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Neuro-Fuzzy Random Vector Functional Link Neural
Network for Classification and Regression Problems

M. Sajid

Abstract—The random vector functional link (RVFL) neural
network has shown the potential to overcome traditional artificial
neural networks’ limitations, such as substantial time consumption
and the emergence of suboptimal solutions. However, RVFL strug-
gles to provide comprehensive insights into its decision-making
processes. We propose the Neuro-fuzzy RVFL (NF-RVFL) model
by combining RVFL with neuro-fuzzy system. The proposed NF-
RVFL model takes humanlike decisions based on the IF-THEN ap-
proach and enhances its transparency in decision-making. Within
this framework, input features undergo a fuzzification process
as they traverse the fuzzy layer. The resulting fuzzified features
then navigate a hidden layer through random projection as well
as yielding defuzzified values via defuzzification. The defuzzified
values, hidden layer outputs and original input features collec-
tively contribute to the output prediction process. The proposed
NF-RVFL model employs three distinct clustering methods to es-
tablish fuzzy layer centers: randomly initialized centers (referred
to as R-means), K-means clustering centers, and fuzzy C-means
clustering centers. This approach generates three distinct model
variations, namely NF-RVFL-R, NF-RVFL-K and NF-RVFL-C,
each producing a diverse set of fuzzified and defuzzified samples.
Our research involves experiments on various UCI benchmark
datasets, covering binary, multiclass classification, and regression
tasks. The statistical tests and comprehensive experimental analy-
ses consistently show that all variations of the proposed NF-RVFL
model outperform baseline models, highlighting their generaliza-
tion capabilities. The proposed NF-RVFL models show the generic
nature by being adeptly applicable and excelling in regression as
well as classification tasks.
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I. INTRODUCTION

RTIFICIAL neural networks (ANNSs) are a class of ma-
A chine learning models that take their cues from the neural
architecture of the human brain. ANNs are made up of linked
nodes or “neurons” arranged in layers that process, analyze, and
transmit data to make predictions or decisions. ANNs’ ability
to learn from data, adaptability, and ability to handle complex
and nonlinear relationships in various domains (versatility) like
image recognition [1], approximation [2], natural language pro-
cessing [3], and financial forecasting [4] makes them superior
among the other machine learning models.

Apart from many advantages, there are some drawbacks to
ANN models. (i) The gradient descent (GD) method is a widely
used iterative process in ANN that aims to find the best settings
for the model’s weights and biases by comparing the predicted
outputs with the expected ones. However, this approach has some
challenges. It can be slow and occasionally settle for local rather
than global optimum weights and biases. The learning rate and
initialization point in the GD method are critical factors that
can greatly influence the model’s training process. (ii) Training
conventional neural networks on large datasets can be computa-
tionally intensive and time-consuming, necessitating powerful
hardware. (iii) Another limitation is their “black-box” nature,
making it challenging to interpret and understand the reasoning
behind their predictions. This lack of transparency can raise
concerns, particularly in critical applications like health care
and finance.

Despite the abovementioned limitations, ongoing research is
continually improving efficiency, interpretability, and robust-
ness of ANNs. Randomized neural networks (RNNs) [5], [6]
were introduced as an alternative to GD-based neural networks
to overcome their drawbacks. In general, a touch of randomness
is inherent in the RNN model’s structure or learning process.
This is achieved by holding certain parameters fixed during
training and calculating the output layer’s parameters using an it-
erative process or closed-form solution [7], [8]. The randomness
grants RNNGs the ability to learn with fewer adjustable settings, in
less time, and without the need for high-end hardware. Random
vector functional link (RVFL) neural network [6], [9] is one of
the well-established RNNs. In RVFL, the hidden layer’s parame-
ters (weights and biases) are initially set randomly, chosen from
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a suitable continuous probability distribution. Throughout the
training phase, these parameters remain constant. RVFL stands
out from other RNNs due to the direct links between the input and
output layers. The direct links characteristic has been observed
to significantly enhance the learning performance of RVFL
by acting as an implicit regularization for the randomization
process [10], [11]. RVFL employs the pseudoinverse or the
least-squares approach to find the optimal output parameters
(weights connecting the input layer to the output layer and
hidden layer to the output layer), which offers a closed-form
solution. Furthermore, RVFL has fast training speed and univer-
sal approximation capability [12], [13].

RVFL successfully addresses the limitations (i) and (ii) of
ANNs mentioned earlier, offering promising solutions. How-
ever, it still grapples with limitation (iii). RVFL struggles to
interpret its decisions or predictions. As aresult, the “black-box”
nature of RVFL tends to become more pronounced, raising
concerns about its comprehensibility.

The fusion of humanlike reasoning, represented by IF-THEN
fuzzy rules in a fuzzy system with an ANN’s learning capa-
bilities and connectivity, gives rise to a hybrid system known
as a neuro-fuzzy model [14]. Neuro-fuzzy models use fuzzy
logic to represent linguistic terms and rules, which are easily
understandable to humans [14]. This linguistic interpretability
allows experts and stakeholders to comprehend the decision-
making process, making it easier to trust and validate the model’s
outputs. Neuro-fuzzy models have a transparent and explicit
fuzzy rule base, which clearly shows the connections between
the input and output variables. These rules can be interpreted
and reviewed to gain insights into how the model arrives at
its conclusions. Neuro-fuzzy models have garnered attention
for their exceptional traits and wide-ranging applications in
classification [15], regression [16], nonlinear system identifi-
cation, control [17], and so on. Many advanced versions of
neuro-fuzzy-based models have been developed based on feature
selection and rule extraction [18], [19]. Neuro-fuzzy models
have notably contributed to the critical field of time series
prediction [20], benefiting various domains such as finance [21],
fault diagnosis in self-organizing cellular network [22], weather
forecasting [23], and so on.

Although neuro-fuzzy models have many advantages, how-
ever, designing neuro-fuzzy models presents several challenges.
One such challenge is determining the appropriate architecture,
including the number of fuzzy rules and neural network layers.
Careful tuning is necessary to optimize both the neural network
parameters and fuzzy logic rules, as improper choices may lead
to suboptimal performance or difficulties in effective model
training [24]. While neural networks can assist in extracting suit-
able fuzzy rules without human intervention, it remains essential
to reduce the number of fuzzy rules without compromising
accuracy, especially when dealing with high-dimensional inputs.
Additionally, the training process for neuro-fuzzy models using
traditional iterative methods like GD can be computationally
expensive and time-consuming, especially for large datasets.
The challenge further intensifies as the training process involves
optimizing nonconvex loss functions, making it difficult to find
the global minimum and potentially resulting in suboptimal
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solutions. To mitigate these issues, careful selection of optimiza-
tion algorithms becomes essential for achieving better results in
the neuro-fuzzy model.

In this article, we propose the neuro-fuzzy RVFL (NF-RVFL)
model to deal with the aforementioned pitfalls of the RVFL
and neuro-fuzzy models. The integration of RVFL with neuro-
fuzzy systems presents a win—win situation for both RVFL and
neuro-fuzzy models. A key advantage of neuro-fuzzy models
lies in their universal approximation capability and ability to
adapt the interpretable IF-THEN rules to the training data [25].
The RVFL has already demonstrated its potential to over-
come the limitations of traditional ANNs, and by combining it
with neuro-fuzzy systems, the integrated NF-RVFL model can
address the lack of interpretability inherent in RVFL. More-
over, RVFL possesses lesser number of unknown parameters in
contrast to conventional neuro-fuzzy models. Consequently, the
NF-RVFL model, being developed upon the RVFL framework,
also inherits the characteristic of less unknown parameters. As
a result, the proposed NF-RVFL model is expected to mitigate
the memory-intensive characteristics often associated with tra-
ditional neuro-fuzzy models and make the proposed NF-RVFL
model capable of handling large datasets with better generaliza-
tion performance. Additionally, the convex quadratic optimiza-
tion problem of RVFL overcomes the dilemma of nonconvex
optimization problem faced by traditional neuro-fuzzy models
and produces more optimal solutions. The NF-RVFL model
promises to be a versatile and effective solution, with good
generalization performance and better interpretable results than
the standard RVFL model.

