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Why Should I Trust Your Explanation?
An Evaluation Approach for XAI Methods Applied

to Predictive Process Monitoring Results
Ghada Elkhawaga , Omar M. Elzeki , Mervat Abu-Elkheir , Member, IEEE, and Manfred Reichert

Abstract—As a use case of process mining, predictive process
monitoring (PPM) aims to provide information on the future
course of running business process instances. A large number
of available PPM approaches adopt predictive models based
on machine learning (ML). With the improved efficiency and
accuracy of ML models usually being coupled with increas-
ing complexity, their understandability becomes compromised.
Having the user at the center of attention, various eXplainable
artificial intelligence (XAI) methods emerged to provide users
with explanations of the reasoning process of an ML model.
Though there is a growing interest in applying XAI methods
to PPM results, various proposals have been made to evaluate
explanations according to different criteria. In this article, we
propose an approach to quantitatively evaluate XAI methods
concerning their ability to reflect the facts learned from the
underlying stores of business-related data, i.e., event logs. Our
approach includes procedures to extract features that are crucial
for generating predictions. Moreover, it computes ratios that have
proven to be useful in differentiating XAI methods. We conduct
experiments that produce useful insights into the effects of the
various choices made through a PPM workflow. We can show
that underlying data and model issues can be highlighted using
the applied XAI methods. Furthermore, we could penalize and
reward XAI methods for achieving certain levels of consistency
with the facts learned about the underlying data. Our approach
has been applied to different real-life event logs using different
configurations of the PPM workflow.

Impact Statement—As ML models are used to generate pre-
dictions for running business process instances, the outcomes
of these models should be justifiable to users. To achieve
this, explanation methods are applied on top of ML models.
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However, explanations need to be evaluated concerning the
valuable information they convey about the predictive model and
their ability to encode underlying data facts. In other words, an
explainability method should be evaluated concerning its ability
to match model inputs to its outputs. Our approach provides a
means to evaluate and compare explainability methods concerned
with the global explainability of the entire reasoning process
of an ML model. Based on experimental settings, where each
step of the PPM workflow is changeable, we could study the
ability of our approach to evaluate different combinations of
data, preprocessing configurations, modeling, and explanation
methods. This approach allows an understanding of which PPM
workflow configurations increase the ability of an explanation
method to make the prediction process transparent to users.

Index Terms—Explainability, functionally grounded evalua-
tion, global explainability methods, predictive process monitor-
ing, process mining, XAI.

I. INTRODUCTION

PREDICTIVE process monitoring (PPM) originates from
the research domain of process mining [1]. Process mining

aims to provide insights that contribute to enhancing running
process executions, prevent an expected inefficiency in future
executions, or optimize the order in which tasks are executed in
the context of the respective business process. [2] defines PPM
as the set of runtime methods that aim to generate predictive
models that may be used for predicting a particular value of
a process instance given its partial trace and the event log
of historical traces as inputs. As advances have been made in
the machine learning (ML) field with respect to the achieved
performance, many PPM approaches tend to use ML models to
generate accurate predictions. Given the complementary nature
of research, however, these advances as well as challenges will
be propagated across disciplines. Consequently, the challenges
of ML are propagated to PPM approaches.

One of the main challenges of ML models is the tradeoff
between accuracy and complexity. To tackle this challenge,
recent research has focused on making the outcomes of pre-
dictive models more understandable and making the models
themselves more interpretable for users being affected by these
models. As a consequence, eXplainable artificial intelligence
(XAI) has emerged and numerous proposals have been made to
produce explanations that differ with respect to the complexity
of the predictive model, the scale, and the size of the predictions
to be explained, as well as the experience and knowledge of
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the respective user. Several approaches have been proposed to
support ML-based PPM by mechanisms to increase user trust
in the generated predictions. To achieve this goal, XAI methods
are applied to PPM results.

