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Abstract—In the era of deep learning, federated learning (FL)
presents a promising approach that allows multiinstitutional data
owners, or clients, to collaboratively train machine learning mod-
els without compromising data privacy. However, most existing
FL approaches rely on a centralized server for global model
aggregation, leading to a single point of failure. This makes
the system vulnerable to malicious attacks when dealing with
dishonest clients. In this work, we address this problem by
proposing a secure and reliable FL system based on blockchain
and distributed ledger technology. Our system incorporates a
peer-to-peer voting mechanism and a reward-and-slash mecha-
nism, which are powered by on-chain smart contracts, to detect
and deter malicious behaviors. Both theoretical and empirical
analyses are presented to demonstrate the effectiveness of the
proposed approach, showing that our framework is robust against
malicious client-side behaviors.

Impact Statement—FL has been a promising solution to utilize
multisite data while preserving users’ privacy. Despite the success
of integrating blockchain with FL to decentralize global model
aggregation, the protection of this integration from clients with
malicious intent in federated scenarios remains unclear. This
article presents the first formulation of this problem, and the
proposed stake-based aggregation mechanism shows robustness
in detecting malicious behaviors. The results in this work not
only pose a new research direction in FL but can also benefit a
wide variety of applications such as finance and healthcare.

Index Terms—Blockchain, deep learning, federated learning
(FL), trustworthy machine learning.
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I. INTRODUCTION

NOWADAYS, machine learning (ML), or more specifically,
deep learning, has transformed a broad spectrum of in-

dustries, ranging from finance to healthcare. In current ML
paradigms, training data are first collected and curated, and then
ML models are optimized by minimizing certain loss criteria
on the training data. A common underlying assumption in the
learning environment is that the training data can be instantly
accessed or easily distributed across computing nodes without
communication constraints, i.e., data are centralized.

However, in a system with multiple clients (i.e., data hold-
ers), to ensure data centralization, clients have to upload local
data to a centralized device (e.g., a central server) to conduct
the centralized training described above. Despite the success
of centralized training in various deep learning applications
[1], [2], [3], there is growing concern about data privacy and
security, especially when the local data held by the clients
are private or contain sensitive information. Especially, to en-
sure data governance, strict data regulations have been estab-
lished [4], [5].

To address the aforementioned concern, federated learning
(FL) has been proposed [6]. In a typical FL system, a central
server [7] is responsible for aggregating and synchronizing
model weights, while a set of clients manipulate multisite data.
This facilitates data governance, as clients only exchange model
weights or gradients with a central server instead of uploading
local data to the central server, and has led to FL becoming
a standardized solution to utilize multisite data while preserv-
ing privacy.

Although FL perfectly implements data decentralization, a
trustworthy central server is required in the system. In such
a system design, the central server in fact has privileges over
clients, as the central server determines the global aggregation
and synchronization. If the central server is compromised or
manipulated by a malicious party, the clients are vulnerable if
the central server intentionally distributes problematic model
updates. This can potentially increase the cost of system man-
agement and maintenance. Toward avoiding this single point
of failure, many efforts have been made to decentralize the
central server, and one particularly promising solution is to use
a blockchain as decentralized storage [8].

Originally proposed for cryptocurrencies, a blockchain is a
distributed ledger that can record the state transition informa-
tion among multiple parties [9], [10], without relying on a
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centralized server. Blockchain technology has gained wide-
spread attention for its potential to revolutionize a variety of
industries, such as finance [9], healthcare [11], and supply chain
management [12]. By leveraging the decentralized nature of
the blockchain, FL can benefit from increased security, pri-
vacy, and efficiency, as well as reduced reliance on centralized
servers [13]. Concretely, in FL with blockchain, each client
participating in the learning process uploads their local model
updates to the blockchain, where they are stored in blocks,
the metadata of a blockchain system. These blocks are then
used to aggregate the local model updates into a global model,
which can be downloaded by the clients. The use of blockchain
smart contracts [9], which are computer programs triggered by
blockchain events, ensures that the global aggregation process
is performed automatically and transparently, without the need
for human intervention or centralized control.

Although integrating blockchain with existing FL systems
can partially solve the threat to the central server, it cannot
guarantee the quality of uploaded model updates from the
clients. That is to say, blockchain-enabled FL systems are still
vulnerable to client-side malicious attacks [14]. In this work,
we define malicious behaviors as actions that intentionally de-
crease the learning performance (e.g., accuracy and conver-
gence) of the global model via poisoning attacks (such as data
poisoning [15] or model poisoning [14]). Instead of hacking
the central server, the attackers can sabotage the FL systems
by manipulating the clients. This work focuses on defending
against client-side poisoning attacks. One solution is to combine
blockchain-enabled FL with cryptographic protocols, such as
fully homomorphic encryption (FHE) [16] and secure mul-
tiparty computation (SMPC) [17], to mitigate malicious be-
haviors from the client side. However, the adoption of these
intricate cryptographic protocols introduces significant compu-
tational overhead for FL participants, thus impairing the system
performance. Besides, the malicious clients can still attack the
system without breaching the protocols. It is challenging to ad-
dress malicious behaviors without substantially compromising
the efficiency of a blockchain-based FL system.