Within the framework of NF-RVFL, input samples traverse
the fuzzy layer employing the fuzzification technique. Subse-
quently, the fuzzified samples traverse a hidden layer through
random projection as well as yielding defuzzified values via
the defuzzification technique. These defuzzified values, along
with hidden layer outputs and the original inputs, collectively
contribute to the output prediction process.

The following are the key highlights of this article.

1) We propose neuro-fuzzy RVFL (NF-RVFL) model
through the amalgamation of the RVFL neural network
and the neuro-fuzzy systems. The proposed NF-RVFL
model tries to address the lack of interpretability inherent
in the original RVFL model.

2) In the proposed NF-RVFL model, we use three distinct
clustering methods to establish centers within the fuzzy
layer: randomly initialized centers (referred to as R-
means), K-means clustering centers, and fuzzy C-means
clustering centers. As a result, we obtain three different
model variations, namely, NF-RVFL-R, NF-RVFL-K, and
NF-RVFL-C, each producing a diverse set of fuzzified and
defuzzified samples.

3) The conducted experiments encompass a range of 29
binary, 28 multiclass, and 15 regression benchmark
UCI datasets sourced from diverse domains with vary-
ing sizes. Statistical tests and analysis from these ex-
periments illustrate that the proposed NF-RVFL mod-
els exhibit superior performance compared to baseline
models.
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4) Numerous ablation analyses have been conducted, focus-
ing on key elements integral to the NF-RVFL model.
These include examinations of the direct link, fuzzy layer,
defuzzified layer, the number of fuzzy rules, and activation
functions.

5) A detailed justification for interpretability is achieved
through the exploration of partial dependence plots
(PDP) [26] and feature importance-based interpretability
in the proposed NF-RVFL model. The findings demon-
strate the superior interpretability of the proposed NF-
RVFL model compared to the standard RVFL model.

The rest of this article is organized as follows. Section II

provides a brief introduction to the Takagi-Sugeno-Kang (TSK)
fuzzy system and the RVFL model. Section III presents the
rigorous mathematical formulation of the proposed NF-RVFL
model. Section IV shows the experimental results and analyses.
Finally, Section V concludes this article.

II. RELATED WORKS

This section discusses the TSK fuzzy system, which we
integrate with the RVFL in Section III. Then, briefly describe
RVFL along with its formulation.

A. Notations

Let the training set be { (u,,t,)|u, € RVE, ¢, € R™C;r €
{1,...,M}}, where L and C represent the number of features
of the input sample and the number of classes, respectively, with
M training samples. For the classification task, the variable
t, represents the one-hot version of the label corresponding
to the input sample u,, and for the regression task, ¢, rep-
resents a real value. Let U = (uf, ub, ... ,u'jw)te RM>L and

t . .
T = (t},t,,...,t,) € RM*%bethe collection of all input and
target vectors, respectively, where (.)! is the transpose operator.

B. Takagi-Sugeno-Kang (TSK) Fuzzy System

TSK fuzzy system [27] is an effective method for modeling
complicated systems under uncertainty. TSK may approximate
nonlinear connections with transparency and interpretability by
integrating fuzzy sets, fuzzy rules, and local linear models. Its
versatility and usefulness make it a popular option in a wide
range of real-world applications [28], [29], [30], making it a
vital tool in fuzzy logic and artificial intelligence. The TSK is
based on a set of IF-THEN fuzzy rules and is typically defined
as:

Ifurl is}"jl and Ur2 is fjg ... and Uy, is ij

then yrj = fj(url, Upr2y o v ,UTL)7 j = 1, 27 . ,J

where Fj, is a fuzzy set, u,, is the system input (s =
1,2,...,L), and J is the number of fuzzy rules. Here, the
function ¢; in a fuzzy system is often described as any relevant
function capable of properly describing the output within the
given range of fuzzy rules. However, in a fuzzy system, &; is
assumed to be a polynomial of the input variables for practical
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Output Layer H,W, = ff‘

Input Layer [/

Fig. 1.  Architecture of the RVFL model.

purposes. The jth rule’s fire strength is calculated as:

L
7;'j = H@js(urs)a (1)
s=1

where ©;, is the membership function corresponding to the
fuzzy set Fj,.

The defuzzification value (I') of the input u,. is a real value
under the condition that “If u,q is 71 ... and w,p is F;1” and
given as follows:

J
. > i=1 TrjYrj

Yol Tl s (ure) &5 (U, - - )
Zj:l 7;'.7

Z}]:1 Hﬁ:l ©;s(urs)

2

C. Random Vector Functional Link (RVFL) Network [6]

The RVFL neural network is structured with three layers: in-
put, hidden, and output. Weights connecting the input and hidden
layers and biases at the hidden layer are randomly generated
and fixed throughout training. The hidden layer features and the
original input features (through direct links) are connected to the
output layer without any associated bias. The output weights are
calculated using analytical methods such as the Moore-Penrose
inverse or the least square method. Fig. 1 depicts the architecture
of RVFL.

Let H; be the hidden layer matrix obtained by the projection
of the input matrix using randomly initialized weights and biases
followed by the nonlinear activation function ), which is defined
as:

Hy = p(UW; + B;) € RM*1 A3)

where W, € RL*" represents the randomly initialized weights
obtained from a normal distribution within the range of [—1, 1]
(following [10]) and 3 € RM>M ig the bias matrix. Therefore,
H, is given as:
¥ (urwi + (1) ¥ (urwn + C)
Hy = : s s ,
¥ (upwi + C1) ¥ (unrwn + Cp)

where u; € R'L is the ith row (sample) of the inputs matrix
U, w; € RE*1 is the jth column vector of the weights matrix
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W1 which connects all the input features to the jth node of the
hidden layer and (; is the bias term of the jth hidden node.
The input and hidden features are concatenated as:

Hy=[U Hy| e RM=(EFM), 4)

The predicted output (7') of the RVFL model is given using the
matrix equation as follows:

HyWo =T, (5)

where Wy € R(EFMXC g the weights matrix connecting the
input layer and hidden layer to the output layer. The resultant
optimization problem from (5) is formulated as:

. ¢ 1
(W2)min = argmin §||H2W2 ~- T3+ §||W2||§’ (6)

where € is a regularization parameter.
The solution of (6) is given as:

(Wahus = | o Hat &D) " H'T, (L4 h) < M
ST Hyt (HoHy' + 11T, M < (L+h)
(7

where [ is an identity matrix of conformal dimension.

III. PROPOSED NEURO-FUZZY RANDOM VECTOR FUNCTIONAL
LINK (NF-RVFL) NEURAL NETWORK

In this section, we provide a platform for the neuro-fuzzy
system (in our case, it is TSK) and RVFL to interact with each
other, and we propose a hybrid neuro-fuzzy RVFL (NF-RVFL)
model that can make a logical decision based on the IF-THEN
rule. In the proposed NF-RVFL’s topological structure, input
samples undergo the fuzzy layer using the technique of fuzzifi-
cation. Afterward, the fuzzified samples traverse a hidden layer
via random projection as well as produce defuzzified values
using the defuzzification technique. These defuzzified values,
the hidden layer outputs, and the initial inputs all contribute to
the overall output prediction process.

Suppose J denotes the total number of fuzzy rules in the fuzzy
layer. Let F, be the fuzzy set with the membership function ©
of sth component of jth fuzzy rule of the fuzzy layer, where
s=1,2,...,L,j=1,2,...,J.

Ifu,qis Fjp and w0 is Fjo ...

