFC because the
existing descriptions can be treated only as interpretations of it.
The distinction between these two terms is receiving close atten-
tion in statistical learning [29], [30], [31], with an explanation
perceived as superior to an interpretation. We also postulate to
unambiguously quantify the impact of partial supervision in the
form of a function of α denoted as IPS(α).

Explainable models are especially important in healthcare
data modeling, and are often referred to as eXplainable AI; such
models enable the comprehension of the reasoning underlying
the predictions that they produce. The motivation for this work
arose also from the previous work of the authors [23], where
a procedure called confidence path regularization (CPR) was
proposed. This procedure wrapped the SSFCMeans model to
estimate label uncertainty in the semi-supervised problem of
monitoring the health status of patients diagnosed with bipolar
disorder. The scaling factor α is of key importance for this
procedure, and considerations on the topic of CPR led to the
conclusion that existing descriptions of α were not sufficient for
the improvements of the whole procedure.

In this article, we fill the identified research gap and explain
the impact of partial supervision in two core SSFC models. First,
we study the aforementioned SSFCMeans model. The second
model we investigate is called Semi-Supervised Possibilistic
C-Means (SSPCMeans). We create it by applying the additive
combination technique to introduce partial supervision to the
classical PCM. SSFCMeans and SSPCMeans differ in the im-
plementation of the soft assignment; hence, the explanation of
the scaling factor will differ as well. Our explanations apply to
any model extending either SSFCMeans or SSPCMeans.

The rest of this article is organized as follows. In Section II,
we discuss preliminaries of SSFC. We present the additive
combination technique, SSFCMeans, and SSPCMeans models
in detail. In Section III, we formalize a difference between
an interpretation and an explanation and provide two novel
explanations of the scaling factorα. Section IV is focused on the
practical considerations stemming from the novel quantification
of the impact of partial supervision. Finally, Section V concludes
this article.

II. SEMI-SUPERVISED FUZZY CLUSTERING PRELIMINARIES

We now introduce basic definitions related to the SSFC.
Let j denote any observation (unsupervised or supervised),

j = 1, . . . , N , and k denote a given cluster, k = 1, . . . , c. In ad-
dition to these indices, partial supervision requires to distinguish
between 1) supervised observations indexed by i = 1, . . . ,M
and 2) unsupervised observations indexed by h = 1, . . . , H . A
jth observation is represented by ap−dimensional feature vector
xj ∈ Rp, and a kth cluster is represented by a p−dimensional
vector vk ∈ Rp called a prototype of the cluster. In the rest of
this article, d means the Euclidean distance.

The soft assignment of jth observation to kth cluster is usually
expressed by a membershipujk ∈ [0, 1]. This convention is used
in FCM and all models building on it. However, PCM uses
a typicality tjk ∈ [0, 1] convention to stress the fact that the
interpretation of the soft assignment in PCM differs from the
one used in FCM. For a cohesive presentation, we express a
general concept of the soft assignment common for all SSFC
models by memberships ujk when the specific details do not
affect the overall reasoning.

The partial information itself is expressed in the form of a
prior memberships matrix F = [fjk] of the same dimension as
memberships matrix U . Every cluster represented by a specific
column of matrix F must be arbitrarily associated with a single
class. To this end, we create a c−tuple Y = 〈y1, . . . , yc〉 out of
the set {y1, . . . , yc} and associate kth column inF with kth label
yk fromY . We definefjk as binary entries such that fjk = 1only
if jth observation is known to belong to kth cluster (associated
with the yk label); otherwise fjk is equal to 0. An unsupervised
observationhhas all prior membershipsfhk = 0 ∀k. Frequently,
an auxiliary variable bj is used; bj = 1 iff jth observation is
supervised. In our scenario, bj =

∑c
k=1 fjk, hence one could

question if this variable is indeed necessary. The choice whether
to use bj and how to include it in the model is a matter of subtle
consequences that we discuss introducing relevant models in the
remainder of this section.

With partial supervision introduced in SSFC, a need occurs
for supervised observations to distinguish between their mem-
bership degrees to “unsupervised” and “supervised” cluster.
By “supervised cluster” we mean “the cluster associated with
the class yk that the observation is known to belong to.” To
retrieve this cluster, we define a function s(i) ∈ {1, . . . , c}
that selects the index of the cluster associated with the ith
supervised observation’s class, i.e., fik = 1 iff k = s(i). Fur-
ther on, we discuss three distinct types of memberships as
follows.

1) uhk membership of an unsupervised observation h to any
cluster k.

2) ui,k �=s(i) membership of a supervised observation i to any
nonsupervised cluster.

3) ui,s(i) membership of a supervised observation i to the
supervised cluster s(i).

