
IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021 109

Graph Learning: A Survey
Feng Xia , Senior Member, IEEE, Ke Sun , Shuo Yu , Member, IEEE, Abdul Aziz ,

Liangtian Wan , Member, IEEE, Shirui Pan , and Huan Liu , Fellow, IEEE

Abstract—Graphs are widely used as a popular representation
of the network structure of connected data. Graph data can be
found in a broad spectrum of application domains such as social
systems, ecosystems, biological networks, knowledge graphs, and
information systems. With the continuous penetration of artificial
intelligence technologies, graph learning (i.e., machine learning
on graphs) is gaining attention from both researchers and prac-
titioners. Graph learning proves effective for many tasks, such
as classification, link prediction, and matching. Generally, graph
learning methods extract relevant features of graphs by taking ad-
vantage of machine learning algorithms. In this survey, we present
a comprehensive overview on the state-of-the-art of graph learning.
Special attention is paid to four categories of existing graph learning
methods, including graph signal processing, matrix factorization,
random walk, and deep learning. Major models and algorithms
under these categories are reviewed, respectively. We examine
graph learning applications in areas such as text, images, science,
knowledge graphs, and combinatorial optimization. In addition,
we discuss several promising research directions in this field.

Impact Statement—Real-world intelligent systems generally rely
on machine learning algorithms handling data of various types.
Despite their ubiquity, graph data have imposed unprecedented
challenges to machine learning due to their inherent complexity.
Unlike text, audio and images, graph data are embedded in an irreg-
ular domain, making some essential operations of existing machine
learning algorithms inapplicable. Many graph learning models and
algorithms have been developed to tackle these challenges. This
article presents a systematic review of the state-of-the-art graph
learning approaches as well as their potential applications. The
article serves multiple purposes. First, it acts as a quick reference to
graph learning for researchers and practitioners in different areas
such as social computing, information retrieval, computer vision,
bioinformatics, economics, and e-commence. Second, it presents
insights into open areas of research in the field. Third, it aims to
stimulate new research ideas and more interests in graph learning.

Index Terms—Deep learning, graph data, graph learning, graph
neural networks (GNNs), machine learning, network embedding,
network representation learning (NRL).

Manuscript received January 14, 2021; revised March 21, 2021; accepted
March 28, 2021. Date of publication April 27, 2021; date of current version
August 20, 2021. This paper was recommended for publication by Associate
Editor Yew Soon Ong. (Corresponding author: Feng Xia.)

Feng Xia is with the School of Engineering, IT, and Physical Sciences, Federa-
tion University Australia, Ballarat, VIC 3353, Australia (e-mail: f.xia@ieee.org).

Ke Sun, Shuo Yu, Abdul Aziz, and Liangtian Wan are with the School of
Software, Dalian University of Technology, Dalian 116620, China (e-mail:
kern.sun@outlook.com; y_shuo@outlook.com; ciit.abdulaziz@gmail.com;
wan.liangtian.2015@ieee.org).

Shirui Pan is with the Faculty of Information Technology, Monash University,
Melbourne, VIC 3800, Australia (e-mail: shirui.pan@monash.edu).

Huan Liu is with the School of Computing, Informatics, and Decision Sys-
tems Engineering, Arizona State University, Tempe, AZ 85281 USA (e-mail:
huanliu@asu.edu).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TAI.2021.3076021.

Digital Object Identifier 10.1109/TAI.2021.3076021

I. INTRODUCTION

GRAPHS, also referred to as networks, can be extracted
from various real-world relations among abundant enti-

ties. Some common graphs have been widely used to formulate
different relationships, such as social networks, biological net-
works, patent networks, traffic networks, citation networks, and
communication networks [1]–[3]. A graph is often defined by
two sets, i.e., vertex set and edge set. Vertices represent entities
in graph, whereas edges represent relationships between those
entities. Graph learning has attracted considerable attention
because of its wide applications in the real world, such as
data mining and knowledge discovery. Graph learning meth-
ods have gained increasing popularity for capturing complex
relationships, as graphs exploit essential and relevant relations
among vertices [4], [5]. For example, in microblog networks,
the spread trajectory of rumors can be tracked by detecting
information cascades. In biological networks, new treatments
for difficult diseases can be discovered by inferring protein
interactions. In traffic networks, human mobility patterns can
be predicted by analyzing the co-occurrence phenomenon with
different timestamps [6]. Efficient analysis of these networks
massively depends on the way how networks are represented.

A. What is Graph Learning?

Generally speaking, graph learning refers to machine learning
on graphs. Graph learning methods map the features of a graph
to feature vectors with the same dimensions in the embedding
space. A graph learning model or algorithm directly converts
the graph data into the output of the graph learning architecture
without projecting the graph into a low dimensional space.
Most graph learning methods are based on or generalized from
deep learning techniques, because deep learning techniques
can encode and represent graph data into vectors. The output
vectors of graph learning are in continuous space. The target
of graph learning is to extract the desired features of a graph.
Thus, the representation of a graph can be easily used by
downstream tasks such as node classification and link prediction
without an explicit embedding process. Consequently, graph
learning is a more powerful and meaningful technique for graph
analysis.

In this survey article, we try to examine machine learning
methods on graphs in a comprehensive manner. As shown in
Fig. 1, we focus on existing methods that fall into the following
four categories: graph signal processing (GSP)-based meth-
ods, matrix factorization-based methods, random walk-based
methods, and deep learning-based methods. Roughly speaking,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8324-1859
https://orcid.org/0000-0002-0231-5802
https://orcid.org/0000-0003-1124-9509
https://orcid.org/0000-0003-3615-4573
https://orcid.org/0000-0003-0574-8360
https://orcid.org/0000-0003-0794-527X
https://orcid.org/0000-0002-3264-7904
mailto:f.xia@ieee.org
mailto:kern.sun@outlook.com
mailto:y_shuo@outlook.com
mailto:ciit.abdulaziz@gmail.com
mailto:wan.liangtian.2015@ieee.org
mailto:shirui.pan@monash.edu
mailto:huanliu@asu.edu
https://doi.org/10.1109/TAI.2021.3076021

110 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021

Fig. 1. Categorization of graph learning.

GSP deals with sampling and recovery of graph, and learn-
ing topology structure from data. Matrix factorization can be
divided into graph Laplacian matrix factorization and vertex
proximity matrix factorization. Random walk-based methods
include structure-based random walk, structure and node in-
formation based random walk, random walk in heterogeneous
networks, and random walk in time-varying networks. Deep
learning-based methods include graph convolutional networks,
graph attention networks, graph auto-encoder, graph generative
networks, and graph spatial-temporal networks. Basically, the
model architectures of these methods/techniques differ from
each other. This article presents an extensive review of the
state-of-the-art graph learning techniques.

Traditionally, researchers adopt an adjacency matrix to rep-
resent a graph, which can only capture the relationship between
two adjacent vertices. However, many complex and irregular
structures cannot be captured by this simple representation.
When we analyze large-scale networks, traditional methods
are computationally expensive and hard to be implemented in
real-world applications. Therefore, effective representation of
these networks is a paramount problem to solve [4]. Network
representation learning (NRL) proposed in recent years can
learn latent features of network vertices with low dimensional
representation [7]–[9]. When the new representation has been
learned, previous machine learning methods can be employed
for analyzing the graph data as well as discovering relationships
hidden in the data.

When complex networks are embedded into a latent, low
dimensional space, the structural information, and vertex at-
tributes can be preserved [4]. Thus, the vertices of networks
can be represented by low dimensional vectors. These vectors
can be regarded as the features of input in previous machine
learning methods. Graph learning methods pave the way for
graph analysis in the new representation space, and many graph
analytical tasks, such as link prediction, recommendation, and
classification, can be solved efficiently [10], [11]. Graphical
network representation sheds light on various aspects of social
life, such as communication patterns, community structure, and
information diffusion [12], [13]. According to the attributes

of vertices, edges, and subgraph, graph learning tasks can
be divided into three categories, which are vertices-based,
edges-based, and subgraph-based, respectively. The relation-
ships among vertices in a graph can be exploited for, e.g.,
classification, risk identification, clustering, and community
detection [14]. By judging the presence of edges between two
vertices in graphs, we can perform recommendation and knowl-
edge reasoning, for instance. Based on the classification of
subgraphs [15], the graph can be used for, e.g., polymer classifi-
cation, 3-D visual classification, etc. For GSP, it is significant to
design suitable graph sampling methods to preserve the features
of the original graph, which aims at recovering the original
graph efficiently [16]. Graph recovery methods can be used for
constructing the original graph in the presence of incomplete
data [17]. Afterward, graph learning can be exploited to learn the
topology structure from graph data. In summary, graph learning
can be used to tackle the following challenges, which are difficult
to solve by using traditional graph analysis methods [18].

1) Irregular domains: Data collected by traditional sensors
have a clear grid structure. However, graphs lie in an
irregular domain (i.e., non-Euclidean space). In contrast
to regular domain (i.e., Euclidean space), data in non-
Euclidean space are not ordered regularly. Distance is
hence difficult to be defined. As a result, basic methods
based on traditional machine learning and signal process-
ing cannot be directly generalized to graphs.

2) Heterogeneous networks: In many cases, networks in-
volved in the traditional graph analysis algorithms are
homogeneous. The appropriate modeling methods only
consider the direct connection of the network and strip
other irrelevant information, which significantly simplifies
the processing. However, it is prone to cause information
loss. In the real world, the edges among vertices and
the types of vertices are usually diverse, such as in the
academic network shown in Fig. 2. Thus it is not easy to
discover potential value from heterogeneous information
networks with abundant vertices and edges.

3) Distributed algorithms: In big social networks, there are
often millions of vertices and edges [19]. Centralized

XIA et al.: GRAPH LEARNING: A SURVEY 111

Fig. 2. Heterogeneous academic network [28].

algorithms cannot handle this since the computational
complexity of these algorithms would significantly in-
crease with the growth of vertex number. The design of
distributed algorithms for dealing with big networks is a
critical problem yet to be solved [20]. One major benefit
of distributed algorithms is that the algorithms can be
executed in multiple CPUs or GPUs simultaneously, and
hence, the running time can be reduced significantly.

B. Related Surveys

There are several surveys that are partially related to the
scope of this article. Unlike these surveys, we aim to provide
a comprehensive overview of graph learning methods, with a
focus on four specific categories. In particular, GSP is introduced
as one approach for graph learning, which is not covered by other
surveys.

Goyal and Ferrara [21] summarized graph embedding meth-
ods, such as matrix factorization, random walk, and their ap-
plications in graph analysis. Cai et al. [22] reviewed graph
embedding methods based on problem settings and embedding
techniques. Zhang et al. [4] summarized NRL methods based
on two categories, i.e., unsupervised NRL and semisupervised
NRL, and discussed their applications. Nickel et al. [23] intro-
duced knowledge extraction methods from two aspects: latent
feature models and graph-based models. Akoglu et al. [24]
reviewed state-of-the-art techniques for event detection in data
represented as graphs, and their applications in the real world.
Zhang et al. [18] summarized deep learning-based methods for
graphs, such as graph neural networks (GNNs), graph convolu-
tional networks (GCNs), and graph auto-encoders (GAEs). Wu
et al. [25] reviewed state-of-the-art GNN methods and discussed
their applications in different fields. Ortega et al. [26] introduced
GSP techniques for representation, sampling and learning, and
discussed their applications. Huang et al. [27] examined the
applications of GSP in functional brain imaging and addressed
the problem of how to perform brain network analysis from
signal processing perspective.

In summary, none of the existing surveys provides a com-
prehensive overview of graph learning. They only cover some
parts of graph learning, such as network embedding and deep

learning-based network representation. The NRL and/or GNN-
based surveys do not cover the GSP techniques. In contrast, we
review GSP techniques in the context of graph learning, as it is
an important approach for GNNs. Specifically, this survey article
integrates state-of-the-art machine learning techniques for graph
data, gives a general description of graph learning, and discusses
its applications in various domains.

C. Contributions and Organization

The contributions of this article can be summarized as follows.
1) A comprehensive overview of state-of-the-art graph learn-

ing methods: We present an integral introduction to graph
learning methods, including, e.g., technical sketches, ap-
plication scenarios, and potential research directions.