'?U’TL)7 ]:17277J

and u,r,is Fjp,
then Yrj = Sj (urla Uyr2,y - -

We consider the first-order TSK fuzzy system (polynomial £; of
degree one) then

L
Yrj :gj(urhUTQv“';urL) = Zajsurs- (8)
s=1

Here, «;s are the randomly generated coefficients, where
s=1,2,...,Landj = 1,2,...,J. The fire strength of the jth
fuzzy rule in the fuzzy layer is calculated using (1). For each
fuzzy rule, we take the weighted values of the fire strength as:

Tr

= . ©)
Z}Izl Trj

wrj
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In our work, we consider the Gaussian membership function
within fuzzy sets of the fuzzy layer. The membership value of
u,.s for the jth fuzzy rule is defined as:

Urs—Cjg

@js (urs) = ei( 7is

2
)  fors=1,2,...,L, (10

wherec; = (¢j1,...,¢jr)isthecenterando; = (0j1,...,0;L)
is the standard deviation in the jth fuzzy rule. In the proposed
NF-RVFL model, we use clustering methods to determine the
centers ¢; in the fuzzy layer. Here, j ranges from 1 to J,
where J represents the total number of clusters (centers) in
the fuzzy layer. We employed the following three clustering
methods:

1) randomly initialized centers (say, R-means);

2) using K-means clustering;

3) using Fuzzy C-means clustering.

Noteworthy remarks:

1) Three types of neuro-fuzzy RVFL emerge as a result of
these three approaches of initializing the centers. As a
result, it adds diversity to our proposed model.

2) Neuro-fuzzy RVFL with R-means, K-means, and fuzzy
C-means clustering techniques are named NF-RVFL-R,
NF-RVFL-K, and NF-RVFL-C, respectively.

3) The number of fuzzy rules (centers) in the fuzzy layer is
equal to the number of centers. More specifically, the “K”
of K-means is equal to J [number of clusters (centers)]
needed in the fuzzy layer.

The topology of the proposed NF-RVFL model is divided
into three components. In the first component, fuzzification
of the input vectors takes place by projecting the input layer
into the fuzzy layer. Then, the fuzzy layer traverses the hid-
den layer of the RVFL through randomization. In the second
component, the calculation of the output of the fuzzy layer
takes place through the process of defuzzification. The output
layer generation occurs in the third component, incorporating
the available features, namely the original features, hidden layer
features (generated through fuzzification), and the defuzzified
features (generated through defuzzification). The idea behind
the output layer generation involves projecting the original and
hidden layer features using output layer weights, followed by
translation using the defuzzified features. Fig. 2 depicts the
structure of the proposed NF-RVFL model.

Component-1. Fuzzification followed by nonlinear transfor-
mation: The fuzzified vector of the rth training sample u, is
given as:

Yvr = (wrlyrlawr2yr2;-~-aery7‘J> , T = 1a2;-~-aM- (11)

The fuzzy layer matrix corresponding to the input matrix U is
given as:

Y = (Y§, Y4, ... V) e RMX (12)

After the fuzzification process, the fuzzy layer features undergo
the hidden layer. Let there be i number of nodes in the hidden
layer, Wg € R7*" a randomly generated weights matrix con-
necting the fuzzy layer to the hidden layer and Bz € R *" be
the randomly generated bias matrix in the hidden layer with all
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T = A+ fIWT: Output Layer
a=mul oY ]

A: Defuzzified
Value

Defuzzification

Y : Fuzzy
Layer

Fig. 2. Architecture of the neuro-fuzzy RVFL model.

columns identical. The hidden layer matrix H is defined as:

H =1 (YWy + Bg) € RM*h, (13)
where 1) is the activation function.

Component-2. Defuzzification of the fuzzy subsystems: For the
THEN part of the fuzzy layer, we calculate the defuzzified output
of the fuzzy layer, which participates in anticipating the final
output along with original features (through direct links) and the
hidden layer. Since the target matrix 7" = (¢4, ¢5,... th,)" €
RM*C " therefore, the output of the fuzzy layer must have C
features. The defuzzified output A, € R of the sample w,.
of the fuzzy layer is defined as follows:

J J
(Z Wi A j1Yrjs - Z wrj)»jcyrj>
=1 =1

Ay

J L J L
E Wrjhj1 § AjsUpsy - - -y § wrjkjc § AjsUrs
j=1 s=1 j=1 s=1

L L
= | wr1 E Qpslpshil + 0+ Wy § QJsUrshyl,

s=1 s=1

L L
Wr1 § aq Su’!‘S}“lc + -t weg E aJsurs)‘JC

s=1 s=1

(14)

L L
= | Wr1 § AL sUpsy vy Wr g E A jsUrs Aa
s=1 s=1
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A1 Ao

where A = , and Aj. is the parameter used

At Ao
in THEN part of the neuro-fuzzy system to defuzzify it (j =
1,2,...,Jandc=1,2,...,C). The computation of the A.’s
is done in the component-3 using the closed form solution.
Therefore, for the input matrix U, the defuzzified output matrix
of the fuzzy layer is given as

A= (AL AL, ... AL e RMXC (15)
(0-)11 Zle Q) sUysy .. W1 ZSL:1 aJsuls)A
A= : : :
L L

_(le Zs:l AL sUMsgy+ s WMT Zs:l OéJSUMS>A

Zle Q) sUls 2521 A gsUls
=A=1Q06 : : A

Zizl A1 sUMs Zﬁ:l QJsUMs
= A= (Q0 (Ua"))A, (16)

where © represents the componentwise matrix multiplication,

Qi1 Qg1 w11
al =] : D | andQ =

ayr

Wi g

W1 C

A7)

Component-3. Final output: The final prediction is made by
transmitting the defuzzified vectors of component-2 in conjunc-
tion with the initial features and the features extracted from
the hidden layer to the output layer. This is accomplished by
concatenating matrices U and H, which are subsequently passed

QJL

to the output layer using the output weights Wy € R(*+L)xC,
Let H = [H,U] (18)
then 7" = A+ HWr (19)

represents the anticipated output matrix of the proposed model.
Equation (19) is rewritten as:

T = (20 (Ua')) A+ HWr

)|

- (@0 (a)
)

(o @
DW
(0o @

(20)
where D = ot ,ﬁ) e RM*(L+J+h) 20
A (L+J+h)xC
and W = eR (22)
T

is the matrix of the knowns and the unknowns of the proposed
NF-RVFL model, respectively. Therefore, we need to find the W
only for the proposed model. The resultant optimization problem
of (20) is formulated as:

. ¢ 1
(W)min = argmin — || DW — T||§ + = ||[W||3, (23)
) 2
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Algorithm 1: Algorithm to Find the Output Layer Weights
of the Proposed NF-RVFL Model.

Require: Input matrix U = (uf,ub, ..., uﬁw)te RM~*L
and output matrix 7' = (¢4, ¢5, ... ,tﬁw)te RM*C where
L and C represent the number of features of the input
sample and the number of classes, respectively, with M
training samples. .J is number of fuzzy rules for the fuzzy
layer.

1: Let u, be the 7 training sample, where

r=1,2,...,M.

2: Generate: o € R7*L randomly.

3: Calculate: the centers of the jth fuzzy rule, i.e.,
¢; = (¢j1,¢j2,...,¢c5) for j =1,2, ..., J of the fuzzy
layer by employing R-means or K-means, or fuzzy
C-means clustering technique.

: Calculate: w,.; using (9).

: Calculate: Y, using (11).

: Calculate: Y using (12).

: Generate: Wy € R7*" and Sy € RM*" randomly
with all columns identical in 5.

8: Calculate: H using (13).
9: Construct: Q € RM*/ using (17).

10: Construct: H using (18).

11: Construct: D using (21).

12: Find: the unknown matrix, output layer weights, W

using (24).
Source code link:
https://github.com/mtanveer1/NeuroFuzzy-RVFL.

~N N L A

where € is a regularization parameter.
The weight matrix W is computed as follows:

)

(W = | @D+ LN7'DIT, (L4 J+h) <M,
Dt (oD + DT T, M < (L+J+h)
(24

where [ is an identity matrix of conformal dimension.