A. Additive Combination Technique

Since SSFC models modify the core unsupervised fuzzy
clustering models, we introduce the additive combination tech-
nique by first considering a general form of unsupervised fuzzy
clustering model parameterized by hyperparameters gathered in
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Θ. The optimization problem is formulated as

arg min
U,V

Q(U, V ;X,Θ) (1)

where Q is the objective function, U = [ujk]N×c is a mem-
berships matrix, V = [vk]c×p is a prototypes matrix, and X =
[xj ]N×p is a features matrix. SSFC models adapt the min-
imization problem from (1) by combining the unsupervised
objective functionQwith its counterpartQS , which incorporates
the partial supervision (hence the name additive combination),
arriving at

J(U, V ;X,F,Θ) = Q(U, V ;X,Θ)︸ ︷︷ ︸
unsupervised comp.

+α ·QS(U, V ;X,F,Θ)︸ ︷︷ ︸
supervised comp.

(2)
where α > 0 is the scaling factor that controls the impact of
partial supervision. Specific hyperparameters gathered in Θ
differ by models, yet one hyperparameter is common for all
of them. It is the “fuzzifier” m > 1 that controls the fuzziness
of the soft assignments. Bezdek et al. [4, p. 70] described it as
“the larger m is, the fuzzier are the membership assignments.”
In this article, we use the specific value m = 2. The justification
is provided in [3, p. 789]: any value of m �= 2 would result in
a situation where the variables optimized were linked together
in the form of a polynomial and numerical procedures would be
needed to solve its roots.

In general, finding optimal (U�, V �) per (1) is intractable and
approximation algorithms are often used. A typical optimization
procedure for fuzzy clustering is described in [32]. It relies on
fixing one variable and optimizing the other at a time. Such an
iterative procedure is performed until a convergence criterion
is met. The formulae for two variables Û and V̂ are obtained
by studying first-order necessary conditions for a global mini-
mizer (U�, V �) of a respective objective function. SSFC models
can follow the same optimization procedure as long as func-
tions J(U) = J(U ;V,X, F,Θ) and J(V ) = J(V ;U,X, F,Θ)
remain convex. Indeed, this is the case for the functions JSSFCM

and JSSPCM introduced in the rest of this section.
The two models we discuss, SSFCMeans and SSPCMeans,

draw heavily from those introduced in [3] and [27], respec-
tively. Our subtle yet important modifications are discussed in
Sections II-B and II-C. Whenever we present original equations
from the referenced articles, we adapt them to follow the nomen-
clature introduced in this section. We annotate all formulae
from [3] with subscript (or superscript) P97.

B. Semi-Supervised Fuzzy C-Means

The objective function JSSFCM(U, V ;X,F,Θ) proposed in
this article has a form

JSSFCM =

c∑
k=1

N∑
j=1

u2
jkd

2
jk + α

c∑
k=1

N∑
j=1

bj(ujk − fjk)
2d2jk (3)

where the first component corresponds to the objective func-
tion QFCM of the classical unsupervised FCM model described
in [32]. The minimization problem to solve is thus

argmin
U,V

JSSFCM(U, V ;X,F,Θ) (4a)

s.t.
c∑

k=1

ujk = 1 ∀j = 1, . . . , N (4b)

0 <

N∑
j=1

ujk < N ∀k = 1, . . . , c (4c)

ujk ∈ [0, 1] (4d)

where constraints (4b), (4c), (4d) are the same as in unsupervised
FCM. In the following, we present the objective function JP97

from [3, Eq. (2)]:

JP97 =
c∑

k=1

N∑
j=1

u2
jkd

2
jk + α

c∑
k=1

N∑
j=1

(ujk − bj · fjk)2d2jk. (5)

As opposed to JSSFCM (3) proposed in this article, it was only fjk
that was multiplied by bj , not the entire expression (ujk − fjk)

2.
Pedrycz and Waletzky [3] presented in detail a solution to (4)
w.r.t U—but using JP97, not JSSFCM.

We applied the same analysis as presented in [3], but for the
objective function JSSFCM (3) proposed in this article, obtaining
the formula for the optimal membership

ûjk =
1 + α

(
bj − bj

∑c
g=1 fjg

)
1 + αbj

ejk +
αbj

1 + αbj
fjk. (6)

We do not present full derivation, referring the reader interested
in details to [3]. An important part of (6) is

e(xj , V, k) = ejk =
1∑c

g=1 d
2
jk/d

2
jg

=

( c∑
g=1

d2(xj ,vk)

d2(xj ,vg)

)−1

(7)
that we call the data evidence. Note that the data evidence ejk is a
function of the feature’s vector xj , the prototypes, and the index
of the cluster considered. Consequently, the membership ujk (6)
is also a function ujk = u(xj , V, k, α), but the notation ujk is
used for brevity. Let us now apply the generic formula from (6)
to distinct types of the membership ûhk, ûi,k �=s(i), ûi,s(i). First,
consider an unsupervised observation h. In such case, bh = 0
and fhg = 0 ∀g. Then, (6) simplifies to

ûhk =
1 + α (0− 0)

1 + α · 0 · ehk +
α

1 + α · 0 · 0 = ehk. (8)

For the unsupervised observation, there is no direct impact of
partial supervision on the value of the membership. It depends
only on the data evidence, just as in FCM [32, p. 66].