We propose a generic framework that can integrate an FL
system with a blockchain system and can defend against
poisoning attacks without adopting complex cryptographic pro-
tocols. The proposed defense mechanism is motivated by proof-
of-stake (PoS) [18], a consensus mechanism in blockchain,
and The Resistance [19], a role-playing board game. PoS has
an incentive mechanism that encourages honest behaviors by
rewarding it and punishes dishonest behaviors via slashing. The
Resistance, on the other hand, has two mismatched competing
parties, where the party with a larger size is denoted as the
resistance force and the other party is denoted as the spies. In
The Resistance, there is a voting mechanism where, in each
round, each player conducts independent reasoning and votes
for a player, and the player with the highest votes will be
deemed as a “spy” and kicked out of the game. The goal of
the resistance force is to vote out all the spies while the spies
aim to impersonate the resistance force and survive until the
end. Based on these two concepts, this work proposes a novel
majority-voting mechanism for global aggregation where each

Fig. 1. Stake-based aggregation mechanism for FL with blockchain. In each
round, the proposers are randomly selected from the participating clients to
perform local training and upload local updates to the blockchain. Then, voters
download the aggregated local updates from the blockchain, perform local
validation, and vote for acceptance or rejection. If the majority of voters
vote for accepting the global aggregation, the global model will be updated,
and the proposers and the voters who vote for acceptance will be rewarded.
Conversely, if the majority of voters vote for rejection, the global model will
not be updated, and the proposers and the voters who vote for acceptance will
be slashed.

participating client independently validates the quality of ag-
gregated local updates and votes for acceptance of the global
update. The aggregation mechanism is stake-based where
participating clients stake assets1 or tokens (a quantitative mea-
surement of the asset, which can be used to indicate the trust-
worthiness of the client in our system) for their own actions.
There are two types of actions, proposing (uploading local
updates) and voting. If the majority vote is to accept the global
aggregation, a proposer will be refunded with its staked tokens
and a voter who votes for acceptance will not only be refunded
but also be rewarded with the staked tokens from the voters who
vote for rejection and vice versa. The overall procedure of the
stake-based aggregation mechanism is illustrated in Fig. 1. To
the best of our knowledge, this is the first work that integrates
the majority voting and incentive mechanisms in the FL and
blockchain literature.

We evaluate the proposed framework on a practical finan-
cial problem, namely loan default prediction. We simulate the
FL and blockchain environment for the Lending Club Kaggle
challenge dataset and ChestX-ray14 dataset [20] to conduct
experiments in a controllable setting and to provide insights into
the problem of interest. We empirically show that an FL system
can maintain robust performance under malicious attacks by
introducing the proposed stake-based aggregation mechanism.

The contributions of this work are summarized as follows:
1) We formulate the problem of decentralized FL with

blockchain in the presence of poisoning attacks.
2) For the first time, we introduce a novel stake-based

aggregation mechanism designed to fortify FL systems
against poisoning attacks. In contrast to prior solutions,
our mechanism boasts the distinct advantage of seamless

1In practice, the staked assets can be linked with cryptocurrency or real
currency to increase the financial cost of malicious attacks.
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Fig. 2. Blockchain workflow overview. The sender broadcasts the issued
transaction to the P2P network, which will be confirmed by the miners. The
confirmed transaction will be stored on a public blockchain and can be read
by the recipient. Blockchain miners typically adopt a consensus mechanism
to achieve an agreement on the state of the blockchain.

integration into any blockchain enabled with smart con-
tracts, all without necessitating alterations to the founda-
tional consensus structure of the underlying blockchain.
This approach not only enhances security but also simpli-
fies accessibility, rendering it a more user-friendly option
for FL participants.

3) We evaluate the robustness of the proposed framework
in a simulated environment and provide initial empiri-
cal insights into the problem of interest. The findings
show evidence that stake-based FL is an under-explored
research problem with potential advantages compared
with existing FL paradigms in terms of defending against
poisoning attacks.

The rest of the article is organized as follows.
Section II reviews the related work on FL and blockchain
computing. Section III formulates the problem of interest,
defines the key concepts, and lists the necessary assumptions.
Section IV presents the method and theoretical result.
Sections V and VI provide the experimental details on two
different setups. Section VII concludes this work.

II. RELATED WORK

In this section, we review the recent progress on blockchain-
based FL, and highlight the difference between the proposed
method and existing studies.

A. Blockchain

Blockchains refer to distributed ledgers that operate on a
global peer-to-peer (P2P) network, as exemplified by popular
cryptocurrencies such as Bitcoin [27] and Ethereum [9]. Users
can freely join or leave the blockchain system, without a cen-
tral authority in place to ensure common agreement on the
distributed ledgers. Instead, users rely on consensus protocols
[18], [28], such as proof-of-work (PoW) or PoS, to achieve
agreement in a distributed setting.

As shown in Fig. 2, a blockchain transaction typically
involves a sender who transfers digital assets, such as

cryptocurrencies, to a recipient. The sender authorizes the trans-
action with a digital signature combining transaction details and
their private key. The transaction is then broadcasted over a P2P
network to miners, who are participants in the network respon-
sible for verifying and adding new blocks of transactions to the
blockchain. Miners validate and confirm the transaction using
consensus protocols, to ensure that the transaction is legitimate
and not a duplicate or fraudulent transaction. Once confirmed,
the transaction is added to a block, which is then linked to
the previous block using cryptographically hash functions [29],
forming a chain of blocks (i.e., blockchain). The block is then
propagated to all the participants in the network, creating a
decentralized, immutable record of the transaction. The com-
bination of cryptography and consensus protocols enhances
the security, transparency, and decentralization of transactions,
underscoring blockchain’s potential across various applications
[11], [12], [30], [31], [32].

Another key feature of blockchain technology is the use of
smart contracts [9], which are quasi-Turing-complete programs
that can be executed within a virtual machine. When a trans-
action is initiated, a smart contract is typically used to encode
the terms and conditions of the transaction, such as the amount,
currency, and time of transfer. The smart contract is then stored
on the blockchain network and executed automatically when the
predefined conditions are met.

B. Federated Learning With Blockchain

Traditional FL faces challenges [33], [34], [35], such as pri-
vacy and security concerns (e.g., poisoning attacks), unreliable
communication, and difficulty in reaching a consensus among
the parties. Blockchain, on the other hand, provides a decen-
tralized, secure, and transparent platform for data storage and
sharing. This makes the use of blockchain for FL a promising
direction to potentially address privacy and security concerns by
allowing parties to keep their data private while still contribut-
ing to the training process. Additionally, blockchain can provide
a secure communication channel for FL participants and ensure
the integrity of the FL process.