A. Time Complexity of the Proposed NF-RVFL Models

The time complexity of the proposed NF-RVFL models de-
pends on three components: 1) clustering technique; 2) fuzzy
layer and hidden layer; and 3) (W), calculated on (24). Fol-
lowing [31], the time complexity of K-means and fuzzy C-means
is O(MLJv) and O(M LJ?v), respectively, where v is the
number of iterations. The time complexity of R-means is O(.J).
The time complexity of the generation of the fuzzy and hid-
den layer is O(M Jh). Time complexity in computing (W) yin
isO(W),where O(W) = O((L +J + h)?M) + O((L+ J +
h)3)if (L+J+h) < MorO(W)=0O(M?*(L+J+h))+
O(M3)if M < (L + J + h). Therefore, the time complexity of
the NF-RVFL-R is O(J) + O(M Jh) + O(W) =~ O(M Jh) +
O(W), the time complexity of NF-RVFL-K is O(M LJv) +
O(MJh) + O(W) and the time complexity of NF-RVFL-C is
O(MLJ?*v) + O(MJh) + O(W).
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IV. EXPERIMENTS AND RESULTS

The detailed experimental setup and a comprehensive ratio-
nale for the selection of datasets for the experiment are provided
in Section I of the supplementary material. In the next subsec-
tion, we discuss the details of the compared baseline models.
Then, we discuss the experimental results and statistical analysis
on binary, multiclass classification, and regression datasets. In
the last subsection, the interpretability of the proposed NF-RVFL
models is discussed. In Section III of the supplementary mate-
rial, we conduct an ablation study on the proposed NF-RVFL
models, examining their dependence on key components such as
direct link (connecting the input and output layers), fuzzification
(fuzzy layer), defuzzification (defuzzified layer), number of
fuzzy rules (clusters), and activation functions.

A. Compared Models

We compare the proposed NF-RVFL models to the other nine
RNNs. The enumerated RNN models under consideration are
as follows.

1) RVFL: Standard shallow RVFL model [6].
2) ELM: Shallow extreme learning machine (ELM) [32].
3) IFRVFL: Intuitionistic fuzzy RVFL [33].
4) GEELM-LDA: Graph-embedded ELM with linear dis-
criminant analysis (LDA) [34].
5) GEELM-LFDA: Graph-embedded ELM with local
Fisher discriminant analysis (LFDA) [34].
6) Total-Var-RVFL: Total variance minimization-based
RVFL [35].
7) MCVELM: Minimum class variance-based ELM [36].
8) BLS: Standard broad learning system [37].
9) Fuzzy-BLS: BLS based on neuro-fuzzy system [16].
10) NF-RVFL-R: The proposed neuro-fuzzy RVFL based on
R-means clustering.
11) NF-RVFL-K: The proposed neuro-fuzzy RVFL based on
K-means clustering.

12) NF-RVFL-C: The proposed neuro-fuzzy RVFL based on

fuzzy C-means clustering.

B. For Binary Classification: Experimental Results and
Statistical Analysis on UCI Datasets

Table I presents experimental results for the proposed NF-
RVFL-R, NF-RVFL-K, and NF-RVFL-C models, along with
baseline models, namely, RVFL, ELM, IFRVFL, GEELM-LDA,
GEELM-LFDA, Total-Var-RVFL, and MCVELM. Tables IX
and X of the supplementary materials possess the standard devi-
ations and best hyperparameter setting, respectively, w.z.t. each
model and dataset. Among them, NF-RVFL-C achieves the high-
est average accuracy of 83.5591%, followed by NF-RVFL-K at
82.5816%, and NF-RVFL-R at 82.2584%, outperforming other
state-of-the-art models. Notably, NF-RVFL-K and NF-RVFL-
C exhibit the lowest standard deviations (6.9893 and 7.3014,
respectively), indicating the high certainty of their predictions.
Average accuracy can be deceptive as it might obscure a model’s
mixed performance across different datasets. To address this, we
followed Demsar [38] recommendations and applied a suite of
statistical tests. These included the ranking test, the Friedman
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TABLE I
CLASSIFICATION ACCURACIES OF THE PROPOSED NF-RVFL-R, NF-RVFL-K, AND NF-RVFL-C MODELS ALONG WITH RVFL, ELM, IFRVFL, GEELM-LDA,
GEELM-LFDA, TOTAL-VAR-RVFL, AND MCVELM ON BINARY UCI DATASETS; TABLES IX AND X OF SUPPLEMENTARY MATERIALS CONTAIN THE STANDARD
DEVIATIONS AND BEST HYPERPARAMETER SETTING W.R.T. EACH MODEL AND DATASET

Dataset | | Model — RVFL [6] ELM [32] IFRVFL [33] GEELM-LDA [34] GEELM-LFDA [34] Total-Var-RVFL [35] MCVELM [36] NF-RVFL-RT ~NF-RVFL-K!  NF-RVFL-Ct
adult 84.0342 83.8725 83.5438 83.422 83.2136 84.0178 83.9011 83.2992 84.5879 84.6218
bank 89.4051 89.4934 89.1173 89.6158 46.4966 89.6705 89.6703 89.4269 89.4492 90.9391
blood 76.5065 76.9056 77.4398 67.1732 76.2398 76.9065 77.4065 77.838 77.8398 77.4398
breast_cancer 70.1956 70.1754 71.9298 89.8246 84.5796 70.1754 70.5263 72.3351 72.6921 70.8953
breast_cancer_wisc_diag 93.8503 92.2683 89.2719 93.1455 86.988 94.1997 93.4995 94.4753 94.3782 95.6063
chess_krvkp 72.0313 71.936 74.2589 76.7814 69.2351 77.8963 75.8278 82.6045 81.7908 85.2322
congressional_voting 63.6782 63.2184 58.8506 59.7701 54.2529 63.908 63.4483 63.908 63.926 64.1379
connect_4 754518 75.4059 75.3407 76.7316 75.4281 75.4992 75.4459 75.4844 75.5022 76.2156
credit_approval 85.5674 85.3623 86.5217 85.5072 85.6522 85.5072 85.5072 85.942 85.942 87.8581
cylinder_bands 66.4154 65.8081 66.8785 67.5405 67.5385 67.7727 66.0156 68.9606 69.724 71.2941
haberman_survival 73.4902 73.8181 75.1348 55.5632 52.2898 74.6398 73.4902 75.2396 75.1296 75.4574
heart_hungarian 73.8223 74.4886 76.8849 83.7288 85.0847 75.8738 74.1613 76.9024 76.5576 78.2466
horse_colic 86.0369 85.424 85.5979 75.8053 74.7501 86.4124 86.1533 86.6938 86.4272 86.6901
miniboone 81.4984 79.2741 84.3698 82.4076 83.3566 81.8659 81.2939 84.3969 84.0217 89.9858
molec_biol_promoter 72.7706 74.632 78.3983 71.8182 77.4892 79.5236 72.684 82.0346 82.12 82.0346
monks_1 83.7934 82.2685 84.6895 73.5811 71.5476 84.1538 84.8697 81.4527 82.3584 86.6992
monks_2 80.0138 81.6804 84.5898 60.7273 57.23 85.8485 82.8499 85.8485 87.3774 88.8894
monks_3 91.1564 90.7912 90.0704 82.8419 77.69 91.6986 91.8821 91.8436 91.6486 92.1744
mushroom 96.3931 96.0735 93.9684 96.3071 98.7561 97.2919 96.7382 94.2369 959132 99.3351
musk_1 72.0614 69.7675 71.864 72.4496 65.9518 72.4846 70.1776 75.2149 76.0482 74.1645
musk_2 84.5909 84.5909 84.5909 85.1573 84.5909 85.1818 84.909 83.9394 85.501 85.9545
oocytes_trisopterus_nucleus_2f  78.9419 77.5182 75.2219 78.0694 79.8889 79.7036 79.6025 79.3863 79.3779 79.9345
ozone 97.1217 97.1319 97.1612 97.1217 96.0615 97.1611 97.1358 97.2005 97.1612 97.1612
parkinsons 82.2569 80.5128 78.4615 84.1026 83.5897 82.0513 83.5897 83.0769 83.0769 85.5856
pittsburg_bridges_T_OR_D 87.1905 87.3685 89.3025 82.1429 80.1905 89.1429 90.1429 90.1905 88.2381 90.1905
spambase 88.546 87.0472 85.0883 88.9582 88.546 88.6116 87.5819 88.9674 88.9583 89.3931
statlog_german_credit 76.9 75.7 76.9 66.7 539 77 76.8 77.1 77.7 71.7
titanic 77.9168 779168 79.0532 65.5896 61.0231 78.6901 79.0532 78.4623 79.0532 79.0532
vertebral_column_2clases 71.2903 70.6452 85.4839 94.8387 92.2581 78.806 745161 79.0323 82.366 80.3226
Average accuracy 80.4458 80.0378 81.0339 78.8766 75.6489 81.7826 80.9959 82.2584 82.5816 83.5591
Average rank 6.931 7.9483 6.2069 6.3966 7.431 4.8103 5.8793 4.069 35172 1.8103
Average standard deviation 9.4944 10.2999 7.9884 11.0356 11.2942 9.116 8.7296 8.0372 6.9893 7.3014