A. Problem Statement

The increasing use of XAI methods necessitates using met-
rics and techniques to evaluate these methods with respect to
specific criteria. Particularly, it is necessary to evaluate the abil-
ity of an XAI method to reflect the knowledge learned by an ML
model. With the increasing interest in applying XAI methods
in PPM, a few proposals [3], [4], [5] were made to evaluate
the explanations created for PPM results. This article proposes
an approach for evaluating XAI methods with respect to their
ability to transfer data facts learned by an ML model about PPM
data. The proposed approach provides quantitative techniques
to compare global XAI methods when explaining the predic-
tions of one ML model while considering the data patterns
that the model learned during the training process. We propose
ratios to measure the consistency of an XAI method. In XAI
literature, consistency is defined as a property of an explanation.
According to [6], consistency of explanations corresponds to the
similarity between the explanations created for similar predic-
tions, which were made by two different ML models. However,
it has been demonstrated that sometimes explanations can high-
light features that do not have a statistical association with the
prediction target [7]. In this article, the term consistency denotes
the percentage of similarity between the set of essential features
generated by an XAI method on one hand, and the principal
feature set being crucial for generating predictions on the other.
With the principal feature set, we mean features that have the
highest influence on prediction results. We provide techniques
to conclude the principal feature set from the original data.
Furthermore, we provide metrics to compare and rank various
XAI methods with respect to their consistency ratios (CRs)
among other factors. We believe that our approach represents a
starting point for other proposals in the same direction.

B. Contributions

As mentioned, in the PPM context, there is a need to provide
mechanisms to quantitatively evaluate not only the resulting ex-
planations but also the methods generating these explanations.
To achieve this, we propose an approach to evaluate global
model-agnostic XAI methods, which may be used to explain
predictions in the PPM context. In summary, we make the
following contributions.

1) We propose an approach that comprises four phases to
compute ratios and metrics to differentiate XAI methods
based on the consistency of their explanations with the
ground truth learned about a particular event log.

2) We introduce the concept of XAI method consistency
with underlying principal features and provide means to
extract these principal features.

3) Based on a number of experiments, we study how the
underlying data characteristics can be reflected through
the obtained experimental results.

4) We implement the proposed approach and enable free
access to this implementation for interested researchers
to build upon.

Section II summarizes the necessary backgrounds and related
research efforts. Our approach and the main contributions of our
work are presented in Section III. In Section IV, we discuss the
main research questions we try to address as well as the ex-
perimental settings we use to examine and apply the approach.
The basic observations and discussions of the factors that lead
to these observations are presented in Section V. Furthermore,
we discuss related research on PPM with explanations in Sec-
tion VI. The article concludes with a summary and an outlook
in Section VII.

II. BACKGROUNDS

Our work follows two main research directions; PPM as a
use case of process mining and XAI. Knowledge and techniques
developed in the context of both fields constitute the main
building blocks of our approach. This section introduces the
backgrounds needed to familiarize the reader with the main
concepts and techniques in the two research fields. Finally, we
provide some background on feature selection (FS) methods
that are used in the context of this work.

A. PPM

1) Preliminaries: The main input of a PPM task is an event
log, which comprises a finite number of traces that document
several executions of a specific process, i.e., process instances.
While illustrating the basic notions, we will use activities from
the order placement process as our example.

1) Events and activities: An event corresponds to the exe-
cution of a single step of the process and belongs to a
single activity class. For example, the process of order
placement defines a set of all allowed activities, includ-
ing user logging (A1), catalog browsing (A2), products’
choosing (A3), cart modification (A4), cart approval (A5),
and payment (A6). Each of these activities is called an
activity class. Whenever a user places an order, instances
of these activities are executed. In this case, they are
called events. With each event, there is payload informa-
tion associated with it. The timestamp (T ) of an event,
the resource that executed the event, and important notes
(text) are examples of payload. Therefore, an event ei ∈ ε
is a tuple ei = (ci, ai, ti, dij) with ci ∈ C representing a
case, i.e., process instance identifier, ai ∈A, ti ∈ T rep-
resenting mandatory attributes, and dij ∈Dj, 1 ≤ j ≤m
are all additional attributes.