Investigating ith supervised observation and its memberships,
we first consider a degree of membership to any nonsupervised
cluster k �= s(i)

ûi,k �=s(i) =
1

1 + α
· ei,k �=s(i). (9)

The data evidence ei,k �=s(i) is decreased by the factor of 1
1+α .

It is a desired result of the partial supervision mechanism. Even
if the data evidence were to support the belonging of the ith
observation to the k �= s(i) cluster, the additional information
we possess would decrease this membership.
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The aforementioned equations clarify the mechanism of the
SSFCMeans, but it is the membership of the supervised obser-
vation i to the supervised cluster s(i) that is of major interest

ûi,s(i) =
1

1 + α
· ei,s(i) + α

1 + α
. (10)

We can observe that it includes a data-invariant component
α

(1+α) that depends only on the value of the scaling factor.

We now recall the formula for the optimal membership ûP97
jk

presented in [3, p. 789] without equation number as

ûP97
jk =

1 + α
(
1− bj

∑c
g=1 fjg

)
1 + α

ejk +
α

1 + α
(bjfjk) . (11)

While (11) differs from (6), the distinct types of memberships
ûP97
hk , ûP97

i,k �=s(i)û
P97
i,s(i) do not differ from their counterparts derived

from JSSFCM and presented in (8), (9), (10). We leave the simple
calculus confirming this statement to the reader and state that the
difference between JSSFCM and JP97 does not result in different
estimated memberships. However, this difference between the
objective functions affects estimated prototypes V̂ . Let us note
that [3] did not permit partial supervision to influence clusters’
prototypes, associating V̂ P97 with formulae from unsupervised
FCM. Therefore, to present the effect of treating bj differently
in JSSFCM and JP97, we derive V̂ from scratch. Let us define

JSSFCM(vk) =

c∑
k=1

N∑
j=1

(
u2
jk + αbj(ujk − fjk)

2
) ‖xj − vk‖2

=

c∑
k=1

N∑
j=1

φjk‖xj − vk‖2 (12)

where φjk = u2
jk + αbj(ujk − fjk)

2 is called an individual
contribution. We now find the stationary point of JSSFCM(vk),
by setting ∂JSSFCM(vk)/∂vk = −2

∑N
j=1 φjk(xj − vk) to 0,

and obtain

v̂k =

∑N
j=1(φjk · xj)∑N

j=1 φjk

. (13)

Optimizing JP97(vk), one would arrive at the similar equation
to (13), but instead of individual contributions φjk, there would
be ωjk = u2

jk + α · (ujk − bj · fjk)2. Let us compare the form
of individual contribution φjk and ωjk in three distinct types of
the soft assignment

φhk = u2
hk (14a)

φi,k �=s(i) = (1 + α)u2
i,k �=s(i) (14b)

φi,s(i) = u2
i,s(i) + α(ui,s(i) − 1)2 (14c)

and

ωhk = (1 + α)u2
hk (15a)

ωi,k �=s(i) = (1 + α)u2
i,k �=s(i) (15b)

ωi,s(i) = u2
i,s(i) + α(ui,s(i) − 1)2. (15c)

In the case of v̂P97
k , the individual contribution of the unsuper-

vised observation ωhk is the same as the contribution of the
supervised ωi,k �=s(i). It is undesired and does not occur in the
case of φhk and φi,k �=s(i). Note that in SSFCMeans, uhk is not
impacted by the scaling factor α in any way, and this is why we
postulate the same for v̂k when considering a contribution of
the unsupervised observation h.

C. Semi-Supervised Possibilistic C-Means

We now apply the additive combination technique from (2) to
introduce partial supervision to PCM. The idea of PCM comes
from a relaxation of the probabilistic constraint in FCM pre-
sented in (4b). To avoid a trivial solution where each membership
was estimated to be 0, a special form of the objective function
was proposed in [24]

QPCM(T, V ;X,Θ) =
c∑

k=1

N∑
j=1

tmjkd
2
jk +

c∑
k=1

γk

N∑
j=1

(1− tjk)
m

(16)
where T = [tjk] is a typicalities matrix, and vector Γ =
(γ1, . . . , γc)

T contains cluster-specific scalars γk > 0. Note
that [24, p. 101] allowedm ∈ (1,∞), but recall that in this article
we set m = 2.

The supervised component QS
SSPCM that we propose is the

same as in [27]

QS
SSPCM(T, V ;X,F,Θ) =

c∑
k=1

N∑
j=1

bj · (tjk − fjk)
2 · d2jk.