The boldface in each row denotes the performance of the best model corresponding to the datasets. T represents the proposed models.

test, and the Nemenyi post hoc test. These tests allowed us to
comprehensively assess model performance, avoiding biasness,
and enabling us to make broad conclusions about their effec-
tiveness. In the ranking approach, models are ranked based on
their performance across individual datasets, assigning higher
ranks to poorer performers and lower ranks to top performers.
Let us consider .# models being assessed across Z datasets.
The rank of the mth model on the dth dataset is represented as
p(m,d). The average rank of the mth model is calculated as
follows: p(m, +) = (Y2, p(m,d))/ 2. The average ranks of
the models are noted in the last row of Table I. With average lower
ranks 1.8103, 3.5172, and 4.069, all the proposed NF-RVFL-C,
NF-RVFL-K, and NF-RVFL-R models, respectively, secure the
top three positions and demonstrate superiority among the base-
line models. The Friedman test [39] is employed to compare
the average ranks of models and ascertain whether significant
differences exist among them based on their rankings. This test
utilizes a chi-squared distribution (x%) with .# — 1 degrees
of freedom (dof). The formula for Friedman’s test is given

N M (AM+1)?
as: Xt = 7ty (S (p(m, #)? — 4, Tman and

Davenport [40] exhibited that Friedman’s x% statistic might ex-
hibit an overly cautious behavior. As a remedy, they introduced
an improved statistic, denoted as F'r statistic, which is computed

as follows: Fp = X%(@(/(/Ziili)*xi) The distribution of F is
characterized by (# — 1) and (2 — 1)(.# — 1) dof. For # =
10 and 2 = 29, we obtain x% = 105.3045 and Fp = 18.9378.
Referring to the statistical table for the F'-distribution, we find
that Fi»(9,252) = 1.9171 at a significance level of 5%. The null
hypothesis is rejected because 18.9378 > 1.9171, indicating
significant differences among the models. Consequently, the
Nemenyi post hoc test [38] can be employed to explore the
pairwise statistical difference between the models. Under this

test, if the average rank of the model m; is lower by at least
the critical difference (C.D.) compared to the model mso; it is
concluded that the performance of the model m is statistically
superior to that of the model ms. The C.D. is calculated as:

C.D. = quo(4/ %@H)) Here, q,, represents the critical value
for the two-tailed Nemenyi test, sourced from the precalculated
distribution table in [38]. Following the computation, we ar-
rive at C.D. = 2.5157 at a significance level of 5% (i.e., at
a = 0.05). Table II showcases the statistical analysis of the
proposed models with all the models based on the Nemenyi
post hoc test. Table II confirms that the proposed NF-RVFL-C
is statistically better than all the existing models. The pro-
posed NF-RVFL-K is statistically superior to all the existing
models except Total-Var-RVFL and MCVELM. The proposed
NF-RVFL-R model is statistically better than the existing RVFL,
ELM, and GEELM-LFDA models. Although the proposed NF-
RVFL-R is not significantly superior to the existing IFRVFL,
GEELM-LDA, Total-Var-RVFL, and MCVELM, however, the
lower ranks of the proposed NF-RVFL-R model is a clear
indicator that the proposed models have stronger generalization
capability compared to all the existing baseline models. The
combination of higher average accuracy and consistent results
from various statistical tests strongly supports the assertion that
the proposed NF-RVFL models possess superior generalization
compared to the existing baseline models.

C. For Multiclass Classification: Experimental Results and
Statistical Analysis on UCI Datasets

Table III showcases the results related to multiclass classi-
fication datasets. The IFRVFL model is designed exclusively
for binary classification, making it ineligible for inclusion in
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TABLE II
STATISTICAL ANALYSIS OF THE PROPOSED MODELS (LISTED IN THE FIRST COLUMN) WITH ALL THE MODELS (LISTED IN THE FIRST ROW) FOR THE BINARY UCI
DATASETS BASED ON THE NEMENYI POST HOC TEST

GEELM- GEELM-

Total-

RVFL [6] | ELM [32] | IFRVEL [33] | | 134] | LEDA [34] | VarRVEL [35] MCVELM [36] | NF-RVFL-RT | NF-RVFL-K' NFE-RVFL-CT
NF-RVFL-RT v/ v/ 0 0 v/ 0 0 N/A 0 0
NF-RVFL-KT v/ v/ v/ v/ v/ 0 0 0 N/A 0
NF-RVFL-CT v/ v/ v/ v/ v v/ v 0 0 N/A

Here, T indicates the proposed models. v signifies that the model in the respective row exhibits statistical superiority over the model in the corresponding column. X signifies
that the model in the respective row is statistically inferior to the model in the corresponding column. O means there is no statistical difference between the row and column models.

TABLE III
CLASSIFICATION ACCURACIES OF THE PROPOSED NF-RVFL-R, NF-RVFL-K, AND NF-RVFL-C MODELS ALONG WITH THE COMPARED BASELINE MODELS, LE.,
RVFL, ELM, IFRVFL, TOTAL-VAR-RVFL, MCVELM ON MULTICLASS UCI DATASETS; SUPPLEMENTARY TABLES XI AND XIT CONTAIN EACH MODEL’S
STANDARD DEVIATIONS AND BEST HYPERPARAMETER SETTING ON DATASETS

Dataset | | Model — RVFL [6] ELM [32] Total-Var-RVFL [35] MCVELM [36] NF-RVFL-Rt  NF-RVFL-K'  NF-RVFL-C'
abalone 63.4665 63.4419 63.754 63.6578 63.8253 65.4586 64.0887
annealing 89.6381 88.3018 89.1937 89.0381 86.6313 87.0782 90.8591
cardiotocography_10clases 66.2324 65.2894 66.1351 66.2307 64.8151 62.8425 69.2395
ecoli 60.9175 61.2116 51.0667 51.0667 60.619 60.6277 62.5405
energy_yl 88.6716 88.2777 89.7106 89.0604 87.979 88.5434 89.0595
flags 53.6302 51.5789 53.1174 54.197 55.2687 55.1957 55.2092
hayes_roth 61.875 60.625 63.5 61.875 61.875 64.075 65
heart_cleveland 59.7268 59.377 61.0328 59.3607 61.0383 61.3388 60.0437
led_display 72.6 72.5 73.5 73 72.7 72.2 75.6
low_res_spect 87.7605 86.6285 73.9852 74.1851 87.3849 87.5666 87.7605
lymphography 86.4138 85.4745 86.4138 86.4368 85.7701 87.1034 88.5057
molec_biol_splice 56.0949 51.8809 54.2633 51.8809 69.2163 68.652 68.3072
nursery 70.3935 70.1775 65.693 62.8627 66.7824 66.3889 71.9444
oocytes_merluccius_states_2f 91.2846 90.8948 91.8737 91.633 91.3845 91.1894 92.067
optical 95.4626 94.3594 95.4626 94.8754 93.3808 94.0214 97.2317
seeds 89.0476 87.1429 90 89.0476 90.4762 90.3653 90.4762
semeion 87.0673 85.4363 87.2562 83.0492 88.0726 88.7725 87.3187
soybean 87.6954 86.9809 88.4264 88.306 87.3991 88.1387 90.4723
statlog_shuttle 98.6483 98.6241 98.681 98.6793 98.6345 98.6638 98.8764
statlog_vehicle 82.0327 81.5593 82.0313 81.3227 79.1974 79.5475 82.2666
thyroid 95.625 95.4722 95.9917 95.5833 94.7617 94.7639 96.0278
wall_following 75.6057 75.239 75.734 75.1845 71.518 72.1223 80.683
waveform 86.54 86.08 86.56 86.26 86.88 86.68 87.22
waveform_noise 86.28 85.02 86.42 85.42 86.28 86.3 86.58
wine 97.2063 96.0952 96.6508 96.7896 97.2063 97.2363 97.2063
wine_quality_red 59.4769 59.4755 59.9134 60.4759 60.5106 60.8533 60.5388
wine_quality_white 52.3989 52.5332 52.472 52.4103 52.4106 52.6349 53.4925
700 95 96 97 96 97 95 97.6
Average accuracy 78.4569 77.7028 77.7085 77.0675 78.5363 78.6914 80.222
Average rank 4.1786 5.7143 3.6429 4.75 4.375 3.8036 1.5357
Average standard deviation 54311 7.0908 6.8053 8.7373 4.8882 5.1418 4.5872
The boldface in each row denotes the performance of the best model corresponding to the datasets. T represents the proposed models.
TABLE IV