2) Taxonomy of graph learning: We give a technical classi-
fication of mainstream graph learning methods from the
perspective of theoretical models. Technical descriptions
are provided wherever appropriate to improve understand-
ing of the taxonomy.

3) Insights into future directions in graph learning: Besides
qualitative analysis of existing methods, we shed light on
potential research directions in the field of graph learning
through summarizing several open issues and relevant
challenges.

The rest of this article is organized as follows. An overview
of graph learning approaches containing GSP-based methods,
matrix factorization-based methods, random walk-based meth-
ods, and deep learning-based methods is provided in Section II.
The applications of graph learning are examined in Section III.
Some future directions as well as challenges are discussed in
Section IV. Finally, Section V concludes the article.

II. GRAPH LEARNING MODELS AND ALGORITHMS

The feature vectors that represent various categorical at-
tributes are viewed as the input in previous machine learning
methods. However, the mapping from the input feature vectors
to the output prediction results need to be handled by graph
learning [21]. Deep learning has been regarded as one of the
most successful techniques in artificial intelligence [29], [30].
Extracting complex patterns by exploiting deep learning from
a massive amount of irregular data has been found very useful
in various fields, such as pattern recognition and image pro-
cessing. Consequently, how to utilize deep learning techniques
to extract patterns from complex graphs has attracted lots of
attention. Deep learning on graphs, such as GNNs, GCNs, and
GAEs, has been recognized as a powerful technique for graph
analysis [18]. Besides, GSP has also been proposed to deal with
graph analysis [26]. One of the most typical scenarios is that
a set of values reside on a set of vertices, and these vertices
are connected by edges [31]. Graph signals can be adopted to
model various phenomena in real world. For example, in social
networks, users in Facebook can be viewed as vertices, and their
friendships can be modeled as edges. The number of followers
of each vertex is marked in this social network. Based on this
assumption, many techniques (e.g., convolution, filter, wavelet,

112 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021

TABLE I
DEFINITIONS OF ABBREVIATIONS

Fig. 3. Measurements of PM2.5 from different sensors on July 5, 2014 (data
source: https://www.epa.gov/).

etc.) in classical signal processing can be employed for GSP
with suitable modifications [26].

In this section, we review graph learning models and al-
gorithms under four categories as mentioned before—namely,
GSP-based methods, matrix factorization-based methods, ran-
dom walk-based methods, and deep learning-based methods. In
Table I, we list the abbreviations used in this article.

A. Graph Signal Processing

Signal processing is a traditional subject that processes signals
defined in regular data domain. In recent years, researchers
extend concepts of traditional signal processing into graphs.
Classical signal processing techniques and tools such as Fourier
transform and filtering can be used to analyze graphs. In general,
graphs are a kind of irregular data, which are hard to handle
directly. As a complement to learning methods based on struc-
tures and models, GSP provides a new perspective of spectral
analysis of graphs. Derived from signal processing, GSP can
give an explanation of graph property consisting of connectivity,
similarity, etc. Fig. 3 gives a simple example of graph signals at
a certain time point, which is defined as observed values. In a
graph, the abovementioned observed values can be regarded as
graph signals. Each node is then mapped to the real number field

in GSP. The main task of GSP is to expand signal processing
approaches to mine implicit information in graphs.

1) Representation on Graphs: A meaningful representation
of graphs has contributed a lot to the rapid growth of graph
learning. There are two main models of GSP, i.e., adjacency
matrix-based GSP [31] and Laplacian-based GSP [32]. An adja-
cency matrix-based GSP comes from algebraic signal processing
(ASP) [33], which interprets linear signal processing from alge-
braic theory. Linear signal processing contains signals, filters,
signal transformation, etc. It can be applied in both continuous
and discrete time domains. The basic assumption of linear alge-
bra is extended to the algebra space in ASP. By selecting signal
model appropriately, ASP can obtain different instances in linear
signal processing. In adjacency matrix-based GSP, the signal
model is generated from a shift. Similar to traditional signal
processing, a shift in GSP is a filter in graph domain [31], [34],
[35]. GSP usually defines graph signal models using adjacency
matrices as shifts. Signals of a graph are normally defined at
vertices.

Laplacian-based GSP originates from spectral graph theory.
High dimensional data are transferred into a low dimensional
space generated by a part of the Laplacian basis [36]. Some
researchers exploited sensor networks [37] to achieve distributed
processing of graph signals. Other researchers solved the prob-
lem globally under the assumption that the graph is smooth.
Unlike adjacency matrix-based GSP, Laplacian matrix is sym-
metric with real and nonnegative edge weights, which is used to
index undirected graphs.

Although the models use different matrices as basic shifts,
most of the notions in GSP are derived from signal processing.
Notions with different definitions in these models may have
similar meanings. All of them correspond to concepts in signal
processing. Signals in GSP are values defined on graphs, and
they are usually written as a vector, s = [s0, s1, . . . , sN−1] ∈
CN . N is the number of vertices, and each element in the
vector represents the value on a vertex. Some studies [26] allow
complex-value signals, even though most applications are based
on real-value signals.

In the context of adjacency matrix-based GSP, a graph can
be represented as a triple G(V,E,W), where V is the vertex
set, E is the edge set, and W is the adjacency matrix. With the
definition of graphs, we can also define degree matrixDii = di,
where D is a diagonal matrix, and di is the degree of vertex i.
Graph Laplacian is defined as L = D −W , and normalized
Laplacian is defined as Lnorm = D−1/2LD−1/2. Filters in
signal processing can be seen as a function that amplifies or
reduces relevant frequencies, eliminating irrelevant ones. Matrix
multiplication in linear space equals to scale changing, which is
identical with filter operation in frequency domain. It is obvious
that we can use matrix multiplication as a filter in GSP, which
is written as sout = Hsin, where H stands for a filter.

Shift is an important concept to describe variation in signal,
and time-invariant signals are used frequently [31]. In fact, there
are different choices of shifts in GSP. Adjacency matrix-based
GSP uses A as shift. Laplacian-based GSP uses L [32], and
some researchers also use other matrices [38]. By following
time invariance in traditional signal processing, shift invariance

https://www.epa.gov

XIA et al.: GRAPH LEARNING: A SURVEY 113

is defined in GSP. If filters are commutative with shift, they
are shift-invariant, which can be written as AH = HA. It is
proved that shift-invariant filter can be represented by the shift.
The properties of shift are vital, and they determine the fashion
of other definitions such as Fourier transform and frequency.

In adjacency matrix-based GSP, eigenvalue decomposition
of shift A is A = V ΛV −1. V is the matrix of eigenvectors
[v0,v1, . . . ,vN−1] and

Λ =

⎡
⎢⎢⎣

λ0

. . .

λN−1

⎤
⎥⎥⎦

is a diagonal matrix of eigenvalues. The Fourier transform matrix
is the inverse of V , i.e., F = V −1. Frequency of shift is defined
as total variation, which states the difference after shift

TVG = ||vk − 1

λmax
Avk||1

where 1
λmax

is a normalized factor of matrix. It means that the
frequencies of eigenvalue far away from the largest eigenvalues
on complex plane are large. A large frequency means that signals
are changed with a large scale after shift filtering. The differences
between minimum and maximum λ can be seen in Fig. 4.
Generally, the total variation tends to be relatively low with larger
frequency, and vice versa. Eigenvectors of larger eigenvalues
can be used to construct low-frequency filters, which capture
fundamental characteristics, and smaller ones can be employed
to capture the variation among neighbor nodes.

For topology learning problems, we can distinguish the cor-
responding solutions depending on known information. When
topology information is partly known, we can use the known
information to infer the whole graph. In case the topology
information is unknown while we still can observe the signals
on the graph, the topology structure has to be inferred from
the signals. The former one is often solved as a sampling and
recovery problem, and blind topology inference is also known
as graph topology (or structure) learning.

2) Sampling and Recovery: Sampling is not a new concept
defined in GSP. In conventional signal processing, we normally
need to reconstruct original signals with the least samples and
retain all information of original signals for a sampling problem.
Few samples lead to the lack of information and more samples
need more space to store. The well-known Nyquist–Shannon
sampling theorem gives the sufficient condition of perfect re-
covery of signals in time domain.

Researchers have migrated the sampling theories into GSP to
study the sampling problem on graphs. As the volume of data is
large in some real-world applications such as sensor networks
and social networks, sampling less and recovering better are vital
for GSP. In fact, most algorithms and frameworks solving sam-
pling problems require that the graph models correlations within
signals observed on it [39]. The sampling problem can be defined
as reconstructing signals from samples on a subset of vertices,
and signals in it are usually band-limited. Nyquist–Shannon
sampling theorem was extended to graph signals in [40]. Based
on the normalized Laplacian matrix, sampling theorem and

Fig. 4. Illustration of difference between minimum and maximum frequencies.
(a) The maximum frequency and (b) The minimum frequency.

cutoff frequency are defined for GSP. Moreover, the authors
provided a method for computing cutoff frequency from a given
sampling set and a method for choosing sampling set for a
given bandwidth. It should be noted that the sampling theorem
proposed therein is merely applied to undirected graph. As
Laplacian matrix represents undirected graphs only, sampling
theory for directed graph adopts adjacent matrix. An optimal
operator with a guarantee for perfect recovery was proposed
in [35], and it is robust to noise for general graphs.

One of the explicit distinctions between classical signal pro-
cessing and GSP is that signals of the former fall in regular do-
main while the latter falls in irregular domain. For sampling and
recovery problems, classical signal processing samples succes-
sive signals and can recover successive signals from samplings.
GSP samples a discrete sequence, and recovers the original
sequences from samplings. By following this order, the solution
is generally separated into two parts, i.e., finding sampling
vertex sets and reconstructing original signals based on various
models.

When the size of the dataset is small, we can handle the
signal and shift directly. However, for a large-scale dataset,

114 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021

some algorithms require matrix decomposition to obtain fre-
quencies and save eigenvalues in the procedure, which are
almost impossible to realize. As a simple technique applicable
to large-scale datasets, a random method can also be used in
sampling. Puy et al. [41] proposed two sample strategies: a non-
adaptive one depending on a parameter and an adaptive random
sampling strategy. By relaxing the optimized constraint, they
extended random sampling to large scale graphs. Another com-
mon strategy is greedy sampling. For example, Shomorony and
Avestimehr [42] proposed an efficient method based on linear
algebraic conditions that can exactly compute cutoff frequency.
Chamon and Ribeiro [43] provided near-optimal guarantee for
greedy sampling, which guarantees the performance of greedy
sampling in the worst cases.

All of the sampling strategies mentioned above can be cate-
gorized as selecting sampling, where signals are observed on a
subset of vertices [43]. Besides selecting sampling, there exists
a type of sampling called aggregation sampling [44], which
uses observations taken at a single vertex as input, containing a
sequential applications of graph shift operator.

Similar to classical signal processing, the reconstruction task
on graphs can also be interpreted as data interpolation prob-
lem [45]. By projecting the samples on a proper signal space, re-
searchers obtain interpolated signals. Least squares reconstruc-
tion is an available method in practice. Gadde and Ortega [46]
defined a generative model for signal recovery derived from a
pairwise Gaussian random field (GRF) and a covariance matrix
on graphs. Under sampling theorem, the reconstruction of graph
signals can be viewed as the maximum posterior inference of
GRF with low-rank approximation. Wang et al. [47] aimed at
achieving the distributed reconstruction of time-varying band
limited signal, where the distributed least squares reconstruction
(DLSR) was proposed to recover the signals iteratively. DLSR
can track time-varying signals and achieve perfect reconstruc-
tion. Di Lorenzo et al. [48] proposed a linear mean squares
(LMS) strategy for adaptive estimation. LMS enables online
reconstruction and tracking from the observation on a subset of
vertices. It also allows the subset to vary over time. Moreover,
a sparse online estimation was proposed to solve the problems
with unknown bandwidth.

Another common technique for recovering original signals is
smoothness. Smoothness is used for inferring missing values in
graph signals with low frequencies. Wang et al. [17] defined the
concept of local set. Based on the definition of graph signals,
two iterative methods were proposed to recover band limited
signals on graphs. Besides, Romero et al. [49] advocated kernel
regression as a framework for GSP modeling and reconstruction.
For parameter selection in estimators, two multikernel methods
were proposed to solve a single optimization problem as well.
In addition, some researchers investigated different recovery
problems with compressed sensing [50].