Current blockchain-based FL designs [8], [35], [36], [37],
[38] have been broadly used in diverse fields [39], [40], [41]. For
example, Ma et al. [25] propose a blockchain-assisted decentral-
ized FL (BLADE-FL) framework, to prevent malicious clients
from poisoning the learning process. Li et al. [13] analyze the
impact of lazy clients on the learning performance of BLADE-
FL and propose optimization for minimizing the loss function.
Cui et al. [22] propose a blockchain-based decentralized and
asynchronous FL framework for anomaly detection in IoTs by
using a model named DP-GAN. Qu et al. [26] introduce a
committee-based blockchain consensus algorithm for decen-
tralized FL to prevent the single point of failure and poisoning
attacks in FL.

Despite the potential benefits of combining FL with block-
chain, several challenges remain. For instance, FL systems are
still vulnerable to client-side malicious attacks [14] and lack
incentive-compatible mechanisms to motivate FL participants
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TABLE I
COMPARISON OF EXISTING BLOCKCHAIN-BASED FL SOLUTIONS

Framework Technique Incentive Mechanism Cryptocurrency Incentive Blockchain Agnostic Attack Mitigation
[16] FHE ✗ ✗ - ✓
[17] SMPC ✗ ✗ - ✓
[21] DP ✗ ✗ - ✓
[22] DP-GAN ✗ ✗ - ✓
[23] Incentive mechanism ✓ ✓ - ✗
[24] Reputation + reverse auction ✓ ✓ - ✗
[25] Blockchain + reward only ✓ ✓ ✗ ✓
[13] Committee consensus ✓ ✓ ✗ ✓
[26] Committee consensus ✓ ✓ ✗ ✓

Ours Majority vote + reward & slash ✓ ✓ ✓ ✓

to behave honestly during the training process. For instance,
Miao et al. [16] leverage cosine similarity and blockchain to
counteract poisoning attacks and penalize malicious clients.
Their designs also rely on cryptographic techniques such as
FHE. Kalapaaking et al. [17] adopt SMPC to enhance the secu-
rity of blockchain-based FL which can mitigate poisoning at-
tacks for healthcare systems. Yan et al. [21] integrate differential
privacy (DP) techniques with blockchain to mitigate the issues
of a single point of failure or untrusted aggregation caused by
a malicious central server in privacy-preserving FL. However,
using FHE, SMPC, or DP, instead of incorporating incentive
mechanisms, may introduce an additional computation burden
for clients or the server.

Several incentive mechanisms [23], [24] have recently been
proposed to encourage participants and enhance model accu-
racy in blockchain-based FL. However, it remains unclear how
to effectively utilize the blockchain infrastructure and lever-
age its inherent incentive mechanism (i.e., cryptocurrencies) to
incentivize trustworthy FL behaviors and penalize malicious
clients. Furthermore, to thwart potential malicious activities,
such as poisoning attacks, existing blockchain-based FL solu-
tions [8], [13], [25], [26], [36] have pointed out that participants
can engage in both the FL training process and the block val-
idation in PoS-based blockchains or mining activities in PoW-
based blockchains. These design choices not only raise the
entry barrier for regular users wishing to partake in blockchain-
based FL systems but also add complexity to the fundamental
consensus mechanism.

In this work, we introduce a PoS-based reward-and-slash
mechanism for the FL system. We compare our solution with
existing work in Table I. Our solution can be seamlessly in-
tegrated into any smart-contract-enabled blockchain without
requiring modifications to the underlying consensus design (i.e.,
our design is blockchain agnostic). This approach facilitates the
participation of any FL users, making it more accessible and
user-friendly.

III. PROBLEM FORMULATION

This section introduces the problem of interest, the defini-
tion of the malicious behaviors considered, and the underlying
assumptions in this work. The main definitions and notations
adopted in this work are summarized in Table II.

TABLE II
SUMMARY OF MAIN DEFINITIONS AND NOTATIONS

Notation Description

Blockchain-based FL FL framework with a blockchain architecture

FedAVG Federated Averaging [6], a FL algorithm

Non-IID Nonindependently and identically distributed

K Set of participating clients at round t

Kt
v The selected set of voters

Kt
p Set of proposers at round t

at Majority voting decision at round t

Mk Asset of client k

γp Staked tokens for proposing

poolp Pool for storing proposers’ stake

A. Setup

There are K > 1 clients in a federated system. Let K =
{1, 2, . . . ,K} denote the set of all clients. Let Dk denote the
local data stored in client k, we have Dk ∩ Dl = ∅ for k �= l
and k, l ∈ K. Each local dataset Dk can be randomly split into
a training set and a test set, which are both private to client
k. In addition to K clients, a blockchain plays the role of a
parameter server [7] for global aggregation. Let fθ be the model
of interest. In the parameter server, the parameter set θ0

0 is ran-
domly initialized at round 0 and K clients download θ0

0 from the
blockchain as K local copies {θ0

k}Kk=1 for full synchronization.
During the federated optimization phase, a set of Kt

p clients is
randomly selected for round t. For each k ∈ Kt

p, the client k
updates θt−1

k by training on the training set of Dk independently
for a number of local epochs. Then, the blockchain aggregates
updated {θtk}k∈K collected from all the K clients to update θt0.
The K clients then synchronize with the parameter server, i.e.,
θtk ← θt0. To facilitate data governance, as required in among
others the medical domain [4], [5], we assume that the patient’s
data (either raw data or encoded data) in a client can not be
uploaded to the blockchain or other clients, i.e., only parameters
{θk}Kk=0 and metadata (e.g., the statistics of data) [42], [43] can
be exchanged between the blockchain and the clients. It is worth
mentioning that this work focuses on the interactions between
FL and blockchain, where blockchain computing (or mining,
in a more fashionable sense) and the application of additional
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privacy-preserving techniques [44] are considered orthogonal
research directions and thus beyond the scope of this work.