the multiclass comparisons. The GEELM-LDA and GEELM-
LFDA are the worst-performing models in binary classification
as per Section IV-B, so they are excluded from the multiclass
classification comparison. Tables XI and XII of supplementary
materials contain the standard deviations and best hyperparam-
eter setting, respectively, w.r.t. each model and dataset.

The proposed NF-RVFL-C, NF-RVFL-K, and NF-RVFL-R
secured the first, second, and third spots with an average accu-
racy of 80.222%, 78.6914%, and 78.5363%, respectively. With a
standard deviation of 4.5872, 4.8882, and 5.1418, the proposed
NF-RVFL-C, NF-RVFL-R, and NF-RVFL-K, respectively, have
the lowest standard deviations among all the models. This
showcases that the proposed NF-RVFL models have the highest
prediction capabilities with high certainty. Among all models,
the proposed NF-RVFL-C has the lowest rank of 1.5357, while
NF-RVFL-K ranks third, highlighting their superiority over
baseline models. With an average rank of 4.375, NF-RVFL-R
demonstrates strong competitiveness. We get x% = 59.4811 and

STATISTICAL ANALYSIS OF THE PROPOSED (LISTED IN THE FIRST COLUMN)
WITH ALL THE MODELS (LISTED IN THE FIRST ROW) FOR MULTICLASS UCI
DATASETS BASED ON THE NEMENYI POST HOC TEST

RVEL | ELM | Total-var- | MCVELM }
6] 321 | RVFL [35] 1361 NF-RVFL-RT | NF-RVFL-K! | NF-RVFL-CT
NE-RVFLRT 0 0 0 0 N/A 0 X
NF-RVFLKT 0 v 0 0 0 N/A X
NF-RVFL-CT v v v v v v N/A
Here, T indicates the proposed models. v/ signifies that the model in the respective row exhibits superiority over

the model in the corresponding column. X signifies that the model in the respective row is statistically inferior to
the model in the respective column. 0 means no statistical difference between the row and column models.

Fp =14.7992 for .# =7 and 2 = 28. Also, Fr(6,252) =
2.1549 at a 5% significance level. Fp = 14.7992 > F'r (6, 252)
demonstrates substantial differences across the compared mod-
els; therefore, the null hypothesis is rejected. Table IV presents
the Nemenyi post hoc test results for all proposed and baseline
models. The proposed NF-RVFL-C is statistically superior to all
existing models, as well as the proposed NF-RVFL-R and NF-
RVFL-K models. NF-RVFL-K is statistically better than ELM.
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TABLE V
COMPARISION OF NEURO-FUZZY BASED RVFL (PROPOSED) AND BLS MODELS IN TERMS OF ACCURACY, STANDARD DEVIATION, RANK, NUMBER OF FUZZY
RULES FOR BINARY AND MULTICLASS CLASSIFICATION

Model — RVFL [6] BLS [37] Fuzzy-BLS [16] NF-RVFL-RT  NF-RVFL-KT  NF-RVFL-CT

Avg. Accuracy 80.4458 81.9585 82.4748 82.2584 82.5816 83.5591

Avg. Standard Deviation 9.4944 8.2629 8.8137 8.0372 6.9893 7.3014
Binary Avg. Rank 5.4138 4.3448 3.1552 3.3621 3.069 1.6552

# Avg. Fuzzy Rules N/A N/A 330.52 23.28 27.76 26.38

Avg. Accuracy 78.4569 79.183 79.3606 78.5363 78.6914 80.222

Avg. Standard Deviation 5.4311 4.9593 6.6522 4.8882 5.1418 4.5872
Multiclass | Avg. Rank 4.2679 3.6429 3.0179 4.3393 3.8036 1.9286

# Avg. Fuzzy Rules N/A N/A 450.36 30.18 36.25 30

1 represents the proposed models, and Avg. is used as an abbreviation for average.
The boldface in each row denotes the performance of the best model corresponding to the datasets.

MCVELM and standard ELM get the last and second-last spots
in the ranking scheme, highlighting the RVFL-based family’s
superior generalization performance. Statistical tests confirm
the proposed NF-RVFL models’ top performance, attributed to
enhanced generalization performance via neuro-fuzzy system
integration.

D. Comparison of RVFL and BLS-Based Neuro-Fuzzy Models

Now, we conduct a comparative analysis of two neuro-fuzzy-
based models: fuzzy-BLS and our proposed NF-RVFL models.
The evaluation is performed on both binary and multiclass UCI
datasets, and the comparison is based on the outcomes outlined
in Table V. Further detailed experimental results, standard devia-
tions, and best parameter settings are presented in supplementary
Tables XIII to XVIII.

Analysis:

1) The standard BLS outperforms RVFL in terms of average
accuracy in both binary and multiclass classification.
Neuro-fuzzy integration significantly enhances model per-
formance. In binary classification, RVFL and BLS exhibit
average accuracies of 80.4458% and 81.9585%, respec-
tively. On the other hand, NF-RVFL-R, NF-RVFL-K, and
NF-RVFL-C achieve average accuracies of 82.2584%,
82.5816%, and 83.5591%, respectively. Similarly, fuzzy-
BLS attains an average accuracy of 82.4748%, surpassing
the accuracy of BLS at 81.9585%. This pattern holds true
for multiclass classification as well.

While standard RVFL models may not match the per-
formance of BLS, notable advancements are observed
with NF-RVFL models. NF-RVFL-K and NF-RVFL-C
surpass both BLS and fuzzy-BLS in binary classifica-
tion. NF-RVFL-R outperforms BLS and competes closely
with fuzzy-BLS in binary classification. Remarkably, the
proposed NF-RVFL-C model outshines all baseline and
neuro-fuzzy-based models for multiclass classification.
This underscores the effectiveness of our proposed NF-
RVFL-C in incorporating a fuzzy inference system within
its structure.

In binary classification, all proposed NF-RVFL models
exhibit the lowest standard deviation, and in multiclass
classification, NF-RVFL-C, NF-RVFL-R, and NF-RVFL-
K secure the first, second, and fourth positions with the
lowest standard deviation, respectively. This emphasizes

2)

3)

4)

that the proposed NF-RVFL models not only demonstrate
superior prediction capabilities but also achieve height-
ened certainty.
NF-RVFL-C secures the top rank with 1.6552 and
1.9286 in binary and multiclass classification, respec-
tively, showcasing a substantial lead over other models.
NF-RVFL-K outperforms both BLS and fuzzy-BLS in
binary classification.
The crucial factor of the number of fuzzy rules signif-
icantly influences the simplicity and interpretability of
neuro-fuzzy models. Notably, the optimal number of fuzzy
rules (average) for NF-RVFL models consistently falls
within the range of 20-35, whereas Fuzzy-BLS utilizes
330.52 and 450.36 fuzzy rules for binary and multiclass
classification, respectively—roughly 15-20 times more
than that of NF-RVFL. This highlights the superior struc-
tural fuzzy adaptability of our proposed NF-RVFL models,
indicating a less complex yet high-performing alternative
than fuzzy-BLS.