(17)
Since we regard classical approaches in this article, we propose
to combine (17) with (16) to obtain the objective function

JSSPCM(T, V ;X,F,Θ) = QPCM(T, V ;X,Θ)

+ α ·QS
SSPCM(T, V ;X,F,Θ). (18)

The minimization problem is

argmin
T,V

JSSPCM(T, V ;X,F,Θ) (19a)

s.t. 0 <

N∑
j=1

tjk < N ∀k = 1, . . . , c (19b)

tjk ∈ [0, 1] (19c)

where the constraints (19b) and (19c) are the same as in the
unsupervised PCM.

Compared with our approach, Antoine et al. [27] combined
(17) with the objective function of repulsive PCM, defined as

QRPCM(T, V ;X,Θ) = QPCM +

c∑
k=1

ηk
∑
l �=k

1

‖vk − vl‖2
. (20)

However, since the objective functions (16) and (20) include
tjk in the same way, the formula for the optimal typicality in
SSPCMeans is thus the same as derived in [27] and presents as

t̂jk =
γk + α · bj · d2jk · fjk
γk + (α · bj + 1)d2jk

. (21)
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Considering distinct types of t̂jk

t̂hk =
γk

γk + d2hk
(22a)

t̂i,k �=s(i) =
γk �=s(i)

γk �=s(i) + (α+ 1) · d2i,k �=s(i)

(22b)

t̂i,s(i) =
γs(i) + α · d2i,s(i)

γs(i) + (α+ 1) · d2i,s(i)
. (22c)

The optimal cluster’s prototype in our SSPCMeans differs
from [27], because (16) and (20) differ in treating V , and has a
form

v̂k =

∑N
j=1

(
t2jk + αbj(tjk − fjk)

2

)
· xj∑N

j=1 t
2
jk + αbj(tjk − fjk)2

(23)

where derivation is analogous to the one presented for
SSFCMeans in the previous section.

III. EXPLANATIONS OF THE SCALING FACTOR α

Despite a wealth of literature spanning over 30 years on
the topic of SSFC, surprisingly little attention was paid to the
sound understanding of the scaling factor α. One of the main
contributions of this article is that we systematically reviewed
existing descriptions of the scaling factor [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [27], [28] and concluded that these are highly
alike and do not challenge the core meaning of the interpretation
of the scaling factor α provided by Pedrycz and Waletzky [3].
Therefore, we treat the interpretation from [3] as canonical and
formulate

Interpretation 1: The role of the scaling factorα is to maintain
a balance between the supervised and unsupervised components
within the optimization mechanism.

A critical issue with Interpretation 1 is that the scaling factor
α is considered only in the context of the objective function.
We thus extend this definition and provide a discussion about a
connection between the scaling factor and the outcome of the
model, i.e., the estimated memberships matrix Û .

Furthermore, the descriptions of the scaling factor α in the
literature are imprecise and inconsistent. In the following, we
list selected citations that use naming conventions different than
Interpretation 1:
� “α be proportional to the rate N/M” [3, p. 788];
� “α parameter is set in such a way that two terms of the

objective function have the same importance” [33, p. 57];
� “β is the impact intensity of the semi-supervised compo-

nent” [13, p. 671];
� “where λ is the ratio of labeled sample points in the data

sample” [11, p. 135];
� “where λ1 and λ2 are the regularization parameters which

control the tradeoff between FCM and SSFCM” [22,
p. 387].

The terms “balance,”, “intensity,” or “tradeoff” may implicate
the proportional impact of the scaling factor α on the outcomes
of the model, but do not have to. There are no clear statements

about the functional character of the impact in the corresponding
articles. Only Pedrycz and Waletzky [3] used the word “propor-
tional” directly, but they use it to establish α as a function of the
data (the number of labeled observations), not to discuss how
much α impacts the outcomes of modeling (regardless of the
data).

The aforementioned problems lead to inconsistent processes
of selecting the value of the hyperparameter α that are not
justified analytically. The importance of the scaling factor α
is clearly seen in (2). Regardless of the functional form of Q or
QS , the role of α is the same. It clearly impacts the estimated
variables Û and V̂ .

A. Differences Between Interpretation and Explanation

To distinguish between an interpretation and an explanation,
we propose the following three criteria that an explanation of
the scaling factor α must satisfy.

(C1) Interpretability.
(C2) Completeness.
(C3) Quantification.
Any description that satisfies criterion (C1) and one more

criterion (C1 or C2), but not all three criteria, is considered an
interpretation. Gilpin et al. [30] provided two criteria for evalu-
ating explanations: interpretability and completeness, which are
referred to as (C1) and (C2) in this article. Criterion (C3) is our
additional requirement specific for the scaling factor α: we want
to express the impact of partial supervision as a function IPS(α).

Let us now elaborate on how to check criteria (C1)–(C3)
for a given description of the scaling factor α. For (C1) inter-
pretability, Broniatowski [29] states that “an interpretable model
should provide users with a description of what a stimulus (a data
point or model’s output) means in context.” Regarding SSFC,
the scaling factor α is the stimulus we require to be put in a
context. Moreover, it does not suffice to provide any context as an
interpretable description should be “understandable to humans”
[30].

