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Automatic Plane Pose Estimation for Cardiac Left
Ventricle Coverage Estimation via Deep Adversarial

Regression Network
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Abstract—Accurate segmentation of the ventricles plays a
crucial role in determining cardiac functional parameters such
as ventricular volume, ventricular mass, and ejection fraction.
However, poor image quality, such as inadequate coverage of the
left ventricle (LV) and right ventricle (RV) in cardiac magnetic
resonance (CMR) image sequences, can significantly affect the
assessment of cardiac function. This study investigates issues
related to missing or corrupted imaging planes, which often
lead to incomplete ventricle coverage. To address the challenge
of estimating ventricle coverage in CMR images regardless of
variations in imaging parameters such as device type, magnetic
field strength, and protocol execution, we introduce a novel
convolutional neural network (CNN) based on adversarial learn-
ing. Additionally, we integrate supplementary information (e.g.,
cross-view image data) as privileged information to enhance the
interpretability of our model’s predictions and identify potential
biases or inaccuracies. This research represents the first attempt
to automatically estimate ventricular coverage by identifying
missing slices and plane orientations in CMR images using a
dataset-agnostic approach. The effectiveness of the proposed
model is demonstrated through the evaluation of datasets from
three diverse and sizable image acquisition cohorts, demonstrat-
ing superior performance compared to existing methods.

Impact Statement—Cardiac functional parameters, such as
the ejection fraction of both ventricles and cardiac output,
are crucial clinical indicators of cardiac function, providing
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insights into whether it is within normal or abnormal ranges.
Accurate calculation of these parameters is based on precise
measurements of ventricular volumes at the end of diastole
and systole. The accuracy of volume measurements depends on
correctly determining the heart’s position, including its location,
orientation, and size in CMR image sequences, thus establishing
the full extent of the LV and RV. This study introduces a fully
automatic detection method to identify missing slices and estimate
heart pose parameters in CMR volumes, which is robust across
different datasets. Unlike the previous research that focused solely
on identifying missing base or apex slices to assess ventricular
coverage, this study goes further by detecting incorrect slice
plane orientations for a more precise estimation of ventricle
coverage. This innovation has the potential to be integrated not
only into postprocessing of images but also directly within the
scanning protocol to promptly identify suboptimal acquisition.
This advancement is poised to provide valuable guidance to
radiographers, urging them to review faulty scans, streamlining
image quality control, and facilitating the prompt correction
of missing or misaligned image slices while the patient is still
undergoing the scan.

Index Terms—Adversarial learning (AL), deep learning (DL),
privileged information (PI), regression network, ventricle pose
estimation.

I. INTRODUCTION

CARDIAC magnetic resonance imaging (CMR) is the stan-
dard reference imaging technique used to evaluate the

morphology and functionality of the heart. After image acqui-
sition, automatic techniques can extract volumetric information
and derive clinical indices that place the subject within prede-
termined population ranges of normality. Acquisition of CMR
images is the most automatic part, except for initial localization
and enlargement of the heart performed by a trained radiologist
or image technician [1]. Since the heart is a moving organ and
the duration of the procedure requires the patient to hold his
breath multiple times during the exam, the resulting images
may suffer from artifacts due to variability in the position of
breath hold adopted by the patient during each breath hold [2].
If the initial framing of the heart does not allow a sufficient
margin around the organ, these differences in breath hold may
cause the heart to move out of the frame, resulting in incomplete
coverage in the basal or apical region of the organ [3], [4].
A related source of variability in organ coverage is determining
what constitutes a sufficient margin around the heart. Although
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Fig. 1. Potential issues affecting CMR image acquisitions. Short-axis slices
(SAXs) were acquired with incorrect orientations in slice L2 compared to
slice L1 in the top and bottom volumes. The last column is the difference
between the two planes. Best viewed in color.

anatomical characteristics allow for the precise location of the
base and apex of the heart, “a sufficient margin above and below
the base and apex” may not be precisely defined. This means
that slightly different practices may be in place at different
imaging facilities or by different experts, resulting in image
volumes that, while providing full coverage, may present with
one image slice above/below the cardiac base/apex. On the
contrary, others with two image slices above/below the cardiac
base/apex [5]. These variations in the procedure may present
problems for subsequent image-analysis algorithms trained un-
der the assumption of consistent object coverage.

Another parameter related to object coverage is the consis-
tent orientation of slice planes regarding the cardiac ventricles
[6] (see the top and bottom volumes in Fig. 1). If the slice
orientation deviates significantly from expected values, the lo-
cal image structure may change enough to cause subsequent
algorithms based on image features to fail in localizing criti-
cal features required for further morphological and functional
analysis. These sources of variability can affect the subsequent
application of automatic methods for the computation of tissue
volumes, cardiovascular indices, and statistics derived from
them [7], [8]. Typically, volume computations are performed
on the output of image segmentation algorithms. Whether these
algorithms are generative or discriminative, having incomplete
or incorrect organ coverage can cause inaccurate segmentation,
leading to biased estimation of volume parameters [9]. For
example, 2-D CNN-based segmentation methods will grossly
under/overestimate blood volumes with incomplete/incorrect
image stacks. In Fig. 1, the L2 slice with an incorrect plane
orientation shows a larger left ventricle (LV) volume than the
L1 slice in standard orientation. Also, 3-D generative-based
models, such as active shape models (ASMs), can handle in-
complete/incorrect volumes as shape priors constrain them [10].
However, if the initial shape estimate is poorly positioned re-
garding the target structure, the performance of ASMs can be
affected by incorrect model initialization and thus may cause
the algorithm not to converge to the best solution.

To address the above CMR ventricle coverage problems,
several automated and learning-based image quality assess-
ment (QA) algorithms have been proposed for base/apex slice

detection [3], [4], [11]. However, some works focused on auto-
matic view planning for CMR image acquisition [6], [8], [12],
which involves manual annotation of anatomical landmarks, a
tedious and time-consuming task. Therefore, algorithms that
can automatically detect the base/apex slices and determine the
pose parameters of each slice in CMR images are needed to
intervene and correct problems in the datasets. Such corrections
may include imputing missing data, choosing the appropriate
segmentation method, and removing faulty image volumes from
their use to compute aggregated statistics in large cohorts of
patients [13]. This paves the way for “quality-aware” image
analysis [14].

In this article, we adopt the adversarial learning (AL) strategy
to train the convolutional neural network (CNN) and innova-
tively refer to the cross-view image (long-axis slice in this
work) as the privileged information (PI) in the training phase, to
detect the base/apex slice and estimate the slice pose parameters
across multiple CMR imaging cohorts. Our model is the first
work for robust CMR image QA that estimates the ventricle
coverage-related parameters, e.g., base/apex slice location and
orientation of slice plane. The main contributions of this work
are summarized as follows.

1) This article first uses CNNs for automatic image QA by
estimating the parameters related to ventricle coverage in
multiple CMR imaging cohorts.

