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Extracting Concepts From Fuzzy
Relational Context Families

Stefania Boffa

Abstract—Fuzzy relational formal concept analysis (FRCA) mines
collections of fuzzy concept lattices from fuzzy relational context
families, which are special datasets made of fuzzy formal contexts
and fuzzy relations between objects of different types. Mainly,
FRCA consists of the following procedures: first, an initial fuzzy
relational context family is transformed into a collection of fuzzy
formal contexts; second, a fuzzy concept lattice is generated from
each fuzzy formal context by using one of the techniques existing
in the literature. The principal tools to transform a fuzzy context
family into a set of fuzzy formal contexts are the so-called fuzzy
scaling quantifiers, which are particular fuzzy quantifiers based on
the concept of evaluative linguistic expression. FRCA can be applied
whenever information needs to be extracted from multirelational
datasets including vagueness, and it can be viewed as an extension
of both relational concept analysis and fuzzy formal concept analysis.
This article contributes to the development of fuzzy relational
concept analysis by achieving the following goals. First of all, we
present and study a new class of fuzzy quantifiers, called t-scaling
quantifiers, to extract fuzzy concepts from fuzzy relational context
families. Subsequently, we provide an algorithm to generate, given
a t-scaling quantifier, a collection of fuzzy concept lattices from a
special fuzzy relational context family, which is composed of a pair
of fuzzy formal contexts and a fuzzy relation between their objects.
After that, we introduce an ordered relation on the set of all t-scaling
quantifiers, which allows us to discover a correspondence among
fuzzy concept lattices deriving from different t-scaling quantifiers.
Finally, we discuss how the results obtained for t-scaling quantifiers
can be extended to the class of fuzzy scaling quantifies. Therefore,
this analysis highlights the main differences between t-scaling and
fuzzy quantifiers.

Index Terms—Fuzzy concept lattices, fuzzy concepts, fuzzy
formal contexts, fuzzy quantifiers, fuzzy relational context families.

I. INTRODUCTION

FORMAL concept analysis (FCA) is a mathematical theory
created to produce a conceptual hierarchy called concept

lattice, starting from a formal context, which is a triple composed
of a set of objects, a set of attributes, and a relation between
objects and attributes [1], [2], [3]. Mathematically, a concept
lattice is a particular lattice having formal concepts as elements.
Given a formal context (X,Y, I), a formal concept is a pair
(A,B), where the components A and B determine each other:
A is the set of all objects of X having all attributes of B, and
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B is the set of all attributes of Y being satisfied by all objects
of A. According to the philosophical tradition, A and B are, re-
spectively, called extent and intent of the concept. Furthermore,
formal concepts are ordered with the subconcept–superconcept
relation capturing that a concept can be more specific, or more
general, than another (for example, the concept “tiger” is more
specific than the concept “feline”).

FCA is an appealing research topic from a theoretical per-
spective [4], [5], [6] and finds applications in different areas
of computer science, such as information retrieval, machine
learning, and knowledge discovery [7], [8], [9], [10], [11].

A large group of scholars, motivated by the need to solve
real-life problems, has extended FCA in several ways (for some
examples, see [12], [13], [14], and [15]). In this article, we
are interested in fuzzy formal concept analysis (FFCA) and
relational concept analysis (RCA). Both are theories proposed
to broaden the scope of FCA as follows.

FFCA extends FCA, using fuzzy logic, to also deal with vague
information. Shortly speaking, FFCA mines concept hierarchies
from datasets called fuzzy formal contexts, where attributes are
satisfied by objects with truth degrees belonging to a graded
scale, which is usually the real interval [0,1]. Among all the
existing FFCA approaches, we focus on the one developed by
Bělohlávek [16] and independently by Pollandt [17], where each
concept is uniquely determined by a fuzzy set of objects A and
a fuzzy set of attributes B connected to each other as follows:
given an object x and an attribute y, A(x) is the degree to which
x has all attributes of B and B(y) is the degree to which y is
shared by all objects of A. Such concepts are constructed by
considering complete residuated lattices as algebraic structures
of truth degrees [18].

RCA combines FCA with description logic to extract concept
hierarchies from multirelational datasets. The RCA input is a
relational context family, which is composed of several formal
contexts and intercontext relations, namely, relations between
objects of different formal contexts. First, the RCA process
transforms the initial relational context family in a collection
of formal contexts by using the so-called scaling quantifiers.
After that, it generates a set of concept lattices (the RCA output)
by employing the classical FCA techniques [19], [20], [21].

Scaling quantifiers are binary relations on the power set 2X

of a given universe X and measure how large the intersec-
tion of two subsets A and B of X is w.r.t. the size of A.
Their definitions carry an existential import, also called pre-
supposition, corresponding to the assumption that the universe
of quantification must be nonempty. An example of scaling
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quantifier isQ30 : 2X × 2X → {0, 1} such thatQ30(A,B) = 1
if and only if at least 30% of elements in A belong to B, and
the intersection between A and B contains at least an element of
X (the latter condition represents the existential import).1 The
choice of scaling quantifiers, during the RCA process, is up to
one or more users according to the initial dataset and the final
classification that they would like to obtain.

Unfortunately, we cannot employ RCA to extract concept
hierarchies from vague datasets because RCA only deals with
crisp sets and relations. This limit has motivated Boffa et al. [23]
to propose a first RCA generalization based on fuzzy logic.
Thus, FFCA and RCA have recently been unified to create fuzzy
relational concept analysis (FRCA).

FRCA has the purpose of extrapolating information (i.e., col-
lections of fuzzy concept lattices) from multirelational datasets
involving vagueness (i.e., fuzzy relational context families). A
fuzzy relational context family extends the notion of relational
context family by taking into account fuzzy (instead of crisp)
relations.

The extraction of fuzzy concept lattices is obtained by em-
ploying the so-called fuzzy scaling quantifiers, which are gen-
eralizations of RCA scaling quantifiers. Mathematically, fuzzy
scaling quantifiers are special fuzzy quantifiers defined on the
standard Łukasiewic MV-algebra and based on the concept
of evaluative linguistic expressions. These are expressions of
natural language having the form 〈hedge〉〈big〉, where an hedge
is an adverbial modification like very, extremely, and roughly,
and their theory is constructed in a formal system of higher order
fuzzy logic (fuzzy type theory) [24], [25], [26]. In addition, fuzzy
scaling quantifiers are interpretations in a model of intermediate
quantifiers, which are special formulas of the formal theory
of intermediate generalized quantifiers presented in [27] and
elsewhere.

Let [0, 1]X be the collection of all fuzzy sets on a universe
X; an example of fuzzy scaling quantifier is SVery : [0, 1]X ×
[0, 1]X → [0, 1], where SVery(A,B) is the truth degree of the
sentence “a very big part of A is included in B.”2

In the formula of fuzzy scaling quantifiers, each linguistic ex-
pression 〈hedge〉〈big〉 is modeled by a function Biν : [0, 1]→
[0, 1], which is normal and increasing.

In this article, we present and study a new class of FRCA
quantifiers called t-scaling quantifiers, which are also extensions
of RCA scaling quantifiers. A t-scaling quantifier St is uniquely
determined by a threshold t ∈ [0, 1]. Formally, St is a function
assigning a value of [0,1] to each pair of fuzzy sets of a universe
X , where St(A,B) is the truth degree of the sentence “a part
of A being at least as big as t (in the scale [0,1]) is included in
B.” As for fuzzy scaling quantifiers given in [23], the formula
of St(A,B) includes the subformula

∨
x∈X A(x) representing

the existential import and capturing that the universe of quan-
tification A must not be empty, i.e.,

∨
x∈X A(x) is the truth

degree of the sentence “there exists at least one element in A.”

1In [22], Q30 is called general universal-percent quantifier.
2In the theory of intermediate quantifiers, SVery corresponds to the quantifier

“most,” i.e., SVery(A,B) is the truth degree of the sentence “most elements of
A are in B.”