Main takeaways from the analysis are as follows.

1) While RVFL’s generalization performance may not rival
that of BLS, the proposed NF-RVFL consistently outper-
forms BLS and fuzzy-BLS and sometimes demonstrates
competitive results.

2) NF-RVFL exhibits better interpretability than fuzzy-BLS
due to its reduced complexity and enhanced structural
adaptability, particularly in fuzzy rule utilization.

5)

6)

E. For Regression Task: Experimental Results and Statistical
Analysis on UCI Datasets

The significance of regression tasks becomes evident within
the RVFL domain, where current research is relatively con-
strained. Here, we compare the proposed NF-RVFL models
with the standard RVFL and ELM models. We fix the value
of the regularization parameter € = 10°. The RMSE value is
calculated to measure the performance of the proposed models

against the baseline models. RMSE = \/ﬁ Zi\il(tr —t,*),
where M, t,., andt,” are the total number of samples, real
output, and predicted output of the r th sample, respectively.
A lower RMSE value signifies superior model performance.
Table VI provides an overview of the RMSE values associated
with each model across the respective datasets. After analysis, it
becomes evident that the proposed NF-RVFL-R model exhibits




SAJID et al.: NEURO-FUZZY RANDOM VECTOR FUNCTIONAL LINK NEURAL NETWORK

TABLE VI
THE RMSE VALUES AND THE CORRESPONDING BEST HYPERPARAMETERS OF
THE PROPOSED NF-RVFL-R, NF-RVFL-K, AND NF-RVFL-C MODELS ALONG
‘WITH THE COMPARED BASELINE MODELS, L.E., RVFL, ELM ON REGRESSION

UCI DATASETS
Model RVEL [6] ELM [32]  NF-RVEL-RT NF-RVFL-K'  NF-RVFL-CT
Dataset RMSE RMSE RMSE RMSE RMSE
(#Samples, #Features) (h, Act.) (h, Act.) (J, h, Act.) (J, h, Act.) (J, h, Act.)
2D_Planes ) 7.3 % 1072 0 0 1x 1076
(40768, 11) (3,3) (183,1) (10,3,6) (10,3,3) (50,203, 4)
Abalone 6x107° 7x 1076 2.7x107%  81x 1076 6.1 x 1076
(4177,8) (203,4) (203, 5) (25,3,6) (50,3,3) (40,3,3)
Ailerons 1.5x10°% 6.7x107* 1.6 x107° 1.6 x 1072 1.6 x 107°
(13750, 41) (43,6) (203, 1) (10,3,1) (50,3,2) (15,3,5)
Airfoil_Self_Noise 1x107° 1.7x107° 3.8x107% 33x107% 4.1x107%
(1503, 6) (3,1) (203,2) (50,23,1) (50,3, 1) (25,23, 6)
California_Housing 5x 1076 1.7 x 1075 1x10°6 1.2 x 1075 2.7%x 1076
(20640, 9) (3,3) (203,2) (45,3,3) (25,163, 6) (30,3,3)
Delta_Ailerons 0 8.7 x107° 0 0 0
(7129, 6) (3,4) (203,2) (5,3,5) (5,23,6) (5,3,2)
Elevators 3x107° 58 x 1074 3x107° 3x107° 2.8 x 1075
(16599, 19) (3,4) (203,1) (5,3,2) (5,3,2) (5,3,6)
Forest_Fires 1.5x107% 47x107% 7.3x107° 3.1 x 1076 2.7 x 1076
(517,13) (23,6) (183,1) (5,3,1) (5,3,2) (5,3,1)
Kinematics_Robot_Arm 0 2.4 x 1072 0 0 1x10°6
(8192, 9) (3,2) (163, 6) (5,3,5) (10,3,5) (50,43, 4)
Parkinsons_Telemonitoring 2.3 x 107°  2.9x 1072 21x107% 23 x 107> 2.3 x107°
(5875,22) (3,5) (163,1) (10,23, 6) (5,3,4) (5,3,5)
Pole_Telecomm 0 9x 1072 0 0 0
(15000, 49) (3,3) (203, 1) (10,23,3) (10,3,3) (10,3,6)
Servo 9x 1076 9x107%  59x107%  6.2x107° 6.3 %1076
(4177,8) (183,5) (203,2) (40,3,3) (30,3,6) (20,23, 6)
Stocks_Domain 6x107° 7x107° 55x10°% 6.8 x 1076 5.6 x 1076
(4177, 8) (163, 6) (163, 4) (40,3,3) (50,3,3) (45,3,3)
Triazines 35x107°  69x 1071 22x107% 26x107° 2.2x10°°
(186,61) (3,1) (203,6) (5,3,2) (10,3,2) (5,3,6)
Yacht_Hydrodynamics 4x10°6 2x 1074 5.8 x 1076 8x 10-6 7x 1076
(308,7) (3,4) (203,2) (15,23, 6) (5,3,5) (5,3,1)
Avg. RMSE 9.6x107% 58x1072 80x10"% 94x107% 84x10°6

Here, Avg. and RM SFE are used as abbreviations for average and root mean square error, respectively.
Act. is for the the activation function where 1 denotes Sigmoid, 2 denotes Sine, 3 denotes Tribas,

4 denotes Radbas, 5 denotes Tansig and 6 denotes Relu. t represents the proposed models.

The boldface in each row denotes the performance of the best model corresponding to the datasets.

TABLE VII
COMPARISON OF WIN-TIE-LOSS RESULTS ON UCI REGRESSION DATASETS
RVFL [6] ELM [32] NF-RVFL-Rf  NF-RVFL-KT
ELM [32] [0,1,14]
NF-RVFL-RY [8,1,6] [15,0,0]
NF-RVFL-KT | [4,1,10]  [14,0,1] [4,4,7]
NF-RVFL-C' [6,0,9] [15,0,0] [2,1,12] [8,0,7]

In the [z, v, 2], =, y, and z denote the number of win, tie, and
loss of the row model over the corresponding column model.

the most favorable outcome, with an average RMSE value
of 8.0 x 1075, Following this, the proposed NF-RVFL-C and
NF-RVFL-K models demonstrate competitive performance, reg-
istering 8.4 x 1076 and 9.4 x 10~% RMSE values, respectively.
The standard RVFL model occupies the fourth position, whereas
the standard ELM model showcases the worst performance,
evidenced by the RMSE value of 5.8 x 1072, The RMSE value
of the standard ELM is approximately 10000 times higher than
the RVFL family’s model. ELM can be seen as a variant of RVFL
without direct links. In this context, ELM can be referred to as
RVFLwoDL (RVFL without direct links). Thus, we conclude
that the generalization performance of RVFL with direct links
is better than without direct links.

Win-tie-loss for individual models is summarized in Ta-
ble VII. In comparison with the ELM model, the proposed
NF-RVFL-R and NF-RVFL-C models secure victories across
all datasets, whereas NF-RVFL-K attains victory on 14 in-
stances and experiences defeat in 1 out of a total of 15 datasets.
This shows the dominance of the proposed NF-RVFL models
over the existing baseline models. Thus, the emergence of the
proposed NF-RVFL models introduces a promising avenue,
demonstrating its potential to excel in addressing regression
challenges effectively.
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Fig. 3. Partial dependence plot (PDP) of each feature of the dataset pitts-
burg_bridges_T_OR_D w.r.t. the proposed NF-RVFL models, RVFL and deci-
sion tree. F-i in the X-axis denotes the ith feature of the dataset.