In addition, there exists some researches on sampling of dif-
ferent kinds of signals such as smooth graph signals, piece-wise
constant signals and piecewise smooth signals [51]. Chen et al.
[51] gave a uniform framework to analyze graph signals. The
reconstruction of a known graph signal was studied in [52],

where the signal is sparse, which means only a few vertices are
nonzeros. Three kinds of reconstruction schemes corresponding
to various seeding patterns were examined. By analyzing single
simultaneous injection, single successive value injection, and
multiple successive simultaneous injections, the conditions for
perfect reconstruction on any vertices were derived.

3) Learning Topology Structure From Data: In most appli-
cation scenes, graphs are constructed according to connections
of entity correlations. For example, in sensor networks, the cor-
relations between sensors are often consistent with geographic
distance. Edges in social networks are defined as relations such
as friends or colleagues [53]. In biochemical networks, edges
are generated by interactions. Although GSP is an efficient
framework for solving problems on graphs such as sampling,
reconstruction, and detection, there lacks a step to extract rela-
tions from datasets. Connections exist in many datasets without
explicit records. Fortunately, they can be inferred in many ways.

As a result, researchers want to learn complete graphs from
datasets. The problem of learning graph from a dataset is
stated as estimating graph Laplacian, or graph topology [54].
Generally, they require the graph to satisfy some properties,
such as sparsity and smoothness. Smoothness is a widespread
assumption in networks generated from datasets. Therefore, it is
usually used to constrain observed signals and provide a rational
guarantee for graph signals. Researchers have applied it to graph
topology learning. The intuition behind smoothness based algo-
rithms is that most signals on graph are stationary, and the result
filtered by shift tends to be the lowest frequency. Dong et al. [55]
adopted a factor analysis model for graph signals, and also
imposed a Gaussian prior on latent variables to obtain a principal
component analysis (PCA) like representation. Kalofolias [56]
formulated the objective as a weighted l1 problem and designed
a general framework to solve it.

Gauss Markov random field (GMRF) is also a widely used
theory for graph topology learning in GSP [54], [57], [58]. The
models of GRMF-based graph topology learning select graphs
that are more likely to generate signals which are similar to
the ones generated by GMRF. Egilmez et al. [54] formulated
the problem as a maximum posterior parameter estimation of
GMRF, and the graph Laplacian is a precision matrix. Pavez and
Ortega [57] also formulated the problem as a precision matrix
estimation, and the rows and columns are updated iteratively by
optimizing a quadratic problem. Both of them restrict the result
matrix, which should be Laplacian. In [58], Pavez et al. chose
a two steps framework to find the structure of the underlying
graph. First, a graph topology inference step is employed to
select a proper topology. Then, a generalized graph Laplacian is
estimated. An error bound of Laplacian estimation is computed.
In the next step, the error bound can be utilized to obtain a matrix
in a specific form as the precision matrix estimation. It is one
of the first work that suggests adjusting the model to obtain a
graph satisfying the requirement of various problems.

Diffusion is also a relevant model that can be exploited to
solve the topology interfering problem [39], [59]–[61]. Diffu-
sion refers to that the node continuously influences its neigh-
borhoods. In graphs, nodes with larger values will have higher

XIA et al.: GRAPH LEARNING: A SURVEY 115

influence on their neighborhood nodes. Using a few components
to represent signals will help to find the main factors of signal
formation. The models of diffusion are often under the assump-
tion of independent identically distributed signals. Pasdeloup
et al. [59] gave the concept of valid graphs to explain signals and
assumed that the signals are observed after diffusion. Segarra
et al. [60] agreed that there exists a diffusion process in the
shift, and the signals can be observed. The signals in [61] were
explained as a linear combination of a few components.

For time series recorded in data, researchers tried to construct
time-sequential networks. For instance, Mei and Moura [62]
proposed a methodology to estimate graphs, which considers
both time and space dependencies and models them by auto-
regressive process. Segarra et al. [63] proposed a method that
can be seen as an extension of graph learning. The aim of the
article was to solve the problem of joint identification of a graph
filter and its input signal.

For recovery methods, a well-known partial inference prob-
lem is recommendation [45], [64], [65]. The typical algorithm
used in recommendation is collaborative filtering (CF) [66].
Given the observed ratings in a matrix, the objective of CF is to
estimate the full rating matrix. Huang et al. [65] demonstrated
that CF could be viewed as a specific band-stop graph filter
on networks representing correlations between users and items.
Furthermore, linear latent factor methods can also be modeled
as band limited interpretation problem.

4) Discussion: GSP algorithms have strict limitations on
experimental data, thus leading to less real-world applications.
Moreover, GSP algorithms require the input data to be exactly
the whole graph, which means that part of graph data cannot
be the input. Therefore, the computational complexity of this
kind of methods could be significantly high. In comparison with
other kinds of graph learning methods, the scalability of GSP
algorithms is relatively poor.

B. Matrix Factorization-Based Methods

Matrix factorization is a method of simplifying a matrix into
its components. These components have a lower dimension and
could be used to represent the original information of a network,
such as relationships among nodes. Matrix factorization-based
graph learning methods adopt a matrix to represent graph charac-
teristics like vertex pairwise similarity, and the vertex embedding
can be achieved by factorizing this matrix [67]. Early graph
learning approaches usually utilized matrix factorization-based
methods to solve the graph embedding problem. The input of
matrix factorization is the nonrelational high dimensional data
feature represented as a graph. The output of matrix factoriza-
tion is a set of vertex embedding. If the input data lies in a
low dimensional manifold, the graph learning for embedding
can be treated as a dimension-reduced problem that preserves
the structure information. There are mainly two types of ma-
trix factorization-based graph learning. One is graph Laplacian
matrix factorization, and the other is vertex proximity matrix
factorization.

1) Graph Laplacian Matrix Factorization: The preserved
graph characteristics can be expressed as pairwise vertex sim-
ilarities. Generally, there are two kinds of graph Laplacian
matrix factorization, i.e., transductive and inductive matrix fac-
torization. The former only embeds the vertices contained in
the training set, and the latter can embed the vertices that are
not contained in the training set. The general framework has
been designed in [68], and the graph Laplacian matrix factor-
ization based graph learning methods have been summarized
in [69]. The Euclidean distance between two feature vectors is
directly adopted in the initial metric multidimensional scaling
(MDS) [70] to find the optimal embedding. The neighborhoods
of vertices are not considered in the MDS, i.e., any pair of
training instances are considered as connected. The data feature
is extracted by constructing a k nearest neighbor graph, and
the subsequent studies [67], [71]–[73] tackle this issue. The top
k similar neighbors of each vertex are connected with itself.
A similar matrix is calculated by exploiting different methods,
and thus, the graph characteristics can be preserved as much as
possible.

Recently, researchers have designed more sophisticated mod-
els. The performance of earlier matrix factorization model lo-
cality preserving projection (LPP) can be improved by introduc-
ing an anchor taking advantage of anchorgraph-based locality
preserving projection (AgLPP) [74], [75]. The graph structure
can be captured by using a local regression model and a global
regression process based on local and global regressive mapping
(LGRM) [76]. The global geometry can be preserved by using
local spline regression [77].

More information can be preserved by exploiting the auxiliary
information. An adjacency graph and a labeled graph were
constructed in [78]. The objective function of LPP preserves
the local geometric structure of the datasets [67]. An adjacency
graph and a relational feedback graph were constructed in [79]
as well. The graph Laplacian regularization, k-means, and PCA
were considered in RF-semi-NMF-PCA simultaneously [80].
Other works, e.g., [81], adopt semidefinite programming to learn
the adjacency graph that maximizes the pairwise distances.

2) Vertex Proximity Matrix Factorization: Apart from solv-
ing the above generalized eigenvalue problem, another approach
of matrix factorization is to factorize vertex proximity matrix
directly. In general, matrix factorization can be used to learn the
graph structure from nonrelational data, and it is applicable to
learn homogeneous graphs.

Based on matrix factorization, vertex proximity can be ap-
proximated in a low dimensional space. The objective of preserv-
ing vertex proximity is to minimize the error. The singular value
decomposition (SVD) of vertex proximity matrix was adopted
in [82]. There are some other approaches such as regularized
Gaussian matrix factorization [83], low-rank matrix factoriza-
tion [84], for solving SVD.

3) Discussion: Matrix factorization algorithms operate on
an interaction matrix to decompose several lower dimension
matrices. The process brings some drawbacks. For example, the
algorithms require a large memory when the decomposed ma-
trices become large. In addition, matrix factorization algorithms

116 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021

Fig. 5. Example of NRL mapping an image from Euclidean space into non-
Euclidean space. (a) Image in Euclidean space and (b) Graph in non-Euclidean
space.

are not applicable to supervised or semisupervised tasks with
the training process.

C. Random Walk-Based Methods

Random walk is a convenient and effective way to sample
networks [85], [86]. This method can generate sequences of
nodes meanwhile preserving original relations between nodes.
Based on network structure, NRL can generate feature vectors of
vertices so that downstream tasks can mine network information
in a low dimensional space. An example of NRL is shown in
Fig. 5. The image in Euclidean space is shown in Fig. 5(a), and
the corresponding graph in non-Euclidean space is shown in
Fig. 5(b). As one of the most successful NRL algorithms, random
walks play an important role in dimensionality reduction.

1) Structure-Based Random Walks: Graph-structured data
have various data types and structures. The information encoded
in a graph is related to graph structure and vertex attributes,
which are the two key factors affecting the reasoning of net-
works. In real-world applications, many networks only have
structural information, but lack vertex attribute information.
How to identify network structure information effectively, such
as important vertices and invisible links, attracts the interest
of network scientists [87]. Graph data have high dimensional

characteristics. Traditional network analysis methods cannot be
used for analyzing graph data in a continuous space.

In recent years, various NRL methods have been proposed,
which preserve rich structural information of networks. Deep-
Walk [88] and Node2vec [7] are two representative methods for
generating network representation of basic network topology
information. These methods use RFMs to generate random
sequences on networks. By treating the vertices as words and
the generated random sequences of vertices as word sequences
(sentences), the models can learn the embedding representation
of the vertices by inputting these sequences into the Word2vec
model [89]–[91]. The principle of the learning model is to
maximize the co-occurrence probability of vertices such as
Word2vec. In addition, Node2vec shows that network has com-
plex structural characteristics, and different network structure
samplings can obtain different results. The sampling mode of
DeepWalk is not enough to capture the diversity of connection
patterns in networks. Node2vec designs a random walk sampling
strategy, which can sample the networks with the preference of
breadth-first sampling and depth-first sampling by adjusting the
parameters.

The NRL algorithms mentioned above focused on the first-
order proximity information of vertices. Tang et al. [92] pro-
posed a method called LINE for large-scale network embedding.
LINE can maintain the first and second order approximations.
The first-order neighbor refers to the one-hop neighbor between
two vertices, and the second-order neighbor is the neighbor with
two hops. LINE is not a deep learning based model, but it is often
compared with these edge modeling based methods.

It has been proved that the network structure information plays
an important role in various network analysis tasks. In addition
to this structural information, network attributes in the original
network space are also critical in modeling the formation and
evolution of the network [93].

2) Structure and Vertex Information-Based Random Walks:
In addition to network topology, many types of networks also
have rich vertex information, such as vertex content or label
in networks. Yang et al. [84] proposed an algorithm called
TADW. The model is based on DeepWalk and considers the
text information of vertices. The MMDW [94] is another model
based on DeepWalk, which is a kind of semisupervised network
embedding algorithm, by leveraging labeling information of
vertices to enhance the performance. Focusing on the structural
identity of nodes, Ribeiro et al. [95] formulated a framework
named Struc2vec. The framework considers nodes with similar
local structure rather than neighborhood and labels of nodes.
With hierarchy to evaluate structural similarity, the framework
constrains structural similarity more stringently. The experi-
ments indicate that DeepWalk and Node2vec are worse than
Struc2vec which considers structural identity. There are some
other NRL models, such as Planetoid [96], which learn network
representation using the feature of network structure and vertex
attribute information. It is well known that vertex attributes pro-
vide effective information for improving network representation
and help to learn embedded vector space. In the case of relatively
sparse network topology, vertex attribute information can be
used as supplementary information to improve the accuracy

XIA et al.: GRAPH LEARNING: A SURVEY 117

of representation. In practice, how to use vertex information
effectively and how to apply this information to network vertex
embedding are the main challenges in NRL.