The existential import is a philosophical concept discussed in
several publications, especially in those concerning the study of
Aristotle square (see [28], [29], [30], [31], and [32] for some
examples) Traditionally, it refers to the consideration that the
sentence “All As are B” has sense if “As exist.”

The algebraic structures of truth degrees, chosen to obtain
t-scaling quantifiers and the related fuzzy concepts, are complete
residuated lattices having [0,1] as support [18]. These are the
most used structures in FFCA applications and include the
standard Łukasiewicz MV-algebra (already considered in [23])
and the standard Gödel algebra.

In this article, t-scaling quantifiers clearly play a fundamental
role. However, generalized quantifiers have recently been in-
troduced in FFCA to extend the definition of concept-forming
operators, which are based on the universal quantifier “all” [33],
[34], [35], [36].

The main motivations to introduce t-scaling quantifiers in
FRCA are explained in what follows. The definition of t-scaling
quantifiers is based on a complete residuated lattice having [0,1]
as support, which is more general than the standard Łukasiewicz
MV-algebra used to define fuzzy scaling quantifiers in [23].
Hence, the concept extraction with t-scaling quantifiers could
be realized in future application not necessarily considering
the standard Łukasiewicz MV-algebra, but selecting the most
appropriate complete residuated lattice 〈[0, 1],∧,∨,⊗,→, 0, 1〉,
according to the situation to analyze.

Additionally, during the FRCA process, one or more experts in
the given domain, who usually do not have mathematical skills,
must select the most suitable quantifiers to produce the final
concept extraction. Therefore, using t-scaling (instead of fuzzy
scaling) quantifiers is convenient for the following reasons.

1) Each t-scaling quantifier is uniquely determined by a
threshold belonging to [0,1], while each fuzzy scaling
quantifiers by a function from [0,1] to [0,1], which models
an evaluative linguistic expression. Therefore, for experts,
it is certainly easier to determine thresholds than functions.

2) The meaning of t-scaling quantifiers can be better under-
stood by experts because it can be traced back to the mean-
ing of percentage. Indeed, Theorem 3.4 proves the exis-
tence of a one-to-one correspondence between t-scaling
quantifiers and scaling quantifiers presented in [22]: for
each t ∈ [0, 1], the t-scaling quantifierSt(A,B) is the gen-
eralization of the quantifierQt∗100(A,B) expressing that
at least t ∗ 100%of the elements ofAbelong toB (the exis-
tential import previously described must be included). On
the other hand, infinite fuzzy scaling quantifiers forming
the class S̃t∗100 can be viewed as generalizations ofQt∗100
(see Section V-A). Also, St belongs to the class S̃t∗100,
when t ≥ 0.5 and we confine to the standard Łukasiewicz
MV-algebra (see Remark 3.5). Thus, according to the
previous considerations, experts could use St instead of
any quantifier in S̃t.

3) Experts select the most suitable quantifiers also evaluating
how their choice affects the final concept classification.
Theorem 4.5 provides a way to compare concept lattices
deriving from each pair of different t-scaling quantifiers.
Such result helps experts to make the selection according
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to the final classification that they would like to obtain.
Unfortunately, as explained by Remark 5.3, the same is not
always possible when we consider a pair of fuzzy scaling
quantifiers, and therefore, this makes it more difficult for
experts to understand what the best quantifiers to employ
are.

Although in this article we introduce t-scaling quantifiers,
their main results that consist in proposing FRCA algorithms and
comparing their corresponding fuzzy concepts are also provided
for fuzzy scaling quantifiers.

Essentially, this article extends the study on FRCA started
in [23] and aims to provide new tools for data analysis and
knowledge discovery in the FCA framework. Furthermore, it
responds to the need stated in [22] and other papers to broaden
the RCA scope to analyze datasets that involve vagueness.
Therefore, the algorithms and results proposed in this article
can be applied anytime information needs to be extracted from
datasets having the form of fuzzy relational context families. The
following is an example. We can consider the fuzzy relations I :
X × Y → [0, 1], J : Z ×W → [0, 1], and r : X × Z → [0, 1],
where X is a set of individuals; Y is made of personality
characteristics like sociable and impulsive; Z is a set of sports
like volleyball, yoga, and football; W is made of sport attributes
like creative, funny, and aerobic; finally, r expresses how much
a given person in X is interested in a given sport in Z. Then,
using FRCA and choosing the t-quantifiers with the threshold
t = 0.5, we can discover, for instance, that all individuals that
are sociable with a degree of at least 0.7 and are interested
in at least 50% of sports being both funny and aerobic with
a degree of at least 0.8. Furthermore, FRCA can be used to
solve all the problems already considered in the RCA applica-
tions, but involving datasets characterized by fuzzy relations;
for example, the extraction of link key candidate from fuzzy
resource description framework (RDF) graphs [37] instead of
the classical ones considered in [38] or the construction of fuzzy
ontology by extending the results in [39] . The rest of this article
is organized as follows. Section II reviews some basic notions
and results regarding fuzzy logic and FRCA. Section III defines
and studies t-scaling quantifiers, and presents FRCA algorithms.
Section IV is devoted to introduce a total order on t-scaling
quantifiers and show a correspondence among fuzzy concepts
deriving from different t-quantifiers. Then, in Section V, we
describe how the results obtained for t-scaling quantifiers in
Sections III and IV can be extended to the class of fuzzy scaling
quantifies. Therefore, the main differences between t-scaling
and fuzzy scaling quantifiers are highlighted. Finally, Section VI
concludes this article.

II. PRELIMINARIES

This section focuses on preliminary notions and results we
need in this article. Let us underline that all the concepts will be
provided by assuming that the initial universe is finite.

A. Mathematical Tools for Fuzzy Logic

Definition II.1: A fuzzy set A of a universe X is a function
A : X → [0, 1], and we write A⊂

∼
X in symbols.

Let x ∈ X; A(x) is the truth degree of the statement “x
belongs to A.”

In the following, we use the symbol [0, 1]X to denote the
collection of all the fuzzy sets of X . Moreover, let A⊂

∼
X; we

write A = ∅ to indicate that A(x) = 0 for each x ∈ X .
We now review the notion of residuated lattice, which is a

general truth structure for fuzzy logic.
Definition II.2 (see [18]): A residuated lattice is an algebra

〈L,∧,∨,⊗,→,0,1〉, where:
i) 〈L,∧,∨,0,1〉 is a bounded lattice;

ii) 〈L,⊗,1〉 is a commutative monoid, i.e., ⊗ is a binary
operation that is commutative, associative, anda⊗ 1 = a
for each a ∈ L;

iii) a⊗ b ≤ c if and only if a ≤ b→ c, for each a, b, c ∈ L
(adjunction property).

A residuated lattice 〈L,∧,∨,⊗,→,0,1〉 is complete if its
reduct 〈L,∧,∨〉 is a complete lattice.

The following proposition lists some properties satisfied by
every complete residuated lattice.

Proposition II.3: Let 〈L,∧,∨,⊗,→,0,1〉 be a complete
residuated lattice; then, the following properties hold: let
I = {1, . . . , n}.

a) If ai ≤ bi for each i ∈ I , then
∧

i∈I ai ≤
∧

i∈I bi.
b) If ai ≤ bi for each i ∈ I , then

∨
i∈I ai ≤

∨
i∈I bi.

c)
∧

i∈I ai = 1 if and only if ai = 1 for each i ∈ I .
d)

∧
i∈I ai = 0 if and only if there exists i ∈ I such that ai =

0.
e)

∨
i∈I ai = 1 if and only if there exists i ∈ I such that ai =

1.
f)

∨
i∈I ai = 0 if and only if ai = 0 for each i ∈ I .

g) If J ⊆ I , then
∨

i∈J ai ≤
∨

i∈I ai.
h) a→ b = 1 if and only if a ≤ b.
i) If a ≤ b, then k → a ≤ k → b.
j) If a ≤ b and c ≤ d, then a⊗ c ≤ b⊗ d.
Example II.4 (see [40]): A special complete residuated lat-

tice is the standard Łukasiewicz MV-algebra〈[0, 1],∧,∨,⊗,→
, 0, 1〉, where a ∧ b = min(a, b), a ∨ b = max(a, b), a⊗ b =
max(0, a+ b− 1), a→ b = min(1, 1− a+ b), for each a, b ∈
[0, 1].