2) To solve the domain shift problem, we present a dataset
invariance adversarial learning (DIAL) to process the
data from any cohort, which allows transferring the task
knowledge from the annotated source dataset to the unan-
notated target dataset.

3) We propose an end-to-end multilabel multitask (MLMT)
regression network to jointly optimize ventricle coverage-
related tasks (slice distance and plane orientation param-
eter estimation). Our proposed MLMT model has great
generalizability and works well on different tasks.

4) We formulate a new problem, which combines DIAL
and MLMT models with novel PI loss, namely DARN*.
To the best of our knowledge, this is the first work that
exploits the multiview information as PI in CMR images,
and it is a much more practical approach in real-world
applications.

5) We comprehensively evaluated the performance of our
model in three large-scale 3-D CMR image datasets and
achieved promising results compared to the related base-
line methods.

II. RELATED WORK

A. Base/Apex CMR Slice Detection

There are several studies published on automating LV
base/apex detection. Paknezhad et al. [11] proposed an auto-
matic tool that uses the horizontal long-axis (HLA) view to find
the basal slice. The temporal binary profiles, created from the
segmented HLA slice for each SAX, were used to detect the
base slice. The drawbacks of this technique are its dependence
on correct segmentation and the existence of the HLA slice.
Mahapatra [15] proposed a learning-based method to detect
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the basal slice. Intensity, texture, and contextual characteristics
were extracted by training a random forest classifier from a
bounding box around the annotated points on both sides of the
mitral valve (MV). The use of such methods comes from the
assumption that the basal slice is the first SAX slice below
the line that connects the MV points. However, this is not
always true across different imaging cohorts. According to the
guidelines for cardiac image analysis [16] published by the
Society for Cardiovascular Magnetic Resonance (SCMR) that
describes precisely how to select the basal slice, the basal slice
is the top view slice on the short axis that has more than 50%
myocardium around the blood cavity [11].

Data-driven approaches using CNNs have significantly im-
proved image classification tasks for medical image analysis,
such as identifying the presence or absence of a disease, identi-
fying the stage of a disease, and identifying different anatomical
structures in the image. With this inspiration, Zhang et al. [17]
determined the LV coverage from CMR images by using Fisher
discriminative 3-D CNNs (FD3D). This approach utilizes spa-
tial contextual information in CMR volumes and extracts more
representative high-level features, thus achieving superior de-
tection accuracy. Furthermore, Xia et al. [3] proposed a novel
deep conditional GAN architecture to generate missing SAX
slices for CMR images at different positions. A regression
network learns features relevant to identifying the position of
the missing CMR slice and predicts its corresponding position.
This method can be easily extended to particular slice scenarios,
such as detecting missing slices at the apical or basal positions.
Duan et al. [18] and Joyce et al. [19] introduced anatomical
shape prior knowledge to the network segmentation, which is
a refinement step that is carried out using atlas propagation.
The LV coverage issues may also be addressed by these altas-
to-subject registration approaches. However, these methods in-
volve segmenting the ventricles and detecting landmarks as an
intermediate step before estimating ventricle coverage.

B. Standard CMR Slice Plane Detection

In recent years, significant research in automated plane de-
tection using machine learning algorithms has led to the de-
velopment of several standard approaches. Blansit et al. [20]
proposed to develop and evaluate a system to prescribe imag-
ing planes for CMR slices based on deep learning (DL)-based
localization of key anatomic landmarks. Wei et al. [8] pro-
posed a clinic-compatible automatic view planning system for
CMR. This work is inspired by keypoint-based object detection
[21], [22] and then proposes regressing the intersecting lines
between the views, which can be easily computed using the spa-
tial relationship. The authors [6], [12] developed an automatic
view planning algorithm for CMR image acquisition. They use
techniques based on learning anatomy segmentation and the
detection of anchor points to calculate typical cardiac views.
These techniques require prior knowledge of the entire 3-D
image to recognize planes. This involves the complex and time-
consuming task of manually annotating anatomical landmarks.
Therefore, using the acquired images for training and avoiding
manual labeling is necessary to develop an automatic standard

plane detection method. Furthermore, Alansary et al. [23] pro-
posed a fully automatic method to find standardized view planes
in 3-D image acquisitions. The application of this method to
cardiac MRI data shows target plane detection in real-time with
an accuracy of around 5 mm. Although these base/apex slice
detection and standard slice plane detection methods can help
to achieve whole-heart coverage in CMR imaging. However,
these methods work separately on the specific task, while both
factors usually cause incomplete ventricle coverage. Combining
base/apex slice detection and standard plane detection makes it
desirable and possible to achieve complete ventricle coverage
in CMR imaging.

C. AL

It has emerged as a prominent approach in machine learn-
ing, particularly in the context of deep neural networks, to
enhance model robustness and generalization. This technique
draws inspiration from game theory, introducing an adversarial
component that involves training the model against a set of
deliberately crafted adversarial examples [24]. Alansary et al.
[25] seminally introduced the concept of adversarial training
and demonstrated the vulnerability of deep neural networks to
adversarial examples. The authors proposed adversarial training
to enhance model robustness. Madry et al. [26] focused on
creating robust models through adversarial training by formu-
lating a minimax optimization problem. The authors developed
adversarial training techniques that showed improved resistance
against various types of adversarial attacks.

III. METHODOLOGY

A. Problem Formulation

We formulate our problem as two tasks as follows.
1) Dataset Invariance Learning: Given a set of 3-D images

X s = [Xs
1, ...,X

s
N ] ∈ R

m×n×zs×Ns

and corresponding labels
Ys = [Ys

1 , ...,Y
s
N ] of the modality Ms in the source dataset

and X t = [Xt
1, ...,X

t
N ] ∈ R

m×n×zt×Nt

of the modality Mt in
the target dataset; m and n are the dimensions of the axial
view of the image, and zs and zt denote the size of the image
along the z-axis, while Ns and N t are the numbers of elements
in the source and target datasets, respectively. Let {Xs,Y}=
{xs

i ,y
s
i }Z

s

i=1 and {X∗s,Y}= {x∗s
i ,ys

i }Z
s

i=1 be a labeled 3-D
CMR volume of the source modality Ms on the short and long
axes, respectively; let Xt = {xt

i}Z
t

i=1 represents an unlabeled
sample from the target dataset on the short axis, and Z be the
total of CMR slices. We aim to build a symmetric mapping
between the source and target datasets in the shared feature
space, reducing the difference between the distributions of the
source and target dataset.