B. Malicious Behaviors

The definition of malicious behavior in this work is an ac-
tion that intentionally decreases the global model performance.
There are two types of actions for each client that interact
with the federated system, i.e., a client can propose (i.e., be a
proposer) and vote (i.e., be a voter). Proposing is to upload local
model or gradient updates to the parameter server, while voting
is a peer-review process to validate the “virtually” aggregated
model updates. The technical details of the two actions are
described in Section IV. There are thus two corresponding
malicious behaviors. The first malicious behavior is to propose
harmful local model updates and the second one is to vote
dishonestly. More specifically, in the second case, a client votes
for approval when it is aware that the proposed model updates
are poisoned and votes for rejection when there is no evidence
that indicates that the proposed model updates are poisoned.
It is worth mentioning that the clients themselves might not
intentionally attack the FL system as they can be compromised
by attackers. For simplicity, we define the clients that have ma-
licious behaviors as malicious clients in this work, denoted as
Km. We use η to denote the ratio of malicious clients among all
clients, i.e., η = (|Km|/K), where | · | is the cardinality of a set.

C. Assumptions

There are six important assumptions in this work.
1) A1: The goal of malicious behaviors is to decrease the

global model performance. This is also reflected in Sec-
tion III-B. Under these assumptions, behaviors that are
harmful to the system but do not influence the global
model performance are beyond the scope of discussion
in this work. An example is eavesdropping, i.e., cloning
the model specifications.

2) A2: All clients are rational. This means that both honest
and malicious clients expect to maximize their gain or
minimize their loss while achieving their goals.

3) A3: Following previous studies on blockchain [13], we as-
sume that η is strictly smaller than 50%. This means there
are always more honest clients than malicious clients in
a federated system.

4) A4: There is no capacity constraint on the hardware,
including computing, communication, and storage, al-
lowing us to solely focus on the algorithmic side of
the problem.

5) A5: The underlying blockchain of the FL system of inter-
est is running securely with a consensus protocol that en-
sures the validity and integrity of transactions and blocks.
While the security of the blockchain is crucial for the
overall security of the FL system, addressing the mali-
cious miners falls outside the scope of this study.

IV. METHOD

In this section, we first introduce the basics of feder-
ated aggregation in Section IV-A, and describe the local

validation and majority voting in Sections IV-B and IV-C. We
then propose a novel incentive mechanism in Section IV-D.
A theoretical analysis on malicious voting is presented in
Section IV-E. We then describe the whole training pipeline
in Section IV-F. Finally, the analysis of computational cost is
provided in Section IV-G.

A. Federated Aggregation

In this work, we illustrate the proposed framework in the
context of the seminal FL method, FedAVG [6]. At the end of
round t, the local models {θtk}Kk=1 are uploaded and aggregated
as a weighted average

θt0 =

K∑

k=1

akθ
t
k (1)

where ak = (nk/N). The metadata nk = |Dk| is the number of
local training examples stored in client k, and N =

∑K
k=1 nk

is the total number of training examples in the K clients.

B. Local Validation

In contrast to standard FL algorithms, the aggregated global
model is not recorded in a block directly. Instead, θ̃t0, a copy of
θt0 is downloaded by a randomly selected set of clients, denoted
as voters,Kt

v . A voter k runs a local inference with θ̃t0 on its local
test set and outputs a local validation score. The local validation
score stk is a scalar, which can be linked with common metrics
of ML tasks.2 If stk is not lower than a threshold, the voter
votes for accepting this aggregated model; otherwise, the voter
votes against it. The threshold can be based on a validation
score st−1

k acquired in the previous round. In the training of
ML tasks, the scores can be volatile due to the characteristics
of the tasks. Thus, a hyperparameter ε ∈ (0, 1) is introduced to
control the tolerance of performance decrease in a single round.
Mathematically, the kth voter has the following score:

vtk =

{
1, stk ≥ (1 − ε)st−1

k

−1, stk < (1 − ε)st−1
k .

(2)

It is worth mentioning that the likelihood of the attackers con-
sistently manipulating the scores by fooling all the randomly
selected voters (e.g., via adversarial attacks [45]) diminishes
quickly toward zero as the number of epochs increases. Accord-
ing to A4, the majority of voters are honest. It is thus difficult
to attack (either via data poisoning or model poisoning) as the
validation set of each client is private.

C. Majority Voting

The majority voting process for whether to apply the global
aggregation operation at round t can be described as follows.
Here, we use a binary variable at to denote the decision

at =

⎧
⎪⎨

⎪⎩

1,
∑

k∈Kv

vk > 0

−1,
∑

k∈Kv

vk ≤ 0.
(3)

2For example, common evaluation metrics include accuracy for classifica-
tion, mean intersection over union (mIOU) for semantic segmentation, and
mean average precision (mAP) for object detection.
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Algorithm 1 Reward-and-slash design for a set of randomly
selected proposers.

at: Majority voting decision at round t
K: Set of participating clients at round t
Kt

p: Set of proposers at round t
Mk: Asset of client k
γp: Staked tokens for proposing
poolp: Pool for storing proposers’ stake

1: if at ==−1 then
2: for k ∈ Kt

p do
3: if Mk ≥ γp then
4: Mk ←Mk − γp
5: poolp ← poolp + γp
6: else
7: poolp ← poolp +Mk

8: Mk ← 0
9: Kt ←Kt \ {k}

10: else
11: if poolp > 0 then
12: for k ∈ Kt

p do

13: Mk ←Mk +
poolp
|Kt

p|

14: poolp ← 0

If at = 1, the global aggregation will be finalized and
recorded in the block; otherwise, the global aggregation will
be discarded.