In this article, we choose complete residuated lattices with
support L = [0, 1] as basic structures of truth values.

The inclusion relation between classical sets is generalized as
follows.

Definition II.5: Let A,B⊂
∼
X . Then, B includes A if and

only if A(x) ≤ B(x) for each x ∈ X , and we write A ⊆ B in
symbols.

Then, we deal with particular cases of fuzzy measures on
fuzzy sets.

Definition II.6 (see [41]): A fuzzy measure on fuzzy sets is a
function μ : [0, 1]X → [0, 1] such that μ(X) = 1 and μ(∅) = 0,
and ifA ⊆ B, thenμ(A) ≤ μ(B), i.e.,μ is a monotone function.

Examples of fuzzy measures are defined as follows.
Definition II.7 (see [42]): Let AX . Then, the cardinality |A|

of A is given by

|A| =
∑
x∈X

A(x). (1)
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Definition II.8 (see [25]): LetA⊂
∼
X . Then, the measureμA :

[0, 1]X → [0, 1] is defined as follows: let B⊂
∼
X:

μA(B) =

⎧⎪⎨
⎪⎩
1, if A = ∅ or B = A
|B|
|A| , if A �= ∅ and B ⊆ A

0, otherwise

. (2)

Moreover, μA(B) expresses “how large the size of B is w.r.t.
the size of A.”

We require a special operation to form a new fuzzy set from
a given one by extracting several elements together with their
membership degrees and putting the other membership degrees
equal to 0.

Definition II.9 (see [27]): Let A,B⊂
∼
X; the cut of A with

respect to B is a fuzzy set A|B⊂
∼
X given by

(A|B)(x) =

{
A(x), if A(x) = B(x)

0, otherwise
. (3)

Example II.10: Let X = {x1, . . . , x5} be a universe;
we consider A,B⊂

∼
X such that A = {0.25/x1, 0.5/x2, x3,

x4, 0.6/x5} and B = {0.3/x1, 0.5/x2, 0.2/x3, x4, 0.5/x5}.
Then, according to the previous definition, the cut of A w.r.t.
B is a new fuzzy set of X , exactly A|B = {0.5/x2, x4}.

Why do we need the notion of fuzzy set cuts? In order
to provide the formula of the t-scaling quantifier St(A,B)
(see Definition 3.1), we should have considered universes of
quantification smaller than A, which correspond to the fuzzy
sets included in A according to Definition 2.5. However, the
properties of implication suggest considering only the fuzzy sets
with membership degrees significantly smaller than those of A.
Therefore, a satisfactory solution was to consider the cuts of A,
namely the collection {A|Z | Z ⊂

∼
X}. For example, let A =

{0.5/x1, 0.2/x2, 0.8/x3}; then, the cuts of A are the follow-
ing ones: ∅, {0.5/x1}, {0.2/x2}, {0.8/x3}, {0.5/x1, 0.2/x2},
{0.5/x1, 0.8/x3}, {0.2/x2, 0.8/x3}, and A.

Moreover, we evaluate the size of A|Z w.r.t. A by using
the operator Δt : [0, 1]→ [0, 1] that transforms each element
of [0,1] being greater than or equal to t in 1 and the remaining
ones in 0. Namely, let x ∈ [0, 1];

Δt(x) =

{
x, if x ≥ t

0, otherwise
. (4)

The concept of inclusion given in Definition 2.5 is generalized
as follows.

Definition II.11: Let A,B ∈ [0, 1]X ; we set

SX(A,B) =
∧
x∈X

(A(x)→ B(x)) (5)

where SX(A,B) represents the degree of inclusion of A in B.
Observe that if SX(A,B) = 1, then A is included in B

according to Definition 2.5.
Fuzzy Galois connections and fuzzy closure operators are

fundamental notions in fuzzy logic.

Definition II.12 (see [43]): Let 〈[0, 1],∧,∨,⊗,→,0,1〉 be a
complete residuated lattice, and let X and Y be universes. A
fuzzy Galois connection between X and Y is a pair 〈f, g〉 of
mappings f : [0, 1]X → [0, 1]Y and g : [0, 1]Y → [0, 1]X satis-
fying the following conditions for each A,Ai, Aj ∈ [0, 1]X and
B,Bi, Bj ∈ [0, 1]Y .

i) SX(Ai, Aj) ≤ SY (f(Aj), f(Ai)).
ii) SY (Bi, Bj) ≤ SX(g(Bj), g(Bi)).

iii) A ⊆ g(f(A)).
iv) B ⊆ f(g(B)).
Definition II.13 (see [44]): Let 〈[0, 1],∧,∨,⊗,→,0,1〉 be

a complete residuated lattice, and let X be a universe. A fuzzy
closure operator on X is a mapping C : [0, 1]X → [0, 1]X sat-
isfying the following conditions for each A,B ∈ [0, 1]X .

i) A ⊆ C(A).
ii) If A ⊆ B, then C(A) ⊆ C(B).

iii) C(A) = C(C(A)).

B. Fuzzy Formal Concept Analysis

Let 〈[0, 1],∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice.3

Definition II.14: A fuzzy formal context is a triple (X,Y, I),
where X is a set of objects, Y is a set of attributes, and I is a
fuzzy relation on X × Y , i.e., I : X × Y → [0, 1].

Definition II.15 (see [16] and [17]): Let (X,Y, I) be a fuzzy
formal context. If A⊂

∼
X and B⊂

∼
Y , then

A↑I (y) =
∧

x∈X(A(x)→ I(x, y))
B↓I (x) =

∧
y∈Y (B(y)→ I(x, y))

for all x ∈ X and y ∈ Y .
A↑I (y) and B↓I (x) are the truth degrees of the statements “y

is shared by all objects of A” and “x has all attributes of B,”
respectively.

The following results regarding the operators of Definition
2.15 have been proved in [43], [45], and [46].

Theorem II.16: Let (X,Y, I) be a fuzzy formal context.
Then, the pair made of ↑I : [0, 1]X → [0, 1]Y and ↓I : [0, 1]Y →
[0, 1]X is a Galois connection.

Theorem II.17: Let (X,Y, I) and (X,Y, J) be fuzzy formal
contexts. Then, I ⊆ J if and only if A↑I ⊆ A↑J and B↓I ⊆ B↓J
for all A ∈ [0, 1]X and B ∈ [0, 1]Y .

As shown below, operators of Definition 2.15 are employed
to extract fuzzy concepts from every fuzzy formal context.

Definition II.18: Let (X,Y, I) be a fuzzy formal context,
and let A⊂

∼
X and B⊂

∼
Y . Then, (A,B) is a fuzzy concept of

(X,Y, I) if and only if A↑I = B and B↓I = A.
Algorithms for generating all the fuzzy concepts from a fuzzy

formal context are provided in [47] and elsewhere.
We denote the set of all fuzzy concepts of (X,Y, I) with

B(X,Y, I).
(B(X,Y, I),R) is a complete fuzzy lattice,4 called the

fuzzy concept lattice of (X,Y, I), where the relation R

3The notions of this subsection hold for complete residuated lattices having
a generic set as support as well.

4The notion of complete fuzzy lattice is provided in [48].
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is defined by R((A1, B1), (A2, B2)) = SX(A1, A2) for all
(A1, B1), (A2, B2) ∈ B(X,Y, I) [2], [48].

