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Abstract—The sliding mode control (SMC) problem is studied
for interval type-2 fuzzy semi-Markovian jumping systems sub-
ject to channel fading. To reduce the network burden, a dynamic
event-triggered protocol is adopted to improve the transmission
efficiency. A key feature is that the signal transmission is inevitably
affected by fading phenomenon due to random noise and ampli-
tude attenuation during the wireless communication. The main
challenge lies in designing an appropriate fuzzy control scheme to
achieve the reachability of the specified sliding region in line with
channel fading. Under the common sliding surface, a fuzzy SMC
law is constructed, which is related to the state signals affected
by dynamic event-triggered protocol and channel fading. Then,
by means of the boundary information of the global membership
functions, sufficient conditions to ensure the stochastic stability
of the underlying system, and the system states can be driven
on the specified sliding region within a finite-time interval, which
attenuates the influence of the channel fading. In the end, the
tunnel diode circuit model is simulated to verify the proposed SMC
strategy.

Index Terms—Channel fading, interval type-2 fuzzy (IT2F),
semi-Markovian jumping systems (S-MJSs), stochastic stability.

I. INTRODUCTION

IN MANY complex dynamical systems, the structure and pa-
rameters may change randomly due to sudden environmen-

tal disturbances and uncontrolled component failures. Marko-
vian jumping systems (MJSs) are suitable to describe random
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switching characteristics caused by external factors [1], [2] and
find wide applications, such as aerospace systems, macroeco-
nomic models, and vehicle control systems [3], [4], [5], [6].
Although MJSs can describe the characteristics of multimodal
switching in most practical systems, there still exist some con-
straints, resulting in inaccurate modeling. One of the main
constraints is that the sojourn time (ST) of MJSs is a random
variable with exponential distribution. Due to the memoryless
property of exponential distribution, the system mode switching
is only related to the previous mode. To eliminate this limitation,
semi-Markovian jumping systems (S-MJSs) are introduced into
the field of system control [7]. Compared with MJSs, the ST
of submodes in S-MJSs follows more general distribution types
and the transition rate (TR) among different modes is dependent
on the ST, yielding a wider range of applications. In recent years,
there have been many achievements in the research of S-MJSs
[8], [9], [10], [11], [12], [13], [14].

As a typical fuzzy strategy, Takagi–Sugeno (T-S) fuzzy model
is described by a series of “IF–THEN” rules, approximating
arbitrary nonlinear systems with a set of linearized models in
local scope, which makes nonlinear systems easier to analyze
[15], [16], [17]. For example, a novel fuzzy sliding surface
relating to the singularly perturbed parameter has been con-
structed to adapt the singularly perturbed systems characteristics
for the first time, and the effective observer-based sliding mode
controller has been designed for complex fuzzy systems [17].
Nowadays, type-1 fuzzy model has been widely adopted to
model nonlinear systems. However, the membership function
of type-1 fuzzy set is “exact,” which has some limitations in
dealing with parameter uncertainty. In order to make fuzzy sets
with a stronger ability to handle the parameter uncertainty, the
concept of type-2 fuzzy sets is introduced [18], [19]. Unlike
type-1 fuzzy model, type-2 fuzzy model can better represent
and deal with the system uncertainty, while the disadvantage
is to increase the computational burden. As a special case of
type-2 fuzzy model, interval type-2 fuzzy (IT2F) model not only
retains the advantage of type-2 fuzzy model, but also reduces
the computational complexity. Very recently, many researchers
have paid more and more attention to IT2F model [20], [21],
and successfully conducted in-depth research and generalization
in fuzzy neural network control, dynamic trajectory, diagnostic
fault, and other fields [22], [23], [24]. Due to its outstanding
advantage, IT2F strategy has been successfully applied to MJSs
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and S-MJSs, including guaranteed cost control [13], fault detec-
tion [25], [26], and dissipativity [27], [28].

Sliding mode control (SMC) has been widely concerned be-
cause of its strong robustness to system parameter perturbations
and external disturbances [29], [30]. In essence, SMC belongs
to a special nonlinear control, the biggest feature of which is that
the “structure” is not fixed, and the controller can be switched
according to the current state signal, so that the system state can
move to the equilibrium point along the preset sliding surface.
A review of literature has witnessed the development of SMC
theory, such as fuzzy control [2], [22], [23], [31], [32], MJSs
[33], [34], and S-MJSs [9], [35], [36], [37]. Meantime, with the
increasing diversity of wireless communication, the dynamical
performance is largely restricted by the characteristics of wire-
less channels. In wireless communication, the transmitted signal
is often affected by occlusion, reflection, refraction, and diffrac-
tion of various objects during the propagation process, forming a
multipath signal component to arrive at the receiver. The signal
components of different paths may have different phases and
amplitudes, in which the received signal will be strengthened
and weakened over a short time, resulting in channel fading
[22], [23], [38], [39], [40]. Therefore, to improve the quality of
wireless communication, it is necessary to study and analyze the
transmission characteristics of channel fading.

Another issue is the triggered protocol. Based on the limited
network bandwidth resources, an event-triggered protocol (ETP)
has been developed to reduce the network burden [41], [42].
Compared with time-triggered protocol, the advantage of ETP
lies in effectively reducing the transmitted number of sampled
signals, so as to improve the utilization of computing and com-
munication resources and avoid resource waste. However, it is
worth noting that most of the previous research results focus on
the static ETP [41], [42], that is, the parameter related to the
triggered condition is time invariant. With the in-depth study
of event-triggered rule, the dynamic ETP related to internal
dynamic variable has been proposed to reduce the triggered fre-
quency [22], [23], [43], [44], [45]. The introduction of dynamic
variable makes the triggered policy related to system state in real
time, further reducing the total amount of data transmission in
the network transmission and maintaining the system stability.
Nevertheless, under the framework of dynamic ETP, there is no
relevant literature about SMC for IT2F S-MJSs with channel
fading, which is one motivation of the current work.

Although some excellent results have emerged for IT2F
S-MJSs, there are still some obvious limitations. The corre-
sponding IT2F S-MJSs are investigated based on the framework
of ideal network channels [13], [25], [27], in which it is difficult
to satisfy this strict restriction in complicated communication
networks. Moreover, the existing results for IT2F stochastic
switching systems are studied in light of time-triggered protocol
[13], [25], [26], [27] or static ETP [9], in which the amount
of data transmission is greatly increased. The introduction of
dynamic ETP brings some difficulties to SMC for IT2F S-MJSs.
For IT2F S-MJSs, it is still a problem worthy of further study to
design the dynamic ETP to reduce the burden of network com-
munication. Therefore, how to design an appropriate dynamic
event-triggered SMC law to achieve better dynamic performance

for IT2F S-MJSs with channel fading is still an urgent problem
to be solved, which motivates our study.

Inspired by the abovementioned motivations, this article stud-
ies the protocol-based SMC for IT2F S-MJSs with channel fad-
ing. The main contributions of this work include the following.

1) Compared with IT2F S-MJSs [13], [25], [27] in the pres-
ence of ideal network channels, the SMC problem is first
studied for IT2F S-MJSs under the framework of channel
fading.

2) Different from IT2F stochastic switching systems under
time-triggered protocol [13], [25], [26], [27] or static ETP
[9], the dynamic ETP is adopted to conserve the network
resources efficiently, which can adjust the triggered thresh-
old dynamically.

3) Based on the dynamic ETP, the channel fading, and the
mismatched membership functions, an appropriate SMC
strategy is proposed to ensure the stochastic stability of
the underlying system and the reachability of the specified
sliding region. At the same time, the minimum triggered
interval is obtained to avoid Zeno behavior.

Notations: λmax(X) and λmin(X) denote the maximum and
minimum eigenvalues of the corresponding matrix. E{·} stands
for the expectation operator.