2) Slice Pose Estimation: In this task, slice pose estimation
is enhanced by using MLMT learning, for example, distance
regression task and orientation regression task, in a single deep
regression neural network. In MLMT learning, assume that
there is an image sequence denoted by {X,Y}= {xi,yi}Zi=1,
where each X has Z slices and y contains the labels (distance
and orientation) associated with x. We represent yi as a vector
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Fig. 2. Proposed framework of PI-based DARN. Our approach consists of three steps: 1) the CNN acts as a feature extractor to extract the spatial pattern
of the cardiac image volume to facilitate the dataset invariance (DI) phase; 2) we use a DIAL model to fit the joint distribution over the images from different
datasets with a minimax game; and 3) we extend the DIAL model to handle the MTRN model with learning using privileged information (LUPI) scenarios.
The joint network can be trained to learn the complex spatial patterns of cardiac sequences in different cardiac MRI datasets and predict the pose without PI
during the test. Best viewed in color.

of length C, where C is the number of labels. For example,
the kth dimension yi(k) denotes the distance between the basal
slice and the ith slice. Our goal is to train a regression network
processed with the MLMT procedure, mapping images to corre-
sponding probabilities by the function η(·) : X →Y . We incor-
porate the long-axis patches X∗s as PI into the learning system
at training time, and the testing stage continues to make use of
only Xt without access to X∗t. This training process produces
a ConvNet with the parameters learnt W that is effectively a
mapping between the input images X , X ∗ and the estimated
output vector Y , represented by

Y = η(X ,X ∗;W). (1)

We use the U.K. Biobank (UKBB) [27] cardiac MRI data
cohort annotated with the multiethnic study of atherosclerosis
(MESA) [28] and defibrillators to reduce risk using magnetic
resonance imaging evaluation (DETERMINE) [29] datasets,
and apply our method to cross-dataset slice position and ori-
entation regression tasks. We describe deep AL approaches
and configure an MLMT regression network incorporated with
PI to perform automated slice pose estimation across datasets.
During training, DIAL promotes the emergence of indiscrim-
inate features with respect to the change between datasets but
discriminative for the main learning task in the source dataset.
Instead of using metric regression to identify the pose of the
slice, the MLMT is trained to regress the distance and orienta-
tion of each slice simultaneously with the aim of mutual benefit.
Our goal is to learn the discriminative features of xs

i and utilize

x∗s
i as PI to train more effective models and estimate the slice

poses in the short axis for CMR volumes in the target dataset.

B. Dataset-Invariant Deep AL

In this section, we propose a DIAL model, which incorpo-
rates AL with dataset adaptation (DA) and implements them
in a unified framework. Furthermore, we extend the DIAL
model to a multiview learning strategy by creating multiple
input channels (MC) from the image, which are resampled
to the same spatial grid and visualize the same anatomical
structure. Fig. 2 shows the framework of our method. Given
a set of slices {xs

i}Zi=1 with corresponding labels {ys
i }Zi=1 for

training, we optimize our objective function in several stages
to achieve a model that can generalize well from one dataset to
another, while maintaining the regression ability for estimating
the pose of the slice. In the first stage, we optimize the label
regression loss

arg min
wf ,wt

y

{
1
Ns

Ns∑
i=1

Li
y(Gsigm(Gconv(x

s
i ;wf );w

t
y), y

t
i)

}
(2)

where wf is the representation parameter in the feature extrac-
tion layers (blue in Fig. 2). wt

y is the parameter in the regression
layers (green in Fig. 2). yti denotes the ith slice position label.
wf and wt

y are trained for the image ith using labeled source
data {xs

i ,y
s
i }Z

s

i=1.
To achieve the dataset adaptation and minimize source and

target representation distances, we choose the AL mechanism
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by alternating minimax between two loss functions: one is the
dataset discriminator loss

arg min
wd

{
− 1

N

N∑
i=1

Li
d(Gsoft(Gconv(x

s
i ,x

t
i;wf );wd), di)

}

(3)

which aims to discriminate whether an image is drawn from the
source or target dataset. wd is the parameter in the DI network
and is used to predict the output of the dataset classification. di
denotes the dataset label for the example slice ith. The other is
a mapping invariant loss for the source and target dataset

arg min
wf

{
− 1

N

N∑
i=1

Li
f (Gsoft(Gconv(x

s
i ,x

t
i;wd);wf ), di)

}

(4)

where the cross entropy is calculated between the predicted
dataset labels and the uniform distribution over the dataset.
The mapping invariant loss is optimized with a constrained
adversarial objective with N =Ns +N t being the total of
samples. Then, our full method optimizes the joint loss function

E(wf ,wd,w
t
y) = Ly(Gsigm(Gconv(x

s;wf );w
t
y), y

t)

+ λLf (Gsoft(Gconv(x
s,xt;wf );wd), d)

(5)

where λ is the hyperparameter that determines how strongly
the DI influences optimization; Gconv(·) is a convolution layer
function (feature extraction) that maps an example to a new
representation; Gsigm(·) is a label prediction layer function
(sigmoid); and Gsoft(·) is a dataset prediction layer function
(softmax).

We chose the stochastic gradient procedure to optimize the
DIAL model, similar to the classical CNN learning methods.
The gradient of (5) is updated in the opposite direction to
minimize the loss for parameters wd,wy and in the direction
along the gradient to maximize the loss for parameters wf [30].

C. MLMT Learning With PI

In this section, we provide the learning procedure of our
MLMT* learning network for estimating the position and
orientation of the slice, instead of using the metric regres-
sion network. Then, we show that our framework can be
trained end-to-end by optimizing the regression and spatial
structured constraints.

1) Multilabel Multitask Learning (MLMT): To fully capture
the spatial information relevant to the LV in every slice from
one cardiac volume, we employ CNN as a feature extractor
to efficiently encode spatial information. We choose DIAL to
extract the features of each slice across datasets and predict the
corresponding position and orientation using multiple regres-
sion tasks.

Traditional multitask learning (MTL) seeks to improve the
generalization of multiple related tasks by learning them jointly.
Suppose that we have T tasks and the training data for the
tth task are denoted as (xt

i, y
t
i), where t= {1, ..., T}, with

xi, yi ∈ {{xn
i , y

n
i }Zi=1}N

s

n=1 being the input image and the label,
respectively. MTL tries to minimize the following:

arg min
{wt}T

t=1

T∑
t=1

N∑
i=1

L(Gsigm(Gconv(xi;w
t
f );w

t
y), y

t
i) + Φ(wt)

(6)

where wt = {wt
f ,w

t
y} is the weight vector for tth task and yti

is the label for ith image for the tth task. The loss function is
denoted by L (·). A typical choice is the mean square loss for
regression and the cross-entropy loss for classification. Φ(wt)
is the regularization term that penalizes weight complexity.