(C2) completeness is satisfied when a description of the
system’s operation is accurate [30]. We associate this criterion
with a proposition from [29] “an explanation of a model result
is a description of how a model’s outcomes came to be.” Note
that in the case of SSFC, the key outcome of the model is the
estimated memberships matrix Û . Taking all the aforementioned
into account, we require a complete description of the scaling
factor α to describe in an accurate way the relationship between
α and Û .

Finally, criterion (C3) quantification stems from the need to
numerically assess the difference between an impact of different
α1 and α2, α1 �= α2 values on the results of SSFC model. Ex-
plainable impact of partial supervision must associate a function
IPS(α) that allows calculation of a difference IPS(α1)–IPS(α2).

B. Explanation of the Scaling Factor α in SSFCMeans

It is clearly shown in (10) that for ûi,s(i), regardless of the
data evidence, we are guaranteed that

ûi,s(i) >
α

1 + α
. (24)
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We propose to call the quantity α
1+α the Absolute Lower Bound

to stress its nature. To the best of our knowledge, the absolute
lower bound has not been discussed in the literature so far even
though it is a straightforward conclusion that stems from well-
known equations and may significantly impact the outcomes of
the model. Let us now formulate an explanation of the impact
of partial supervision in SSFCMeans.

Explanation 1 (IPS in SSFCMeans): The scaling factor α
quantifies the impact of partial supervision as IPS(α)= α

1+α , and
establishes an absolute lower bound for a membership of a su-
pervised observation to the supervised cluster ui,s(i) > IPS(α).

C. Explanation of the Scaling Factor α in SSPCMeans

Let us first consider an interpretation of the hyperparameter
γk provided in [24].

Interpretation 2: The value of γk determines the distance at
which the typicality value of a point in a cluster becomes 0.5.

It comes from the fact that if we consider a distanced2hk := γk,
then for the typicality in unsupervised PCM (22a)

thk =
γk

γk + d2hk

d2
hk:=γk
=

γk
γk + γk

= 0.5. (25)

With the aim of providing an explanation of the scaling
factor α in SSPCMeans, we will make a similar assumption and
study the difference between: (I) a possibility of a supervised
observation to the supervised cluster ti,s(i) from (22c) and (II) a
possibility of unsupervised observation to any cluster thk from
(22a).

Let us consider arbitrary observation a and arbitrary cluster
b. First, assume t(I)ab is unsupervised typicality to any cluster, as
in (22a). We know that if we set γb := d2ab, then the typicality

t
(I)
ab is 0.5.

Suppose that we obtain the label of observation a so it be-
comes supervised, and b = s(a) happens to be the supervised
cluster. Therefore, the typicality value takes form from (22c),
and assuming d2ab = γb

t
(II)
ab

d2
ab:=γb
=

γb + αγb
γb + (α+ 1)γb

=
1 + α

2 + α
. (26)

Note that the only change includes the value of typicality t(II)
ab :

this is still the same observation a, the same cluster b, the same
hyperparameter γb, and the same fixed distance d2ab. Therefore,
we can quantify the impact of partial supervision

IPS(α) = t
(II)
ab − t

(I)
ab =

1 + α

2 + α
− 1

2
=

α

2(2 + α)
. (27)

We can now propose an explanation of the scaling factor α.
Explanation 2 (IPS in SSPCMeans): In the supervised case,

the scaling factorα increases the typicality of a supervised obser-
vation to the supervised cluster ti,s(i) by IPS(α)= α

2(2+α) for the
same distance γs(i) at which the typicality in the unsupervised
case was equal 0.5.

D. Checking the Criteria

Table I contains a comparison of the Interpretation 1 with
two new explanations of the scaling factor α proposed in this

TABLE I
COMPARISON OF THE INTERPRETATION 1 OF THE SCALING FACTOR α WITH

TWO NOVEL EXPLANATIONS PROPOSED

article with respect to criteria (C1)–(C3). First and foremost, all
the descriptions considered in Table I meet the criterion (C1)
interpretability. They put the role of the scaling factor α in
a broader context of the model in a “human understandable”
language.

Regarding the criterion (C2) completeness, let us recall that
Interpretation 1 relates α with the objective function. The im-
plicit statement “(...) a balance between the supervised and
unsupervised component (...)” [3, p. 789] means in fact “a
balance between the supervised and unsupervised component
of the objective function.” It is unclear from this interpretation
how the outcome Û of the SSFCMeans model came to be since
Interpretation 1 does not relate α to the variable ûjk. On the
contrary, both Explanation 1 (SSFCMeans) and Explanation 2
(SSPCMeans) explain the scaling factor α in terms of its impact
on the soft assignment variables by precise referral to the mod-
els’ mechanisms. Explanation 1 relates IPS to the membership
of a supervised observation to the supervised cluster ui,s(i), and
Explanation 2 discusses IPS in terms of a difference between
the supervised typicality ti,s(i) and the typicality as if the obser-
vation was treated as unsupervised.