Researchers not only investigate random walk based NRL
on vertices but also on graphs. Adhikari et al. [97] proposed
an unsupervised scalable algorithm, Sub2Vec, to learn arbitrary
subgraph. To be more specific, they proposed a method to mea-
sure the similarities between subgraphs without disturbing local
proximity. Narayanan et al. [98] proposed graph2vec, which is
a neural embedding framework. Modeling on neural document
embedding models, graph2vec takes a graph as a document and
the subgraph around words as vertices. By migrating the model
to graphs, the performance of graph2vec significantly exceeds
other substructure representation learning algorithms.

Generally, random walk can be regarded as a Markov process.
The next state of the process is only related to last state, which is
known as Markov chain. Inspired by vertex-reinforced random
walks, Benson et al. [99] presented spacey random walk, a
non-Markovian stochastic process. As a specific type of a more
general class of vertex-reinforced random walks, it takes the
view that the probability of time remained on each vertex relates
to the long term behavior of dynamical systems. They proved
that dynamical systems can converge to a stationary distribution
under sufficient conditions.

Recently, with the development of generative adversarial
network (GAN), researchers combined random walks with the
GAN method [100], [101]. Existing research on NRL can be di-
vided into generative models and discriminative models. Graph-
GAN [100] integrated these two kinds of models and played a
game-theoretical minimax game. With the process of the game,
the performance of the two models can be strengthened. Random
walk is used as a generator in the game. NetGAN [101] is a
generative model that can model network in real applications.
The method takes the distribution of biased random walk as
input, and can produce graphs with known patterns. It preserves
important topology properties and does not need to define them
in model definition.

3) Random Walks in Heterogeneous Networks: In reality,
most networks contain more than one type of vertex, and hence
networks are heterogeneous. Different from homogeneous NRL,
heterogenous NRL should well reserve various relationships
among different vertices [102]. Considering the ubiquitous exis-
tence of heterogeneous networks, many efforts have been made
to learn network representations of heterogeneous networks.
Compared to homogeneous NRL, the proximity among entities
in heterogeneous NRL is more than a simple measure of distance
or closeness. The semantics among vertices and links should be
considered. Some typical scenarios include knowledge graphs
and social networks.

Knowledge graph is a popular research domain in recent
years. A vital part in knowledge base population is relational
inference. The central problem of relational inference is infer-
ring unknown knowledge from the existing facts in knowledge
bases [103]. There are three types of common relational infer-
ence method in general: statistical relational learning (SRL),
latent factor models (LFMs), and random walk models (RWMs).
Relational learning methods based on statistics lack generality

and scalability. As a result, LFM-based graph embedding and
relational paths-based random walk have been adopted more
widely.

In a knowledge graph, there exist various vertices and various
types of relationships among different vertices. For example, in a
scholar related knowledge graph [2], [28], the types of vertices
include scholar, paper, publication venue, institution, etc. The
types of relationships include coauthor, citation, publication,
etc. The key idea of knowledge graph embedding is to embed
vertices and their relationships into a low dimensional vector
space, while the inherent structure of the knowledge graph can
be reserved [104].

For relational paths-based random walk, the path ranking
algorithm (PRA) is a path finding method using random walks to
generate relational features on graph data [105]. Random walks
in PRA are with restart, and combine features with a logistic
regression. However, PRA cannot predict connection between
two vertices if there does not exist a path between them. Gardner
et al. [106], [107] introduced two ways to improve the perfor-
mance of PRA. One method enables more efficient processing
to incorporate new corpus into knowledge base, while the other
method uses vector space to reduce the sparsity of surface forms.
To resolve cascade errors in knowledge construction, Wang
and Cohen [108] proposed a joint information extraction and
knowledge base based model with a recursive random walk.
Using latent context of the text, the model obtains additional
improvement. Liu et al. [109] developed a new random walk
based learning algorithm named hierarchical random-walk in-
ference (HiRi). It is a two-tier scheme: the upper tier recognizes
relational sequence pattern, and the lower tier captures informa-
tion from subgraphs of knowledge bases.

Another widely investigated type of heterogeneous networks
is social networks, such as online social networks and location-
based social networks. Social networks are heterogeneous in na-
ture because of the different types of vertices and relations. There
are two main ways to embed heterogeneous social networks,
including meta path-based approaches and random walk-based
approaches.

A meta path in heterogeneous networks is defined as a se-
quence of vertex types encoding significant composite relations
among various types of vertices. Aiming to employ the rich infor-
mation in social networks by exploiting various types of relation-
ships among vertices, Fu et al. [110] proposed HIN2Vec, which
is a representation learning framework based on meta paths.
HIN2Vec is a neural network model and the meta paths are well
embedded based on two independent phases, i.e., training data
preparation and representation learning. Experimental results on
various social network datasets show that HIN2Vec model is able
to automatically learn vertex vector in heterogeneous networks
to support a variety of applications. Metapath2vec [111] was
designed by formalizing meta path-based random walks to con-
struct the neighborhoods of a vertex in heterogeneous networks.
It takes the advantage of a heterogeneous skip-gram model to
perform vertex embedding.

Meta path-based methods require either prior knowledge for
optimal meta path selection or extended computations for path
length selection. To overcome these challenges, random walk

118 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021

based approaches have been proposed. Hussein et al. [112]
proposed the JUST model, which is a heterogeneous graph
embedding approach using random walks with jump and stay
strategies so that the aforementioned bias can be overcomed
effectively. Another method which does not require prior knowl-
edge for meta path definition is MPDRL [113], meta path
discovery with reinforcement earning. This method employs
the reinforcement learning algorithm to perform multihop rea-
soning to generate path instances and then further summarizes
the important meta paths using the lowest common ancestor
principle. Shi et al. [114] proposed the HERec model, which
utilizes the heterogeneous information network embedding for
providing accurate recommendations in social networks. HERec
is designed based on a random walk-based approach for gener-
ating meaningful vertex sequences for heterogeneous network
embedding. HERec can effectively adopt the auxiliary infor-
mation in heterogeneous information networks. Other typical
heterogeneous social network embedding approaches include,
e.g., PTE [115] and SHNE [116].

4) Random Walks in Time-Varying Networks: Network is
evolving over time, which means that new vertices may emerge
and new relations may appear. Therefore, it is significant to
capture the temporal behaviour of networks in network analysis.
Many efforts have been made to learn time-varying network em-
bedding (e.g., dynamic networks or temporal networks) [117].
In contrast to static network embedding, time-varying NRL
should consider the network dynamics, which means that old
relationships may become invalid and new links may appear.

The key of time-varying NRL is to find a suitable way to in-
corporate the time characteristic into embedding via reasonable
updating approaches. Nguyen et al. [118] proposed the CTDNE
model for continuous dynamic network embedding based on
random walk with “chronological” paths which can only move
forward as time goes on. Their model is more suitable for time-
dependent network representation that can capture the important
temporal characteristics of continuous-time dynamic networks.
Results on various datasets show that CTDNE outperforms static
NRL approaches. Zuo et al. [119] proposed the HTNE model
which is a temporal NRL approach based on the Hawkes process.
HTNE can well integrate the Hawkes process into network
embedding so that the influence of historical neighbors on the
current neighbors can be accurately captured.

For unseen vertices in a dynamical network, Graph-
SAGE [120] was presented to efficiently generate embeddings
for new vertices in network. In contrast to methods that training
embedding for every vertex in the network, GraphSAGE designs
a function to generate embedding for a vertex with features
of the neighborhoods locally. After sampling neighbors of a
vertex, GraphSAGE uses different aggregators to update the
embedding of the vertex. However, current graph neural methods
are proficient of only learning local neighborhood information
and cannot directly explore the higher order proximity and the
community structure of graphs.

5) Discussion: As mentioned before, random walk is a fun-
damental way to sample networks. The sequences of nodes could
preserve the information of network structure. However, there
are some disadvantages of this method. For example, random

walk relies on random strategies, which creates some uncertain
relations of nodes. To reduce this uncertainty, it needs to increase
the number of samples, which will significantly increase the
complexity of algorithms. Some random walk variants could
preserve local and global information of networks, but they
might not be effective in adjusting parameters to adapt to differ-
ent types of networks.

D. Deep Learning on Graphs

Deep learning is one of the hottest areas over the past few
years. Nevertheless, it is an attractive and challenging task to ex-
tend the existing neural network models, such as recurrent neural
networks (RNNs) or convolutional neural networks (CNNs), to
graph data. Gori et al. [121] proposed a GNN model based
on recursive neural network. In this model, a transfer function
is implemented, which maps the graph or its vertices to an
m-dimensional Euclidean space. In recent years, lots of GNN
models have been proposed.

1) Graph Convolutional Networks: GCN works on the basis
of grid structure domain and graph structure domain [122].

a) Time domain and spectral methods: Convolution is one
of a common operation in deep learning. However, since graph
lacks a grid structure, standard convolution over images or text
cannot be directly applied to graphs. Bruna et al. [122] extended
the CNN algorithm from image processing to the graph using
the graph Laplacian matrix, dubbed as spectral graph CNN.
The main idea is similar to Fourier basis for signal processing.
Based on [122], Henaff et al. [123] defined kernels to reduced
the learning parameters by analogizing the local connection
of CNNs on the image. Defferrard et al. [124] provided two
ways for generalizing CNNs to graph structure data based on
graph theory. One method is to reduce the parameters by using
polynomial kernel, and this method can be accelerated by using
Chebyshev polynomial approximation. The other method is the
special pooling method, which is pooling on the binary tree
constructed from vertices. An improved version of [124] was
introduced by Kipf and Welling [125]. The proposed method
is a semisupervised learning method for graphs. The algorithm
employs an excellent and straightforward neural network fol-
lowed by a layer-by-layer propagation rule, which is based on the
first-order approximation of spectral convolution on the graph
and can be directly acted on the graph.

There are some other time domain based methods. Based on
the mixture model of CNNs, for instance, Monti et al. [126]
generalized the CNN to non-Euclidean space. Zhou and Li [127]
proposed a new CNN graph modeling framework, which designs
two modules for graph structure data: K-order convolution op-
erator and adaptive filtering module. In addition, the high-order
adaptive graph convolution network (HA-GCN) framework pro-
posed in [127] is a general architecture that is suitable for many
applications of vertices and graph centers. Manessi et al. [128]
proposed a dynamic graph convolution network algorithm for
dynamic graphs. The core idea of the algorithm is to combine
the expansion of graph convolution with the improved long short
term-memory networks (LSTM) algorithm, and then train and
learn the downstream recursive unit by using graph structure

XIA et al.: GRAPH LEARNING: A SURVEY 119

Fig. 6. Brief history of algorithms of deep learning on graphs.

data and vertex features. The spectral-based NRL methods have
many applications, such as vertex classification [125], traffic
forecasting [129], [130], and action recognition [131].

b) Space domain and spatial methods: Spectral graph the-
ory provides a convolution method on graphs, but many NRL
methods directly use convolution operation on graphs in space
domain. Niepert et al. [132] applied graph labeling procedures
such as Weisfeiler–Lehman kernel on graphs to generate unique
order of vertices. The generated subgraphs can be fed to the tra-
ditional CNN operation in space domain. Duvenaud et al. [133]
designed neural fingerprints (FP), which is a spatial method
using the first-order neighbors similar to the GCN algorithm. At-
wood and Towsley [134] proposed another convolution method,
called diffusion-CNN, which incorporates transfer probability
matrix and replaces the characteristic basis of convolution with
diffusion basis. Gilmer et al. [135] reformulated existing models
into a single common framework, and exploited this framework
to discover new variations. Allamanis et al. [136] represented
the structure of code from syntactic and semantic, and utilized
the GNN method to recognize program structures.