In this article, we divided all the tasks into two groups:
regression tasks td, for distance parameter d, and regression
tasks to, for orientation parameters θ and γ (the definition will
be discussed in experimental section). Inspired by the work
of Niu et al. [31], we adopt a data specific scheme for each
task in the two groups, which obtains the distribution of the
sample number over their distance and orientation. We set the
important parameters according to this distribution. For our
MLMT with multiple outputs, each corresponding to the re-
gression task for the ith image. Let αy denotes the important
coefficient of the label y (y ∈ {yd, yo}) in regression tasks.
In our approach, the important parameters are set according
to the reliability of different regression parameters. We set
αtd
y =

√
Nd/(

∑D
d=1

√
Nd) for the distance regression task and

αto
y =

√
No/(

∑O
o=1

√
No) for the orientation regression task,

where Nd is the number of samples with distance label d,
and No is the number of samples with orientation label o.
td corresponds to a distance regression task, which is trained
to regress the slice distance d in a sequence. Therefore, for
task td, the number of samples with distances nearby d, for
example, samples with distance {(d− δd), d, (d+ δd)}, (δd ∈
{0, 1/Z}) is more important than other samples for the train-
ing of the output of task td. If more samples have a distance
close to d, we could better train the corresponding position
features, and hence, it is better to give it relatively greater
importance. The loss function of our regression network can be
formulated as

arg min
{wt}T

t=1

T∑
t=1

N∑
i=1

αyβtL(Gsigm(Gconv(xi;w
t
f );w

t
y), y

t
i) =

arg min
{wtd}Td

td=1,

Td∑
td=1

N∑
i=1

αtd
y βtdL(Gsigm(Gconv(xi;w

td
f );wtd

y ), ytdi )+

arg min
{wto}To

to=1

To∑
to=1

N∑
i=1

αto
y βtoL(Gsigm(Gconv(xi;w

to
f );wto

y ), ytoi )

(7)

where Td and To indicate the total of regression tasks for
distance and orientation, respectively, and T = Td + To; βt de-
notes the important coefficient of the tth task’s error. The reg-
ularization terms are omitted here for simplification.

2) MLMT With PI (MLMT*): In many image processing
tasks, additional information can often help us to learn a better
model in the training stage. In an image recognition system,
we call this information PI, such as image captions. In other
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Algorithm 1: DIAL Algorithm.

Input: source data {xs
i}

Zs

i=1, {x∗s
i }Z

s

i=1;

target data {xt
i}

Zt

i=1, {x∗t
i }Z

t

i=1;
ground-truth dataset label ydi .

Initialize: wf ,wd,w
d
y ← random_init; d← 0;

while stopping criterion has not been met do
for i from 1 to Ns do

1) Calculate wf , wd
y using Eq. (2);

2) Calculate wd using Eq. (3) with fixed wf ;
3) Calculate wf using Eq. (4) with fixed wd;
4) Update parameters using gradient descent
[30].

end
end
Output: Neural network parameters {wf ,wd,w

d
y};

words, the PI provides additional correct information during
training, but in the test stage, the model operates without the
supervision of the PI. This paradigm is called LUPI and was
introduced by Vapnik and Vashist [32]. Our model constructs
a two-stream framework: we train the first stream model for
SAX images, and the second stream model with the PI (LAX
patches). Our framework could also be helpful if, instead of
LAX images, we utilize other PI like other image metadata (e.g.,
patient demographics and scanner type).

We need a PI loss to replace the original MLMT loss in the
training phase to use the PI as “teacher” to train a more effective
model. We propose to use PI to model the loss of training data,
penalize the difference of PI modeled loss and true loss, and
add the difference as a regularization term to (7). In particular,
we assume that we have a privileged LAX patch for each SAX
training image xi, we have a privileged LAX patch x∗

i . We used
the second network stream (MLMT-PI) to model PI. Compared
to the first network stream, which models the training SAX
images, this second stream aims not to learn a regression model
but to model the loss of the first stream. Denote the output of
the second stream for an input privileged patch x∗

i as f∗(x∗
i ).

The two streams share the same loss layer defined by

arg min
{wt,w∗,t

f }T
t=1

T∑
t=1

N∑
i=1

αyβtL(Gsigm(Gconv(xi;w
t
f );w

t
y), y

t
i)+

γ
∥∥∥αyβtL(Gsigm(Gconv(xi;w

t
f );w

t
y), y

t
i)−G∗

conv(x
∗
i ;w

∗,t
f )

∥∥∥2

2
(8)

where x∗,t
i is the ith privileged patch and parameterized by the

weight vector w∗,t
f , ‖·‖2

2 is the L2 norm. Our main hyperparam-
eter is the tradeoff parameter γ, tuned by cross validation in a
small subset of the training data.

The proposed MLMT with PI can be optimized in an alternat-
ing fashion. Specifically, we update the mainstream while fixing
the parameters of the privileged stream until convergence and
then update the privileged stream while fixing the parameters
of the mainstream. This process is repeated several times until
the whole system converges.

Algorithm 2: MLMT* Algorithm.

Input: training data {xs
i}

Zs

i=1, {x∗s
i }Z

s

i=1;

testing data {xt
i}

Zt

i=1;
ground-truth distance label ytdi ;
ground-truth orientation label ytθi and y

tγ
i .

Initialize: wf ,w
t
y ← random_init;

while stopping criterion has not been met do
for i from 1 to N do

1) Calculate wf and wt
y using Eq. (7);

2) Calculate wt and w∗,t
f with PI using Eq. (8);

3) Update parameters using gradient descent
[30].

end
end
Output: Neural network parameters and predicted

regressor for test images {η(xi;wf ,w
t
y)}Zi=1;

We formulate our complete DARN* model based on (5) and
(8) in the following way. Suppose we have a set of feature
vectors in a shared feature space across tasks {xi}Zi=1 and
their corresponding labels {ydi , ytdi , ytθi , y

tγ
i }Zi=1, where ydi is

the target of DI and the remaining are the targets of slice pose
regression, including inferences of “distance” and “orientation.”
In particular, ydi ∈ {0, 1} is a binary dataset, ytdi , ytθi , and y

tγ
i

are multiple values that represent the distances and orientations
in the 3-D space. We employ least squares and cross entropy
as loss functions for the main task (regression) and dataset-
invariant learning task (classification). Therefore, the objective
function can be rewritten as

arg min
wd,{wt,w∗,t}T

t=1

T∑
t=1

N∑
i=1

1
2
αyβt

∥∥yti−f(xi;w
t)

∥∥2

2

+ γ

∥∥∥∥1
2
αyβt

∥∥yti − f(xi;w
t)

∥∥2 − f(x∗
i ;w

∗,t)

∥∥∥∥
2

2

−
N∑
i=1

λydi log(p(ydi
∣∣xi;w

d )) +

T∑
t=1

(∥∥wd
∥∥2

2
+

∥∥wt
∥∥2

2

)
(9)

where f(xi;w
t) = (wt)�xi is a linear function. p(ydi =

m |xi ) = exp{(wd
m)

�
xi}

/∑
j exp{(wd

j )
�
xi} is a softmax

function, which models the class posterior probability (wd
j de-

notes the jth column of the matrix). Since the unique structure
of CNN allows for multitasking and shared representation, in
this study, we adopt the CNN to jointly learn the shared feature
space x.