F. Interpretability of the Proposed NF-RVFL Models

Interpretability plays a pivotal role in system explanation,
aiming to render the internal mechanisms of a system com-
prehensible to humans. As per [41], two primary categories of
interpretability methods exist: intrinsic ante-hoc explanations,
centered on transparent and straightforward models such as
linear regression and decision trees, and post-hoc explanations,
employing methods like PDP [26] and LIME [42] after model
training. NF-RVFL, a network model, falls within the local
post-hoc interpretability category, extracting fuzzy rules on the
RVFL architecture for prediction. Due to the absence of a
systematic definition and standardized evaluation methods for
interpretability in machine learning, we adopt the established
post-hoc method, i.e., PDP and also following the guidance of
articles [24], [43], and [44], we assess the interpretability of the
proposed NF-RVFL models. The interpretability of NF-RVFL
is evaluated based on two factors: 1) PDP-based feature im-
portance interpretability; and 2) feature-importance-based inter-
pretability considering weights assigned to each feature during
prediction (following [24], [43]).

1) Partial dependence plot (PDP)-based feature impor-
tance interpretability: To validate the interpretability of the
proposed NF-RVFL models, we employed PDP [26], a standard
technique for understanding the feature-prediction relationship.
PDP enables the exploration of feature influence on projected
outcomes and their importance according to the model. Consid-
ering decision trees as one of the best interpretable models [45],
we compare the NF-RVFL and standard RVFL models with the
decision tree. We depict PDP plots in Fig. 3 for all seven features
of the dataset pittsburg_bridges_T_OR_D. For feature ranking,
each feature is assigned ranks based on probability scores,
with lower ranks indicating higher importance. In this context,
NF-RVFL-C assigns rank 1 to feature-7 (F-7), rank 2 to feature-2
(F-2) and so on. Comparing rank errors (in RMSE) between the
decision tree and NF-RVFL-R, NF-RVFL-K, NF-RVFL-C, and
RVFL, the errors are 2.14, 2.62, 2.39, and 2.93, respectively. The
lower rank error of the proposed NF-RVFL models with the deci-
sion tree (compared to the standard RVFL model) reveals that the
proposed NF-RVFL models align more closely with the decision
tree in terms of feature importance ranking. Consequently, this
heightened congruence implies that the decision-making process
within the proposed NF-RVFL models closely resembles that
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of the decision tree (which is one of the best interpretable
models). Hence, the interpretability of the proposed NF-RVFL
models is enhanced to some extent in comparison to the RVFL
model.

2) Feature importance-based interpretability considering
weights assigned to each feature during prediction: This
study presents the interpretability of the proposed NF-RVFL
models using a feature-importance-based approach, wherein
weights assigned to each feature during prediction are consid-
ered. The step-by-step learning process of the NF-RVFL models
is demonstrated using the breast cancer dataset. Following [24],
we consider the breast cancer dataset, which aims to predict the
likelihood of breast cancer recurrence based on diagnostic mea-
surements (features). Each data point in the dataset is categorized
aseitherclass 1 (norecurrence) or class 2 (recurrence). It consists
of nine features labeled as x; to xg9. For more information, visit
the supplementary Section II-A for a comprehensive description
of the dataset breast cancer. To provide a transparent illustration
of interpretability, we first illustrate, in Section II-B of the
supplementary materials, how our proposed NF-RVFL-K learns
fuzzy rules and assigns weights to the original features during
the training process at the minimum number of hidden nodes and
fuzzy rules. Then, following [43], we show the interpretability
of all the proposed NF-RVFL models at the best hyperparameter
setting. The learning process of the NF-RVFL models on breast
cancer is discussed in detail in supplementary Section II-C using
Table IV. Analysis and main takeaways from the learning process
and interpretability of NF-RVFL discussed in Section II of the
supplementary material: In examining the interpretability of our
proposed NF-RVFL models based on supplementary Table V,
we analyze the following.

1) For NF-RVFL-C, feature emphasis is notably placed on
features zg (Irradiat), x4 (Deg Malig), and x3 (tumor
size). These features are associated with radiation ther-
apy, cancer severity, and tumor size. As per biomedical
knowledge [46], these are some prominent features in
predicting whether breast cancer has no recurrence or re-
currence. Align with biomedical knowledge; the proposed
NF-RVFL-C gives significance to the above features in
predicting breast cancer recurrence.

2) For NF-RVFL-R, the model predominantly prioritizes x3
(tumor size). This concurs with biomedical understanding,
highlighting the pivotal role of tumor size in predicting
cancer diseases.

3) For NF-RVFL-K, the model assigns primary weightage
to zg (breast-quad) and secondary importance to s (tu-
mor size). NF-RVFL-K adeptly identifies and prioritizes
features, aligning with the final output and showcasing its
ability to discern meaningful patterns.

In summary, our study demonstrates the learning rules and
feature importance-based interpretability of the proposed NF-
RVFL models. The models exhibit nuanced prioritization of
features, aligning with biomedical knowledge and enhanc-
ing the understanding of their predictive capabilities in the
context of breast cancer recurrence. In accordance with Fried-
man [26], “visualization stands as one of the most potent tools
for interpretation.” Since the neuro-fuzzy IF-THEN rule is based
on the humanlike visualization approach and from the above two
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interpretability discussions, the proposed model gets closer to
interpretability.

V. CONCLUSION

We proposed neuro-fuzzy RVFL (NF-RVFL) model by in-
tegrating RVFL with the neuro-fuzzy systems through a rig-
orous and comprehensive mathematical framework. The pro-
posed NF-RVFL model enhanced the transparency of RVFL’s
decision-making and predictions by embodying humanlike
decision-making via an IF-THEN approach. The fuzzification
step employed three distinct clustering methods—randomly
initialized centers (R-means), K-means clustering centers, and
fuzzy C-means clustering centers—resulting in diverse varia-
tions of the model (NF-RVFL-R, NF-RVFL-K, and NF-RVFL-
C, respectively).

The effectiveness of the proposed NF-RVFL models was
demonstrated by rigorous experiments on 29 binary and 28 mul-
ticlass classification UCI datasets representing diverse domains
and scales. A detailed investigation included benchmarking
against nine existing baseline models from the RVFL, ELM,
and BLS families. The statistical metrics confirm that the pro-
posed NF-RVFL-C is statistically better than all the compared
models. The proposed NF-RVFL-K and NF-RVFL-R also beat
existing models (sometimes competitive performance) in terms
of average accuracy and rank and secured the second and third
positions, respectively. Lower standard deviations were consis-
tently exhibited by the proposed NF-RVFL models compared
to the baseline models. In the RVFL family, regression research
was limited. We addressed this gap by employing our proposed
NF-RVFL models for the regression domain and conducted
experiments on 15 UCI benchmark regression datasets. The
NF-RVFL models consistently showcased lower RMSE values
and maximum wins compared to the existing models.

The interpretability of NF-RVFL was evaluated based on two
factors: 1) PDP-based feature importance interpretability and 2)
feature-importance-based interpretability considering weights
assigned to each feature during prediction. The learning process
and the feature importance of the proposed NF-RVFL models
were studied based on feature-importance interpretability. It was
found that the interpretability of the proposed NF-RVFL models
was improved compared to the standard RVFL model. Moreover,
NF-RVFL demonstrated superior interpretability compared to
fuzzy-BLS due to its reduced complexity and improved struc-
tural adaptability, particularly in the utilization of only less
fuzzy rules. Furthermore, we conducted a detailed ablation
study (with and without key components) on the proposed
NF-RVFL models, examining their dependence on key com-
ponents. The essential elements under investigation included
the direct links, fuzzification (fuzzy layer), defuzzification (de-
fuzzified layer), number of fuzzy rules (clusters), and activation
functions.

Future endeavors include the development of a neuro-fuzzy-
based RVFL model that incorporates simultaneous feature
selection and rule extraction. Additionally, exploring the
integration of neuron models inspired by biological systems
into the NF-RVFL model stands as a promising research avenue
to enhance interpretability. This study primarily centered
on shallow RVFL, constrained in capturing intricate data
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relationships. Subsequent plans include extending this research
to encompass deep and ensemble RVFL variants.
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