Zhuang and Ma [137] designed dual graph convolution net-
works (DGCNs), which use diffusion basis and adjacency basis.
DGCN uses two convolutions: one is the characteristic form
of polynomial filter, and the other is to replace the adjacency
matrix with the positive pointwise mutual information (PPMI)
of the transition probability [89]. Dai et al. [138] proposed
the SSE algorithm, which uses asynchronous random to learn
vertex representation so as to improve learning efficiency. In
this model, a recursive method is adopted to learn vertex latent
representation and the sampled batch data are utilized to update
parameters. The recursive function of SSE is calculated from
the weighted average of historical state and new state. Zhu
et al. [139] proposed a graph smoothing splines neural network
which exploits nonsmoothing node features and global topolog-
ical knowledge such as centrality for graph classification. Gao
et al. [140] proposed a large scale graph convolution network
(LGCN) based on vertex feature information. In order to adapt to
the scene of large scale graphs, they proposed a subgraph training
strategy, which first trained the sampled subgraph in a small
batch. Based on a deep generative graph model, a novel method
called DeepNC for inferring the missing parts of a network was
proposed in [141].

A brief history of deep learning on graphs is shown in Fig. 6.
GNN has attracted lots of attention since 2015, and it is widely
studied and used in various fields.

2) Graph Attention Networks: In sequence-based tasks, at-
tention mechanism has been regarded as a standard [142]. GNNs
achieve lots of benefits from the expanded model capacity
of attention mechanisms. GATs are a kind of spatial-based
GCNs [143]. It takes the attention mechanism into consideration
when determining the weights of vertex’s neighbors. Likewise,
gated attention networks (GAANs) also introduced the multi-
head attention mechanism for updating the hidden state of some
vertices [144]. Unlike GATs, GAANs employ a self-attention
mechanism which can compute different weights for different
heads. Some other models such as graph attention model (GAM)
were proposed for solving different problems [145]. Take GAM
as an example, the purpose of GAM is to handle graph clas-
sification. Therefore, GAM is set to process informative parts
by visiting a sequence of significant vertices adaptively. The
model of GAM contains LSTM network, and some parameters
contain historical information, policies, and other information
generated from exploration of the graph. Attention walks (AWs)
are another kind of learning model based on GNN and random
walks [146]. In contrast to DeepWalk, AWs use differentiable at-
tention weights when factorizing the co-occurrence matrix [88].

3) Graph Auto-Encoders: GAE uses GNN structure to em-
bed network vertices into low dimensional vectors. One of the
most general solutions is to employ a multilayer perception as
the encoder for inputs [147]. Therein the decoder reconstructs
neighborhood statistics of the vertex. PPMI or the first and the
second nearest neighborhood can be taken into statistics [148],
[149]. Deep neural networks for graph representations (DNGR)
employ PPMI. Structural deep network embedding (SDNE)
employs stacked auto-encoder to maintain both the first-order
and the second-order proximity. Auto-encoder [150] is a tradi-
tional deep learning model, which can be classified as a self-
supervised model [151]. Deep recursive network embedding
(DRNE) reconstructs some vertices’ hidden state rather than
the entire graph [152]. It has been found that if we regard GCN
as an encoder, and combine GCN with GAN or LSTM with
GAN, then we can design the auto-encoder for graphs. Gener-
ally speaking, DNGR and SDNE embed vertices by the given
structure features, while other methods such as DRNE learn both
topology structure and content features [148], [149]. Variational
graph auto-encoder [153] is another successful approach that
employs GCN as an encoder and a link prediction layer as
a decoder. Its successor, adversarially regularized variational
graph auto-encoder [154], adds a regularization process with an
adversarial training approach to learn a more robust embedding.

120 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021

4) Graph Generative Networks: The purpose of graph gen-
erative networks is to generate graphs according to the given ob-
served set of graphs. Many previous methods of graph generative
networks have their own application domains. For example, in
natural language processing, the semantic graph or the knowl-
edge graph is generated based on the given sentences. Some
general methods have been proposed recently. One kind of them
considers the generation process as the formation of vertices and
edges. Another kind is to employ generative adversarial training.
Some GCNs-based graph generative networks such as molecular
generative adversarial networks (MolGAN) integrate GNN with
reinforcement learning [155]. Deep generative models of graphs
(DGMG) achieves a hidden representation of existing graphs by
utilizing spatial-based GCNs [156]. There are some knowledge
graph embedding algorithms based on GAN and zero-shot learn-
ing [157]. Vyas et al. [158] proposed a generalized zero-shot
learning model, which can find unseen semantic in knowledge
graphs.

5) Graph Spatial-Temporal Networks: Graph spatial-
temporal networks simultaneously capture the spatial and
temporal dependence of graphs. The global structure is included
in the spatial-temporal graphs, and the input of each vertex
varies with the change of time. For example, in traffic networks,
each sensor records the traffic speed of a road continuously as a
vertex, in which the edge of the traffic networks is determined
by the distance between the sensor pairs [129]. The goal of
a spatial-temporal network can be to predict future vertex
values or labels, or to predict spatial-temporal graph labels.
Recent studies in this direction have discussed the use of GCNs,
the combination of GCNs with RNN or CNN, and recursive
structures for graph structures [130], [131], [159].

6) Discussion: In this context, the task of graph learning can
be seen as optimizing the objective function by using gradient
descent algorithms. Therefore the performance of deep learning
based NRL models is influenced by gradient descent algorithms.
They may encounter challenges like local optimal solutions and
the vanishing gradient problem.

III. APPLICATIONS

Many problems can be solved by graph learning methods,
including supervised, semisupervised, unsupervised, and rein-
forcement learning. Some researchers classify the applications
of graph learning into three categories, i.e., structural scenarios,
nonstructural scenarios, and other application scenarios [18].
Structural scenarios refer to the situation where data are per-
formed in explicit relational structures, such as physical systems,
molecular structures, and knowledge graphs. Nonstructural sce-
narios refer to the situation where data are with unclear relational
structures, such as images and texts. Other application scenarios
include, e.g., integrating models and combinatorial optimization
problems. Table II lists the neural components and applications
of various graph learning methods.

A. Datasets and Open-Source Libraries

There are several datasets and benchmarks used to eval-
uate the performance of graph learning approaches for

various tasks such as link prediction, node classification, and
graph visualization. For instance, datasets like Cora1(citation
network), Pubmed2(citation network), BlogCatalog3(social net-
work), Wikipedia4 (language network), and PPI5 (biological
network) include nodes, edges, labels, or attributes of nodes.
Some research institutions developed graph learning libraries,
which include common and classical graph learning algorithms.
For example, OpenKE6 is a Python library for knowledge graph
embedding based on PyTorch. The open-source framework has
the implementations of RESCAL, HolE, DistMult, ComplEx,
etc. CogDL7 is a graph representation learning framework,
which can be used for node classification, link prediction, graph
classification, etc.

B. Text

Many data are in textual form coming from various resources
like web pages, emails, documents (technical and corporate),
books, digital libraries and customer complains, letters, patents,
etc. Textual data are not well structured for obtaining any mean-
ingful information as text often contains rich context informa-
tion. There exist abundant applications around text, including
text classification, sequence labeling, sentiment classification,
etc. Text classification is one of the most classical problems
in natural language processing. Popular algorithms proposed to
handle this problem include GCNs [120], [125], GATs [143],
Text GCNs [160], and sentence LSTM [161]. Sentence LSTM
has also been applied to sequence labeling, text generation,
multihop reading comprehension, etc [161]. Syntactic GCN was
proposed to solve semantic role labeling and neural machine
translation [162]. Gated graph neural networks (GGNNs) can
also be used to address neural machine translation and text
generation [163]. For relational extraction, Tree LSTM, graph
LSTM, and GCN are better solutions [164].

C. Images

Graph learning applications pertaining to images include
social relationship understanding, image classification, visual
question answering (VQA), object detection, region classifica-
tion, and semantic segmentation, etc. For social relationship
understanding, for instance, graph reasoning model (GRM) is
widely used [165]. Since social relationships such as friendships
are the basis of social networks in real world, automatically
interpreting these relationships is important for understanding
human behaviors. GRM introduces GGNNs to learn a propa-
gation mechanism. Image classification is a classical problem,
in which GNNs have demonstrated promising performance.
VQA is a learning task that involves both computer vision and

1[Online]. Available: https://relational.fit.cvut.cz/dataset/CORA
2[Online]. Available: https://catalog.data.gov/dataset/pubmed
3[Online]. Available: http://networkrepository.com/soc-BlogCatalog.php
4[Online]. Available: https://en.wikipedia.org/wiki/Wikipedia:Database_

download
5[Online]. Available: https://openwetware.org/wiki/Protein-

protein_interaction_databases
6[Online]. Available: https://github.com/thunlp/OpenKE
7[Online]. Available: https://github.com/THUDM/cogdl/

https://catalog.data.gov/dataset/pubmed
https://en.wikipedia.org/wiki/Wikipedia:Database_download

XIA et al.: GRAPH LEARNING: A SURVEY 121

TABLE II
SUMMARY OF GRAPH LEARNING METHODS AND THEIR APPLICATIONS

natural language processing. A VQA system takes the form
of a certain pictures and its open natural language question as
input, in order to generate a natural language answer as output.
Generally speaking, VQA is question-and-answer for a given
picture. GGNNs have been exploited to help with VQA [166].

D. Science

Graph learning has been widely adopted in science. Modeling
real-world physical systems is one of the most fundamental
perspectives in understanding human intelligence. Represent-
ing objects as vertices and relations as edges between them

is a simple but effective way to perform physics. Battaglia
et al. [167] proposed interaction networks (INs) to predict and
infer abundant physical systems, in which IN takes objects and
relationships as input. Based on IN, the interactions can be
reasoned and the effects can be applied. Therefore, physical
dynamics can be predicted. Visual interaction networks (VINs)
can make predictions from pixels by first learning a state code
from two continuous input frames per object [168].

Other graph networks-based models have been developed to
address chemistry and biology problems. Calculating molecular
fingerprints, i.e., using feature vectors to represent molecular,

122 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021

is a central step. Researchers [169] proposed neural graph fin-
gerprints using GCNs to calculate substructure feature vectors.
Some studies focused on protein interface prediction. This is
a challenging issue with significant applications in biology.
Besides, GNNs can be used in biomedical engineering as well.
Based on protein–protein INs, Rhee et al. [170] used graph
convolution and protein relation networks to classify breast
cancer subtypes.

E. Knowledge Graphs

Various heterogeneous objects and relationships are regarded
as the basis for a knowledge graph [171]. GNNs can be applied
in knowledge base completion (KBC) for solving the out-of-
knowledge-base (OOKB) entity problem [172]. The OOKB
entities are connected to existing entities. Therefore, the embed-
ding of OOKB entities can be aggregated from existing entities.
Such kind of algorithms achieve reasonable performance in both
settings of KBC and OOKB. Likewise, GCNs can also be used to
solve the problem of cross-lingual knowledge graph alignment.
The main idea of the model is to embed entities from different
languages into an integrated embedding space. Then the model
aligns these entities according to their embedding similarities.

Generally speaking, knowledge graph embedding can be
categorized into two types: translational distance models and
semantic matching models. Translational distance models aim to
learn the low dimensional vector of entities in a knowledge graph
by employing distance-based scoring functions. These methods
calculate the plausibility as the distance between two entities
after a translation measured by the relationships between them.
Among current translational distance models, TransE [173] is
the most influential one. TransE can model the relationship of
entities by interpreting them as translations operating on the
low dimensional embedding. Inspired by TranE, TranH [174]
was proposed to overcome the disadvantages of TransE in
dealing with 1-to-N, N-to-1, and N-to-N relations by intro-
ducing relation-specific hyperplanes. Instead of hyperplanes,
TransR [175] introduces relation-specific spaces to solve the
flows in TransE. Meanwhile, various extensions of TransE have
been proposed to enhance knowledge graph embeddings, such
as TransD [176] and TransF [177]. On the basis of TransE,
DeepPath [178] incorporates reinforcement learning methods
for learning relational paths in knowledge graphs. By designing
a complex reward function involving accuracy, efficiency and
path diversity, the path finding process is better controlled and
more flexible.

Semantic matching models utilize the similarity-based scor-
ing functions. They measure the plausibility among entities
by matching latent semantics of entities and relations in low
dimensional vector space. Typical models of this type include
RESCAL [179], DistMult [180], ANALOGY [181], etc.