Theorem II.19: Let (X,Y, I) be a fuzzy formal context, let
A⊂
∼
X , and let B⊂

∼
Y . Then, A↑I↓I and B↓I↑I are, respectively,

the extent and the intent of concepts of B((X,Y, I),R).

C. Fuzzy Relational Concept Analysis

In FRCA, a significant role is played by the so-called fuzzy
scaling quantifiers, which are generalizations of standard scaling
quantifiers by using fuzzy logic.

Among all the RCA scaling quantifiers considered in [22], we
are interested in the following.

Definition II.20:
Let X be a universe; we putP(X)2 = {(A,B) |A,B ⊆ X}.

Let n ∈ [0, 100]; the universal-percent scaling quantifier on X
is a functionQn : P(X)2 → {0, 1} such that, given A,B ⊆ X ,

Qn(A,B) = 1 iff |A ∩B| ≥ n

100
|A| and |A ∩B| > 0.

Scaling quantifiers given by Definition 2.20 have been ex-
tended in the fuzzy logic framework as follows (see [23] for
more details).

Definition II.21: Let 〈[0, 1],∧,∨,⊗,→, 0, 1〉 be the standard
Łukasiewic MV-algebra; letBiν be a function modeling an eval-
uative linguistic expression with the form 〈hedge〉 〈big〉 in the
context [0,1], and letX be a universe. Then, the fuzzy ν-universal
scaling quantifier on X is a function Sν : [0, 1]X × [0, 1]X →
[0, 1] such that, given A,B⊂

∼
X ,

Sν(A,B)=
∨

Z ⊂
∼
X

(( ∧
x∈X

((A|Z)(x)→B(x))⊗
∨
x∈X

(A|Z)(x)

)

∧Biν(μA(A|Z))

)
. (6)

Remark II.22: Mathematically, Biν is a function from [0,1]
to [0,1], which is normal (i.e., there exists at least an element
x of [0,1] such that Biν(x) = 1) and increasing (i.e., if x ≤ y,
then Biν(x) ≤ Biν(x), for each x ∈ [0, 1]). Biν is obtained by
composing two functions:Bimodeling the expression Big and ν
modeling an adverbial modification called hedge likeVery. The
role of Biν in the previous definition is to evaluate μA(A|Z).
Then, if ν models Very, Biν(μA(A|Z)) is the degree to which
the size ofA|Z is Very Big w.r.t. the size ofA. More explanations
are found in [23] and [49].

FRCA analyzes data organized as a fuzzy relational context
family.

Definition II.23: A fuzzy relational context family is a pair
(K,R), where:

i) K is a set of fuzzy formal contexts
{(X1, Y1, I1), . . . , (Xn, Yn, In)};

ii) R is a set of fuzzy binary relations {r1, . . . , rm} with
domain and range in {X1, . . . , Xn}.

A set of fuzzy concept lattices is extracted from a fuzzy
relational context family (K,R) in two fundamental steps.

1) (K,R) is transformed into a set K′ of fuzzy formal
contexts by means of selected fuzzy scaling quantifiers.

2) A new fuzzy concept lattice is extracted from each fuzzy
formal context of K′, by using the existing fuzzy FCA
techniques.

Mainly, step 1 is realized as follows.
a) LetSQ be the collection of all fuzzy scaling quantifiers; we

consider the functions s : R→ SQ, kdom : R→ K, and kcod :
R→ K such that for each fuzzy relation r : A×B → [0, 1];
and kdom(r) and kcod(r) are two fuzzy formal contexts of K
having A and B as sets of objects, respectively.5

b) For each (X,Y, I) ∈ K, we consider the set of relations

{r1, . . . , rn} = {r ∈ R | kdom(r) = (X,Y, I)}
and let i ∈ {1, . . . , n}; we denote the fuzzy concept lattice

extracted by kcod(ri) with Li. Moreover, given ri : X × Z →
[0, 1] and x ∈ X , we use the symbol ri(x) to indicate a fuzzy
set of Z such that (ri(x))(z) = ri(x, z) for each z ∈ Z, and the
symbols Ei

C to indicate the extent of the concept C of Li.
Then, we construct a new fuzzy formal context (X,Y ∗, I∗)

such that:
1) Y ∗ = Y ∪ Y1 ∪ . . . ∪ Yn, where Yi = {yiC | C ∈ Li};
2) let (x, y) ∈ X × Y ∗; then

I∗(x, y) =

{
I(x, y), if y ∈ Y

S(ri(x), Ei
C),with S = s(ri), if y = yiC

.

(7)
Given i ∈ {1, . . . , n} and C ∈ Li, yiC is called fuzzy rela-

tional attribute.
Therefore, a new family of fuzzy formal context is given by

K′ = {(X,Y ∗, I∗) | (X,Y, I) ∈ K}.
Of course, (X,Y ∗, I∗) = (X,Y, I) when the set {r ∈

R | kdom(r) = (X,Y, I)} is empty.
Eventually, observe that (X,Y ∗, I∗) contains both infor-

mation of (X,Y, Z) and that of the fuzzy relations of {r ∈
R | kdom(r) = (X,Y, I)}.

Then, step 2 can be realized by employing one of the several
algorithms introduced in the literature (for example, see [47] and
[50]).

III. FRCA WITH T-SCALING QUANTIFIERS

In this section, we first present a new family of fuzzy scaling
quantifiers called t-scaling quantifiers (see Section III-A). Sub-
sequently, we show a procedure to mine a collection of fuzzy
concept lattices from a special fuzzy relational context family
by using a fixed t-scaling quantifier (see Section III-B).

In the following, we consider a universe X and a complete
residuated lattice 〈[0, 1],∧,∨,⊗,→, 0, 1〉.

A. T-Scaling Quantifiers

Definition III.1: Let t ∈ [0, 1]. Then, the fuzzy t-scaling quan-
tifier onX is a functionSt : [0, 1]X × [0, 1]X → [0, 1] such that,

5s, kdom, and kcod can be determined by experts or users during the RCA
process.
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given A,B⊂
∼
X ,

St(A,B)=
∨

Z ⊂
∼
X

(( ∧
x∈X

((A|Z)(x)→B(x))⊗
∨
x∈X

(A|Z)(x)

)

∧Δt(μA(A|Z))

)
. (8)

Moreover, St(A,B) is the truth degree of the following state-
ment:

There exists a cut A|Z of A such that “all elements of A|Z belong
to B,” “there exists at least one element in A|Z,” and “the size of
A|Z is at least as large as t (in the scale [0,1]) w.r.t. the size of A”.

A fundamental role in the definition of t-scaling quantifiers
is played by

∨
x∈X(A|Z)(x) interpreting the logical formula

(∃x)(A|Z)(x) in a model of fuzzy predicate logic. The latter
captures that there exists at least one element of X in A|Z and
speaks about the existential import (or presupposition). Let us
underline that in fuzzy logic, the existential import is included
into the formula of quantifiers by the strong conjunction, in
order to guarantee the validity of some syllogisms needing
the adjunction property [27]. T-scaling quantifiers satisfy the
properties shown in the next proposition.

Proposition III.2: Let t ∈ [0, 1], and let A,B⊂
∼
X . If A = B

or A = ∅, then St(A,B) =
∨

x∈X A(x).
Proof: Let A = B. By Definition 2.9 together with Proposi-

tion 2.3(h), if A = B, then A|Z(x)→ B(x) = 1 for each x ∈
X . Consequently, let Z ⊂

∼
X; we get

∧
x∈X A|Z(x)→ B(x) =

1 from Proposition 2.3(c). Since a⊗ 1 = a in every com-
plete residuated lattice, St(A,B) =

∨
Z ⊂
∼
X(

∨
x∈X(A|Z)(x) ∧

Δt(μA(A|Z))). Moreover, by Definition 2.9 and (4), we obtain∨
x∈X

(A|Z)(x) ≤
∨
x∈X

A(x) and Δt(μA(A|Z)) ≤ Δt(μA(A))

for each Z ⊂
∼
X . Then,

∨
x∈X(A|Z)(x) ∧Δt(μA(A|Z)) ≤∨

x∈X A(x) ∧Δt(μA(A)) from Proposition 2.3(a). Hence, the
thesis clearly follows.