D. Asset Redistribution

As there are two independent actions, there are two parallel
reward-and-slash designs for proposing and voting. For both
actions, the randomly selected proposers and voters are required
to stake a fixed sum of tokens before they act. If some of these
actors fail to stake (they do not have enough tokens left), they
lose their access to the blockchain and are removed from the
FL system permanently. Proposers will be rewarded with tokens
accumulated in an independent pool (if there are any tokens left
in the pool) if the global aggregation is approved and lose their
stakes if the global aggregation is rejected. The reward-and-
slash design for the proposers is illustrated in Algorithm 1. For
the voters, the majority party will not only take back their stakes
but also be rewarded with the staked tokens lost by the minority
party. The reward-and-slash design for the voters is illustrated
in Algorithm 2. In the following section, Section IV-E, we
demonstrate that under the proposed design and assumptions
in Section III-C, malicious voters have no incentive to make
dishonest votes. Note, Section IV-D highlights the key differ-
ence between the proposed voting mechanism and traditional
majority voting as the voting is directly linked with the incen-
tive mechanism.

E. Theoretical Analysis on Malicious Votes

In this section, we theoretically show that malicious voters
in the proposed framework have no incentive to make dis-
honest votes.

Algorithm 2 Reward-and-slash design for a set of randomly
selected voters.

at: Majority voting decision at round t
K: Set of participating clients at round t
Kt

v: Set of voters at round t
Kt

m: Set of voters at round t with vtk == at

Mk: Asset of client k
γv: Staked tokens for voting
poolv: Pool for storing voters’ stake

1: for k ∈ Kt
v \ Kt

m do
2: if Mk ≥ γv then
3: Mk ←Mk − γv
4: poolv ← poolv + γp
5: else
6: poolv ← poolv +Mk

7: Mk ← 0
8: Kt ←Kt \ {k}
9: for k ∈ Kt

m do
10: Mk ←Mk + poolv

|Kt
m|

11: poolv ← 0

Theorem 1 (Honest Voting Hypothesis): When all clients
are rational, a malicious client should not make a mali-
cious vote.

Proof: Let Kv denote a randomly selected set of voters
and nv = |Kv|. For client k ∈ Kv , let γv > 0 denote the staked
tokens for voting, i.e., client k must stake γv to participate in
the voting, otherwise, it will be removed from the system.

Let us consider a multiagent scenario, where malicious
clients can collude. No matter how the malicious clients co-
operate, there are two types of malicious clients. The first type
behaves maliciously to achieve the goal of sabotaging the FL
training, i.e., lowering the global performance. The second type
acts honestly to hide themselves and survive to be able to
implement the complex policy to sabotage the FL training at
the a later stage. If the malicious clients belong to the second
type, they are factually “honest” ones.

Let r be the ratio of malicious clients in Kv , there are
r · nv malicious clients in Kv and (1 − r) · nv honest clients.
If r · nv < (1 − r) · nv , i.e., r < 0.5, each malicious client will
lose γv; if r · nv > (1 − r) · nv , i.e., r > 0.5, each malicious
client will gain ((1 − r) · nv · γv/r · nv) = (1 − r/r)γv . The
expected return R of a malicious client will be as follows:

R=

∫ 0.5

0
−γvdr +

∫ 1

0.5

1 − r

r
γvdr

=−0.5γv + ((ln(1)− 1)− (ln(0.5)− 0.5))γv

=−(ln(0.5) + 1)γv < 0. (4)

Under A2, each client is rational. As R< 0, in the long run,
a malicious client will lose all tokens and be removed from the
system. So, a given client has no reason to make a dishonest
vote resulting in honest votes by all clients.

Theorem 1 will further be empirically validated in
Section V-B1.
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Fig. 3. Round-based training process. In the initial state (indexed as ①), both honest (black) and malicious (red) clients exist in an FL system. In the final
state (indexed as ⑥), all malicious clients are expected to be removed from the system. To reach the final state from the initial state, multiple rounds of
training are required. Here are two possible scenarios, the proposed aggregation is either approved (the upper branch) or denied (the lower branch) by the
voters. In each round (within the dotted blue line), a subset of clients are randomly selected as proposers, and another subset of clients are randomly selected
as voters. The proposers and voters interact with the blockchain following the order of orange arrows (from ② to ⑤).

If A2 holds, we are certain that the malicious voters will
reach a consensus internally before they act to win the majority
vote. Intuitively, all malicious voters can be considered as a
group together. In this case, this “group” will behave exactly
as the single malicious client in Theorem 1 based on the same
reasoning. The proof is omitted.

F. Training

Each round consists of the following steps: proposer selec-
tion, local training, global aggregation, local validation, major-
ity voting, token redistribution, and block creation (recording
state3 information). The above steps are repeated in multiple
rounds until certain stopping criteria are fulfilled. The complete
training process is depicted in Fig. 3. The stopping criteria
could be a fixed amount of training epochs, which is commonly
adopted in ML.

G. Computation Complexity and Cost

For proposers, the primary computational cost is driven by
the local training algorithm, mirroring the structure of tra-
ditional FL. For voters, their computation cost stems from
evaluating the aggregated global model. In addition to mining
blocks, miners engage in further computations by consolidating
global model updates, akin to the responsibilities of a central-
ized aggregator in traditional FL. The overall computational
complexity is contingent upon the underlying training net-
work backbone.

The communication and storage costs are outlined as fol-
lows. We assume the model size is M . During an epoch, the

3For example, the state can record the global model and tokens of each
client.

communication cost for a client (i.e., a proposer or a voter) is
O(M). The storage cost on the blockchain is O(K ·M), where
K is the number of clients.

V. EXPERIMENTS

A. Experimental Setup

We first evaluate the proposed framework in a simulated
environment.

1) Data and Task: We consider a standard binary classifi-
cation task, namely loan default prediction. We use the Kaggle
Lending Club dataset4 to simulate a realistic financial appli-
cation scenario. We preprocess the raw dataset by dropping
all entries with missing values. For the labels, we only keep
“fully paid” and “charged off” to simplify the task as a binary
classification task. We randomly select 80% of the data as the
training set and use the rest of the data as the test set. The
training set is split into K subsets of equal size and distributed
across K clients. Within each client, 20% of the local data are
randomly selected as the validation set.