D. Model Implementation

1) Network Structure: As shown in Fig. 2, our network
consists of three parts: feature extraction, DIAL, and pose re-
gression (MLMT*). Feature extraction network is adopted from
[30] including three 5 × 5 convolutional layers (C1, C2, and
C3), each followed by a 2 × 2 max-pooling layers (P1, P2, and
P3) with stride 2. Followed by P3, there are two branches: one
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TABLE I
NOTATIONS WE USED IN OUR MODEL AND THEIR

REPRESENTATIONS

Notations Representations

X 3-D image sets

X 3-D SAX images

Y Label sets

x 2-D slice

y Label vectors (e.g., distance and orientation angles)

Z Number of slices in a 3-D CMR volume

C Number of labels in y

k kth value in y

i ith slice in X

X∗ 3-D HLA images

Ns Number of source images

Nt Number of target images

N Number of total images

wf Parameter in the feature extraction layers

wy Parameter in the regression layers

wd Parameter for the dataset classification output

λ Hyperparameter for optimization

Gconv(·) Convolution layer function (feature extraction)

Gsigm(·) Label prediction (sigmoid) layer function

Gsoft(·) Dataset prediction (softmax) layer function

T Number of tasks

L (·) loss function

Φ(w) Regularization term that penalizes weights complexity

td Regression tasks for distance parameter d

to Regression tasks for orientation parameters θ and γ

αy Important coefficient of the label y

βt Important coefficient of the tth task’s error

γ Tradeoff parameter

Note: Matrices and 3-D images are written in bold uppercase (e.g.,
image X,Y), vectors and vectorized 2-D images in bold lowercase
(e.g., slice x,y), and scalars are denoted in lowercase (e.g., slice
position label r).

is DIAL, which consists of two fully connected layers (F1 and
F2), each with 256 rectified linear unit activation neurones; the
other one is MLMT*, which includes two fully connected layers
(F3 and F4). The fully connected layers (F5 and F6) following
two streams produce a feature vector shared by multiple tasks
in the estimation stage.

2) Implementation Details and Parameters: Our method
is implemented in PyTorch. All models were trained on an
NVIDIA RTX 2080 Ti GPU at least three times with differ-
ent random initializations to compute the mean performance
and its standard deviation (run three times of the experi-
ments with the same initialization). The same regularization
strength is used across all datasets. Adam optimizer was used in
all experiments with default hyperparameter settings (learning
rate= 0.01, momentum= 0.9, and dropout rate= 0.1). We also
kept the training details the same between our model and the
compared methods. In addition, the notation used in our model
is presented in Table I.

IV. EXPERIMENTS

A. Annotated Datasets

1) UKBB: CMR image data with gold standard image qual-
ity annotations are available for about 5000 volunteers of the
UKBB imaging resource [34]. Based on the visual inspec-
tion of experts, a simple three-grade quality score [35] is
used for manual annotation: 1) optimal quality for diagnosis
(4361 sequences); 2) suboptimal quality, yet analyzable (527
sequences); and 3) poor quality and diagnostically unusable
(177 sequences). Since these data have full coverage of the heart
from base to apex, all data with optimal quality were used to
construct the ground-truth classes in our experiments. We man-
ually checked one slice above and below the detected basal
slice to ensure it is the right one and generated the annotations;
ditto for apical slice checking. It is worth noting that the data
with full heart coverage here do not mean that the SAX plane
orientation is correct for all these optimal samples. Therefore,
we use the manual contours of the left ventricle of [36] to
calculate the ground truth of the cut distance and orientation
labels (see Section IV-B). The UKBB data are the source dataset
for training our model.

2) MESA and DETERMINE: To evaluate the performance
of DI learning, we used 598 subjects of CMR images obtained
from the Cardiac Atlas Project (CAP) [33] (see Table II). CAP
is a web-accessible resource (http://www.cardiacatlas.org/),
which provides a resource for cardiac image data sharing and
atlas-based shape analysis for population studies. The datasets
used in this study are part of two cohorts: MESA [37] and
DETERMINE [38]. The imaging protocols included cine im-
ages acquired in SAX planes from the heart base to the apex
and three LAX planes. We manually checked one slice above
and below the detected basal slice to ensure that it was right and
generated the annotations; ditto for apical slice checking. For
the MESA dataset, contours were drawn manually as a series
of points by the MESA CMR core lab on SAX slices for all
cases at end diastole (ED) and end systole (ES) [39] using-
Q-MASS software. As the DETERMINE dataset does not pro-
vide manual contours, we manually generated the LV contours
for each sample. We used the same method to create the distance
and orientation labels.

To evaluate models with input from the PI (long-axis
patches), the HLA image information was extracted by collect-
ing pixel values along the intersecting line between the four-
chamber view plane and the corresponding short-axis plane
during the cardiac cycle. We extracted four pixels above and
below the two-plane intersection. We embedded the constructed
profile within a square image with zeros everywhere except at
the profile diagonal [see Fig. 2(a), bottom channel].

B. Data Augmentation and Label Generation

1) Data Augmentation: To prevent overfitting because of
insufficient target data (DETERMINE and MESA) for training,
we artificially enlarge the two datasets by data augmentation
techniques, such as realistic rotations, scaling factors, and cor-
responding mirror images. In particular, we chose −45◦ and

http://www.cardiacatlas.org/
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TABLE II
CARDIOVASCULAR MAGNETIC RESONANCE PROTOCOLS FOR UKBB, MESA, AND DETERMINE DATASETS

Dataset View Number of Sequences Cardiac Phases Matrix Size Slice Thickness Slice Gap Slice Spacing Slices per Volume

UKBB

SAX 4280 50 208 × 187 8 mm 2 mm 10 mm ca. 10

LAX 4280 50 208 × 187 6 mm n.a n.a 1

Balanced steady state free precession (bSSFP) cine images in short-axis planes and three long-axis planes [27].

MESA

SAX 298 20 ∼ 30 256 × 160 6 mm 4 mm 10 mm ca. 10

LAX 298 20 ∼ 30 256 × 160 6 mm n.a n.a 1

Cine images (using the GRE pulse sequence) in short-axis planes and three long-axis planes [33].

DETERMINE

SAX 300 25 128 × 256 � 10 mm � 2 mm 10 mm ca. 10

LAX 300 25 128 × 256 6 mm n.a n.a 1

Cine images (using the SSFP pulse sequence) acquired in short-axis planes and three long-axis planes [33].

45◦ as the rotations and 0.75 and 1.25 as the scaling factors.
After data augmentation, the two datasets increased by a factor
of eight and had 2400 and 2384 sequences for the DETERMINE
and MESA datasets, respectively.