Let A = ∅. By Definitions 2.8 and 2.9 together with (4),
Δt(μ∅(∅|Z)) = Δt(1) = 1 and (∅|Z)(x)→ B(x) = 1 for each
Z ⊂
∼
X . Thus, the thesis derives from the properties of complete

residuated lattices (see Proposition 2.3). �
In the following theorem, we show another way to obtain the

t-scaling quantifier corresponding to t = 1.
Theorem III.3: Let A,B⊂

∼
X; then

S1(A,B) =
∧
x∈X

(A(x)→ B(x))⊗
∨
x∈X

A(x). (9)

Proof: By (4), Δ1(μA(A|Z)) = 1 if and only if μA(A|Z) =
1, namely, A|Z = A or A = ∅ from Definition 2.8.

If A = ∅, then S1(A,B) = 0 and
∧

x∈X(A(x)→ B(x))⊗∨
x∈X A(x) = 0.
Suppose that A �= ∅. If A|Z = A, then (S(A|Z,B)⊗∨
x∈X(A|Z)(x)) ∧Δ1(μA(A|Z)) = (S(A|Z,B)⊗

∨
x∈X(A|Z)(x)) ∧ 1.6 The latter equals S(A,B)⊗∨

x∈X
A(x) from the property a ∧ 1 = a. Otherwise, ifA|Z �= A, then
(S(A|Z,B)⊗∨

x∈X(A|Z)(x)) ∧Δ1(μA(A|Z)) = S(A|Z,
B) ∧ 0. The latter equals 0 from the property a ∧ 0 = 0.
Moreover, since a ∨ 0 = a is satisfied in every bounded lattice,
we can conclude that (9) holds. �

By Theorem 3.3, (8) can be rewritten as follows:

St(A,B) =
∨

Z ⊂
∼
X

(S1(A|Z,B) ∧Δt(μA(A|Z)) ) . (10)

Then, St(A,B) is constructed by applying S1 to all pairs as
(A|Z,B), where A|Z represents a universe of quantification
smaller than A, and by using Δt to evaluate the size of A|Z
w.r.t. the size of A.

We can prove that each t-quantifier equals a special RCA
scaling quantifier given by Definition 2.20, when both apply to
pairs of classical sets of the initial universe.

Theorem III.4: Let A,B ⊆ X and n ∈ [0, 100]; then,
Qn(A,B) = Sn/100(A,B).

Proof: Let n ∈ [0, 100]. We consider A,B ⊆ X such that
Qn(A,B) = 1. Then, we intend to prove that St(A,B) = 1,
where t = n/100.

Since bothA andB are classical sets ofX ,St(A,B) ∈ {0, 1}
and {A|Z with Z ⊂

∼
X} coincides with the collection of all

subsets of A.
By Definition 2.20, we get A ∩B �= ∅, and therefore,∨
x∈X(A ∩B)(x) = 1 from Proposition 2.3(e). Moreover,

for each x ∈ X , (A ∩B)(x) ≤ B(x), and hence, (A ∩
B)(x)→ B(x) = 1 from Proposition 2.3(h). Then, by Propo-
sition 2.3(c), S1(A ∩B,B) = 1. In addition, (4) implies
that Δt(μA(A ∩B)) = 1. Consequently, we obtain S1(A ∩
B,B) ∧Δt(μA(A ∩B)) = 1.

Finally, S1(A ∩B,B) ∧Δt(μA(A ∩B)) ≤ St(A,B).
Thus, St(A,B) = 1.

Now, let A,B ⊆ X such that Qn(A,B) = 0; we want to
prove that St(A,B) = 0, where t = n/100. Therefore, let
Z ⊂
∼
X; as underlined above, we have A|Z ⊆ A. If A|Z ⊆

A ∩B, then Δt(μA(A ∩B)) = 0. Otherwise, there exists x ∈
X such that A|Z(x) = 1 and B(x) = 0. Hence, A|Z(x)→
B(x) = 0, and by Proposition 2.3(d), S1(A|Z,B) = 0. There-
fore, using Proposition 2.3(f) together with (10), we have
St(A,B) = 0. �

Remark III.5: If 〈[0, 1],∧,∨,⊗,→, 0, 1〉 is the standard
Łukasiewicz MV-algebra and t ∈ [0.5, 1], then St belongs to
the family of fuzzy scaling quantifiers given by Definition 2.21
and introduced in [23].

B. Algorithms in FRCA

This subsection principally provides two algorithms in
FRCA. The first one, given t ∈ [0, 1] and A,B⊂

∼
X , computes

St(A,B). The second one generates fuzzy concept lattices from
a fuzzy relational context family composed of two fuzzy formal
contexts (X,Y, I) and (Z,W, J), and a fuzzy relation between

6Recall that S is defined by (5).
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X and Z. These algorithms are based on the results presented
below.

In the following theorem, we rewrite the formula of St(A,B)
by considering not all, but only specific cuts of A, namely all
those whose size w.r.t. A is at least large t.

Theorem III.6: Let A,B⊂
∼
X , and let t ∈ [0, 1]; we put

Ht(A) = {Z ⊂∼ X | μA(A|Z) ≥ t}.

Then

St(A,B) =
∨

Z∈Ht(A)

S1(A|Z,B). (11)

Proof: We can rewrite (10) in the following equivalent form:

St(A,B) =
∨

Z∈Ht(A)

(S1(A|Z,B) ∧Δt(μA(A|Z)) )∨

×
∨

Z/∈Ht(A)

(S1(A|Z,B) ∧Δt(μA(A|Z)) ).

(12)

Let Z ⊂
∼
X . By (4), if Z ∈ Ht(A), then Δt(μA(A|Z)) =

1. Thus, S1(A|Z,B) ∧Δt(μA(A|Z)) = S1(A|Z,B) ∧ 1 =
S1(A|Z,B).

Otherwise, if Z /∈ Ht(A), then Δt(μA(A|Z)) = 0. Hence,
S1(A|Z,B) ∧Δt(μA(A|Z)) = S1(A|Z,B) ∧ 0 = 0.

Therefore, the thesis follows from the properties of complete
residuated lattices (see Proposition 2.3). �

We can find St(A,B) also by considering in (11) only some
of the fuzzy sets in Ht(A). To achieve this goal, we need to
define and study a family of cuts of A.

Definition III.7: Let A,B⊂
∼
X , and let k ∈ K(A,B), where

K(A,B) = {k ∈ [0, 1] | A(x)→ B(x) = k, for some x ∈ X}.
(13)

Then, we put

Ak(x) =

{
A(x), if A(x)→ B(x) ≥ k

0, otherwise
. (14)

Remark III.8: It is easy to verify thatAk is a cut ofA, for each
k ∈ K(A,B). Moreover, Ak = A, when

∧
x∈X A(x)→ B(x) =

k.
The following proposition states that given k ∈ K(A,B), Ak is

the maximum on the set of all cuts A|Z of A satisfying a special
condition.

Proposition III.9: Let A,B,Z ⊂
∼
X such that∧

x∈X(A|Z)(x)→ B(x) = k. Then, (A|Z)(x) ≤ Ak(x)
for each x ∈ X .