2) Implementation: There are K = 50 clients in the system,
and each client is initialized with 64 tokens. We use a three-
layer multilayer perceptron (MLP) as the network backbone.
Apart from the last layer, each layer of the MLP has 128 hidden
nodes. We use a standard Adam [46] optimizer with fixed
learning rate 10−3 and batch size 128. No data augmentation
is applied. We use the binary accuracy as both the local valida-
tion score and evaluation metric. In our experiments, malicious
clients are randomly selected before the training according to

4https://www.kaggle.com/datasets/wordsforthewise/lending-club

https://www.kaggle.com/datasets/wordsforthewise/lending-club
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(a) (b) (c) (d)

Fig. 4. Token distribution results for malicious voters when all proposers are honest. The malicious voters’ tokens decrease quickly as the number of epochs
increases and a large γp leads to a high decreasing rate. This empirically validates our proof of Theorem 1. The solid line denotes the mean over five runs
with different random seeds and the shaded region denotes one standard deviation around the mean. (a) η = 0.1. (b) η = 0.2. (c) η = 0.3. (d) η = 0.4.

the ratio η. In each training round, if a malicious client is
selected as the proposer or voter, it will act maliciously as
described in Section IV.5 We consider a simple data poisoning
attack [14], where malicious clients are trained to confuse the
model. Specifically, the local models are trained to lower the
model performance by using the wrong labels, but maintaining
a low weight divergence from the aggregated weights from the
last round. All baselines are implemented in PyTorch 1.12.1
[47] on one NVIDIA Tesla T4 GPU. We leverage Ethereum
smart contracts to deploy our reward-and-slash design in a
private blockchain and simulate the training process using the
Python library Web3.py.6 We set ε= 0.05 based on empirical
experience.7

3) Baselines: So far, there is no such blockchain-based FL
baseline suitable for the comparative evaluation of counter-
acting malicious behaviors in our problem setting. It is worth
mentioning that the proposed framework can be integrated with
the existing FL method. In our experiments, we use FedAVG as
the backbone FL method to illustrate our defending mechanism.
We consider four baselines. The first one is an Oracle approach,
a centralized baseline without malicious attacks. The Oracle
should provide the upper-bound performance of the experiment.
The second one is FedAVG without malicious attacks (denoted
as FedAVG w/o mal), which is equivalent to FedAVG under
η = 0 and should provide the upper-bound performance for a
decentralized environment. The third one is FedAVG under
malicious attacks (denoted as FedAVG w/ mal), where η of
clients are malicious. The fourth one is the proposed method,
FedAVG with blockchain under malicious attacks (denoted as
FedAVG w/ block). For FL baselines, 10% of clients are ran-
domly selected to perform local training at each epoch. For
FedAVG w/ block, we simply use the remaining 90% of the
clients as voters.

5If a malicious client acts honestly, then it will be considered as an honest
one and makes no harm to the system.

6https://web3py.readthedocs.io/en/v5/
7We notice that too small ε can cause large oscillation, which slows the

convergence, and too large ε can facilitate the convergence at the expense of
decreased detection performance, i.e., the system fails to remove the majority
of malicious clients.

B. Results

1) Empirical Analysis on Malicious Voters: To empirically
validate the theoretical result in Section IV-E, we first simulate
a hypothetical scenario where there are only honest proposers.
As there are more honest proposers than malicious proposers
at each round on average, the effect of malicious weights can
be seen as slowing the convergence and decreasing the global
performance, which will be validated in Section V-A3. Here,
we further simplify the scenario to focus on the behavior of
malicious voters. As shown in Fig. 4, given the set of the
hyperparameter for slashing voters γr = {2, 4, 8, 16, 32}, the
malicious voters will be eliminated from the system shortly (i.e.,
their average tokens decline to 0 within ≈ 40 epochs).

2) Comparison With Baselines: Following Theorem 1 and
Section V-B1, we now are certain that there will be no de facto
malicious voters. Thus, in the following experiments, we focus
on the scenarios where malicious clients only upload harm-
ful weights but make honest votes. We evaluate the proposed
framework against the baselines described in Section V-A3. We
provide the learning curves in Fig. 5 and the accuracy for all
four approaches after convergence (the mean accuracy of the
last 50 epochs) in Table III. The performance of FedAVG w/
block is competitive with FedAVG w/o mal (i.e., η = 0) and
consistently outperforms FedAVG w/ mal. As η increases, the
performance of FedAVG w/ mal decreases significantly, with a
larger standard deviation and increased instability. In contrast,
FedAVG w/ block maintains robust performance, with only
slightly lower results compared to FedAVG w/o mal.

3) Analysis of Token Distributions: Fig. 6 depicts the aver-
age tokens remaining in honest and malicious proposers during
the FL training process when γp = 8. We observe that honest
proposers gradually accumulate more tokens while malicious
proposers own fewer tokens as training progresses. Eventually,
most malicious proposers lose the eligibility to participate in
staking and are removed from the FL system, as their remaining
tokens are insufficient. Looking more closely at the case where
few malicious proposers are in the system [Fig. 6(a)], we note
that proposals are initially accepted until a revert and slash
step is performed around epoch 32 (indicated by the sudden
drop in tokens for malicious proposers). As more malicious
proposers are in the system [Fig. 6(d)], revert and slash steps

https://web3py.readthedocs.io/en/v5/
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(a) (b) (c) (d)

Fig. 5. Federated training under different values of the ratio of malicious clients (η). Each subfigure shows the training AUROCs when the training time (i.e.,
the number of epochs) increases. The solid lines are the mean AUROCs and the shaded regions are one standard deviation around the means. We compare
the performances of FedAVG with blockchain (i.e., w/ Block), FedAVG with malicious clients (i.e., w/ mal), and FedAVG without malicious clients (i.e., w/o
mal). We observe that FedAVG w/ Block significantly outperforms FedAVG w/ mal, while being comparable with FedAVG w/o mal, the performance upper
bound under this setup. (a) η = 0.1. (b) η = 0.2. (c) η = 0.3. (d) η = 0.4.