2) Traces and event log: A trace σ =< e1, e2, . . . , en >
represents a sequence of executed events recorded for a
specific process instance. An event log stores all traces of
process instances executed in the context of a particular
business process. Each process instance is stored over
multiple rows in the event log. Each row stores an event
along with its payload or associated attributes. Attributes
having the same value in all rows of a process instance are
static attributes. For example, the case ID and customer
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TABLE I
EXAMPLE OF A TRACE

Case ID Event ID Activity Timestamp Resource Requested Amount Monthly Cost
C120 e1 Create application 30 March 2018 10:07:22 John Doe 38 000 1281
C120 e2 Validate application 30 March 2018 14:12:29 Ben Markus 38 000 231
C120 e3 Decide 12 April 2018 11:15:30 Jill Adams 38 000 342
C120 e4 Close application 23 April 2018 15:24:03 John Doe 38 000 1213

name are static attributes. Moreover, attributes whose
values correspond to a specific event and change for the
rows recording the corresponding process instance are
dynamic attributes. For example, Table I represents an
example of a trace of events, while each has associated
dynamic and static attributes.
In this example, the case ID is an identifier of the trace,
while the event ID is an identifier of the event to be
represented by a given row. Fields that represent dynamic
attributes such as T , resource, and monthly cost have
different values for each row. The other fields, in turn,
represent static attributes and have static values along the
trace. Requested amount is an example of static attributes.

3) A prefix: It represents a subset of a trace, where pn =<
e1, e2, ..., en > with 1 ≤ n≤ k and k being the number
of events executed within the trace. Note that a prefix
can be extracted from traces following a gap between
the events to be included in the prefix. For example,
when the gap= 3 and prefix length= 5, then in this case
P5 =< e1, e4, e7, e10, e13 >. An event log that contains
prefixes of traces is called prefix log.

2) Predictive Process Monitoring Workflow: A plethora of
research has been conducted to predict relevant information on
the future course of a running process, facilitated by the avail-
ability of ML and statistical techniques. Prediction tasks include
the prediction of the next activity to be executed, performance
indicators, e.g., remaining time upon process completion or cost
of executing an event, and process outcome [2], [8], [9]. This
work focuses on predicting the outcome of a running process
instance. Several studies and benchmarks were carried out to
characterize the essential phases as well as associated methods
and techniques used along the PPM workflow [2], [8], [9].
Our focus is on PPM workflow-related procedures that use an
ML model to perform the prediction task. The procedures and
steps performed along a PPM workflow do not differ according
to different prediction tasks. A PPM workflow is divided into
offline and online stages [9]. The offline stage is illustrated in
the left part of Fig. 3. It consists of two basic levels.

1) Event log preprocessing: At this level, an event log is
prepared and transformed into a format suitable as input
for the selected ML model. The procedures applied at this
level vary in their purpose and applied technique. The first
step deals with prefixing process instances, i.e., cutting
the process instances up to a certain length. The length
and gaps used to truncate the instances are predefined
to equip the model with enough information to make a
prediction, while not exhausting the used computational
resources with large amounts of data to be processed.
Bucketing follows prefixing when preprocessing an event
log. It means grouping similar prefixes in a bucket and
treating each bucket as a separate sublog. The bucketing