Proof: Suppose that
∧

x∈X(A|Z)(x)→ B(x) = k. Then,
for each x ∈ X , (A|Z)(x)→ B(x) ≥ k. Hence, let x ∈ X; if
A(x)→ B(x) < k, then both (A|Z)(x) and Ak(x) must be
equal to 0. Otherwise, ifA(x)→ B(x) ≥ k, thenAk(x) is equal
to A(x), and (A|Z)(x) equals 0 or A(x). Consequently, we get
(A|Z)(x) ≤ Ak(x). �

The next theorem rewrites the expression of St(A,B) con-
sidering a subsetH∗t(A,B) ofHt(A) given by

H∗t(A,B) = {Z ∈ Ht(A) | ∃k ∈ K(A,B) with A|Z = Ak}.
Theorem III.10: Let A,B⊂

∼
X , and let t ∈ [0, 1]. Then

St(A,B) =
∨

Z∈H∗t(A,B)

S1(A|Z,B).

Proof: Let Z ∈ Ht(A). We intend to prove that there exists
Z̃ ∈ H∗t(A,B) such that S1(A|Z,B) ≤ S1(A|Z̃, B).

If A|Z = ∅, then S1(A|Z,B) = 0. Consequently,
S(A|Z,B) ≤ S(A|Z̃, B) for each Z̃ ∈ H∗t(A,B).

If A|Z �= ∅, we consider k ∈ K(A,B) such that∧
x∈X(A|Z)(x)→ B(x) = k. Then, we can consider Z̃X

such that Ak = A|Z̃.
By Proposition 3.9, (A|Z)(x) ≤ Ak(x) for each x ∈

X . Thus, by Proposition 2.3(b), we get
∨

x∈X(A|Z)(x) ≤∨
x∈X Ak(x).
Therefore, by Proposition 2.3(j), we have∧

x∈X
(A|Z)(x)→ B(x)⊗

∨
x∈X

(A|Z)(x) ≤
∧
x∈X

Ak(x)→ B(x)⊗
∨
x∈X

Ak(x). (15)

Thus, we have shown that S1(A|Z,B) ≤ S1(A|Z̃, B), where
A|Z̃ belongs toH∗t(A,B).

Hence, using Proposition 2.3(b) again,∨
Z∈Ht(A)

S1(A|Z,B) ≤
∨

Z∈H∗t(A,B)

S1(A|Z,B)

namely St(A,B) ≤ ∨
Z∈H∗t(A,B) S1(A|Z,B) from Theorem

3.6.
Of course, by Proposition 2.3(g),H∗t(A,B) ⊆ Ht(A) implies

that ∨
Z∈H∗t(A,B)

S1(A|Z,B) ≤
∨

Z∈Ht(A)

S1(A|Z,B).

Then,
∨

Z∈H∗t(A,B) S1(A|Z,B) ≤ St(A,B), by using Theorem
3.6 again. �

Now, employing the previous results, we propose the pro-
cedure P1, which takes as input a pair of fuzzy sets A and B
of a universe X , and a threshold t ∈ [0, 1], and finds the value
St(A,B).

In detail, P1 is based on Theorem 3.10: it computes the
supremum of the values corresponding to S1(Ak, B), where Ak

is a cut of A given by Definition 3.7 such that μA(Ak) ≥ t.
Example III.11: Consider A = {0.5/x1, 0.3/x2, 0.4/x3, x4,

x5, x6} and B = {x1, x2, 0.5/x3, 0.2/x4, 0.5/x5, x6}, and as-
sume that the standard Łukasiewicz MV-algebra is our
structure of truth values. Then, K = {0.4, 0.5, 1} because
A(xi)→ B(xi) = 1 if i ∈ {1, 2, 3, 6}, A(x4)→ B(x4) = 0.4
and A(x5)→ B(x5) = 0.5. Also, we choose t = 0.6. Then,
μA(A0.4) = 1, μA(A0.5) = 0.76, and μA(A1) = 0.42.

SinceμA(A0.4), μA(A0.5) ≥ 0.7,P1 returns 0.5, which is the
maximum between 0.4⊗ 1 = 0.4 and 0.5⊗ 1 = 0.5.
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Algorithm 1: The Algorithm for Finding the Values As-
sumed by a t-Scaling Quantifier.

procedure P1(A,B, t)
K← {k ∈ [0, 1] | A(x)→ B(x) = k, with x ∈ X}

for all k ∈ K do
if μA(Ak) ≥ t then

n← ∧
x∈X Ak(x)→ B(x)

m← ∨
x∈X Ak(x)

S ← S ∪ {n⊗m}
end if

end for
s∗ ← ∨

s∈S s
return s∗

end procedure

We currently have enough tools to present the procedure P2.
Its input consists of a fuzzy relational context family (K,R),
where K = {(X,Y, I), (Z,W, J)} and R = {(X,Z, r)}, and
a threshold t ∈ [0, 1], and its output is a pair of fuzzy concept
lattices {L1,L2} associated with (K,R) through St.

Let us point out that P2 recalls, in addition to P1, the proce-
dures P3 and P4. These, given a fuzzy formal context (X,Y, I),
respectively, compute the fuzzy concept lattice of (X,Y, I) and
the extent of all fuzzy concepts of (X,Y, I) by using one of the
existing FFCA techniques (for example, see [47] and [51]).

Algorithm 2: The Algorithm for Extracting a Collection of
Fuzzy Concept Lattices From a Fuzzy Relational Context
Family, Which Is Composed of Two Fuzzy Formal Contexts
and a Fuzzy Relation Between Their Objects.

procedure P2((X,Y, I), (Z,W, J), (X,Z, r), t)
Y ∗ ← Y
for all x ∈ X do

for all y ∈ Y do
I∗(x, y)← I(x, y)

end for
end for
L1 ← P3(Z,W, J)
E ← P4(L1)
for all E ∈ E do

Y ∗ ← Y ∗ ∪ {yE}
for all x ∈ X do
I∗(x, yE)← P1(r(x), E, t) {As explained in
Section II-C, r(x) is a fuzzy set such that
r(x)(z) = r(x, z)}.

end for
L2 ← P4(X,Y ∗, I∗)

end for
return {L1,L2}
end procedure

Eventually, the concept lattices related to a general fuzzy
context family (K,R) such that |K| ≥ 2 and |R| ≥ 1 can be
obtained by applying the procedure P2 to (K,K,′ r, t) for each

relation r ∈ R, where t, K, and K ′ are selected, as described in
Section II-C.

IV. COMPARING CONCEPT LATTICES DERIVING FROM

DIFFERENT T-SCALING QUANTIFIERS

In this section, we first introduce a total order on t-scaling
quantifiers. Then, we compare fuzzy concept lattices deriving
from different t-scaling quantifiers.

An ordered relation on t-scaling quantifiers can be defined as
follows.

Definition IV.1: Let S = {St | t ∈ [0, 1]}, and let S,S′ ∈ S.
Then

S �S S′ iff S(A,B) ≤ S′(A,B) for each A,B⊂
∼
X. (16)

The next theorem shows that �S is a total order on S, i.e.,
S �S S′ or S′ �S S , for each S,S′ ∈ S.

Theorem IV.2: Let s, t ∈ [0, 1] such that s ≤ t. Then, St �S

Ss.
Proof: Let A,B⊂

∼
X . By (4), Δt(μA(A|Z)) ≤

Δs(μA(A|Z)) for each Z ⊂
∼
X . Then, by Proposition 2.3(a),

we have

S1(A|Z,B) ∧Δt(μA(A|Z)) ≤ S1(A|Z,B) ∧Δs(μA(A|Z))

for each Z ⊂
∼
X . Thus, by Proposition 2.3(b), we have

∨
Z ⊂
∼
X

S1(A|Z,B) ∧Δt(μA(A|Z))

≤
∨

Z ⊂
∼
X

S1(A|Z,B) ∧Δs(μA(A|Z)).

Namely, St(A,B) ≤ Ss(A,B) from (10). �
In the following, we consider a fuzzy relational context family

(K,R) = ( {(X,Y, I), (Z,W, J)}, {(X,Z, r)} )
and we denote with (X,Y ∗, It) the fuzzy formal context ob-
tained from B(Z,W, J) and (X,Z, r), by using the quantifiers
St.7 For convenience, we can write ↑t instead of ↑It (dually, ↓t
instead of ↓It ). Moreover, given C ∈ B(Z,W, J), the symbol
yC indicates the relational attribute associated with C.