Regarding the criterion (C3) quantification, Pedrycz and
Waletzky [3] suggested that the value of α should be set to the
rate M/N , relating it to the data. We enhance this proposition
and express it in terms of the impact of partial supervision as a
function IPSP97(α) = α. Nonetheless, we show that the impact
of partial supervision is not directly proportional to α.

IV. PRACTICAL CONSIDERATIONS

In the preceding sections, our analyses have contributed to
the establishment of theoretically sound explanations regarding
the impact of partial supervision in SSFC. In the context of
SSFCMeans and SSPCMeans models, this impact is regulated
by the scaling factor α. Despite the provided explanations,
practical questions arise: which values of α should be used?
How can one empirically assess the impact of partial supervision
when fitting the model to the data? In this section, we build on the
results from the preceding analyses and delve into these specific
practical considerations.

The source code for reproducible simulations described in
Section IV-B is publicly available on CodeOcean [34]. In the
absence of open-source implementations of SSFCMeans, we
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Fig. 1. Impact of partial supervision IPS(α) for α ∈ [0, 5] for both SS-
FCMeans and SSPCMeans. The IPS(α) for SSFCMeans is shown as a solid
blue line, and the corresponding derivative is shown as a dotted blue line. The
IPS(α) for SSPCMeans is shown as a dashed red line, and the corresponding
derivative is shown as a red dash-dotted line.

implemented it in R language from scratch and made it publicly
available on GitHub.1

A. Constructing Cross-Validation Grids

A standard practice for selecting the value of a hyperparameter
of any model is to cross-validate (CV) it, i.e., to create aK−tuple
ofK different values to be checked (called a grid), fit a model for
each value, and finally find the best model with respect to some
criterion; the selected value of the hyperparameter is the one
associated with the best model. In the SSFC domain, a common
CV approach is to select a few α values that divide the search
space roughly equally.

For instance, Bouchachia and Pedrycz [8] tried gridB =
〈0.3, 0.5, 0.7, 0.9, 1〉, whereas Antoine et al. [28] tried gridA =
〈0.01, 0.05, 0.1, 0.5, 1〉. These CV grids cover the space of α
values, since they implicitly follow Interpretation 1 and the
associated proportionality assumption that was expressed as
IPSP97(α) = α. Such a function has a significant analytical
disadvantage: it is bounded only from below. Theoretically,
using Interpretation 1, one could think about increasing the
value of α infinitely, expecting that each increase in α will
result in the directly proportional increase of the impact of
partial supervision. In practice, none of the works reviewed
in Section III analyzed this issue, and a maximum value of α
considered in CV rarely exceeds 1 (as can be seen in gridA and
gridB).

On the contrary, IPS(α) functions for both Explanations 1
and 2 do not suffer from such problems. They are nonlinear,
monotonically increasing functions of α bounded from up and
below. Their properties enable an analytically justified procedure
tailored to creating CV grids for α in SSFC. One can analyze
the derivative IPS’(α) and decide on a point where the decrease
in IPS becomes negligible. We call this point a β boundary.
Fig. 1 presents IPS functions together with derivatives IPS’
= ∂IPS/∂α for SSFCMeans and SSPCMeans models. Fig. 2
contains the proposed Algorithm for selecting the α grid based
on β boundary.

1[Online]. Available: https://github.com/ITPsychiatry/ssfclust

Fig. 2. Algorithm for establishing cross-validation grid for α.

Let us construct an exemplary CV grid for the SSFCMeans
model that we call gridIPS. Examining Fig. 1, one can decide
on a boundary IPS’=β beyond which the increase in IPS is
negligible. Since in SSFCMeans IPS(α) = α

1+α , we arrive at the
equation

∂IPS
∂α

(αβ) =
1

(1 + αβ)2
= β (28)

with αβ corresponding to the chosen boundary being

αβ = β−1/2 − 1. (29)

Let us set β = 0.2, and according to (29), a corre-
sponding α0.2 ≈ 1.24. Further on, we calculate IPS(α0.2) ≈
0.55. For a five-fold CV, a single step is equal to 0.55

5 =
0.11, so that gridIPS(IPS(α)) = 〈0.11, 0.22, 0.33, 0.44, 0.55〉.
Translating this in terms of α, the final gridIPS(α) =
〈0.12, 0.28, 0.49, 0.79, 1.22〉.