TABLE III
PERFORMANCE COMPARISON UNDER DIFFERENT VALUES OF THE RATIO OF MALICIOUS CLIENTS (η)

Model η = 0.1 η = 0.2 η = 0.3 η = 0.4
FedAVG w/ mal 0.963 ± 0.017 0.946 ± 0.034 0.801 ± 0.222 0.709 ± 0.266
FedAVG w/ block (Ours) 0.965 ± 0.008 0.969 ± 0.003 0.952 ± 0.020 0.955 ± 0.021

FedAVG w/o mal 0.975 ± 0.004 0.975 ± 0.004 0.975 ± 0.004 0.975 ± 0.004
Oracle 0.971 ± 0.007 0.971 ± 0.007 0.971 ± 0.007 0.971 ± 0.007

Note: The reported numbers of the performance are mean and standard deviation under five random seeds.

(a) (b) (c) (d)

Fig. 6. Token distribution results for clients when setting the parameter for slashing proposers as γp = 8. The expected average token of malicious proposers
fluctuates down during the training process. (a) η = 0.1. (b) η = 0.2. (c) η = 0.3. (d) η = 0.4.

occur more frequently. This is further highlighted by Fig. 7(a)
and 7(b), which demonstrates for each epoch if it corresponds
to an award or a revert and slash step. Fig. 7(c) and 7(d)
further provides the cumulative sum over the number of award
and slash epochs, illustrating that the majority of the epochs
consist of award epochs and that the fraction of revert and
slash episodes increases with the rising fraction of malicious
proposers. Finally, we depict the average tokens remaining in
honest and malicious proposers under various configurations of
γp in Figs. 8 and 9. We observe the same phenomenon as Fig. 6,
which aligns with the expectations of our system design and
reinforces the effectiveness of our approach.

4) Survival Analysis of Clients: As shown in Fig. 10, the
anticipated survival time of malicious proposers experiences a
decrease as γp increases. This effect can be attributed to the
incentive mechanism in place, whereby a higher value of γp
results in a greater penalty for proposers who act maliciously.

Fig. 11 shows the survival time of honest proposers under
different values of γp and exhibits noteworthy behavior. In cases
where the malicious ratio η is high, the expected survival time of
honest proposers may decrease with a large γp. This is due to the
fact that, in each epoch, all randomly selected proposers will be
slashed if the performance of the aggregated global model does
not show improvement. Therefore, it is worth noting that bal-
ancing the token slashing parameter γp is crucial because setting
an excessively high value can harm honest proposers, whereas
a small value can lead to slow convergence (see Fig. 12).

5) Sensitivity to Malicious Client Ratio: The results pre-
sented in Fig. 5 demonstrate the robustness of our proposed
method, FedAVG w/ block, against different malicious client
ratios, as its performance remains unaffected even under large
η values. However, it is important to note that the malicious
client ratio can impact the token distribution and survival time
of clients. Specifically, when there are more malicious clients
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(a) (b) (c) (d)

Fig. 7. (a) and (b) Number of award and slash epochs for clients when setting the parameter for slashing proposers as γp = 8. (c) and (d) The number of
slash epochs increases when the number of malicious proposers increases. (a) η = 0.1. (b) η = 0.4. (c) η = 0.1. (d) η = 0.4.

(a) (b) (c) (d)

Fig. 8. Token distribution results for malicious clients when choosing γp = 2, 4, 8, 16, and 32. The expected average token of malicious proposers exhibits
a higher rate of decrease when a large value of γp is selected. (a) η = 0.1. (b) η = 0.2. (c) η = 0.3. (d) η = 0.4.

(a) (b) (c) (d)

Fig. 9. Token distribution results for honest clients when choosing γp = 2, 4, 8, 16, and 32. The expected average token of honest proposers displays a
higher rate of growth when a large value of γp is selected. (a) η = 0.1. (b) η = 0.2. (c) η = 0.3. (d) η = 0.4.

(a) (b) (c) (d)

Fig. 10. Malicious proposers survival time with various γp. The expected survival time of malicious proposers declines as γp increases. (a) η = 0.1.
(b) η = 0.2. (c) η = 0.3. (d) η = 0.4.
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(a) (b) (c) (d)

Fig. 11. Honest proposers survival time with various γp. A large γp can also decrease the expected survival time of honest proposers when the malicious
rate η is large. This is because, in each epoch, the randomly selected proposers will be all slashed when the performance of the aggregated global model does
not increase. (a) η = 0.1. (b) η = 0.2. (c) η = 0.3. (d) η = 0.4.

(a) (b) (c) (d)

Fig. 12. Global accuracy results when choosing γp = 2, 4, 8, 16, and 32. The global accuracy is not sensitive to the value of γp but the convergence tasks
more epochs for larger η. (a) η = 0.1. (b) η = 0.2. (c) η = 0.3. (d) η = 0.4.

present in the system, honest clients tend to accumulate more
assets on average [c.f. Fig. 9(a) and 9(d)]. Nevertheless, they
also face a higher risk of being slashed during an epoch, which
can ultimately shorten their survival time [c.f. Fig. 11(a)–11(d)].

6) Limitations: In this work, as the experimental results aim
to evaluate the robustness of the proposed framework, several
practical challenges are simplified, e.g., staleness [48], storage,
and privacy [44]. Further, the proposed method requires more
computational power than traditional methods due to mining
(blockchain computing) and voting. Finally, large models have
gained in popularity in practical applications, e.g., ViT [49] and
GPT-3 [50]. This raises the question of how to efficiently handle
on-chain aggregation for large models. Future work thus will
aim to address these limitations to facilitate the research and
development of FL with blockchain.