Remark IV.3: By (7), Theorem 4.2 implies that, given s, t ∈
[0, 1] such that s ≤ t, It ⊆ Is (i.e., It(x, y) ≤ Is(x, y) for all
x ∈ X and y ∈ Y ∗).

Therefore, using Theorem 4.2, we can compare particular
fuzzy sets deriving from different t-scaling quantifiers. More
precisely, the following proposition holds.

Proposition IV.4: Let C ∈ B(Z,W, J), and let s, t ∈ [0, 1]
such that s ≤ t. Then, {k/yC}↓t ⊆ {k/yC}↓s for each k ∈
[0, 1].

Proof: Let x ∈ X . Since s ≤ t, we have It(x, yC) ≤
Is(x, yC) from Remark 4.3. Consequently, by Proposition 2.3(i),
k → It(x, yC) ≤ k → Is(x, yC). Therefore, the thesis follows
from Definition 2.15.

7Let us notice that Y ∗ does not depend on the t-scaling quantifier choice.



1210 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 31, NO. 4, APRIL 2023

TABLE I
FUZZY RELATIONS I , J , AND r

The next theorem exhibits a connection among fuzzy concepts
that are generated by different t-scaling quantifiers. In particular,
let s and t be thresholds in [0,1] such that s ≤ t; each fuzzy
concept corresponding to t is less than or equal to at least one
corresponding to s.

To compare concepts of different lattices, we use
an ordered relation � on the set [0, 1]X × [0, 1]Y

∗
=

{(A,B) | A⊂
∼
X and B⊂

∼
Y ∗}, where let (Ai, Bi), (Aj , Bj) ∈

[0, 1]X × [0, 1]Y
∗
,

(Ai, Bi) � (Aj , Bj) if and only if Ai ⊆ Aj and Bi ⊆ Bj .
Theorem IV.5: Let s, t ∈ [0, 1] such that s ≤ t. Then, for each

(A,B) ∈ B(X,Y ∗, It), there exists (A∗, B∗) ∈ B(X,Y ∗, Is)
such that (A,B) � (A∗, B∗).

Proof: Let (A,B) ∈ B(X,Y ∗, It), and let B∗ = B↓s↑s .
Then, by Theorem 2.19, B∗ is the intent of a concept of
B(X,Y ∗, Is). Moreover, by Theorem 2.16, ↓s↑s is a closure
operator. Hence, we get B ⊆ B∗ from Definition 2.13(i).

We now intend to prove that A ⊆ A∗, where A∗ = (B∗)↓s
and A = B↓t . By Remark 4.3, It ⊆ Is. Then, by Theorem 2.17,
B↓t ⊆ B↓s . Since ↑s↓s is a closure operator [see Definition
2.13(i)], we get B↓s ⊆ (B↓s)↑s↓s .

Thus, we can conclude that B↓t ⊆ (B↓s↑s)↓s , namely,
A ⊆ A∗. �

Let us provide an illustrative example, where concepts arising
from different quantifiers are compared through �.

Example IV.6: Consider a fuzzy relational context family

(K,R) = ({(X,Y, I), (Z,W, J)}, {r})
such that X = {x1, x2}, Y = {y1, y2, y3}, Z = {z1, z2}, W =
{w1, w2, w3}, and I : X × Y → Ł3, J : Z ×W → Ł3 and r :
X × Z → Ł3 are provided by Table I .8We aim:

1) to find fuzzy concepts hidden in (K,R) using S0.25 and
S0.75;

2) to compare, employing �, each fuzzy concept deriving
from S0.75 with at least one deriving from S0.25.

To achieve these goals, we consider B(Z,W, J) =
{C1, . . . , C7}, where

C1 = ({z1, z2, z3, z4}, ∅)
C2 = ({z1, z2, 0.75/z3, z4}, {0.25/w1, 0.25/w2})
C3 = ({z1, z2, 0.5/z3, z4}, {0.5/w1, 0.5/w2})
C4 = ({z1, z2, 0.75/z4}, {w1, 0.5/w2})
C5 = ({0.5/z1, z2, z4}, {0.75/w1, w2})
C6 = ({0.75/z1, z2, 0.75/z4}, {w1, 0.75/w2})
C7 = ({0.5/z1, z2, 0.75/z4}, {w1, w2}).

8Ł3 is the support of the three-element Łukasiewicz algebra, namely, Ł3 =
{0, 0.5, 1} [16].

Then, we need to find I0.75 and I0.25, which are fuzzy relations
on X × Y ∗, where Y ∗ = Y ∪ {yC1

, . . . , yC7
}, determined by

S0.75 and S0.25, respectively. I0.75 and I0.25 are defined by
Table II and are obtained from B(Z,W, J) and r as follows:
given t ∈ {0.25, 0.75} and x ∈ X ,

1) It(x, yi) = I(x, yi) for each i ∈ {1, 2};
2) It(x, yCi

) = St(x, yCi
) for each i ∈ {1, . . . , 7}.

Therefore, we can compute the fuzzy concepts of
B(X,Y ∗, I0.25) and B(X,Y ∗, I0.75), which are listed in Ta-
bles III and IV .

Finally, according to Theorem 4.2, we can verify thatC1
0.75 �

C1
0.25, C2

0.75 � C5
0.25, C3

0.75 � C6
0.25, C4

0.75 � C2
0.25, C

3
0.25,

C5
0.75 � C8

0.25, C
12
0.25, C6

0.75 � C10
0.25, C7

0.75 = C3
0.25, C8

0.75 =
C4

0.25, C9
0.75 � C9

0.25, C10
0.75 � C11

0.25, C11
0.75 � C14

0.25, C12
0.75 =

C12
0.25, C13

0.75 � C16
0.25, C14

0.75 = C16
0.25, C15

0.75 � C18
0.25, and

C16
0.75 � C18

0.25.

V. COMPARISON OF T-SCALING AND FUZZY

SCALING QUANTIFIERS

Let S̃ be the collection of all the fuzzy scaling quantifiers
introduced in [23]. We intend to answer the questions: Can the
results obtained for S in the previous sections be extended to S̃?
If so, how?

Let us recall that we need to confine to the standard
Łukasiewicz MV-algebra, in order to consider S̃. Moreover,
fuzzy scaling and t-scaling quantifiers substantially differ in their
formula: μA(A|Z) is evaluated by Biν : [0, 1]→ [0, 1] in (6),
while μA(A|Z) is evaluated by Δt : [0, 1]→ {0, 1} in (8).

A. Extending Results of Section III to Fuzzy
Scaling Quantifiers

1) Proposition 3.2 also holds for the quantifiers of S̃. The
demonstration can be obtained by substituting Δt with
Biν into the proof of Proposition 3.2. This is possible
because by Remark 2.22,Biν(μA(A|Z)) ≤ Biν(μA(A))
(i.e., Biν is increasing) and Biν(μ∅(∅|Z)) = 1 (i.e., Biν
is normal).

2) Regarding Theorem 3.3, we can notice that S1 ∈ S̃.
In [23], S1 coincides with the quantifier “all,” which is
based on the evaluative linguistic expression “utmost”
(indicated with Δ1), and it is defined by either (8) or (9).