technique defines the similarity criterion applied to group
similar prefixes. Single, state, prefix length, clustering,
and domain knowledge are well-studied and surveyed
bucketing techniques [8], [9]. Encoding follows the buck-
eting step and aims to abstract a trace or a process instance
while at the same time extracting features in a format
suitable for a predictive ML model [9]. Four techniques
are proposed in literature [8], [9] including static, index-
based, last-state, and aggregation encoding techniques.
In summary, the encoding step aims to convert prefixes
pn into a representative vector of numerical values. To
transform the values of each attribute a, encoding strate-
gies differ based on whether the attribute is static or
dynamic, and whether it contains numerical or categorical
values. Numerical values representing static attributes are
passed to the final features’ vector as–is. Furthermore,
categorical values belonging to static attributes are one-
hot encoded. Encoding static attributes is called static
encoding. Encoding techniques for dynamic attributes
differ with respect to how numerical and categorical val-
ues are transformed. For example, in aggregation encod-
ing, each event belonging to a trace has a separate row.
Numerical values are aggregated across the trace using
aggregation functions (e.g., sum and mean). Furthermore,
values of categorical attributes are either transformed into
a boolean representation indicating whether a given value
is available for each event or a numerical representation
indicating the number of occurrences of the value.

2) Modelling: In the PPM workflow, this level does not
include special steps that differ from the ones of the mod-
eling stage of an ML pipeline. According to [2], [8], [9], a
wide range of ML and deep learning models are selected
based on the type of the PPM task. [9] obtained accurate
results after applying boosting models in the outcome
prediction task, while promising results were obtained by
[8] after using LSTM models for predicting the remaining
time of a process instance. After training the selected
model on the encoded training subset of the event log,
model performance is evaluated using the testing subset
of the same event log. The accuracy of predictions can be
measured with well-founded ML techniques, (e.g., AUC,
F-score, MAE, and RMSE), and the choice of a specific
technique depends on the type of prediction task. At the
same time, earliness measures the length of a prefix at
which the model achieves an acceptable level of accuracy,
with a preference for shorter prefixes [8].

Event log preprocessing and modeling are performed in the
offline stage of a PPM workflow. During this stage, com-
pleted process instances are used. In the online stage of a PPM
workflow, in turn, incomplete process instances are considered.
The latter are either obtained as a test subset of event logs
or actually constitute running process instances. In the online
stage, the corresponding bucket of the running process instance
is determined, the instance is encoded according to the tech-
nique applied to other instances belonging to the same bucket,
and finally, the encoded running instance serves as input to the
trained model to generate a prediction.
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B. XAI Application

With the emergence of XAI methods that address different
explainability contexts and needs [10], [11], [12], [13], [14], a
large number of studies investigate the benefits of predictions
that are enhanced with explanations and to explore the limita-
tions and pitfalls of the applied XAI methods [6], [15], [16],
[17], [18]. According to [16], an explanation is a means to
describe the internals of a system or a model in a way under-
standable to humans (interpretability) while being accurate at
the same time (completeness). In [15], explanations are defined
as the degree to which a human observer can understand the
reason behind a decision or a prediction made by the model.

Being able to provide accurate predictions has never been
the sole aim of using ML-based systems. Other goals include
safety, trust, nondiscrimination, and the capability of improve-
ment. [19] argues that XAI provides a means to confirm the
desiderata of ML applications. Corresponding criteria include
fairness with respect to certain groups, the privacy of sensitive
information within the data, and causality, which implies that
the predicted change in output (due to a perturbation) will occur
in the real system. To further pursue these goals, XAI methods
are applied and placed on top of ML models. Explanations
can be provided for single predictions (local explanations) or
for the entire reasoning process of a predictive model (global
explanations).

As a response to the wide adoption of XAI approaches, mul-
tiple XAI evaluation approaches have been proposed. The latter
vary with respect to their goals, techniques, user experience lev-
els, and scale. An evaluation method has a target characteristic
against which the performance of an XAI method is evaluated.
For example, there exist methods for evaluating an explana-
tion for its stability [5], [20], understandability [3], robustness
[21], [22], and fidelity [4]. Our proposed approach evaluates
an XAI method with respect to the degree of its consistency
with the underlying data. Consistency as we define it enables
differentiating XAI methods regardless of the explained ML
model, presuming that the model remains unchanged regarding
its type and training parameters. Note that the consistency of
an XAI method establishes a link between the evaluated XAI
method and the original data from the evaluation perspective,
apart from the fact that a global XAI method evaluates the
model’s understanding of the data, but not the data itself.