B. Empirical Impact of Partial Supervision

When working with data, a need frequently occurs to ascertain
how the introduction of partial supervision alters the outcomes
of modeling a given dataset when contrasted with lack of su-
pervision, or when the impact of partial supervision is reduced
by a certain factor (e.g., two-fold). We call it the analysis of the
empirical impact of partial supervision, as it depends not only on
the theoretical explanations but also on the specific data patterns.
In the context of the SSFCMeans model, we postulate that
the examination of the distribution of supervised memberships
{ui,s(i)}i=1,...,M

is not the optimal choice albeit an intuitive one.
This is due to the combined theoretical and empirical nature of
ui,s(i) from (10). Denoting this membership in the functional
convention, we obtain

ui,s(i) = u (xi, V, k = s(i), α)

=
1

1 + α
· e (xi, V, k = s(i)) +

α

1 + α
. (30)

It is the data evidence ei,s(i) that contains the truly empirical
impact of the partial supervision, as it is the direct function of
the data. Therefore, analysis of the distribution {ei,s(i)} enables
a direct investigation of the extent to which the impact of partial
supervision affected the prototypes, and consequently, the rela-
tive distances between the observation and these prototypes in a

https://github.com/ITPsychiatry/ssfclust
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Fig. 3. Example of a single simulated features matrix X[300,2]. The orange
triangles represent data points belonging to class y1, the red diamonds represent
data points belonging to class y2, and the blue circles represent data points
belonging to class y3.

given model. Let us now illustrate the aforementioned approach
in a concrete data analysis scenario. We consider a three-class
semi-supervised problem, i.e., Y = 〈y1, y2, y3〉. The data are
simulated in a nested loop. The outer loop consists of sampling
100 observations for each class from a 2-D Gaussian distribution
N2(μk,Σk), where μ1 = (5, 5)T , μ2 = (7, 7)T , μ3 = (9, 9)T ,
and Σ1 = Σ2 = Σ3 = diag(5, 5). Each kth distribution is as-
sociated with the kth class. Such a procedure yields spherical,
overlapping clusters, which are hardly separable. An outcome
of this outer loop is a features matrix X[300,2]. Fig. 3 presents
an example of such a matrix with colors and shapes denoting
the classes of observations. An inner loop relies on randomly
selecting 15% observations from each class that will remain
supervised (leading to 45 observations treated as supervised in
each simulated dataset). We performed ten outer loops with ten
inner loops for each simulated X , arriving at 100 simulation
runs.

We now build CV grids. Specifically, we compare a proposi-
tion from the literature gridB(α) = 〈0.3, 0.5, 0.7, 0.9, 1〉 [8]
with gridIPS(α) = 〈0.12, 0.28, 0.49, 0.79, 1.22〉 that we con-
structed based on the Algorithm from Fig. 2 proposed in this
work. The results for these grids are presented against a dense
reference gridref composed of 50 α values dividing the interval
[0, 1.5] equally (the equivalent interval expressed in terms of
IPS(α) is [0, 0.6]). Owing to gridref, we can observe a global
pattern that one typically does not examine due to time and
computational resource constraints.

Fig. 4 presents the summary of the results of fitting the
SSFCMeans model to the data from each simulation run r =
1, . . . , 100 for each α from the respective grid. We present the
total median e(α)

e(α) = Me
({

eα,r=1
1,s(1) , e

α,r=2
1,s(1) , . . . , e

α,r=1
45,s(45), . . . , e

α,r=100
45,s(45)

})
(31)

together with the interquartile range (IQR). For the range
IPS(α) ∈ [0, 0.25], e(α) is growing approximately proportion-
ally to α

1+α , which confirms the theoretical quantification of
the impact of partial supervision. Starting at IPS(α) ≈ 0.25, the

Fig. 4. Simulation results for e(α) presented against IPS(α). Solid black lines
represent Q1 and Q3 for gridref, the gray area represents IQR, and white line
represents total median. Red crosses represent total medians for gridIPS, and
blue pluses represent total medians for gridB. The black dotted line corresponds
to IPS(α) = α

1+α .

TABLE II
MEAN ESTIMATED CLUSTERS’ PROTOTYPES TOGETHER WITH THE STANDARD

DEVIATIONS (IN BRACKETS) FOR SELECTED VALUES OF α

total median reaches the value of ≈ 0.55 and remains stable
regardless of the increasing IPS(α). The exact results—in the
form of pairs (IPS(α), e(α))—present as: (0.12, 0.38), (0.28,
0.54), (0.49, 0.57), (0.79, 0.57), (1.22, 0.57) for gridIPS and (0.3,
0.54), (0.5, 0.57), (0.7, 0.57), (0.9, 0.57), (1, 0.57) for gridB.