F. Combinatorial Optimization

Classical problems such as traveling salesman problem (TSP)
and minimum spanning tree (MST) have been solved by using
different heuristic solutions. Recently, deep neural networks
have been applied to these problems. Some solutions make

further use of GNNs thanks to their structures. Bello et al. [182]
first proposed such kind of methods to solve TSP. Their method
mainly contains two steps, i.e., a parameterized reward pointer
network and a strategy gradient module for training. Khalil
et al. [183] improved this work with GNN and achieved better
performance by two main procedures. First, they used struc-
ture2vec to achieve vertex embedding and then input them into
Q-learning module for decision-making. This work also proves
the embedding ability of GNN. Nowak et al. [184] focused on
the secondary assignment problem, i.e., measuring the similarity
of two graphs. The GNN model learns each graph’s vertex
embedding and uses the attention mechanism to match the two
graphs. Other studies use GNNs directly as the classifiers, which
can perform the intensive prediction on graphs with two sides.
The rest of the model facilitates diverse choices and effective
training.

IV. OPEN ISSUES

In this section, we briefly summarize several future research
directions and open issues for graph learning.

A. Dynamic Graph Learning

For the purpose of graph learning, most existing algorithms
are suitable for static networks without specific constraints.
However, dynamic networks such as traffic networks vary over
time. Therefore, they are hard to deal with. Dynamic graph learn-
ing algorithms have rarely been studied in the literature. It is of
significant importance that dynamic graph learning algorithms
are designed to maintain good performance, especially in the
case of dynamic graphs.

B. Generative Graph Learning

Inspired by the GANs, generative graph learning algorithms
can unify the generative and discriminative models by playing a
game-theoretical min–max game. This generative graph learn-
ing method can be used for link prediction, network evolution,
and recommendation by boosting the performance of generative
and discriminative models alternately and iteratively.

C. Fair Graph Learning

Most graph learning algorithms rely on deep neural networks,
and the resulting vectors may have captured undesired sensitive
information. The bias existing in the network is reinforced, and
hence it is of significant importance to integrate the fair metrics
into the graph learning algorithms to address the inherent bias
issue.

D. Interpretable Graph Learning

The models of graph learning are generally complex by in-
corporating both graph structure and feature information. The
interpretability of graph learning (based) algorithms remains
unsolved since the structures of graph learning algorithms are
still a black box. For example, drug discovery can be achieved
by graph learning algorithms. However, it is unknown how this
drug is discovered as well as the reason behind this discovery.

XIA et al.: GRAPH LEARNING: A SURVEY 123

The interpretability behind graph learning needs to be further
studied.

V. CONCLUSION

This article gives a general description of graph learning,
and provides a comprehensive review of the state-of-the-art
graph learning methods. We examine existing graph learning
methods under four categories: GSP-based methods, matrix
factorization-based methods, random walk-based methods, and
deep learning-based methods. The presented applications of
graph learning methods are mainly under these four categories
in areas such as text, images, science, knowledge graphs, and
combinatorial optimization. We also discuss some future re-
search directions in the field of graph learning. Graph learning
is currently growing at an unprecedented speed. We do hope
that this survey will help researchers and practitioners with their
research and development in graph learning and related areas.

ACKNOWLEDGMENT

The authors would like to thank Prof. H. Abbass at the
University of New South Wales, Y. Sun, J. Liu, H. Ren at the
Dalian University of Technology, and anonymous reviewers for
their valuable comments and suggestions.

REFERENCES

[1] S. Fortunato et al., “Science of science,” Science, vol. 359, no. 6379,
2018, Art no. eaao0185.

[2] J. Liu, J. Ren, W. Zheng, L. Chi, I. Lee, and F. Xia, “Web of scholars:
A scholar knowledge graph,” in Proc. 43rd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, Jul. 2020, pp. 2153–2156.

[3] J. Liu et al., “Shifu2: A network representation learning based model for
advisor-advisee relationship mining,” IEEE Trans. Knowl. Data Eng.,
vol. 33, no. 4, pp. 1763–1777, Apr. 2021.

[4] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation learn-
ing: A survey,” IEEE Trans. Big Data, vol. 6, no. 1, pp. 3–28, Mar. 2020.

[5] K. Sun, J. Liu, S. Yu, B. Xu, and F. Xia, “Graph force learning,” in Proc.
IEEE Int. Conf. Big Data, 2020, pp. 2987–2994.

[6] F. Xia, J. Wang, X. Kong, D. Zhang, and Z. Wang, “Ranking station im-
portance with human mobility patterns using subway network datasets,”
IEEE Trans. Intell. Transp. Syst., vol. 21, no. 7, pp. 2840–2852, Jul. 2020.

[7] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM Int. Conf. Knowl. Discov. Data Mining,
Aug. 2016, pp. 855–864.

[8] K. Sun, L. Wang, B. Xu, W. Zhao, S. W. Teng, and F. Xia, “Network rep-
resentation learning: From traditional feature learning to deep learning,”
IEEE Access, vol. 8, no. 1, pp. 205600–205617 , Nov. 2020.

[9] S. Yu, F. Xia, J. Xu, Z. Chen, and I. Lee, “Offer: A Motif dimensional
framework for network representation learning,” in Proc. 29th ACM Int.
Conf. Inf. Knowl. Manage., 2020, pp. 3349–3352.

[10] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[11] T. Guo et al., “Graduate employment prediction with bias,” in Proc. 34th
AAAI Conf. Artif. Intell., 2020, pp. 670–677.

[12] F. Xia, A. M. Ahmed, L. T. Yang, J. Ma, and J. J. Rodrigues, “Exploit-
ing social relationship to enable efficient replica allocation in ad-hoc
social networks,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12,
pp. 3167–3176, Dec. 2014.

[13] J. Zhang, W. Wang, F. Xia, Y.-R. Lin, and H. Tong, “Data-driven com-
putational social science: A survey,” Big Data Res., vol. 21, Aug. 2020,
Art. no. 100145.

[14] F. Xia, A. M. Ahmed, L. T. Yang, and Z. Luo, “Community-based
event dissemination with optimal load balancing,” IEEE Trans. Comput.,
vol. 64, no. 7, pp. 1857–1869, Jul. 2015.

[15] F. Xia, H. Wei, S. Yu, D. Zhang, and B. Xu, “A survey of measures for
network motifs,” IEEE Access, vol. 7, no. 1, pp. 106576–106587, 2019.

[16] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proc. 12th
ACM Int. Conf. Knowl. Discov. Data Mining, Aug. 2006, pp. 631–636.

[17] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph signal recon-
struction,” IEEE Trans. Signal Process., vol. 63, no. 9, pp. 2432–2444,
Mar. 2015.

[18] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE
Trans. Knowl. Data Eng., doi: 10.1109/TKDE.2020.2981333, Mar. 2020.

[19] J. Xu et al., “Multivariate relations aggregation learning in social net-
works,” in Proc. ACM/IEEE Joint Conf. Digit. Libraries, Aug. 2020,
pp. 77–86.

[20] H. D. Bedru et al., “Big networks: A survey,” Comput. Sci. Rev., vol. 37,
Aug. 2020, Art. no. 100247.

[21] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowl.-Based Syst., vol. 151, pp. 78–94,
Jul. 2018.

[22] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Feb. 2018.

[23] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of
relational machine learning for knowledge graphs,” Proc. IEEE Proc.
IRE, vol. 104, no. 1, pp. 11–33, Jan. 2016.

[24] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection
and description: A survey,” Data Mining Knowl. Discov., vol. 29, no. 3,
pp. 626–688, May 2015.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehen-
sive survey on graph neural networks,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[26] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE Proc. IRE, vol. 106, no. 5, pp. 808–828, May 2018.

[27] W. Huang et al., “A graph signal processing perspective on functional
brain imaging,” Proc. IEEE Proc. IRE, vol. 106, no. 5, pp. 868–885,
May 2018.

[28] F. Xia, W. Wang, T. M. Bekele, and H. Liu, “Big scholarly data: A survey,”
IEEE Trans. Big Data, vol. 3, no. 1, pp. 18–35, Mar. 2017.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553,2015, Art. no. 436.

[30] J. Liu et al., “Artificial intelligence in the 21st century,” IEEE Access,
vol. 6, pp. 34403–34421, 2018.

[31] A. Sandryhaila and J. M. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
Apr. 2013.

[32] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 3, no. 30, pp. 83–98, May 2013.

[33] M. Puschel and J. M. Moura, “Algebraic signal processing theory:
Foundation and 1-D time,” IEEE Trans. Signal Process., vol. 56, no. 8,
pp. 3572–3585, Aug. 2008.

[34] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs:
Graph filters,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2013, pp. 6163–6166.

[35] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, no. 24, pp. 6510–6523, Dec. 2015.

[36] U. V. Luxburg, “A tutorial on spectral clustering,” Statist. Comput.,
vol. 17, no. 4, pp. 395–416, Dec. 2007.

[37] X. Zhu and M. Rabbat, “Graph spectral compressed sensing for sensor
networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2012, pp. 2865–2868.

[38] A. Gavili and X.-P. Zhang, “On the shift operator, graph frequency, and
optimal filtering in graph signal processing,” IEEE Trans. Signal Process.,
vol. 65, no. 23, pp. 6303–6318, Dec. 2017.

[39] B. Pasdeloup, M. Rabbat, V. Gripon, D. Pastor, and G. Mercier, “Graph
reconstruction from the observation of diffused signals,” in Proc. 53rd
Annu. Allerton Conf. Commun., Control, Comput., 2015, pp. 1386–1390.

[40] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for
signals on arbitrary graphs,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2014, pp. 3864–3868.

[41] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, “Random
sampling of bandlimited signals on graphs,” Appl. Comput. Harmon.
Anal., vol. 44, no. 2, pp. 446–475, Mar. 2018.

https://dx.doi.org/10.1109/TKDE.2020.2981333

124 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021

[42] H. Shomorony and A. S. Avestimehr, “Sampling large data on graphs,”
in Proc. IEEE Glob. Conf. Signal Inf. Process., 2014, pp. 933–936.

[43] L. F. Chamon and A. Ribeiro, “Greedy sampling of graph signals,” IEEE
Trans. Signal Process., vol. 66, no. 1, pp. 34–47, Jan. 2018.

[44] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Sampling of graph
signals with successive local aggregations,” IEEE Trans. Signal Process.,
vol. 64, no. 7, pp. 1832–1843, Apr. 2016.

[45] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques for
interpolation in graph structured data,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2013, pp. 5445–5449.

[46] A. Gadde and A. Ortega, “A probabilistic interpretation of sampling
theory of graph signals,” in Proc. IEEE Int. Conf. Acoustics, Speech Signal
Process., 2015, pp. 3257–3261.

[47] X. Wang, M. Wang, and Y. Gu, “A distributed tracking algorithm for
reconstruction of graph signals,” IEEE J. Sel. Topics Signal Process.,
vol. 9, no. 4, pp. 728–740, Jun. 2015.

[48] P. Di Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, “Adaptive
least mean squares estimation of graph signals,” IEEE Trans. Signal Inf.
Process. Netw., vol. 2, no. 4, pp. 555–568, Dec. 2016.

[49] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction of
graph signals.” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 764–778,
Feb. 2017.

[50] M. Nagahara, “Discrete signal reconstruction by sum of absolute values,”
IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1575–1579, Oct. 2015.

[51] S. Chen, R. Varma, A. Singh, and J. Kovačević, “Signal representations
on graphs: Tools and applications,”2015, arXiv:1512.05406.

[52] S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, “Reconstruction
of graph signals through percolation from seeding nodes,” IEEE Trans.
Signal Process., vol. 64, no. 16, pp. 4363–4378, Aug. 2016.

[53] F. Xia, J. Liu, J. Ren, W. Wang, and X. Kong, “Turing number: How far
are you to a. m. turing award?” ACM SIGWEB Newslett., vol. Autumn,
pp. 1–5, Nov. 2020.

[54] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under
Laplacian and structural constraints,” IEEE J. Sel. Topics Signal Process.,
vol. 11, no. 6, pp. 825–841, Sep. 2017.

[55] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning
Laplacian matrix in smooth graph signal representations,” IEEE Trans.
Signal Process., vol. 64, no. 23, pp. 6160–6173, Aug. 2016.