II. PROBLEM FORMULATION

A. System Description

Consider the IT2F S-MJSs with the αth rule
Rule α: IF ξ1(z(t)) is Qα

1 and ξ2(z(t)) is Qα
2 and · · · and

ξb(z(t)) is Qα
b , THEN

ż(t) = (Aα(υt) +�Aα(υt, t))z(t) +Bα(υt)(u(t)

+ ϕα(z(t), υt, t)) (1)

where z(t) ∈ �n and u(t) ∈ �m stand for the system
state and control input, respectively. ξp(z(t)) denote the
premise variables and Qα

p (p = 1, 2, . . . , b; α = 1, 2, . . . , β)
are the fuzzy sets. Aα(υt) and Bα(υt) are the matri-
ces with appropriate dimensions. �Aα(υt, t) is given as
�Aα(υt, t) = Lα(υt)Eα(υt, t)Uα(υt), where Eα(υt, t) satis-
fies ET

α (υt, t)Eα(υt, t) ≤ I . ϕα(z(t), υt, t) means the non-
linearity with ‖ϕα(z(t), υt, t)‖ ≤ πα(υt)‖z(t)‖. The firing
strength for the αth fuzzy rule is denoted by

�α(z(t)) = [�α(z(t)), �̄α(z(t))]

where �α(z(t)) =
∏b

p=1 ρQα
p
(ξp(z(t))) ≥ 0, �̄α(z(t)) =∏b

p=1 ρ̄Qα
p
(ξp(z(t))) ≥ 0, and ρ

Qα
p
(ξp(z(t))) ≤ ρ̄Qα

p
(ξp(z(t)))

with ρ̄Qα
p
(ξp(z(t))) ∈ [0, 1] and ρ

Qα
p
(ξp(z(t))) ∈ [0, 1] being

the lower and upper grades of membership.
{υt, τ}t≥0 := {υq, τq}q∈N≥1

denotes the semi-Markovian
process (SMP) in � = {1, 2, . . . , c}, where {υq}q∈N≥1

is the
ST between the (q − 1)th and qth transitions and {υq}q∈N≥1

means the mode index at the qth transition with TR matrix
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Fig. 1. System structure with dynamic ETP and channel fading.

Σ(τ) = {σ�ς(τ)} given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pr{υq+1 = ς, τq+1 ≤ τ + d|υq = , τq+1 > τ}
= σ�ς(τ)d+ o(d),  �= ς

Pr{υq+1 = ς, τq+1 > τ + d|υq = , τq+1 > τ}
= 1 + σ�ς(τ)d+ o(d),  = ς

where limd→0 o(d)/d = 0with d ≥ 0,σ�ς(τ) ≥ 0 expresses the
TR from  to ς for �=ς , and σ��(τ)=−∑c

ς=1,� �=ς σ�ς(τ)<0.

For the sake of notation, define Aα(υt) � Aα�, Bα(υt) �
Bα�, and �Aα(υt, t) � �Aα�(t). By fuzzy blending, one has
the global model

ż(t) =

β∑
α=1

�α(z(t))[(Aα� +�Aα�(t))z(t)

+Bα�(u(t) + ϕα�(z(t), t))] (2)

with

�α(z(t)) = �α(z(t))φα(z(t)) + �̄α(z(t))φ̄α(z(t))

φ
α
(z(t)) + φ̄α(z(t)) = 1, φ

α
(z(t)), φ̄α(z(t)) ∈ [0, 1]

and
∑β

α=1�α(z(t)) = 1, where φ
α
(z(t)) and φ̄α(z(t)) are the

nonlinear functions that can capture the parameter uncertainty.
Remark 1: Compared with type-1 T-S fuzzy model [2], [3],

[11], [15], [16], [32], IT2F model is adopted to describe S-MJSs,
which makes up for the deficiency of modeling the parameter
uncertainty in type-1 fuzzy strategy. In addition, IT2F model
can effectively capture the parameter uncertainty by using the
upper and lower membership functions, which greatly reduces
the conservatism of the research results.

B. Dynamic ETP With Channel Fading

As shown in Fig. 1, the transmission of system state is reg-
ulated by the dynamic ETP to determine whether the state z(t)
can be released and transmitted to the controller. Let ts(s ∈ N)
be the triggered instant, and the next triggered moment ts+1 is
determined by the following dynamic ETP:

ts+1 = inf

{
t > ts

∣∣∣∣ 1μι(t) + ϑzT (t)Ψ�z(t)

− κT (t)Ψ�κ(t) ≤ 0

}
(3)

where μ > 0, 0 < ϑ < 1, and Ψ� > 0 is the weight matrix.
κ(t) � z(ts)− z(t) represents the error state between the latest
released data z(ts) and the current data z(t). Moreover, ι(t) is
the dynamic variable satisfying the following:

ι̇(t) = −ηι(t) + ϑzT (t)Ψ�z(t)− κT (t)Ψ�κ(t) (4)

with η > 0 and ι(0) = ι0 ≥ 0.
Remark 2: For the dynamic ETP (3) and (4), the parameter

μ > 0 reflects the involvement of dynamic variable ι(t). Obvi-
ously, as the parameter μ increases, the variable ι(t) becomes
less and less involved. The parameter 0 < ϑ < 1 indicates the
triggered tightness. The larger the value of ϑ, the larger the error
κ(t) tolerated by the system. This results in fewer packets being
triggered. In addition, the parameter η stands for the decay rate of
the variable ι(t). In general, choosing a smaller value can make
its attenuation rate less than ϑzT (t)Ψ�z(t)− κT (t)Ψ�κ(t).
Therefore, the parameters in dynamic ETP (3) and (4) can be
selected appropriately to reduce the conservatism.

Lemma 1 [44]: Let μ > 0, 0 < ϑ < 1, Ψ� > 0, η > 0, and
ι0 ≥ 0. For t ∈ R+, the interval dynamic variable ι(t) in the
event-triggered condition (3) with (4) satisfies ι(t) ≥ 0.

Proof: For the dynamic ETP (3) and (4), one has

ι̇(t) + ηι(t) = ϑzT (t)Ψ�z(t)− κT (t)Ψ�κ(t) ≥ −ι(t)
μϑ

which means that ι(t) ≥ ι0e
−(η+ 1

μϑ )t ≥ 0 with ι0 ≥ 0. �
Remark 3: Different from the static ETP [9], [32], [39], [41],

[42], a dynamic ETP is adopted to better improve transmis-
sion efficiency. The triggered condition (3) contains a dynamic
variable ι(t), the value of which can be dynamically adjusted
according to the states z(t) and κ(t). According to Lemma 1,
owing to the nonnegative term ι(t), the triggered interval be-
tween two consecutive triggered moments under dynamic ETP
is not less than that under the static ETP. Therefore, the dynamic
ETP can reduce the number of redundant data more effectively.
In particular, when ι(t) → 0, the dynamic ETP condition (3)
will be transformed into the static ETP form.

Obviously, under the dynamic ETP, only part signals that
meet the triggered condition (3) can be transmitted, and the
limited network communication resources can be effectively
utilized. However, due to the channel fading in the network
transmission process, the signal z(ts) transmitted through the
network communication channel may be affected. Therefore,
the actual signal z̆(ts) transmitted to the controller from [22] is
described as

z̆(ts) = δ(ts)z(ts) (5)

where δ(ts) ∈ [0, 1] is a random variable that follows any prob-
ability density function with mathematical expectation δ̄ and
variance δ̃.

Remark 4: In the fading model (5), the random variable
δ(ts) ∈ [0, 1] is adopted to describe the attenuation degree of
the fading channel. Specifically, when δ(ts) = 1, the actual
transmitted signal cannot be affected by the channel fading,
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normally transmitted to the controller. When δ(ts) = 0, there
is no transmitted signal.

Remark 5: In this article, the dynamic ETP (3) is adopted to
reduce the network burden effectively. However, since the fading
channel phenomenon is inevitable, this work constructs the
fading channel model [22] on the basis of dynamic ETP, in which
the dynamic ETP and the fading coefficient δ(ts) ∈ [0, 1] are
taken into account. Obviously, this design makes the constructed
controller more realistic. In addition, the actual signal received
by the controller is the fading signal z̆(ts)described by the fading
model (5), which also brings great challenges to the subsequent
stability analysis.

C. SMC Law Design

Choose a common sliding function as

γ(t) = Rz(t) (6)

where R is chosen such that RBα� is nonsingular for ∀ ∈ �,
α = 1, 2, . . . , β.

Remark 6: For the existing SMC schemes [2], [32], [33],
a mode-dependent sliding surface is usually constructed. Al-
though the mode switching is considered, it also brings some
problems to the system performance. Frequent switching may
result in unstable sliding motion. Therefore, a mode-independent
sliding surface is constructed to avoid this problem, so as to
effectively ensure the controller performance.