The growth of ē(α) described previously is associated with
the increasing quality of true clusters’ prototypes estimation.
Table II presents mean estimated prototypes coordinates V̂1 and
V̂2 together with their standard deviations for models for three
values of IPS(α): 0 denoting no supervision at all, 0.12 and 0.28
being two first entries from gridIPS that enable to grasp the trends
in simulation results described previously. The total median
ē(α) reaches a plateau at approximately IPS(α) = 0.28, since
the SSFCMeans already identified the true clusters’ prototypes.
The model cannot result in higher median data evidence ei,s(i)
despite the increasing impact of partial supervision due to the
noise in the data. This is an example of the empirical impact of
partial supervision deviating from the theoretical one. Finally,
let us note the differences between gridIPS and gridB . The former
splits the IPS(α) space in equal intervals and allows to identify
a changing trend in the behavior of e(α) as compared with the
latter, which covers a narrower interval of IPS(α). This specific
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TABLE III
DATA FOR EXEMPLARY CPR PROCEDURE, α = 2

simulation scenario confirms the need for the analytically justi-
fied creation of CV grids presented in the Algorithm from Fig. 2.

C. Estimating Label Uncertainty

In the previous section, we knew the process generating the
data, hence the obtained labels yi were certain. In practice,
this process is typically unknown, therefore the certainty of the
labels may be questioned. Pedrycz and Waletzky [3] proposed
to handle this situation by incorporating a confidence factor
confj ∈ [0, 1] to the objective function of SSFCMeans. How-
ever, their approach requires assessing the uncertainty upfront.
Frequently, such knowledge is not available, especially when
the data annotation process is a complex one [23].

To overcome this problem, Kmita [23] proposed the CPR pro-
cedure to estimate the adjusted confidence factor conf�i from the
data. CPR wraps SSFCMeans, implementing the regularization
assumption: highly certain supervised observations should be
consistently assigned high ui,s(i) across varying values of confi.
A path of r = 1, . . . , R models is fitted, each decreasing the
default α uniformly for all observations by confi = regr ∀i. The
adjusted conf�i for ith observation is then obtained as a weighted
summary of the memberships from R models

conf�i =
1∑R

r=1 wr

·
R∑

r=1

ur
i,s(i)wr (32)

where weights wr compensate for the decreased αr = α · regr.
Kmita et al. [23] proposed to use the proportionality rule, i.e., set
wr = 1

regr
.The first four columns of Table III contain exemplary

data required to calculate conf�i in a CPR procedure composed
of R = 3 steps.

Note that the aforementioned procedure is implicitly based on
Interpretation 1 quantifying the impact of partial supervision as
IPSP97(α) = α, and hence may lead to inaccurate conclusions.
For the example from Table III, the adjusted conf�i = 0.43, and
we conclude that this ith observation is not the most certain
labeled observation, but definitely not the least certain one.
However, if we focus on the information contained in two last
columns of Table III, we clearly see that the aforementioned
conclusion is inaccurate, as the data evidence is extremely low;
this labeled observation should be thus considered as highly un-
certain. This exemplary problem shows potential issues resulting
from the use of incorrect quantification of the impact of partial
supervision and motivates the introduction of explainability
framework into the procedures such as CPR.

V. CONCLUSION

The scaling factor α weighs the impact of partial supervision
in SSFC and thus has a substantial effect on the estimated
memberships and clusters’ prototypes. All the models building
on the additive combination technique introduced in [3], ranging
from semi-supervised adaptations of PFCM [28] to complex
workflows that wrap the SSFCMeans model [23], share the same
mechanism of regulating the impact of partial supervision by
means of the scaling factor α.

We reviewed the existing interpretations of α and its rela-
tionship with the impact of partial supervision and concluded
that these interpretations are imprecise. They lack completeness,
since they interpret α only in terms of the objective function, not
the membership degrees. They also suggest a directly propor-
tional relationship between the impact of partial supervision on
the memberships and the scaling factor, which we prove to be
nonlinear.

Therefore, in this article, we introduced model-specific ex-
planations of the scaling factor α for both SSFCMeans and
SSPCMeans that overcome the aforementioned limitations.
They fulfill the three necessary criteria of an explanation (inter-
pretability, completeness, and quantification) that we proposed
based on the discussions on the explainability framework [29],
[30], [31]. Each explanation defines an associated function
IPS(α) that quantifies the impact of partial supervision on the
memberships.

The benefits of using our novel explanations are substantial.
Not only do the explanations clarify the role of α, but also
prove its impact to be a nonlinear bounded function of α.
This enables analytically justified procedures for selecting the
value of α to use, such as building cross-validation grids based
on IPS functions proposed in the Algorithm from Fig. 2. We
also discussed the differences between theoretical and empirical
impact of partial supervision, providing a simulation example
to illustrate them. Explanation 1 is of particular importance for
procedures that estimate label uncertainty such as CPR [23]. The
concepts of absolute lower bound and data evidence encourage
treating label uncertainty with respect to the ALB rather than to
the nominal supervised membership.

Finally, further assessment of modeling the impact of par-
tial supervision in the spirit of the additive combination tech-
nique remains open for future work. First, Explanation 2 for
SSPCMeans requires a simulation or real-life data experiment
that we performed for SSFCMeans only. Finally, it seems a
promising direction to assess if one could introduce custom
flexibility into the shape of the absolute lower bound curve α

1+α
from Explanation 1.
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