2) Plane Pose Parameters Definition: We define the SAX
slice pose using four parameters: {db, da, θ, γ}. The ground
truth of the position of the slice db (the distance to the base
slice), da (the distance to the apical slice) and the orientation
parameterized with deflection angles θ in the xoy plane and
γ in the z direction can be calculated from the SAX slices in
realistic cardiac volumes. According to Table II, the interslice
spacing value δd is constant in each cardiac volume. There-
fore, we can represent da and db by multiples δd. The ori-
entation is defined based on θ and γ, which are calculated
as the following process: 1) standard cardiac vector: steady-
state free precession short-axis cine images are acquired from
the MV plane through the apex [40]. Therefore, we choose
the vector ÔS

L that is perpendicular to the MV plane as the
standard cardiac vector; 2) normal vector: the normal vec-
tor ÔA

L is perpendicular to the given SAX image plane; and
3) deflection angles θ and γ: θ is the angle between the x-
axis and the projection of the deflection vector at the xoy
plane, γ is the angle between ÔS

L and ÔA
L , which is calculated

as γ = ∠
〈
ÔS

L, Ô
A
L

〉
.

3) Label Generation: We construct the multilabel {ytd , ytθ ,
ytγ} with a set of realistic distance and orientation values in the
images of the three datasets for training our model. For each
cardiac volume, we normalize the distance between the basal
slice and the apical slice as unit 1, setting the distance label of
the basal slices as 0. The distance label of the apical slice is 1,
then the label of the rest of the slices can be synthesized using
ytdi = (i− Zb)/(Za − Zb) (Za and Zb represent the numbers
of the basal and basal slices, respectively, in the sequence Z).
Here, the normalized ytd can not only represent db but also
represent da. Based on the analysis of the plane orientation
distribution for the three datasets available for manual segmen-
tation (and therefore ytθ , ytγ can be computed), we found that
ytθ ranges at the median value of 132.8◦ with standard deviation
8.0◦ and ytγ ranges at the median value of 7.1◦ with standard
deviation 3.9◦. The orientation labels used for training were
chosen from these realistic distributions, and all used labels
were balanced by data augmentation.

C. Comparison Methods and Evaluation Metrics

To evaluate the effectiveness of the proposed method in dif-
ferent datasets, we conduct a comprehensive comparison of our
approach with various state-of-the-art (related) approaches for
cross-dataset slice pose estimation.

1) MC+CNN: Metric Classification with CNN [4];
2) MC+CNN*: MC+CNN with PI [41];
3) MCDA+CNN: MC-CNN with DI [30];
4) MCDA+CNN*: MCDA+CNN with PI;
5) MR+CNN: Metric Regression with CNN [31];
6) DARN-DA (MLMT): Metric Regression with MLMT;
7) DARN*-DA: DARN-DA with PI;
8) DARN: DARN* without PI;
9) DARN*-MLMT: DARN* without MLMT [42]; and

10) DARN*: Fully fledged dataset adversarial regression net-
work with PI method.

MC+CNN can be cast as a fundamental baseline only for con-
sidering the deep classification neural network, and MR+CNN
can be cast as a fundamental baseline only for considering the
deep regression neural network. MCDA+CNN is the most rel-
evant and state-of-the-art cross-dataset image classification ap-
proach. For clarity, to validate the effectiveness of our DARN*
method by removing parts of the fully functional model, an
ablation study [43] is adopted. We consider three special cases
of the proposed method by excluding DI (DARN*-DA) or ex-
cluding PI (DARN * -PI), or excluding the MLMT regression
neural network (DARN * -MLMT) [42] to show that each of
the added terms is useful for a more accurate pose estimation.

To evaluate the classification tasks, we use
Accuracy=(TP+TN)/N , where TP and TN are the numbers
of true positive and true negative samples, respectively, N
represents the number of subjects in the test set.

To evaluate the regression error between our predicted pose
and the ground truth, we adopt a widely used evaluation method,
mean absolute error (MAE) [44], in our experiments for dif-
ferent models. MAE computes the absolute costs between the
real and the predicted slice position or orientation: MAE =∑M

i=1 ei/M , where ei =
∣∣∣l̂i − li

∣∣∣ is the absolute cost of mis-

classifying the true label li with l̂i, and M is the total of the
testing samples. We expect that the lower the MAE, the better.
Also, we use the paired t-test to demonstrate the statistical
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TABLE III
COMPARISON OF BASAL/APICAL SLICE DETECTION ACCURACY (MEAN ± STANDARD DEVIATION) BETWEEN

ADAPTATION AND NONADAPTATION METHODS, EACH WITH SINGLE (SAX)- AND MULTIVIEW INPUTS

(BS/AS INDICATE BASAL/APICAL SLICE DETECTION ACCURACY, RESPECTIVELY)

Dataset
No Dataset Adaptation (BS/AS) With Dataset Adaptation (BS/AS)

MC+CNN [4] MC+CNN* [41] MCDA+CNN [30] MCDN+CNN* (Ours)

UKBB 79.0±0.2/76.2±0.3 89.2±0.1/92.4±0.2 − −
MESA 31.6±0.3/35.1±0.1 61.5±0.2/68.3±0.4 74.2±0.2/72.9±0.4 87.1±0.3/90.2±0.2

DETERMINE 48.3±0.2/51.1±0.3 75.6±0.3/78.4±0.3 77.2±0.3/76.5±0.2 89.0±0.2/91.2±0.2

Note: Best results are highlighted in bold. All experiments were trained with UKBB data.

Fig. 3. Basal/apical slice detection accuracy (mean ± standard deviation) when the number of training samples from the source dataset (UKBB) increases.
BS/AS indicates the detection accuracy of the basal/apical slice, respectively.

Fig. 4. ROC curve and the AUC for basal/apical slice detection using different methods: (a) UKBB; (b) MESA; and (c) DETERMINE. BS/AS indicates
the basal/apical slice detection, respectively.
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Fig. 5. Examples show the detected basal slice, apical slice, and the corresponding above and below slices. The red square area in each image shows the
region-of-interest for model learning.

TABLE IV
SAX SLICE POSITION REGRESSION ERROR COMPARISON BETWEEN ADAPTATION AND NONADAPTATION

METHODS, IN TERMS OF MAE (MEAN ± STANDARD DEVIATION) (MM)

Dataset
No Dataset Adaptation With Dataset Adaptation

MR+CNN [31] DARN-DA DARN*-DA DARN DARN*-MLMT DARN* (Ours)

UKBB 5.43 ± 1.4 4.11±m 1.6 3.12± 1.1 − − −
MESA 8.21± 1.6 7.94± 2.0 6.53 ± 1.7 4.97 ± 1.0 3.91 ± 1.1 3.68 ± 1.1

DETERMINE 7.42 ± 1.3 6.47 ± 1.9 5.96 ± 1.3 4.77 ± 1.6 4.27 ± 1.0 4.05 ± 1.0

Note: Best results are highlighted in bold. The unit of the distance regression error is mm.

significance of our empirical comparison if our DARN* out-
performs other methods.