Based on the dynamic ETP and the channel fading, for t ∈
[ts, ts+1), the fuzzy sliding mode controller is constructed as

Rule �: IF o1(z̆(t)) is L�
1 and o2(z̆(t)) is L�

2 and · · · and
of (z̆(t)) is L�

f , THEN

u(t) = W��z̆(ts)− ζ�‖z̆(ts)‖sign(γ(t)) (7)

where the controller gain W�� and scalar ζ� will be designed
later. L�

f (f = 1, 2, . . . , g; � = 1, 2, . . . , �) represent the fuzzy
sets of rule � with premise variables of (z̆(t)). Considering the
unknown membership functions, we reconstruct the member-
ship functions as

ν�(z̆(t)) = ν�(z̆(t))ψ�
(z̆(t)) + ν̄�(z̆(t))ψ̄�(z̆(t))

ψ
�
(z̆(t)) + ψ̄�(z̆(t)) = 1, ψ

�
(z̆(t)), ψ̄�(z̆(t)) ∈ [0, 1]

where
∑

�

�=1 ν�(z̆(t)) = 1, ν�(z̆(t)) =
∏g

f=1 εL�
f
(of (z̆(t))) ≥

0, ν̄�(z̆(t)) =
∏g

f=1 ε̄L�
f
(of (z̆(t))) ≥ 0, and εL�

f
(of (z̆(t))) ≤

ε̄L�
f
(of (z̆(t)))with ε̄L�

f
(of (z̆(t))) ∈ [0, 1] and εL�

f
(of (z̆(t))) ∈

[0, 1] being the lower and upper grades of membership.
Then, the global fuzzy SMC law is inferred as

u(t) =
�∑

�=1

ν�(z̆(ts))
[W��z̆(ts)

− ζ�‖z̆(ts)‖sign(γ(t))
]
. (8)

Remark 7: It is noted that the signals triggered and trans-
mitted by the dynamic ETP may also experience the fading
phenomenon before reaching the controller through the net-
work channel, which brings some challenges to the controller

design. Unlike commonly designed controllers [5], [42], [43],
[44], [45], the SMC law (8) is designed in terms of z̆(ts) and
remains constant between the two triggered moments, making
full consideration of fading phenomenon and dynamic ETP.

Therefore, the closed-loop system is obtained by combining
(2), (5), and (8) that

ż(t) =

β∑
α=1

�∑
�=1

να�(z(t))
[
(Aα� +�Aα�(t)

+ δ(ts)Bα�W��)z(t) + δ(ts)Bα�W��κ(t)

+Bα�(ϕα�(z(t), t)− ζ�‖z̆(ts)‖sign(γ(t)))
]

(9)

where να�(z(t)) = �α(z(t))ν�(z̆(ts)).
Definition 1 ([1]): System (9) is said to be stochastically

stable if forυ0 ∈ � and z0 ∈ �n,E{∫∞
0 ‖z(t)‖2dt} <∞holds.

The main objective is to construct an appropriate fuzzy SMC
law (8) based on the dynamic ETP (3) to achieve the stochastic
stability of IT2F S-MJSs and the reachability of the sliding
dynamics with channel fading.

III. MAIN RESULTS

An event-triggered SMC is studied for IT2F S-MJSs with
channel fading. First, sufficient criteria are proposed to realize
the stochastic stability of the underlying system (9). Then, the
reachability condition of the sliding region is given. Finally, a
lower bound on the triggered interval is shown in order to avoid
Zeno behavior.

A. Stochastic Stability

Theorem 1: For given constants μ > 0, 0 < ϑ < 1, η > 0,
and θ > 0, system (9) is stochastically stable, if there exist
scalars ı > 0, ε1 > 0, and ε2 > 0, and matrices P� > 0 and
Ψ� > 0 satisfying

BT
α�P�Bα� ≤ ıI (10)

β∑
α=1

�∑
�=1

να�(z(t))Υ < 0 (11)

where

Υ =

⎡
⎢⎢⎣
Υ11 δ̄P�Bα�W�� 0

∗ Υ22 0

∗ ∗
(

θ
μ − η

)
I

⎤
⎥⎥⎦

Υ11 = P�Aα� +AT
α�P� +

c∑
ς=1

σ̄�ςPς + 2δ̄P�Bα�W��

+ ε−1
1 P�Lα�L

T
α�P� + ε1U

T
α�Uα� + ε2P�

+ 2ε−1
2 ı(π2

α� + ζ2�m(δ̄2 + δ̃))I + (1 + θ)ϑΨ�

Υ22 = 2ε−1
2 ıζ2�m(δ̄2 + δ̃)I − (1 + θ)Ψ�.

Proof: Select the following Lyapunov function:

V(z(t), , ι(t)) = V1(z(t), ) + ι(t) (12)
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where V1(z(t), ) = zT (t)P�z(t).
For the weak infinitesimal operator of V1(z(t), ), it can be

computed that

V1(z(t), )

= lim
d→0+

1

d
{E[V1(z(t+ d), υt+d)|υt = ]− V1(z(t), )}

= lim
d→0+

1

d

{
E

[
c∑

ς=1,� �=ς

Pr{υq+1 = ς, τq+1 ≤ τ + d|

υq = , τq+1 > τ}zT (t+ d)Pςz(t+ d) + Pr{υq+1 = ς

τq+1 > τ + d|υq = , τq+1 > τ}zT (t+ d)P�z(t+ d)

]

− zT (t)P�z(t)

}

= lim
d→0+

1

d

{
E

[
c∑

ς=1,� �=ς

Pr{υq+1 = ς, υq = }
Pr{υq = }

Pr{τ < τq+1 ≤ τ + d|υq+1 = ς, υq = }
Pr{τq+1 > τ + d|υq = } zT (t+d)Pςz(t+d)

+
Pr{τq+1 > τ + d|υq = }

Pr{τq+1 > τ |υq = } zT (t+ d)P�z(t+ d)

]

− zT (t)P�z(t)

}

= lim
d→0+

1

d

{
E

[
c∑

ς=1,� �=ς

χ�ς(M�(τ + d)−M�(τ))

1−M�(τ)

zT (t+ d)Pςz(t+ d) +
1−M�(τ + d)

1−M�(τ)
zT (t+ d)P�

z(t+ d)

]
− zT (t)P�z(t)

}
(13)

where χ�ς =
Pr{υq+1=ς,υq=�}

Pr{υq=�} = Pr{υq+1 = ς|υq = } stands

for the probability intensity from  to ς , and M�(τ) is the
cumulative distribution function.

For a given small scalar d > 0, when d→ 0, the expansion
of Taylor formula for z(t+ d) is

z(t+ d) = z(t) + ż(t)d+ o(d). (14)

Considering limd→0+
1−M�(τ+d)
1−M�(τ)

= 1, limd→0+

M�(τ)−M�(τ+d)
d(1−M�(τ))

= σ�(τ), and σ�ς(τ) = σ�(τ)χ�ς ,  �= ς ,

where σ�(τ) denotes the TR of system switching from , we
can obtain

V1(z(t), )

= 2zT (t)P�ż(t) +

c∑
ς=1

σ̄�ςz
T (t)Pςz(t)

where σ̄�ς = E[σ�ς(τ)] =
∫∞
0 σ�ς(τ)ω�(τ)dτ , and ω�(τ) rep-

resents the probability distribution function.
Furthermore,

V1(z(t), , ι(t))

= V(z(t), ) + ι̇(t)

= 2zT (t)P�ż(t) +

c∑
ς=1

σ̄�ςz
T (t)Pςz(t)− ηι(t)

+ ϑzT (t)Ψ�z(t)− κT (t)Ψ�κ(t)

= 2

β∑
α=1

�∑
�=1

να�(z(t))z
T (t)P�

[
(Aα� +�Aα�(t)

+δ(ts)Bα�W��)z(t)+δ(ts)Bα�W��κ(t)+Bα�(ϕα�(z(t), t)

− ζ�‖z̆(ts)‖sign(γ(t)))
]
+

c∑
ς=1

σ̄�ςz
T (t)Pςz(t)

− ηι(t) + ϑzT (t)Ψ�z(t)− κT (t)Ψ�κ(t). (15)

For ε1 > 0 and ε2 > 0, one has

2zT (t)P� �Aα�(t)z(t)

≤ ε−1
1 zT (t)P�Lα�L

T
α�P�z(t) + ε1z

T (t)UT
α�Uα�z(t) (16)

2zT (t)P�Bα�ϕ̃

≤ ε2z
T (t)P�z(t) + ε−1

2 ϕ̃TBT
α�P�Bα�ϕ̃

≤ ε2z
T (t)P�z(t) + 2ε−1

2 ı
[
π2
α�z

T (t)z(t) + ζ2�mδ
2(ts)