An evaluation approach has a specific grounding, i.e., the phi-
losophy and the principal components an evaluation approach
is based on [19] categorizes evaluation methods into the three
grounding types: first, functionally grounded methods automat-
ically measure some formal definition or characteristic of an
explanation, i.e., without any human participation. Second,
human-based evaluation methods depend on the presence of
a lay-person who is provided with a simplified form of the
task to assess the quality of an explanation without relying on
the level of user experience in the domain. Third, application-
based evaluations present the generated as–is explanations to
an involved practitioner who is expected to have some do-
main knowledge and hence can provide key observations and
improvement hints. Whenever humans are involved, there is

Fig. 1. Categories of XAI evaluation approaches.

a potential that the evaluation is done in a qualitative manner
yielding subjective opinions on the XAI method. Whenever the
evaluation method does not depend on humans, it is possible
to apply a quantitative method in an objective manner. Fig. 1
summarizes the grounding for evaluating the XAI methods.

Due to space constraints, we do not discuss evaluation ap-
proaches in this article, other than in the form of related works
(cf. Section VI). We refer interested readers to corresponding
surveys on evaluation methods [23], [24]. Our approach is an
objective functionally grounded approach that evaluates global
XAI methods concerning their consistency based on the facts
learned about the original data.

C. FS

An essential component of our approach is FS. FS is an
implicit step performed when training a predictive model. Apart
from model training, FS is regarded as an important data-
cleaning procedure that is carried out to reduce data dimen-
sionality. Furthermore, it enables extracting information that is
expected to have high predictive power and hence can leverage
the efficiency of the prediction model [25]. FS methods aim to
remove irrelevant and redundant features that do not profoundly
contribute to the generation of predictions. As an example
consider a dataset with several highly correlated features. This
correlation implies the cooccurrence of certain values of the fea-
tures and, hence, the redundancy of information in the patterns
learned by the predictive model. In this case, it is sufficient to
have only one of the correlated features. On the other hand, a
feature whose values are not correlated to prediction values is
considered irrelevant as its presence does not lead to different
predictions. FS methods fall into three categories [26].

1) Wrapper-based feature selection (WFS): WFS methods
use a classifier to choose the best subset of features that
increase classifier performance. Sequential selection al-
gorithms are the most common form of WFS methods.
They start with an empty feature subset and incrementally
add features one by one until a stopping condition is met
(forward selection). Alternatively, WFS methods may
start with the entire feature set and eliminate features
one by one until the stopping condition is met (backward
selection). While depending on a classifier and its per-
formance as an objective function, there is a risk to the
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Fig. 2. FS methods.

validity of the selected feature subset since a classifier
is prone to overfitting. Moreover, for each feature subset
at each step, a new model is trained, and as a result, the
execution process becomes computationally expensive.

2) Filter-based feature selection (FSS): A suitable rank-
ing criterion is used to order the features according to
their prediction power and dependency on the target pre-
diction. FSS methods are independent of the predictive
model choice and are computationally inexpensive. How-
ever, FSS methods that analyze the predictive power of
features independently from other features have the po-
tential to disregard features that are important in combi-
nation with others.

3) Embedded feature selection (EFS): Methods from this
category use a classifier with a ranking function as an in-
trinsic part of its working mechanism, e.g., decision trees
or linear models. However, being dependent on a clas-
sifier for choosing the most relevant feature subset also
means being prone to any bias regarding the choices made
by the respective classifier.