C. Cost Analysis

In our experiments, we adopt the Kaggle Lending Club
dataset8 to simulate a realistic financial application scenario.
The total client number is K = 50. For each client, the gen-
erated model update file is with a size of 587 kB. Therefore,
the communication cost incurred by a proposer or a voter is
587 kB and the storage cost on the blockchain is 587 × 50 kB =
28.66 MB.

8https://www.kaggle.com/datasets/wordsforthewise/lending-club

VI. ADDITIONAL EXPERIMENTS

In Section V, we examine the performance of the proposed
system on a simple learning task on IID data. In this section,
we further evaluate the robustness of the proposed system with
a more complex task on non-IID data.

A. Experimental Setup

1) Data and Task: We consider a standard multilabel clas-
sification (MLC) task [51] to simulate a realistic clinical ap-
plication scenario. We use the ChestX-ray149 dataset [20] and
leverage the first 6× 104 chest X-ray images (CXRs) as our
non-IID dataset. We use 80% of the data as the training set and
use the rest of the data as the test set. The training set is split
into K subsets of equal size and distributed across K clients
in a non-IID fashion. Within each client, 20% of local data
are randomly selected as the validation set. Because ChestX-
ray14 has a long-tailed label distribution, we choose the ten
most common diseases to ensure that each client can contain
labels for all diseases of interest.

2) Implementation: There are K = 50 clients in the sys-
tem and each client is initialized with 64 tokens. Following
[51], we use DenseNet121 [52] as the network backbone. We
use a standard Adam [46] optimizer with fixed learning rate
10−3 and batch size 256. We process each CXR with instance
normalization [53] and no data augmentation is applied. We

9https://nihcc.app.box.com/v/ChestXray-NIHCC

https://www.kaggle.com/datasets/wordsforthewise/lending-club
https://nihcc.app.box.com/v/ChestXray-NIHCC
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(a) (b) (c) (d)

Fig. 13. Federated training under different values of ratio of malicious clients (η). The solid lines are the mean AUROCs and the shaded regions are one
standard deviation around the means. (a) η = 0.1. (b) η = 0.2. (c) η = 0.3. (d) η = 0.4.

TABLE IV
PERFORMANCE COMPARISON UNDER DIFFERENT VALUES OF RATIO OF

MALICIOUS CLIENTS (η)

Model η = 0.1 η = 0.2 η = 0.3 η = 0.4
FA w/ M 0.677 ± 0.014 0.640 ± 0.012 0.594 ± 0.030 0.483 ± 0.080
FA w/ B 0.683 ± 0.008 0.688 ± 0.024 0.676 ± 0.023 0.673 ± 0.021

FA w/o M 0.695 ± 0.004 0.695 ± 0.004 0.695 ± 0.004 0.695 ± 0.004
Oracle 0.733 ± 0.014 0.733 ± 0.014 0.733 ± 0.014 0.733 ± 0.014

Note: The reported numbers are mean and standard deviation under five
random seeds.

use the mean area under the receiver operating characteristic
curve over the 10 diseases as both the local validation score
and evaluation metric. We set ε= 0.05 and γ = 32 based on
empirical experience. The rest of the implementation details
follow Section V-A2.

3) Baselines: We consider the same four baselines as in
Section V-A3.

B. Results

We run each baseline with five random seeds and report both
mean and standard deviation under different values of η. The
training results are visualized in Fig. 13.

1) Performance Comparison: FedAVG w/ block shows
competitive performance with FedAVG w/o mal (i.e., η = 0)
and outperforms FedAVG w/ mal consistently. In addition to
the learning curves in Fig. 13, we also report the mean AU-
ROCs for all 4 methods after they fully converge in Table IV.
When η increases, the performance of FedAVG w/ mal drops
significantly and becomes more unstable (i.e., larger standard
deviation). FedAVG w/ block remains robust performance and
is only slightly lower than FedAVG w/o mal.

2) Convergence Analysis: It can be shown that FedAVG w/
block converges faster than both FedAVG w/o mal and FedAVG
w/ mal under various values of η. We hypothesize that the
proposed global aggregation mechanism can facilitate federated
optimization. Intuitively, this can be explained with gradient
descent. FedAVG averages gradients optimized for different
directions at different clients, which might not be an optimal
global gradient. Under malicious attacks, gradients from mali-
cious clients are intentionally optimized away from the optimal
direction, which slows down the training process of FedAVG.

Fig. 14. Tokens of honest and malicious clients when η = 0.3 and γ = 32.

However, the proposed consensus mechanism mitigates this
issue as it only aggregates when consensus is achieved.

3) Token Analysis: As we use tokens to filter out malicious
clients, we plot the average tokens left in honest and malicious
clients (e.g., Fig. 14). After enough training epochs, honest
clients will have more tokens and malicious clients will have
fewer tokens. At the end of training, almost all malicious clients
do not have enough tokens to stake, i.e., they are removed from
the FL system. It is worth mentioning that γ has only trivial
effect on the learning performance but large γ can overkill
honest clients and small γ can cause slow convergence.

4) Impact of Non-IID Data: Due to the non-IID nature of
the medical task, the task setup in this section is more complex
than the binary classification task in the previous section. In
contrast to Section V, there are two important findings. First,
the proposed method is robust under the non-IID setup. Sec-
ond, surprisingly, while the task is more difficult, the perfor-
mance gain between the proposed method and the baselines
becomes larger.

VII. CONCLUSION

In this work, we explore an under-explored research direc-
tion, namely using FL and blockchain to defend against poi-
soning attacks. The defense mechanism is twofold. We use
on-chain smart contracts to replace the traditional central server
and propose a stake-based majority voting mechanism to detect
client-side malicious behaviors. We not only provide a solution
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to the problem of interest but also show the robustness of the
proposed method and provide the first empirical understanding
of the problem. Last but not least, the results of this work
suggest that the integration of FL and blockchain is an emerging
solution to trustworthy ML. We believe that blockchain can
not only play an important role in decentralization and the
incentivization of participants for real-world FL applications in
fields such as finance and medicine but also can be leveraged
to defend against poisoning attacks.
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