(zT (t)z(t) + κT (t)κ(t))
]

(17)

where ϕ̃ = ϕα�(z(t), t)− ζ�‖z̆(ts)‖sign(γ(t)).
From the condition (3), it can be obtained that for t ∈

[ts, ts+1)

1

μ
ι(t) + ϑzT (t)Ψ�z(t)− κT (t)Ψ�κ(t) ≥ 0. (18)

Combining (15)–(18), one has

E{V(z(t), , ι(t))}

≤
β∑

α=1

�∑
�=1

να�(z(t))[z
T (t)(P�Aα� +AT

α�P�

+ 2δ̄P�Bα�W��)z(t) + ε−1
1 zT (t)P�Lα�L

T
α�P�z(t)

+ ε1z
T (t)UT

α�Uα�z(t) + 2δ̄zT (t)P�Bα�W��κ(t)

+ ε2z
T (t)P�z(t) + 2ε−1

2 ı(π2
α� + ζ2�m(δ̄2 + δ̃))zT (t)z(t)

+ 2ε−1
2 ıζ2�m(δ̄2 + δ̃)κT (t)κ(t)] +

(
θ

μ
− η

)
ι(t)

+ (1 + θ)ϑzT (t)Ψ�z(t)− (1 + θ)κT (t)Ψ�κ(t)

+
c∑

ς=1

σ̄�ςz
T (t)Pςz(t)
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= �T (t)

[
β∑

α=1

�∑
�=1

να�(z(t))Υ

]
�(t) (19)

where �(t) = [zT (t), κT (t),
√
ι(t)]T , and θ > 0 is a constant.

According to (11), one has

E{V(z(t), , ι(t))} < 0.

Then, it can be obtained that

E{V(z(t), , ι(t))} ≤ −℘‖�(t)‖2 < 0

where ℘ = min{λmin[−Υ]} > 0.
Furthermore, we have E{∫∞

0 ‖�(t)‖2dt} ≤ 1
℘V(z0, , ι0) <∞. Therefore, system (9) realizes the stochastic stability. �

Remark 8: The constructed fuzzy SMC law (8) is based on
the actual signal z̆(ts) transmitted to the controller, in which
the dynamic ETP and the random attenuation of the signal by
the channel fading are also considered. Moreover, the Lyapunov
function constructed in Theorem 1 contains the dynamic variable
ι(t), so the stability criterion is related to the dynamic ETP and
the fading model parameters δ̄ and δ̃. Obviously, the designed
controller (8) can effectively reduce the influence of fading
channel and realize the stochastic stability, which provides the
basis for the subsequent solution of controller gain.

Since the product term να�(t) = �α(z(t))ν�(z̆(ts)) is con-
tained in condition (11), the membership functions of controller
(8) and fuzzy system (2) are not exactly matched. In order to
solve this product term, the global boundary information of
να�(t) is adopted in Theorem 2 to obtain the stability criterion
with relatively less conservatism.

Theorem 2: For given constants μ > 0, 0 < ϑ < 1, η > 0,
and θ > 0, system (9) is stochastically stable, if there exist
scalars ı > 0, ε1 > 0, and ε2 > 0, and matrices P̄� > 0, Ψ̄� > 0,
Ξ̄α� ≥ 0, Ξα� ≥ 0, and W̄�� satisfying[

−ıI BT
α�

∗ −P̄�

]
< 0 (20)

Ῡ− Ξ̄α� + Ξα� +

β∑
i=1

�∑
j=1

(
l̄ijΞ̄ij − lijΞij

)
< 0 (21)

where

Ῡ =

⎡
⎢⎣Λ11 Λ12 Λ13

∗ Λ22 0

∗ ∗ Λ33

⎤
⎥⎦

Λ12 =

⎡
⎢⎣P̄�U

T
α�

√
2P̄� 0

0 0
√
2P̄�

0 0 0

⎤
⎥⎦

Λ11 =

⎡
⎢⎢⎣
Λ1 δ̄Bα�W̄�� 0

∗ −(1 + θ)Ψ̄� 0

∗ ∗
(

θ
μ − η

)
I

⎤
⎥⎥⎦

Λ1 = Aα�P̄� + P̄�A
T
α� + 2δ̄Bα�W̄�� + (1 + θ)ϑΨ̄�

+ ε−1
1 Lα�L

T
α� + ε2P̄�

Λ22 = − diag

{
ε−1
1 I,

(
ε−1
2 ı

(
π2
α� + ζ2�m

(
δ̄2 + δ̃

)))−1

I

(
ε−1
2 ıζ2�m

(
δ̄2 + δ̃

))−1

I

}

Λ13 =
[√
σ�1P̄�, . . . ,

√
σ�cP̄�

]
Λ33 = − diag{P̄1, P̄2, . . . , P̄c}.

Moreover, the controller gain is given by W�� = W̄��P̄−1
� .

Proof: Let

P̄� � P−1
� , Ψ̄� � P̄T

� Ψ�P̄�.

By Schur’s complement lemma, (10) can be ensured by (20).
Then, by the congruence transformation of (11) with

diag{P̄�, P̄�, I, . . . , I}, one has

β∑
α=1

�∑
�=1

�α�(z(t))Ῡ < 0.

Define lα� and l̄α� as global lower and upper bounds on
να�(z(t)), respectively. Suppose that there exist slack matrices
Ξ̄α� ≥ 0 and Ξα� ≥ 0 containing upper and lower bound infor-
mation, respectively, which satisfies the following:

β∑
α=1

�∑
�=1

(l̄α� − να�(t))Ξ̄α� ≥ 0 (22)

β∑
α=1

�∑
�=1

(να�(t)− lα�)Ξα� ≥ 0. (23)

Combining (22) and (23), we get

β∑
α=1

�∑
�=1

να�(t)Ῡ

≤
β∑

α=1

�∑
�=1

να�(t)Ῡ +

β∑
α=1

�∑
�=1

(l̄α� − να�(t))Ξ̄α�

+

β∑
α=1

�∑
�=1

(να�(t)− lα�)Ξα�

=

β∑
α=1

�∑
�=1

να�(t)(Ῡ− Ξ̄α� + Ξα�)

+

β∑
i=1

�∑
j=1

(l̄ijΞ̄ij − lijΞij)

=

β∑
α=1

�∑
�=1

να�(t)[Ῡ− Ξ̄α� + Ξα�

+

β∑
i=1

�∑
j=1

(l̄ijΞ̄ij − lijΞij)]. (24)

Thus, according to (21), one has (11). �
Remark 9: The general method [15], [16] of dealing with the

mismatched membership functions in T-S fuzzy systems is not
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suitable for this study. To solve the controller gain, the slack
matrices Ξ̄α� ≥ 0 and Ξα� ≥ 0 are introduced. With the help of
upper and lower bounds on να�(t), a series of slack conditions is
obtained for solvable controller gain, that is, Ῡ < 0 is replaced
by the condition (21). In fact, if P̄�, Ψ̄�, and W̄�� are feasible so-
lutions satisfying the conditions (10) and (11), then the variables
P̄�, Ψ̄�, Ξ̄α� = 0, Ξα� = 0, and W̄�� must be feasible solutions
for the conditions (20) and (21); otherwise, the feasible solution
of the conditions (20) and (21) may not satisfy the conditions
(10) and (11). Moreover, compared with the condition (11) in
Theorem 1, the condition (21) in Theorem 2 integrates the global
boundary information of να�(t) with less conservatism.

B. Reachability

The reachability of the sliding region under the designed fuzzy
SMC law (8) is discussed.