[56] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. Artif.
Intell. Statist., 2016, pp. 920–929.

[57] E. Pavez and A. Ortega, “Generalized Laplacian precision matrix esti-
mation for graph signal processing,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2016, pp. 6350–6354.

[58] E. Pavez, H. E. Egilmez, and A. Ortega, “Learning graphs with monotone
topology properties and multiple connected components,” IEEE Trans.
Signal Process., vol. 66, no. 9, pp. 2399–2413, May 2018.

[59] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat, “Char-
acterization and inference of graph diffusion processes from observations
of stationary signals,” IEEE Trans. Signal Inf. Process. Netw., vol. 4, no. 3,
pp. 481–496, Sep. 2018.

[60] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network topology
inference from spectral templates,” IEEE Trans. Signal Inf. Process.
Netw., vol. 3, no. 3, pp. 467–483, Sep. 2017.

[61] D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat
diffusion graphs,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3,
pp. 484–499, Jul. 2017.

[62] J. Mei and J. M. Moura, “Signal processing on graphs: Causal model-
ing of unstructured data,” IEEE Trans. Signal Process., vol. 65, no. 8,
pp. 2077–2092, Apr. 2017.

[63] S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, “Blind identi-
fication of graph filters,” IEEE Trans. Signal Process., vol. 65, no. 5,
pp. 1146–1159, Mar. 2017.

[64] F. Xia, N. Y. Asabere, A. M. Ahmed, J. Li, and X. Kong, “Mobile
multimedia recommendation in smart communities: A survey,” IEEE
Access, vol. 1, no. 1, pp. 606–624, Sep. 2013.

[65] W. Huang, A. G. Marques, and A. R. Ribeiro, “Rating prediction via
graph signal processing,” IEEE Trans. Signal Process., vol. 66, no. 19,
pp. 5066–5081, Oct. 2018.

[66] F. Xia, H. Liu, I. Lee, and L. Cao, “Scientific article recommendation:
Exploiting common author relations and historical preferences,” IEEE
Trans. Big Data, vol. 2, no. 2, pp. 101–112, Jun. 2016.

[67] X. He and P. Niyogi, “Locality preserving projections,” in Proc. Adv.
Neural Inf. Process. Syst., Dec. 2004, pp. 153–160.

[68] M. Chen, I. W. Tsang, M. Tan, and T. J. Cham, “A unified feature selection
framework for graph embedding on high dimensional data,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 6, pp. 1465–1477, Jun. 2015.

[69] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimensionality
reduction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1,
pp. 40–51, Jan. 2007.

[70] I. Borg and P. Groenen, “Modern multidimensional scaling: The-
ory and applications,” J. Educ. Meas., vol. 40, no. 3, pp. 277–280,
2003.

[71] M. Balasubramanian and E. L. Schwartz, “The isomap algorithm
and topological stability,” Science, vol. 295, no. 5552, pp. 7–7,
Jan. 2002.

[72] W. N. Anderson Jr and T. D. Morley, “Eigenvalues of the Laplacian
of a graph,” Linear Multilinear Algebra, vol. 18, no. 2, pp. 141–145,
Oct. 1985.

[73] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.

[74] R. Jiang, W. Fu, L. Wen, S. Hao, and R. Hong, “Dimensionality reduction
on anchorgraph with an efficient locality preserving projection,” Neuro-
computing, vol. 187, pp. 109–118, Apr. 2016.

[75] L. Wan, Y. Yuan, F. Xia, and H. Liu, “To your surprise: Identifying
serendipitous collaborators,” IEEE Trans. Big Data, DOI: 10.1109/TB-
DATA.2019.2921567, Jun. 2019.

[76] Y. Yang, F. Nie, S. Xiang, Y. Zhuang, and W. Wang, “Local and global
regressive mapping for manifold learning with out-of-sample extrapola-
tion,” in 24th AAAI Conf. Artif. Intell., 2010, pp. 649–654.

[77] S. Xiang, F. Nie, C. Zhang, and C. Zhang, “Nonlinear dimensionality
reduction with local spline embedding,” IEEE Trans. Knowl. Data Eng.,
vol. 21, no. 9, pp. 1285–1298, Sep. 2009.

[78] D. Cai, X. He, and J. Han, “Spectral regression: A unified subspace
learning framework for content-based image retrieval,” in Proc. 15th
ACM int. conf. Multimedia, 2007, pp. 403–412.

[79] X. He, W.-Y. Ma, and H.-J. Zhang, “Learning an image manifold for
retrieval,” in Proc. 12th Annu. ACM Int. Conf. Multimedia, 2004, pp. 17–
23.

[80] K. Allab, L. Labiod, and M. Nadif, “A semi-NMF-PCA unified frame-
work for data clustering,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 1,
pp. 2–16, Jan. 2017.

[81] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.,
vol. 38, no. 1, pp. 49–95, Mar. 1996.

[82] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” Numerische Mathematik, vol. 14, no. 5, pp. 403–420,
1970.

[83] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A.
J. Smola, “Distributed large-scale natural graph factorization,” in Proc.
22nd Int. Conf. World Wide Web, May 2013, pp. 37–48.

[84] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network represen-
tation learning with rich text information,” in Proc. Int. Joint Conf. Artif.
Intell., 2015, pp. 2111–2117.

[85] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random walks:
A review of algorithms and applications,” IEEE Trans. Emerg. Topics
Comput. Intell., vol. 4, no. 2, pp. 95–107, Nov. 2019.

[86] F. Xia, Z. Chen, W. Wang, J. Li, and L. T. Yang, “Mvcwalker: Ran-
dom walk-based most valuable collaborators recommendation exploiting
academic factors,” IEEE Trans. Emerg. Topics Comput., vol. 2, no. 3,
pp. 364–375, Sep. 2014.

[87] M. A. Al-Garadi et al., “Analysis of online social network connections
for identification of influential users: Survey and open research issues,”
ACM Comput. Surv., vol. 51, no. 1, pp. 1–37, 2018.

[88] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining., 2014, pp. 701–710.

[89] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2177–
2185.

[90] X. Rong, “word2vec parameter learning explained,” 2014,
arXiv:1411.2738.

[91] Y. Goldberg and O. Levy, “word2vec explained: Deriving Mikolov et al.’s
negative-sampling word-embedding method,”2014, arXiv:1402.3722.

[92] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in Proc. 24th Int. Conf. World
Wide Web, 2015, pp. 1067–1077.

[93] W. Wang, J. Liu, Z. Yang, X. Kong, and F. Xia, “Sustainable collaborator
recommendation based on conference closure,” IEEE Trans. Comput.
Social Syst., vol. 6, no. 2, pp. 311–322, Apr. 2019.

https://dx.doi.org/10.1109/TBDATA.2019.2921567

XIA et al.: GRAPH LEARNING: A SURVEY 125

[94] C. Tu, W. Zhang, Z. Liu, M. Sun et al. “Max-margin deepwalk: Discrimi-
native learning of network representation.” in Proc. Int. Joint Conf. Artif.
Intell., 2016, pp. 3889–3895.

[95] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learn-
ing node representations from structural identity,” in Proc. 23rd ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2017, pp. 385–394.

[96] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” in Proc. 33rd Int. Conf.
Mach. Learn., 2016, pp. 40–48.

[97] B. Adhikari, Y. Zhang, N. Ramakrishnan, and B. A. Prakash, “Distributed
representations of subgraphs,” in Proc. IEEE Int. Conf. Data Mining
WorkshopsIEEE, 2017, pp. 111–117.

[98] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S.
Jaiswal, “graph2vec: Learning distributed representations of graphs,” in
Proc. 13th Int. Workshop on Mining and Learning with Graphs (MLG),
2017.

[99] A. R. Benson, D. F. Gleich, and L.-H. Lim, “The spacey random walk:
A stochastic process for higher-order data,” SIAM Rev., vol. 59, no. 2,
pp. 321–345, 2017.

[100] H. Wang et al., “Graphgan: Graph representation learning with generative
adversarial nets,” in Proc. 32nd AAAI Conf. Artif. Intell., Apr. 2018,
pp. 2508–2515.

[101] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Netgan:
Generating graphs via random walks,” Proc. 35th Int. Conf. Mach. Learn.,
Jul. 2018, pp. 609–618.

[102] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A survey of hetero-
geneous information network analysis,” IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 1, pp. 17–37, Jan. 2017.

[103] N. Lao and W. W. Cohen, “Relational retrieval using a combination of
path-constrained random walks,” Mach. Learn., vol. 81, no. 1, pp. 53–67,
Oct. 2010.

[104] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding:
A survey of approaches and applications,” IEEE Trans. Knowl. Data
Eng., vol. 29, no. 12, pp. 2724–2743, Sep. 2017.

[105] N. Lao, T. Mitchell, and W. W. Cohen, “Random walk inference and
learning in a large scale knowledge base,” in Proc. Conf. Empirical
Methods Natural Lang. Process. Assoc. Comput. Linguistics, Jul. 2011,
pp. 529–539.

[106] M. Gardner, P. P. Talukdar, B. Kisiel, and T. Mitchell, “Improving
learning and inference in a large knowledge-base using latent syntactic
cues,” in Proc. Conf. Empirical Methods Natural Lang. Process., 2013,
pp. 833–838.

[107] M. Gardner, P. Talukdar, J. Krishnamurthy, and T. Mitchell, “Incorpo-
rating vector space similarity in random walk inference over knowledge
bases,” in Proc. Conf. Empirical Methods Natural Lang. Process., 2014,
pp. 397–406.

[108] W. Y. Wang and W. W. Cohen, “Joint information extraction and rea-
soning: A scalable statistical relational learning approach,” in Proc. 53rd
Annu. Meeting Assoc. Comput. Linguistics 7th Int. Joint Conf. Natural
Lang. Process. (Volume 1: Long Papers), 2015, pp. 355–364.

[109] Q. Liu, L. Jiang, M. Han, Y. Liu, and Z. Qin, “Hierarchical random walk
inference in knowledge graphs,” in Proc. 39th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2016, pp. 445–454.

[110] T.-y. Fu, W.-C. Lee, and Z. Lei, “Hin2vec: Explore meta-paths in het-
erogeneous information networks for representation learning,” in Proc.
ACM Conf. Inf. Knowl. Manage., 2017, pp. 1797–1806.

[111] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scal-
able representation learning for heterogeneous networks,” in Proc.
23rd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2017,
pp. 135–144.

[112] R. Hussein, D. Yang, and P. Cudré-Mauroux, “Are meta-paths necessary?:
Revisiting heterogeneous graph embeddings,” in Proc. 27th ACM Int.
Conf. Inf. Knowl. Manage., 2018, pp. 437–446.

[113] G. Wan, B. Du, S. Pan, and G. Haffari, “Reinforcement learning based
meta-path discovery in large-scale heterogeneous information networks,”
in Proc. AAAI Conf. Artif. Intell., Apr. 2020, pp. 6094–6101.

[114] C. Shi, B. Hu, W. X. Zhao, and S. Y. Philip, “Heterogeneous information
network embedding for recommendation,” IEEE Trans. Knowl. Data
Eng., vol. 31, no. 2, pp. 357–370, Feb. 2019.

[115] J. Tang, M. Qu, and Q. Mei, “PTE: Predictive text embedding through
large-scale heterogeneous text networks,” in Proc. 21th ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2015, pp. 1165–1174.

[116] C. Zhang, A. Swami, and N. V. Chawla, “SHNE: Representation learning
for semantic-associated heterogeneous networks,” in Proc. 12th ACM Int.
Conf. Web Search Data Mining, 2019, pp. 690–698.

[117] M. Hou, J. Ren, D. Zhang, X. Kong, D. Zhang, and F. Xia, “Network
embedding: Taxonomies, frameworks and applications,” Comput. Sci.
Rev., vol. 38, Nov. 2020, Art. no. 100296.

[118] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,
“Continuous-time dynamic network embeddings,” in Proc. Companion
Web Conf., 2018, pp. 969–976.

[119] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding temporal
network via neighborhood formation,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, Jul. 2018, pp. 2857–2866.

[120] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1024–
1034.

[121] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Proc. IEEE Int. Joint Conf. Neural Netw., 2005,
pp. 729–734.