We extract every slice from top to bottom for each volume
during testing and apply them to our DARN* model. Our model
output gives the slice position in millimeters and two angles (θ
and γ) in degrees. There are no LAX patches (PI) in this phase.

D. Results of Left Ventricle Coverage Estimation

1) Results Analysis for Basal and Apical Slice Detection:
To evaluate the performance of DI learning and learning with PI,
we propose a baseline method that deals with object detection,
which only keeps the end-to-end CNN learning part and drops
the part of transforming framework, i.e., it casts the basal/apical

slice detection problem as a metric classification problem. It ad-
dresses it with/without DI (adaptation versus nonadaptation)
and PI, by transferring object classifiers from the UKBB to
MESA and DETERMINE. For clarity, we compared the metric
classification with CNN (MC+CNN) in [4], MC+CNN* in [41],
and the GTSRB architecture in [30] (MCDA+CNN) with our
MCDA+CNN*. Table III shows the accuracy of adaptation and
nonadaptation detection for traditional CNN and CNN with
PI. The best improvement results from combining these fea-
tures (DI plus PI) for both target datasets. For MESA, the
detection accuracy increased by 64%; for DETERMINE, the
improvement reaches 44% (rightmost column). All experiments
are significantly different at p <0.05. In Fig. 3, we analyzed
the detection accuracy when the number of training samples
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TABLE V
COMPARISON BETWEEN ADAPTATION AND NONADAPTATION METHODS, EACH WITH A SINGLE VIEW (SAX) AND PI INPUTS FOR CARDIAC SAX

SLICE ORIENTATION ESTIMATION IN TERMS OF MAE (MEAN ± STANDARD DEVIATION)

Dataset
No Dataset Adaptation (Δθ/Δγ ) With Dataset Adaptation (Δθ/Δγ)

MR+CNN [31] DARN-DA DARN*-DA DARN DARN*-MLMT DARN* (Ours)

UKBB 5.94±1.4/3.68±1.6 5.42±1.6/3.37±1.9 5.25±1.1/3.24±1.7 − − −
MESA 7.32±2.6/5.02±1.9 6.78±2.0/4.83±2.4 6.47±1.7/4.54±1.4 6.31±2.0/3.92±2.4 6.12±1.6/3.86±1.9 5.96±1.7/3.74±1.4

DETERMINE 7.14±2.1/5.11±2.3 6.63±1.9/4.81±2.0 6.32±1.3/4.17±1.4 6.27±1.6/3.81±1.3 5.82±1.6/3.69±1.9 5.24±1.0/3.45±1.3

Note: Δθ and Δγ indicate the MAE of the deflection angles in degree (◦). Best results are highlighted in bold.

from the source dataset (UKBB) increased. Given more labeled
source data, DI learning still works reliably and contributes
to the detection tasks for the target datasets. Fig. 4 provides
the ROC curve and the AUC for basal/apical slice detection
with different methods among the three datasets. This analysis
includes a comparison of the true positive rate (sensitivity) and
false positive rate (one specificity) for each method, as well as
the AUC values representing the overall discriminative ability
of the methods in detecting basal and apical slices. For instance,
the PI branch boosts the performance on BS/AS detection by
looking at the AUC results on the UKBB dataset. From the
AUC results in the MESA and DETERMINE datasets, the
adversarial training approach generates superior performance
for the BS/AS detection. Meanwhile, we present image samples
from the three datasets in Fig. 5 to show the detected basal,
apical slices and the corresponding above and below slices.

2) Results Analysis for Slice Pose Estimation: We propose
another model, which only keeps the end-to-end CNN learning
part with DI and PI, and drops the part of transforming frame-
work, i.e., it casts the metric classification module instead of
a regression module, which transforms slice pose estimation,
including distance and orientation, into the MLMT regression
problem. To discover the factor that contributes the most to the
final improvement in performance and to confirm that our reg-
ularization terms are beneficial, we also compare our proposed
DARN * with DARN-DA, DARN *-DA, and DARN *-PI and
show that these results in Tables IV and V represent position
estimation and orientation regression, respectively.

Table IV shows the average estimation errors of the cutting
distance using the MAE metric in millimeters (mm). Even
without the PI input channel, our DI framework can reduce
the slice distance estimation error to less than half the average
slice spacing in our test datasets, that is, < 5 mm. With PI in
the training process, we reduced the MAE to 4.27 and 4.05
mm on average to estimate the cut distance on the DETER-
MINE dataset. We also visualized the performance when the
number of training samples from the source dataset (UKBB)
increases. Regression errors are decreasing, and our proposed
model achieved the best results in each group of experiments.
Fig. 6 shows that the slice distance regression error on the three
datasets provides a visual representation of the performance of
different methods in estimating the distance to the basal and
apical slices in CMR imaging. The results indicate that our
proposed method demonstrates the best performance in terms
of the slice distance regression error in three large datasets.

Fig. 6. Performance of slice distance regression (mean error ± standard
deviation) when the number of training samples from the source dataset
(UKBB) is increasing.

Table V shows the MAE of the estimation of the orientation
of the slice by regression θ and γ in degree (◦). Even without us-
ing the PI input channels, our DI framework can obtain smaller
estimation errors, that is, Δθ < 7◦ and Δγ < 4◦. With PI input,
we reduced the estimation errors of Δθ and Δγ to 5.24◦ and
3.45◦ on average for each volume on the DETERMINE dataset.
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Fig. 7. Regression results of plane orientation parameters: θ, γ, and their corresponding true results. We only provide results without dataset adaptation for
the UKBB dataset.

Meanwhile, we plot the regression results for θ and γ in Fig. 7.
Looking at the fitting lines of each method, our model shows
a minimal regression error with significant margins, especially
when testing on the MESA and DETERMINE datasets. All
experiments are significantly different at p <0.05.

The training and validation loss curves in Fig. 8 for the
SAX slice regression error reflect the model’s performance
in minimizing the error between predicted and ground-truth
distances to the basal and apical slices. A decreasing loss curve
indicates effective learning and convergence, while fluctuations
or a plateau may indicate challenges in model performance.
Similarly, the loss curves for the slice plane orientation pa-
rameters Δθ and Δγ provide information about the model’s
ability to minimize errors in estimating the orientation of the
slice plane. These curves offer insight into the model’s capacity
to accurately predict deflection angles in the xoy plane and the
z direction.