Theorem 3: Under the fuzzy SMC law (8), the state of system
(2) can be driven on the sliding region, and ζ� satisfies the
following:

max
1≤α≤β

[ζ�δ̄‖Bα�‖]‖κ(t)‖ − w − j > 0 (25)

where w=max1≤α≤β{max1≤�≤�[δ̄‖RBα�W��‖]}‖κ(t)‖, j >
0, and h� > 0 with h� = max1≤α≤β [‖RAα�‖] +
max1≤α≤β [‖RLα�‖‖Uα�‖] + max1≤α≤β{max1≤�≤�[δ̄‖RBα�

W��‖]}+max1≤α≤β [πα�‖RBα�‖]−max1≤α≤β [ζ�δ̄‖Bα�‖].
Proof: Construct the Lyapunov function

V2(γ(t)) =
1

2
γT (t)γ(t). (26)

Then, one has

E{V2(γ(t))} = E{γT (t)γ̇(t)}

= E

{
γT (t)

β∑
α=1

�∑
�=1

να�(z(t))R[(Aα� +�Aα�(t)

+ δ(ts)Bα�W��)z(t) + δ(ts)Bα�W��κ(t)

+Bα�(ϕα�(z(t), t)− ζ�‖z̆(ts)‖sign(γ(t)))]

}

≤ ‖γ(t)‖
{[

max
1≤α≤β

[‖RAα�‖] + max
1≤α≤β

[‖RLα�‖‖Uα�‖]

+ max
1≤α≤β

{
max
1≤�≤�

[δ̄‖RBα�W��‖]
}

+ max
1≤α≤β

[πα�‖RBα�‖]
]
‖z(t)‖

+ max
1≤α≤β

{
max
1≤�≤�

[δ̄‖RBα�W��‖]
}
‖κ(t)‖

}

− max
1≤α≤β

[ζ�δ̄‖Bα�‖]‖z(ts)‖‖γ(t)‖

≤ ‖γ(t)‖
[
h�‖z(t)‖ −

(
max
1≤α≤β

[ζ�δ̄‖Bα�‖]‖κ(t)‖ − w − j

)]

− j‖γ(t)‖ (27)

where w = max1≤α≤β{max1≤�≤�[δ̄‖RBα�W��‖]}‖κ(t)‖ and
h� = max1≤α≤β [‖RAα�‖] + max1≤α≤β [‖RLα�‖‖Uα�‖] +
max1≤α≤β{max1≤�≤�[δ̄‖RBα�W��‖]}+
max1≤α≤β [πα�‖RBα�‖]−max1≤α≤β [ζ�δ̄‖Bα�‖].

Defining the sliding region

Θ �
{
z(t) : h�‖z(t)‖ ≤ max

1≤α≤β
[ζ�δ̄‖Bα�‖]‖z(t)‖ − w − j

}
.

Then, we can get

E{V2(γ(t))} ≤ −j‖γ(t)‖ = −j
√
2V2(γ(t)). (28)

For t ≥ T̄ , there exists an instant T̄ ≤ √
2V2(0)/j =

‖Rz(0)‖/j, such that V2(γ(t)) = 0, that is γ(t) = 0.
Therefore, the reachability of the sliding region is

achieved. �
Remark 10: Due to the existence of sign function, the chatter-

ing phenomenon will inevitably occur during the sliding motion,
and the trajectory cannot be guaranteed to stay on the sliding
surface all the time. In this case, we find a reasonable sliding
region Θ, where the sliding motion can always remain in a
bounded neighborhood near the predefined sliding surface.

C. Zeno-Free Analysis

The dynamic ETP can effectively reduce the unnecessary data
transmission. But for continuous-time systems, to avoid Zeno
behavior is essential. In the following, a lower bound on the
triggered interval is given to avoid Zeno behavior.

Theorem 4: For system (2), the dynamic ETP condition (3)
can ensure that the triggered interval ts+1 − ts is satisfied

ts+1 − ts ≥ 1

r
ln

[
1 +

r(ι(ts+1) + μϑzT (ts+1)Ψ�z(ts+1))

jμλmax(Ψ�)

]
(29)

where r=‖Ã‖+ ‖L̃‖‖Ũ‖+ π̃‖B̃‖+ ‖B̃W̃‖ − ζ�‖B̃‖‖z̆(ts)‖,
j = [‖Ã‖+ ‖L̃‖‖Ũ‖+ π̃‖B̃‖]‖z(t)‖2 + ‖B̃W̃‖‖z̆(ts)‖2 −
ζ�m‖B̃‖‖z̆(ts)‖ with Ã=

∑β
α=1

∑
�

�=1να�(z(t))Aα�, B̃=∑β
α=1

∑
�

�=1να�(z(t))Bα�, L̃ =
∑β

α=1

∑
�

�=1να�(z(t))Lα�,
Ũ =

∑β
α=1

∑
�

�=1να�(z(t))Uα�, W̃ =
∑β

α=1

∑
�

�=1να�(z(t))

W��, and π̃ =
∑β

α=1

∑
�

�=1να�(z(t))πα�.
Proof: For the error κ(t) = z(ts)− z(t), one can obtain

κ̇(t) = −
β∑

α=1

�∑
�=1

να�(z(t))[(Aα� +�Aα�(t))z(t)

+Bα�W��z̆(ts) +Bα�(ϕα�(z(t), t)

− ζ�‖z̆(ts)‖sign(γ(t)))]. (30)

When ∀t ∈ [ts, ts+1), one has

d

dt
‖κ(t)‖2 ≤ 2‖κ(t)‖‖κ̇(t)‖

≤ [‖Ã‖+ ‖L̃‖‖Ũ‖+ π̃‖B̃‖](‖z(t)‖2 + ‖κ(t)‖2)
+ ‖B̃W̃‖(‖z̆(ts)‖2 + ‖κ(t)‖2)
− ζ�‖B̃‖‖z̆(ts)‖(m+ ‖κ(t)‖2)
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= [‖Ã‖+ ‖L̃‖‖Ũ‖+ π̃‖B̃‖ − ζ�‖B̃‖‖z̆(ts)‖
+ ‖B̃W̃‖]‖κ(t)‖2 + [‖Ã‖+ ‖L̃‖‖Ũ‖+ π̃‖B̃‖]‖z(t)‖2

+ ‖B̃W̃‖‖z̆(ts)‖2 − ζ�m‖B̃‖‖z̆(ts)‖
� r‖κ(t)‖2 + j. (31)

With the help of comparison Lemma, at the triggered time
e(ts) = 0, it can be got that

‖κ(ts+1)‖2 ≤ r

j

(
er(ts+1−ts) − 1

)
. (32)

Combining with the dynamic ETP condition (3), we can get

ι(ts+1) + μϑzT (ts+1)Ψ�z(ts+1)

μλmax(Ψ�)
≤ ‖κ(ts+1)‖2. (33)

From (32) and (33), the triggered interval is obtained that

ts+1 − ts ≥ 1

r
ln

[
1 +

r(ι(ts+1) + μϑzT (ts+1)Ψ�z(ts+1))

jμλmax(Ψ�)

]

� T �. (34)

Due to μ > 0, one has

r(ι(ts+1) + μϑzT (ts+1)Ψ�z(ts+1)) > 0.

Therefore, we can find a lower bound T � > 0 to avoid the
Zeno phenomenon. �

Remark 11: In order to realize the practical application of
ETP, it is required that the triggered time generated by the
ETP should not be too dense, otherwise it cannot be realized
in practice. That is to make sure that the ETP avoids the Zeno
phenomenon. A general approach is to find a lower bound about
the event-triggered interval. Based on this, Theorem 4 combines
the dynamic ETP condition (3) and proves the lower bound T �

of two adjacent trigger intervals, which can effectively avoid
Zeno behavior.

IV. CASE STUDY

Consider the tunnel diode circuit model [28], expressed as

H1ż1(t) = −μ̃z1(t)− ξ̃�z
2
1(t) + z2(t)

H2ż2(t) = −z1(t)−H3z2(t) + u(t) + ϕ(t) (35)

where z(t) = [zT1 (t) z
T
2 (t)]

T denotes the deviation variables.
The values of parameters H1, H2, and H3 are given as 20 mF,
1000 mH, and 10 Ω, respectively. Define μ̃ = 0.002 + Δμ̃z21(t)
with Δμ̃ ∈ [0.01, 0.03].