[122] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in 2nd Int. Conf. Learn. Repres.,
Banff, AB, Canada 2014.

[123] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” Jun. 2015, arXiv:1506.05163.

[124] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[125] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” Proc. Int. Conf. Learn. Representations, 2017.

[126] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bron-
stein, “Geometric deep learning on graphs and manifolds using mixture
model CNNs,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 5115–5124.

[127] Z. Zhou and X. Li, “Graph convolution: A high-order and adaptive
approach,”Jun. 2017, arXiv:1706.09916.

[128] F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional
networks,” Pattern Recognition, vol. 97, p. 107000, 2020.

[129] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” 6th Int. Conf. Learn.
Repres., Vancouver, BC, Canada, 2018.

[130] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” Proc. 27th
Int. Joint Conf. Artif. Intell., 2017, pp. 3634–3640.

[131] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 3634–3640.

[132] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 2014–
2023.

[133] D. K. Duvenaud et al., “Convolutional networks on graphs for learning
molecular fingerprints,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 2224–2232.

[134] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1993–2001.

[135] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. 34th Int. Conf.
Machine Learn. 2017, pp. 1263–1272.

[136] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” in Proc. Int. Conf. Learn. Representations,
2018.

[137] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-
based semi-supervised classification,” in Proc. Web Conf., 2018, pp. 499–
508.

[138] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-
states of iterative algorithms over graphs,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 1114–1122.

[139] S. Zhu, L. Zhou, S. Pan, C. Zhou, G. Yan, and B. Wang, “GSSNN: Graph
smoothing splines neural networks,” in Proc. AAAI Conf. Artif. Intell.,
Apr. 2020, pp. 7007–7014.

[140] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional
networks,” in Proc. 24th ACM Int. Conf. Knowl. Discov. Data Mining,
2018, pp. 1416–1424.

[141] C. Tran, W.-Y. Shin, A. Spitz, and M. Gertz, “DeepNC: Deep generative
network completion,” IEEE Trans. Pattern Anal. Mach. Intell., 2020, doi:
10.1109/TPAMI.2020.3032286.

[142] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

https://dx.doi.org/10.1109/TPAMI.2020.3032286

126 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 2, NO. 2, APRIL 2021

[143] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn. Repre-
sentations, 2018.

[144] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “GaAN: Gated
attention networks for learning on large and spatiotemporal graphs,” in
Proc. 34th Conf. Uncertainty Artif. Intell., Mar. 2018.

[145] J. B. Lee, R. Rossi, and X. Kong, “Graph classification using structural
attention,” in Proc. 24th ACM Int. Conf. Knowl. Discov. Data Mining,
2018, pp. 1666–1674.

[146] S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. A. Alemi, “Watch
your step: Learning node embeddings via graph attention,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 9180–9190.

[147] M. Hou, L. Wang, J. Liu, X. Kong, and F. Xia, “A3graph: Adversarial
attributed autoencoder for graph representation,” in Proc. 36th ACM
Symp. Appl. Comput., 2021, pp. 1697–1704.

[148] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations,” in Proc. 30th AAAI Conf. Artif. Intell., 2016, pp. 1145–
1152.

[149] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 1225–1234.

[150] Y. Qi, Y. Wang, X. Zheng, and Z. Wu, “Robust feature learning by stacked
autoencoder with maximum correntropy criterion,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2014, pp. 6716–6720.

[151] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep
neural networks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., doi:
10.1109/TPAMI.2020.2992393, May 2020.

[152] K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive network
embedding with regular equivalence,” in Proc. 24th ACM Int. Conf.
Knowl. Discov. Data Mining, 2018, pp. 2357–2366.

[153] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” 2016,
arXiv:1611.07308.

[154] S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, “Learning
graph embedding with adversarial training methods,” IEEE Trans. Cy-
bern., vol. 50, no. 6, pp. 2475–2487, Sep. 2019.

[155] M. Schlichtkrull et al., “Modeling Relational Data With Graph Convolu-
tional Networks,” in Proc. Eur. Semantic Web Conf., 2018, pp. 593–607.

[156] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep
generative models of graphs,”2018, arXiv:1803.03324.

[157] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning-a
comprehensive evaluation of the good, the bad and the ugly,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 9, pp. 2251–2265,
Sep. 2018.

[158] M. R. Vyas, H. Venkateswara, and S. Panchanathan, “Leveraging seen
and unseen semantic relationships for generative zero-shot learning,” in
Proc. Eur. Conf. Comput. Vis, 2020, pp. 70–86.

[159] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep
spatial-temporal graph modeling,” in Proc. 28th Int. Joint Conf. Artif.
Intell., 2019, pp. 1907–1913.

[160] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” in Proc. AAAI Conf. Artif. Intell.,2019, pp. 7370–7377.

[161] Y. Zhang, Q. Liu, and L. Song, “Sentence-state LSTM for text represen-
tation,” in Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, 2018,
pp. 317–327.

[162] D. Marcheggiani and I. Titov, “Encoding sentences with graph convo-
lutional networks for semantic role labeling,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2017, pp. 1506–1515.

[163] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using
gated graph neural networks,” in Proc. 56th Annu. Meeting Assoc. Com-
put. Linguistics (Volume 1: Long Papers), 2018, pp. 273–283.

[164] H. Peng et al., “Large-scale hierarchical text classification with recur-
sively regularized deep graph-CNN,” in Proc. Web Conf., 2018, pp. 1063–
1072.

[165] Z. Wang, T. Chen, J. Ren, W. Yu, H. Cheng, and L. Lin, “Deep reasoning
with knowledge graph for social relationship understanding,” in Proc.
27th Int. Joint Conf. Artif. Intell., 2018, pp. 1021–1028.

[166] C.-W. Lee, W. Fang, C.-K. Yeh, and Y.-C. Frank Wang, “Multi-label
zero-shot learning with structured knowledge graphs,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 1576–1585.

[167] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, “Interaction networks
for learning about objects, relations and physics,” in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 4502–4510.

[168] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tacchetti,
“Visual interaction networks: Learning a physics simulator from video,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 4539–4547.

[169] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh,
“Machine learning for molecular and materials science,” Nature, vol. 559,
no. 7715, pp. 547–555, 2018.

[170] S. Rhee, S. Seo, and S. Kim, “Hybrid approach of relation network and
localized graph convolutional filtering for breast cancer subtype classifi-
cation,” in Proc. 27th Int. Joint Conf. Artif. Intell., 2018, pp. 3527–3534.

[171] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on
knowledge graphs: Representation, acquisition and applications,” 2020,
arXiv:2002.00388.

[172] T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto, “Knowledge
base completion with out-of-knowledge-base entities: A graph neural
network approach,” Trans. Japanese Soc. Artif. Intell., vol. 33, pp. 1–10,
2018.

[173] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 2787–2795.

[174] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Proc. 28th AAAI Conf. Artif. Intell.,
2014, pp. 1112–1119.

[175] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation
embeddings for knowledge graph completion,” in Proc. 29th AAAI Conf.
Artif. Intell., 2015, pp. 2181–2187.

[176] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding via
dynamic mapping matrix,” in Proc. 53rd Annu. Meeting Assoc. Comput.
Linguistics 7th Int. Joint Conf. Natural Lang. Process. (Volume 1: Long
Papers), vol. 1, 2015, pp. 687–696.

[177] J. Feng, M. Huang, M. Wang, M. Zhou, Y. Hao, and X. Zhu, “Knowledge
graph embedding by flexible translation,” in Proc. 15th Int. Conf. Princ.
Knowl. Representation Reasoning, 2016, pp. 557–560.

[178] Z. Huang and N. Mamoulis, “Heterogeneous information network em-
bedding for meta path based proximity,” 2017, arXiv:1701.05291.

[179] R. Jenatton, N. L. Roux, A. Bordes, and G. R. Obozinski, “A latent factor
model for highly multi-relational data,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 3167–3175.

[180] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and
relations for learning and inference in knowledge bases,” in Proc. Int.
Conf. Learn. Representations, 2015.

[181] H. Liu, Y. Wu, and Y. Yang, “Analogical inference for multi-relational
embeddings,” in Proc. 34th Int. Conf. Machine Learn. Org., 2017,
pp. 2168–2178.

[182] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in Proc. Int.
Conf. Learn. Representations, 2017.

[183] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combina-
torial optimization algorithms over graphs,” in Adv. Neural Inf. Process.
Syst., 2017, pp. 6348–6358.

[184] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, “Revised note on
learning quadratic assignment with graph neural networks,” in Proc. IEEE
Data Sci. Workshop, 2018, pp. 1–5.

Feng Xia (Senior Member, IEEE) received the B.Sc.
and Ph.D. degrees in automation from Zhejiang Uni-
versity, Hangzhou, China, in 2001 and 2006, respec-
tively.

He is currently an Associate Professor and Disci-
pline Leader with the School of Engineering, IT and
Physical Sciences, Federation University Australia,
Ballarat, VIC, Australia. He has authored or coau-
thored two books and over 300 scientific papers in
international journals and conferences. His research
interests include data science, computational intelli-

gence, social computing, and systems engineering.
Dr. Xia is a Senior Member of ACM.

Ke Sun received the B.Sc. and M.Sc. degrees in
computer science and technology from Shandong
Normal University, Jinan, China, in 2012 and 2015.
He is currently working toward the Ph.D. degree in
software engineering with the Dalian University of
Technology, Dalian, China.

His research interests include deep learning, net-
work representation learning, and knowledge graph.

https://dx.doi.org/10.1109/TPAMI.2020.2992393

XIA et al.: GRAPH LEARNING: A SURVEY 127

Shuo Yu (Member, IEEE) received the B.Sc. degree
in information and computing science and M.Sc. de-
gree in applied mathematics from the Shenyang Uni-
versity of Technology, Shenyang, China, in 2011 and
2014, respectively, and the Ph.D. degree in software
engineering from the Dalian University of Technol-
ogy, Dalian, China, in 2019.

She is currently a Postdoctoral Research Fellow
with the School of Software, Dalian University of
Technology. She has authored or coauthored over
30 papers in ACM/IEEE conferences, journals, and

magazines. Her research interests include network science, data science, and
computational social science.

Abdul Aziz received the bachelor’s degree in com-
puter science from the COMSATS Institute of In-
formation Technology, Lahore, Pakistan, in 2013,
and the master’s degree in computer science from
the National University of Computer and Emerging
Sciences, Karachi, Pakistan, in 2018. He is currently
working toward the Ph.D. degree in software engi-
neering with Alpha Lab, Dalian University of Tech-
nology, Dalian, China.

His research interests include big data, information
retrieval, graph learning, and social computing.

Liangtian Wan (Member, IEEE) received the B.S.
degree in electronic information engineering and the
Ph.D. degree in information and communication engi-
neering from Harbin Engineering University, Harbin,
China, in 2011 and 2015, respectively.

From October 2015 to April 2017, he has been a
Research Fellow with Nanyang Technological Uni-
versity, Singapore. He is currently an Associate Pro-
fessor with the School of Software, Dalian University
of Technology, Dalian, China. He is the author of over
70 papers. His current research interests include data

science, big data, and graph learning.

Shirui Pan received the Ph.D. degree in computer
science from the University of Technology Sydney
(UTS), Ultimo NSW, Australia, in 2015.

He is currently a Lecturer with the Faculty of Infor-
mation Technology, Monash University, Melbourne,
VIC, Australia. He has authored or coauthored over
60 research papers in top-tier journals and confer-
ences. His research interests include data mining and
machine learning.

Huan Liu (Fellow, IEEE) received the B.Eng. degree
in computer science and electrical engineering from
Shanghai Jiaotong University, Shanghai, China, in
1983, and the Ph.D. degree in computer science from
the University of Southern California, Los Angeles,
CA, USA, in 1989.

He is currently a Professor of Computer Sci-
ence and Engineering with Arizona State University,
Tempe, AZ, USA. His well-cited publications include
books, book chapters, and encyclopedia entries and
conference, and journal papers. His research interests

include data mining, machine learning, social computing, and artificial intelli-
gence, investigating problems that arise in many real-world applications with
high-dimensional data of disparate forms.

Dr. Liu is also a fellow of ACM, AAAI, and AAAS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