3) Theorem 3.4 leads to a one-to-one correspondence be-
tween Boolean scaling quantifiers given by Definition
2.20 and t-scaling quantifies. In particular, we can con-
sider a bijective function such that Qn �→ S n

100
for

each n ∈ [0, 100] or equivalently its inverse such that
St �→ Qt∗100 for each t ∈ [0, 1], where by Theorem 3.4,
Qn(A,B) = S n

100
(A,B) and St(A,B) = Qt∗100(A,B)

for each A,B ⊆ X .
Such correspondence cannot be replied for the quantifiers
of S̃ by considering that, in general, Theorem 3.3 does
not hold for fuzzy scaling quantifiers. Namely, there exists
S ∈ S̃ \ S that applied on classical sets does not equal any
Qn with n ∈ [0, 100]. However, we have proved in [23]
that given n ∈ [0, 100], we can find a class of quantifiers
S̃n ⊂ S̃, which is connected with Qn by the following
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TABLE II
FUZZY RELATIONS I0.75 AND I0.25 ARISING FROM (Z,W,J) AND r

TABLE III
FUZZY CONCEPTS OF B(X,Y0.75, I0.75)

TABLE IV
FUZZY CONCEPTS OF B(X,Y0.25, I0.25)

relations: let S ∈ S̃n and Qn ≤ S , and if S(A,B) = 1,
thenQn(A,B) = 1. Hence, also quantifiers of S̃n can be
considered generalizations of Qn.
Therefore, the previous considerations suggest us to par-
tition the set of all fuzzy scaling quantifiers as follows:
S̃ =

⋃
n∈[0,100] S̃n.

Furthermore, since both St and quantifiers of S̃t∗100 are
generalizations of the Boolean scaling quantifier Qt∗100,
we can identify St with S̃t∗100.

4) Theorem 3.6 can be rewritten for fuzzy scaling quantifiers
as follows.

Theorem V.1: Let Sν ∈ S̃ and let A,B⊂
∼
X , we put

Hν(A) = {Z ⊂∼ X | Biν(μA(A|Z)) �= 0}.

Then

Sν(A,B) =
∨

Z∈Hν(A)

S1(A|Z,B) ∧Biν(μA(A|Z)). (17)

Proof: The proof is analogous to that of Theorem 3.6. In-
deed, we can rewrite (12) by substituting Ht(A) with Hν(A),
and Δt with Biν . Then, since

∨
Z/∈Hν(A)(S1(A|Z,B) ∧Biν

(μA(A|Z))) =
∨

Z/∈Hν(A)(S1(A|Z,B) ∧ 0) = 0 ∨ · · · ∨
0 = 0, we have Sν(A,B) = (

∨
Z∈Hν(A)(S1(A|Z,B) ∧Biν

(μA(A|Z))) ∨ 0 =
∨

Z∈Hν(A)(S1(A|Z,B) ∧ Biν(μA(A|
Z))). �

5) Theorem 3.10 can be rewritten for fuzzy scaling quanti-
fiers as follows.
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Theorem V.2: Let Sν ∈ S̃ and let A,B⊂
∼
X , we put

H∗ν(A,B)={Z ∈ Hν(A)|∃k ∈ K(A,B) with A|Z = Ak}.
Then

Sν(A,B) =
∨

Z∈H∗ν(A,B)

(S1(A|Z,B) ∧Biν(μA(A|Z))).

Proof: The proof can be obtained from that of Theorem 3.10
by using the properties of complete residuated lattices. First,
we need to substitute everywhere Ht(A) and H∗t(A,B) with
Hν(A) and H∗ν(A,B), respectively. Second, in order to prove
the inequality

∨
Z∈Hν(A) S1(A|Z,B) ⊗ Biν(μA(A|Z)) ≤∨

Z∈H∗ν(A,B) S1(A|Z,B) ⊗ Biν(μA(A|Z)), the following
further sentences must be added after (15). Since (A|Z)
(x) ≤ (A|Z̃)(x) for each x ∈ X and μA is an increasing
function, we get μA(A|Z) ≤ μA(A|Z̃). Moreover, it is true
that Biν(μA(A|Z)) ≤ Biν(μA(A|Z̃)) because Biν is an in-
creasing function too. Thus, the inequalities Biν(μA(A|Z)) ≤
Biν(μA(A|Z̃)) and S1(A|Z,B) ≤ S1(A|Z̃, B) imply that
S1(A|Z,B) ⊗ Biν(μA(A|Z)) ≤ S1(A|Z̃, B) ⊗ Biν(μA

(A|Z̃)). Finally, considering that A|Z̃ ∈ H∗ν(A,B), we
can conclude that

∨
Z∈Hν(A) S1(A|Z,B)⊗Biν(μA(A|Z)) ≤∨

Z∈H∗ν(A,B) S1(A|Z,B)⊗Biν(μA(A|Z)). �
6) Algorithm 1 can be modified to work with fuzzy scaling

quantifiers. Indeed, the procedure P1 must have the func-
tion Biν instead of the threshold t as input. Moreover,
concerning the if/then statement, we need to substitute
the condition μA(Ak) ≥ t with Biν(μA(Ak)) �= 0, add
l→ Biν(μA(Ak)) as statement to execute, and write
S → S ∪ {(n×m)⊗ l} instead of S → S ∪ {n×m}.

7) Algorithm 2 can be used for fuzzy scaling quantifiers only
by changing the input t of P2 with Biν and the procedure
P1 as explained in the previous point.

B. Extending Results of Section IV to Fuzzy Scaling
Quantifiers

The relation given by Definition 4.1 can be extended to the
class of fuzzy scaling quantifiers: let S,S′ ∈ S̃:

S �S̃ S′ iff S(A,B) ≤ S′(A,B) for each A,B⊂
∼
X.

The results proved in Section IV can be extended for fuzzy
scaling quantifiers by take into account �S̃ and a specific pair
of evaluative linguistic expressions: let Sν1

,Sν2
∈ S̃ such that

Biν1
⊆ Biν2

; then, we have the following.
1) Sν1

�S̃ Sν2
(see Theorem 4.2).

2) Iν1
⊆ Iν2

, where Iν1
and Iν2

are, respectively, related to
Sν1

and Sν2
by means of (7) (see Remark 4.3).

3) {k/yC}Iν1 ⊆ {k/yC}Iν2 for each k ∈ [0, 1] (see Propo-
sition 4.4).

4) For each (A,B) ∈ B(X,Y ∗, Iν1
), there exists (A∗, B∗) ∈

B(X,Y ∗, Iν2
) such that (A,B) � (A∗, B∗) (see Theorem

4.5).
Remark V.3: By Theorem 4.2, we can easily consider a total

order�S onS, namely, (S,�S) is a chain. Then, we can compare
the concepts deriving from any pairs of t-scaling quantifiers by

using Theorem 4.5. Unfortunately, the same is not possible for
the class fuzzy scaling quantifiers by considering that�S̃ is not
a total order on S̃. Indeed, let Sν1

,Sν2
∈ S̃; it can happen that

Sν1
��S̃ Sν2

and Sν2
��S̃ Sν1

. Consequently, we cannot always
compare concepts deriving from two different fuzzy scaling
quantifiers.

VI. CONCLUSION

In this article, we focused on deriving information (i.e.,
collections of fuzzy concept lattices) from particular datasets
(i.e., fuzzy relational context families) by employing t-scaling
and fuzzy scaling quantifiers. As a future project, we intend to
introduce and study new quantifiers in fuzzy relation concept
analysis. For example, quantifiers extracting negative informa-
tion from data, i.e., information based on the absence of a certain
amount of properties in objects. We would also like to consider
and study t-scaling quantifiers as generalized fuzzy subsethood
measures by extending the definitions given in [52].

In addition, we will organize special FRCA quantifiers in
structures of opposition, similarly to those constructed in [33],
[34], and [36]. Moreover, by understanding relationships be-
tween FRCA quantifiers of different types, we could discover
connections between their derived fuzzy concept lattices.

Finally, we plan to implement the algorithms presented in this
article using real datasets and apply our theoretical results to
solve concrete problems in other research domains. After that,
it would be very interesting to compare, given t ∈ [0, 1], the
concept lattices obtained by using the quantifiers of S̃t∗100 and
the t-scaling quantifiers St.
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