Consider two fuzzy rules α = 1, 2, � = 1, 2, and the param-
eter ξ̃� obeys SMP with two switching modes: ξ̃1 = 0.01 and
ξ̃2 = 0.02. The IT2F model is adopted to represent the uncertain
information. Supposing ‖z1(t)‖ ≤ 3, one has μ̃max = 0.272 and
μ̃min = 0.002. Then, the system model with upper and lower

membership functions can be obtained as

ż(t) =

2∑
α=1

�α(z(t))[(Aα� +�Aα�(t))z(t) +Bα�(u(t)

+ ϕα�(z(t), t))] (36)

where

A11 =

[−μ̃min

H1
50

−1 −10

]
, A12 =

[−μ̃max

H1
50

−1 −10

]

A21 =

[
−4.6 50

−1 −10

]
, A22 =

[
−22.6 50

−1 −10

]

B11 = B12 =
[
0 1

]T
, B21 =

[
0 1.1

]T
B22 =

[
0 0.9

]T
, ϕα�(z(t), t) = 0.5z21cos(t)

�1(z1(t)) =
μ̃max − μ̃1(t)

μ̃max − μ̃min
, �̄1(z1(t)) =

μ̃max − μ̃2(t)

μ̃max − μ̃min

�2(z1(t)) =
μ̃2(t)− μ̃min

μ̃max − μ̃min
, �̄2(z1(t)) =

μ̃1(t)− μ̃min

μ̃max − μ̃min

μ̃1(t) = 0.002 + 0.003z21(t), μ̃2(t) = 0.002 + 0.001z21(t)

φ
α
(z(t)) = sin2(z1(t)), φ̄α(z(t)) = 1− sin2(z1(t))

and �Aα�(t) = Lα�Eα�(t)Uα� is the parameter uncer-
tainty with L11 = [0.95; 0.1], L12 = [1; 0.2], L21 = [1.2; 0.3],
L22 = [1.1; 0.2], U11 = [0.95; 0.1]T , U12 = [1; 0.2]T , U21 =
[1.1; 0.3]T , and U22 = [0.9; 0.2]T .

Consider the membership functions as: ν1(z̆1(t)) =
�1(z̆1(t))ψ1

(z̆1(t)) + �̄1(z̆1(t))ψ̄1(z̆1(t)), and ν2(z̆1(t)) =
1− ν1(z̆1(t)) withψ

1
(z̆1(t)) = 0.5. In addition, the parameters

lα� and l̄α� are set as l11 = 0.1951, l12 = 0.2096, l21 = 0.1418,
l22 = 0.1523, l̄11 = 0.3675, l̄12 = 0.3870, l̄21 = 0.2925, and
l̄22 = 0.3080, respectively.

The TR matrix is chosen as

Σ(τ) =

[−0.5τ 0.5τ
3τ2 −3τ2

]
.

Assume that the ST follows the Weibull distribution
with probability distribution function ω1(τ) = 0.5τe−0.25τ2

and ω2(τ) = 3τ2e−τ3
. Then, according to E[σ�ς(τ)] =∫∞

0 σ�ς(τ)ω�(τ)dτ , one has the following:

E{Σ(τ)} =

[−0.8862 0.8862
2.7082 −2.7082

]
.

Choose the fading parameters δ̄ = 0.8, δ̃ = 0.05, R = [1 1],
πα� = 0.2, μ = 0.6, ϑ = 0.2, θ = 0.1, η = 0.1, ι = 0.2, and
j = 0.2. According to Theorem 2, we get

W11 =
[
0.2964 4.3574

]
,W12 =

[−0.0269 4.3712
]

W21 =
[
0.1164 4.0217

]
,W22 =

[−0.1250 4.8557
]
.
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Fig. 2. System mode.

Fig. 3. (a) System response z(t), (b) sliding function γ(t), and (c) control
input u(t) with δ̄ = 0.8. Fading coefficient δ̄(ts).

TABLE I
TRIGGERING NUMBER UNDER DIFFERENT FADING CHANNELS

For given z(0) = [0.3− 1.0]T and ι(0) = 0.3, Fig. 2 shows
the system mode and the mode switching of S-MJSs. The tra-
jectory of system state z(t) is shown in Fig. 3(a). Fig. 3(b) and
(c) shows the sliding function γ(t) and the input signal u(t).
Obviously, under the designed fuzzy sliding mode controller,
the system state tends to zero, indicating that the tunnel diode
circuit system has achieved the stochastic stability. Moreover,
Fig. 3(d) stands for the fading coefficient δ(ts), reflecting the
random decay degree. Fig. 7(a) and (b) represents the release
intervals and the dynamic variable ι(t) of dynamic ETP.

According to the fading model (5), the parameter δ ∈ [0, 1] is
a random variable with the mathematical expectation δ̄. In order
to better reflect the performance of the model under different
transmission conditions, this work simulates three different
fading channels, that is, δ̄ = 0.8, δ̄ = 0.5, and δ̄ = 0.2. The
triggered number is given in Table I, and the simulation results

Fig. 4. (a) System response z(t), (b) sliding function γ(t), and (c) control
input u(t) with δ̄ = 0.5. Fading coefficient δ̄(ts).

Fig. 5. (a) System response z(t), (b) sliding function γ(t), and (c) control
input u(t) with δ̄ = 0.2. Fading coefficient δ̄(ts).

are shown in Figs. 3–5. According to the trajectory of system
response z(t), sliding function γ(t), and control input u(t), it
can be seen that the smaller the value of δ̄, the more prone the
transmission channel is to fading phenomenon, the slower the
system convergence rate, and the worse the performance. As
a result of fading phenomenon, the transmitted signals cannot
accurately reach the controller, and even cause data packet loss
in serious cases. According to Table I, the system will trigger and
transmit more signals to compensate for the lack of performance.

Moreover, in order to reflect the advantage of dynamic ETP,
the static ETP is simulated under the same parameters. Fig. 6(d)
shows the release intervals under the static ETP [9]. Compared
with Figs. 7(a) and 6(d), the number of signals triggered and
transmitted under the dynamic ETP is less than that under the
static ETP, which means that the dynamic ETP can reduce
network load more than the static ETP. Next, we compare the
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Fig. 6. (a) System response z(t), (b) sliding function γ(t), and (c) control
input u(t) under the static ETP [9]. (d) Release intervals.

Fig. 7. Release instants and variable ι(t) under the dynamic ETP. (a) Release
intervals. (b) Dynamic variable ι(t).

performance of the controller and the convergence speed of
system states. According to the trajectory of system response
z(t), slide function γ(t), and control input u(t) in Figs. 3 and
6, it can be seen that the two ETPs can achieve similar control
performance. It is further shown that the dynamic ETP can save
network resources more effectively than the static ETP.

V. CONCLUSION

The SMC problem has been studied for IT2F S-MJSs with
channel fading. Signals triggered by the dynamic ETP are sub-
ject to unpredictable channel fading before reaching the con-
troller. Based on a common sliding mode surface, a fuzzy sliding
mode controller has been constructed to be affected by the
dynamic ETP and the fading signal. The boundary information
of the global membership function has been adopted to deal with
the mismatched membership functions, and sufficient criteria
have been proposed to ensure the stochastic stability and the
accessibility of the sliding dynamics. Finally, the effectiveness
of the proposed method is proved by a practical circuit model.
However, the research results in this work are based on the
condition of modal synchronization between the system and
the controller, which brings some conservative results. In future
work, the asynchronous SMC problem for IT2F S-MJSs with
channel fading will be investigated.

REFERENCES

[1] E. Boukas, Stochastic Switching Systems: Analysis and Design. Berlin,
Germany: Birkhäuser, 2005.

[2] S. L. Dong, C. L. P. Chen, M. Fang, and Z. G. Wu, “Dissipativity-based
asynchronous fuzzy sliding mode control for T-S fuzzy hidden Markov
jump systems,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 4020–4030,
Sep. 2020.

[3] M. Xue, H. C. Yan, H. Zhang, J. Sun, and H. K. Lam, “Hidden-
Markov-model-based asynchronousH∞ tracking control of fuzzy Markov
jump systems,” IEEE Trans. Fuzzy Syst., vol. 29, no. 5, pp. 1081–1092,
May 2021.

[4] S. Kuppusamy, Y. H. Joo, and H. S. Kim, “Asynchronous control for
discrete-time hidden Markov jump power systems,” IEEE Trans. Cybern.,
vol. 52, no. 9, pp. 9943–9948, Sep. 2022.

[5] G. T. Ran, C. J. Li, R. Sakthivel, C. S. Han, B. H. Wang, and J. Liu,
“Adaptive event-triggered asynchronous control for interval type-2 fuzzy
Markov jump systems with cyberattacks,” IEEE Trans. Fuzzy Syst., vol. 9,
no. 1, pp. 88–99, Mar. 2022.

[6] T. Fjeldstad and H. Omre, “Bayesian inversion of convolved hidden
Markov models with applications in reservoir prediction,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 3, pp. 1957–1968, Mar. 2020.

[7] X. W. Mu and Z. H. Hu, “Impulsive consensus of stochastic multi-agent
systems under semi-Markovian switching topologies and application,”
Automatica, vol. 150, Apr. 2022, Art. no. 110871.