V. DISCUSSION

Accuracy and robustness should be considered key criteria
when designing the automatic image QA system for cardiac
population imaging. False positives and negatives should be
minimized when detecting basal/apical slices using these meth-
ods, and the MAE of the slice distance/orientation must cope
with considerable image quality variation. Most deep learning
methods can perform well by training and testing a single
dataset. However, this may not be true when processing with

different datasets or retraining is required as new data become
available. This study used a large dataset that included 5000
subjects (each with 50 time points) from the same number of
individually annotated CMR image scans in UKBB. However,
when we transfer our well-trained model to other CMR image
datasets, we observe that deep learning methods without DI
cannot achieve good performance. We had to design an effi-
cient network learning common representation across datasets.
Since there is no label information in the target datasets, we
also need to learn discriminative information from the source
dataset and transfer it to our target datasets. To reduce the
difference between the training and test domain distributions
and improve generalization performance, AL has been among
the most promising solutions. However, most AL works have
been focused on image-generative tasks, and little effort has
been devoted to minimizing an approximate domain discrep-
ancy distance. We propose novel AL to detect and localize the
basal/apical slices across datasets, incorporating the PI (cross-
view slice) into the training phase. Then, an MLMT regression
network is trained to estimate the slice distance and orientation.
In particular, our proposed DIAL and PI learning strategy can
achieve a high accuracy rate of almost 87%/90% for the detec-
tion of MBS/MAS by training in UKBB and testing in MESA,
which is better than CNN methods without adaptation of the
dataset. Meanwhile, with the MLMT network, DARN* can
decrease MAE by around 6% compared to the DARN*-MLMT
[42] approaches for the estimation of the basal cut distance in
the MESA dataset.
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Fig. 8. Accuracy curves of BS and AS classification; the loss curves of SAX slice regression error and the slice plane orientation parameters: Δθ, Δγ.

A. Addressing Incomplete Coverage With Atlas-Based
Methods

Integrating anatomical shape priors into network segmenta-
tion, as introduced by Duan et al. [18] and Joyce et al. [19],

represents a significant advancement in refining segmentation
processes through atlas propagation. This technique, partic-
ularly beneficial for addressing segmentation challenges un-
der incomplete left ventricular (LV) coverage, relies on the
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preacquisition of a relatively dense set of imaging planes. By
segmenting the ventricles or generating volumetric meshes as
an intermediate step, these methods aim to estimate ventricle
coverage accurately. Both [18] and [19] employ shape priors to
mitigate the limitations posed by potentially incomplete image
coverage, a strategy that inherently depends on the anatomical
coverage provided by the atlases (e.g., LV+RV in [18] and
LV in [19]). However, the reliance on atlas-based approaches
introduces a notable vulnerability: the potential for bias. This
bias primarily emerges when atlases, developed from specific
imaging views or single-site data, are applied to multiview or
multisite studies, or in scenarios involving significant pathology
not represented in the atlas. Moreover, these methods, whilst
innovative, are computationally intensive and have yet to be val-
idated on extensive cross-center datasets. Consequently, their
capacity to generalize to diverse real-world scenarios is still
under scrutiny. Despite these challenges, the value of atlas-to-
subject registration methods becomes particularly evident when
dealing with already collected data that presents incomplete
coverage. In such cases, these methods offer a viable solution
for managing data limitations postacquisition. Nonetheless, the
context shifts when considering population imaging studies or
clinical trials, where the paramount concern is image quality.
In these instances, the ability to promptly identify incomplete
coverage immediately after MRI acquisition is invaluable. Such
timely feedback allows for the possibility of reacquiring the
image before the patient or volunteer departs from the imag-
ing suite, ensuring the collection of high-quality data essen-
tial for robust analysis. This nuanced perspective underscores
the complexity of employing atlas-based segmentation meth-
ods in medical imaging. While they offer substantial benefits
in certain contexts, their limitations and the need for care-
ful application must be acknowledged to leverage their full
potential effectively.

In this study, we propose to solve the image QA problem
in terms of SAX slice position and plane orientation, and gen-
eralize the model trained on UKBB cohorts to other image
domains, e.g., MESA and DETERMINE cohorts. Therefore, in
our experiments, we validated our image QA pipeline on MESA
and DETERMINE, which can be recognized as real datasets
with different image domains from UKBB. In all three datasets,
our method has shown better accuracy in detecting basal and
apical slices, as well as a decrease in MAE compared to other
approaches. The study’s results demonstrate the potential for
robust population image analysis and the ability to adapt to
image quality variations. Our proposed automatic image QA
framework for CMR image plane orientation estimation has
great potential for later robust population image analysis. One
could imagine that the proposed image-analysis methods are
adaptive to image quality and design, depending on whether the
image under analysis has incomplete ventricle coverage. If such
a QA platform or system can be performed online and provide
immediate feedback to technical staff when acquiring new im-
ages, thousands of suboptimal CMR images could be avoided
in future image analysis. More importantly, the proposed model
has the potential for immediate integration within the scan-
ner system, offering a highly advantageous ability to instruct

radiographers effectively. This guide helps them promptly iden-
tify, verify, and address discrepancies in image slices acquisi-
tion, while the patient remains within the scanning apparatus.
Although we introduced incomplete coverage of LV and RV that
can have an important impact on calculating cardiac function,
this work focuses primarily on estimating LV coverage, which
is easier to evaluate our proposal model. However, our model
can potentially be generalized to the RV as well by taking a
look at the RV characters of each slice from base to apex.
When analyzing RV coverage using our model, it may require
addressing specific anatomical and imaging challenges unique
to the RV, such as its complex geometry and differences in
image characteristics compared to the LV. One of our future
studies will investigate the possibility of quantifying ventricle
coverage, which is not specific for estimating the position and
orientation of the slice, so that we can predict the percentage
of ventricle coverage directly. It is difficult to calculate the per-
centage of ventricle coverage. Therefore, training the volume
classifier could be a nontrivial task due to the different shapes
of contiguous ventricle slices. Another future study will expand
the deep learning method to synthesize missed slices, that is,
synthesis of the basal/apical slice if a cardiac sample without
them and the missing slices acquired from the middle positions.
One possible way to achieve this using the machine learning
approach for image synthesis would be to apply a generative
network (e.g., synthesize the missed slices using the diffusion
model [45] in UKBB).

VI. CONCLUSION

In this article, we proposed an adversarial regression net-
work in the dataset with the PI (DARN*) model to learn a
common image representation and use it to estimate the CMR
slice pose (SAX). We achieve this by first using the DIAL
model with a minmax game to learn the common representation
between images from different datasets. The DIAL model was
then incorporated with the PI input (HLA) scenarios to achieve
better performance for the estimation of the plane pose in the
CMR image (SAX). Finally, we proposed an MLMT regres-
sion network to predict the slice pose. Our DARN* model is
evaluated on three large datasets, UKBB, MESA, and DETER-
MINE. Extensive experimental results show that the capability
of the proposed model outperforms state-of-the-art nondataset-
adaptive and non-PI methods. Our DARN* approach lies in
its integration of adversarial regression tasks, PI, and dataset-
invariant strategies to offer a unique and effective solution to
the challenges associated with incomplete ventricle coverage
in CMR imaging. Our model provides valuable guidance to
radiographers, urging them to review faulty scans, streamlining
image quality control, and facilitating the prompt correction
of missing or misaligned image slices while the patient is still
undergoing the scan.
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