[8] Y. X. Tian, H. C. Yan, H. Zhang, X. S. Zhan, and Y. Peng, “Resilient
static output feedback control of linear semi-Markov jump systems with
incomplete semi-Markov kernel,” IEEE Trans. Autom. Control, vol. 66,
no. 9, pp. 4274–4281, Sep. 2021.

[9] J. Wang, T. T. Ru, H. Shen, and V. Sreeram, “Asynchronous event-triggered
sliding mode control for semi-Markov jump systems within a finite-time
interval,” IEEE Trans. Circuits Syst. I., Regular Papers, vol. 68, no. 1,
pp. 458–468, Jan. 2021.

[10] H. Shen, M. P. Xing, S. Y. Xu, M. V. Basin, and J. H. Park, “H∞ stabiliza-
tion of discrete-time nonlinear semi-Markov jump singularly perturbed
systems with partially known semi-Markov kernel information,” IEEE
Trans. Circuits Syst. I., Regular Papers, vol. 68, no. 2, pp. 818–828,
Feb. 2021.

[11] Z. P. Ning, B. Cai, R. Weng, L. X. Zhang, and S. F. Su, “Stability and
control of fuzzy semi-Markov jump systems under unknown semi-Markov
kernel,” IEEE Trans. Fuzzy Syst., vol. 30, no. 7, pp. 2452–2465, Jul. 2022.

[12] X. T. Wu, P. Shi, Y. Tang, S. Mao, and F. Qian, “Stability analysis of
semi-Markov jump stochastic nonlinear systems,” IEEE Trans. Autom.
Control, vol. 67, no. 4, pp. 2084–2091, Apr. 2022.

[13] L. C. Zhang, Y. H. Sun, H. K. Lam, H. Y. Li, J. X. Wang, and D. C. Hou,
“Guaranteed cost control for interval type-2 fuzzy semi-Markov switching
systems within a finite-time interval,” IEEE Trans. Fuzzy Syst., vol. 30,
no. 7, pp. 2583–2594, Jul. 2022.

[14] X. W. Mu and Z. H. Hu, “Stability analysis for semi-Markovian
switched singular stochastic systems,” Automatica, vol. 118, Aug. 2022,
Art. no. 109014.

[15] A. Sala and C. Arino, “Relaxed stability and performance conditions for
Takagi-Sugeno fuzzy systems with knowledge on membership function
overlap,” IEEE Trans. Syst. Man, Cybern., vol. 37, no. 3, pp. 727–732,
Jun. 2007.

[16] D. W. Zhang, Q. L. Han, and X. C. Jia, “Network-based output tracking
control for a class of T-S fuzzy systems that can not be stabilized by
nondelayed output feedback controllers,” IEEE Trans. Cybern., vol. 45,
no. 8, pp. 1511–1524, Aug. 2015.

[17] J. Wang, C. Y. Yang, J. W. Xia, Z. G. Wu, and H. Shen, “Observer-based
sliding mode control for networked fuzzy singularly perturbed systems un-
der weighted try-once-discard protocol,” IEEE Trans. Fuzzy Syst., vol. 30,
no. 6, pp. 1889–1899, Jun. 2022.

[18] N. N. Karnik, J. M. Mendel, and Q. L. Liang, “Type-2 fuzzy logic systems,”
IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 643–658, Dec. 1999.

[19] H. G. Han, Z. Liu, H. X. Liu, J. F. Qiao, and C. L. P. Chen, “Type-2
fuzzy broad learning system,” IEEE Trans. Cybern., vol. 52, no. 10,
pp. 10352–10363, Oct. 2022.

[20] H. K. Lam and L. D. Seneviratne, “Stability analysis of interval type-2
fuzzy-model-based control systems,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 38, no. 3, pp. 617–628, Oct. 2008.

[21] H. K. Lam, “A review on stability analysis of continuous-time fuzzy-
model-based control systems: From membership-function-independent to
membership-function-dependent analysis,” Eng. Appl. Artif. Intel., vol. 67,
pp. 390–408, Jan. 2018.



QI et al.: PROTOCOL-BASED SMC FOR INTERVAL TYPE-2 FUZZY SEMI-MARKOVIAN JUMPING SYSTEMS WITH CHANNEL FADING 3785

[22] Y. K. Yang, Y. G. Niu, and Z. N. Zhang, “Dynamic event-triggered sliding
mode control for interval type-2 fuzzy systems with fading channels,” ISA
Trans., vol. 110, pp. 53–62, Apr. 2021.

[23] Z. N. Zhang, S. F. Su, and Y. G. Niu, “Dynamic event-triggered control for
interval type-2 fuzzy systems under fading channel,” IEEE Trans. Cybern.,
vol. 51, no. 11, pp. 5342–5351, Nov. 2021.

[24] A. Al-Mahturi, F. Santoso, M. A. Garratt, and S. G. Anavatti, “A robust
self-adaptive interval type-2 TS fuzzy logic for controlling multi-input-
multi-output nonlinear uncertain dynamical systems,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 52, no. 1, pp. 655–666, Jan. 2022.

[25] L. C. Zhang, H. K. Lam, Y. H. Sun, and H. J. Liang, “Fault detection
for fuzzy semi-Markov jump systems based on interval type-2 fuzzy
approach,” IEEE Trans. Fuzzy Syst., vol. 28, no. 10, pp. 2375–2388,
Oct. 2020.

[26] X. Zhang et al., “Asynchronous fault detection for interval type-2
fuzzy nonhomogeneous higher-level Markov jump systems with uncer-
tain transition probabilities,” IEEE Trans. Fuzzy Syst., vol. 30, no. 7,
pp. 2487–2499, Jul. 2022.

[27] H. Dong and S. S. Zhou, “Extended dissipativity and dynamical output
feedback control for interval type-2 singular semi-Markovian jump fuzzy
systems,” Int. J. Syst. Sci., vol. 53, no. 9, pp. 1906–1924, Jul. 2022.

[28] J. Liu, G. T. Ran, Y. Q. Huang, C. S. Han, Y. Yu, and C. Y. Sun, “Adaptive
event-triggered finite-time dissipative filtering for interval type-2 fuzzy
Markov jump systems with asynchronous modes,” IEEE Trans. Cybern.,
vol. 52, no. 9, pp. 9709–9721, Sep. 2022.

[29] J. Xu, Y. G. Niu, C. C. Lim, and P. Shi, “Memory output-feedback integral
sliding mode control for Furuta pendulum systems,” IEEE Trans. Circuits
Syst. I., Reg. Papers, vol. 67, no. 6, pp. 2042–2052, Jun. 2020.

[30] E. Moulay, V. Lechappe, E. Bernuau, M. Defoort, and F. Plestan, “Fixed-
time sliding mode control with mismatched disturbances,” Automatica,
vol. 136, Feb. 2022, Art. no. 110009.

[31] M. Van and S. S. Ge, “Adaptive fuzzy integral sliding-mode control
for robust fault-tolerant control of robot manipulators with disturbance
observer,” IEEE Trans. Fuzzy Syst., vol. 29, no. 5, pp. 1284–1296,
May 2021.

[32] Z. Echreshavi, M. Farbood, and M. Shasadeghi, “Fuzzy event-triggered
integral sliding mode control of nonlinear continuous-time systems,” IEEE
Trans. Fuzzy Syst., vol. 30, no. 7, pp. 2347–2359, Jul. 2022.

[33] F. B. Li, C. L. Du, C. H. Yang, L. G. Wu, and W. H. Gui, “Finite-time asyn-
chronous sliding mode control for Markovian jump systems,” Automatica,
vol. 109, Nov. 2019, Art. no. 108503.

[34] Z. R. Cao, Y. G. Niu, and J. Song, “Finite-time sliding-mode control of
Markovian jump cyber-physical systems against randomly occurring injec-
tion attacks,” IEEE Trans. Autom. Control, vol. 65, no. 3, pp. 1264–1271,
Mar. 2020.

[35] W. H. Qi, G. D. Zong, Y. K. Hou, and M. Chadli, “SMC for discrete-
time nonlinear semi-Markovian switching systems with partly unknown
semi-Markov kernel,” IEEE Trans. Autom. Control, vol. 68, no. 3,
pp. 1855–1861, Mar. 2023, doi: 10.1109/TAC.2022.3169584.

[36] R. Nie, S.p. He, F. Liu, and X.L. Luan, “Sliding mode controller design for
conic-type nonlinear semi-Markovian jumping systems of time-delayed
chua’s circuit,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 4,
pp. 2467–2475, Apr. 2022.

[37] B. P. Jiang and C. C. Gao, “Decentralized adaptive sliding mode control
of large-scale semi-Markovian jump interconnected systems with dead-
zone input,” IEEE Trans. Autom. Control, vol. 67, no. 3, pp. 1521–1528,
Mar. 2022.

[38] J. Song, Z. D. Wang, Y. G. Niu, and H. L. Dong, “Genetic-algorithm-
assisted sliding-mode control for networked state-saturated systems over
hidden Markov fading channels,” IEEE Trans. Cybern., vol. 51, no. 7,
pp. 3664–3675, Jul. 2021.

[39] Y. N. Shan, K. She, S. M. Zhong, J. Cheng, W. Y. Wang, and C. Zhao,
“Event-triggered passive control for Markovian jump discrete-time sys-
tems with incomplete transition probability and unreliable channels,” J.
Franklin I., vol. 356, no. 15, pp. 8093–8117, Oct. 2019.

[40] Y. Liu, A. Tang, and X. D. Wang, “Joint scheduling and power optimization
for delay constrained transmissions in coded caching over wireless fading
channels,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 2093–2106,
Mar. 2022.

[41] Y. Yan, R. Wang, S. H. Yu, C. L. Wang, and T. S. Li, “Event-triggered
output feedback sliding mode control of mechanical systems,” Nonlinear
Dyn., vol. 107, no. 4, pp. 3543–3555, Mar. 2022.

[42] X. X. Liu, X. J. Su, P. Shi, C. Shen, and Y. Peng, “Event-triggered
sliding mode control of nonlinear dynamic systems,” Automatica, vol. 112,
Feb. 2020, Art. no. 108738.

[43] B. Chen, Y. Y. Zou, and Y. G. Niu, “Dynamic event-triggered sliding mode
security control for Markovian jump systems: Learning-based iteration
optimization method,” Int. J. Robust Nonlinear Control, vol. 32, no. 5,
pp. 2500–2517, Mar. 2022.

[44] K. Yiu and D. D. Yang, “Output feedback L1 control of positive Markov
jump systems: A dynamic event-triggered method,” J. Franklin I., vol. 359,
no. 8, pp. 3631–3655, May 2022.

[45] K. Liu and Z. J. Ji, “Dynamic event-triggered consensus of general linear
multi-agent systems with adaptive strategy,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 69, no. 8, pp. 3440–3444, Aug. 2022.

Wenhai Qi (Senior Member, IEEE) received the B.S.
degree in automation and the M.S. degree in control
science and engineering from Qufu Normal Univer-
sity, Rizhao, China, in 2008 and 2013, respectively,
and the Ph.D. degree in control theory and control
engineering from Northeastern University, Shenyang,
China, in 2016.

He is currently with the School of Engineering,
Qufu Normal University. He was a Visiting Scholar
with the Department of Electrical Engineering, Ye-
ungnam University, Gyeongsan, South Korea, in 2017

and 2019, respectively. From 2019 to 2020, he visited the Department of
Mechanical Engineering, University of Hong Kong, Hong Kong. His research
interests include Markov jump systems, switched systems, positive systems, and
networked control systems.

Dr. Qi is an Associate Editor for International Journal of Control, Automation,
and Systems.

Ning Zhang received the B.S. degree in mathemat-
ics in 2019 from Liaocheng University, Liaocheng,
China, where she is currently working toward the
M.S. degree in operational research and cybernetics.

Her current research interests include stochastic
switched systems, networked control systems, and
sliding mode control.

Ju H. Park (Senior Member, IEEE) received the
Ph.D. degree in electronics and electrical engineering
from the Pohang University of Science and Technol-
ogy (POSTECH), Pohang, South Korea, in 1997.

From May 1997 to February 2000, he was a Re-
search Associate with Engineering Research Center-
Automation Research Center, POSTECH. In March
2000, he joined Yeungnam University, Kyongsan,
South Korea, where he is currently the Chuma Chair
Professor. He has coauthored monographs Recent Ad-
vances in Control and Filtering of Dynamic Systems

with Constrained Signals (Springer-Nature, 2018) and Dynamic Systems With
Time Delays: Stability and Control (Springer-Nature, 2019), and the Editor of an
edited volume Recent Advances in Control Problems of Dynamical Systems and
Networks (Springer-Nature, 2020). He has authored or coauthored a number
of articles in the areas of his research interests, which include robust control
and filtering, neural/complex networks, fuzzy systems, multiagent systems, and
chaotic systems.

Dr. Park has been the recipient of the Highly Cited Researchers Award by
Clarivate Analytics (formerly, Thomson Reuters) since 2015, and listed in three
fields, engineering, computer sciences, and mathematics, in 2019–2022. He is
the Subject Editor/Advisory Editor/Associate Editor/Editorial Board Member
of several international journals, including IET Control Theory & Applications,
Applied Mathematics and Computation, Journal of The Franklin Institute,
Nonlinear Dynamics, Engineering Reports, Cogent Engineering, IEEE TRANS-
ACTION ON FUZZY SYSTEMS, IEEE TRANSACTION ON NEURAL NETWORKS AND

LEARNING SYSTEMS, and IEEE TRANSACTION ON CYBERNETICS. He is a Fellow
of the Korean Academy of Science and Technology.

https://dx.doi.org/10.1109/TAC.2022.3169584


3786 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 31, NO. 11, NOVEMBER 2023

Hak-Keung Lam (Fellow, IEEE) received the B.Eng.
(Hons.) degree in electronic engineering and the
Ph.D. degree in electronic and information engineer-
ing from the Department of Electronic and Informa-
tion Engineering, Hong Kong Polytechnic University,
Hong Kong, in 1995 and 2000, respectively.

During 2000–2005, he was a Postdoctoral Fel-
low and a Research Fellow with the Department of
Electronic and Information Engineering, Hong Kong
Polytechnic University. He joined as a Lecturer with
Kings College London, London, U.K., in 2005 and is

currently a Reader. He has authored or coauthored three monographs: Stability
Analysis of Fuzzy-Model-Based Control Systems (Springer, 2011), Polynomial
Fuzzy Model Based Control Systems (Springer, 2016), and Analysis and Syn-
thesis for Interval Type-2 Fuzzy- Model-Based Systems (Springer, 2016). His
current research interests include intelligent control, computational intelligence,
and machine learning.

Dr. Lam was a Program Committee Member, an International Advisory Board
Member, the Invited Session Chair, and the Publication Chair for various interna-
tional conferences and a Reviewer for various books, international journals, and
international conferences. He was an Associate Editor for IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, and is currently an Associate
Editor for IEEE TRANSACTIONS ON FUZZY SYSTEMS, IET Control Theory and
Applications, International Journal of Fuzzy Systems, Neurocomputing, and
Nonlinear Dynamics, and the Guest Editor for a number of international journals.
He is currently on the Editorial Board of the Journal of Intelligent Learning
Systems and Applications, Journal of Applied Mathematics, Mathematical Prob-
lems in Engineering, Modeling and Simulation in Engineering, Annual Review
of Chaos Theory, Bifurcations and Dynamical System, The Open Cybernet-
ics and Systemics Journal, Cogent Engineering, and International Journal of
Sensors, Wireless Communications and Control. He was named as a highly
cited Researcher. He is the Co-Editor of two edited volumes: Control of Chaotic
Nonlinear Circuits (World Scientific, 2009) and Computational Intelligence and
Its Applications (World Scientific, 2012).

Jun Cheng received the B.S. degree in mathematics
and applied mathematics from the Hubei University
for Nationalities, Enshi, China, in 2010, and the Ph.D.
degree in instrumentation science and technology
from the University of Electronic Science and Tech-
nology of China, Chengdu, China, in 2015.

He is currently with Guangxi Normal University,
Guilin, China. From 2013 to 2014, he was a Visit-
ing Scholar with the Department of Electrical and
Computer Engineering, National University of Singa-
pore, Singapore. In 2016 and 2018, he was a Visiting

Scholar with the Department of Electrical Engineering, Yeungnam University,
Gyeongsan, South Korea. His current research interests include analysis and
synthesis for stochastic hybrid systems, networked control systems, robust
control, and nonlinear systems.

Dr. Cheng is currently an Associate Editor for International Journal of
Control, Automation, and Systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