Fig. 2 provides various examples of methods falling into the
three presented FS families. The FSS category contains most
FS methods. FS methods may be characterized according to
specific criteria [27], e.g.,

1) Number of analysed features. An FS technique may
either be uni or multivariate. On one hand, univariate
methods analyze the relevance of a feature in isolation
from other features. Note that this complicates finding
redundant features. On the other, multivariate methods
analyze an entire feature subset [28].

2) Ranking criteria. The measurements or metrics used to
evaluate the relevance of a given feature compared to
others include, but are not limited to, the distance between
samples, statistical analysis of the predictability power of
feature values, information gain, and class consistency.

3) Analysis goal. Some filter methods are suitable to be used
in the context of either classification or regression tasks,
while others are suitable for both tasks.

FS methods enable reducing a highly dimensional dataset to
its important features that are expected to be used by a predictive
model. Subsequently, these methods are useful to the proposed

Fig. 3. Proposed XAI evaluation approach.

approach since they can be applied to reduce the input event
log to the most crucial features.

III. PROPOSED XAI EVALUATION APPROACH

Our proposed evaluation approach has four phases that can
be organized in a linear workflow. The first phase starts with
the analysis of event logs to select the minimum set of fea-
tures without which no reliable predictions would be possible.
The second phase adds global XAI methods on top of modeling
and prediction outcomes. The third phase then computes the
metrics to measure the consistency percentage of outcomes
from the previous phase. Finally, the fourth phase computes
comparative metrics used to select an XAI method from a
set of methods applied under the same experimental settings.
The mechanism followed in the four phases of the approach
necessitates their execution in a post hoc manner, i.e., after
the modeling and prediction generation workflow is executed.
An exception is the first phase, which solely depends only on
the availability of preprocessed event logs, and hence can be
interleaved within a PPM workflow. Fig. 3 shows the proposed
evaluation approach preceded by the PPM workflow phases.

A. Phase 1: Principal Features Selection

This phase is the most crucial one to realize the goal of the
approach, as its outcomes are supposed to reflect the ground
truth extracted from the underlying data. With the term “ground
truth” we mean basic data elements that can be crucial to gen-
erating the outcomes of a predictive model, and hence, are ex-
pected to be used by a predictive model and be reflected through
the explanations of an XAI method. This phase is concerned
with defining feature subsets that are relevant and nonredundant
to the process of generating predictions. To identify the ground
truth’s basic elements, we consider the following proposition:

Proposition 1: A finite set of features used by a predictive
model can be abstracted by subsets of features that have a
deterministic relation to the prediction to be generated.
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Fig. 4. Phase 1: principal features selection.

Kommiya Mothilal et al. [12] define necessary feature sub-
sets as a minimal feature subset whose values have a coexis-
tence relation to predictions. This implies that each change to
feature values in the necessary subset will inevitably lead to
a remarkable change in the prediction. We denote this subset
as the principal features. In phase 1, an extraction process
is executed to obtain principal features whose values have a
deterministic role in achieving a prediction outcome. The ob-
tained principal features are not mainly used to improve the
performance of the applied ML model, as this phase is executed
independently of the model.

In our approach, we differentiate between two types of prin-
cipal features, i.e., reduct and core. A reduct is a subset of
features that are sufficient to define the basic concepts of the
feature set. A reduct represents a form of the feature set that is
less redundant in terms of the information it represents about
the event log. Consequently, multiple reducts may exist for a
single feature set, depending on the reduct extraction method
and the predictive power of the features in the subset together.
A core is a subset of the reduct, with features, being critical
to a prediction task and cannot be eliminated when reduc-
ing features. Features in the core have more predictive power
compared to the remaining features, while excluded features
are assumed to have less potential to improve the accuracy of a
predictive model. In contrast, the accuracy of a predictive model
might decline whenever a feature is removed from the core.
The core is calculated by assuming the intersection of multiple
reducts computed of a feature set using different FS techniques.
The additional features existing in a reduct complement those
in a core to improve the performance of a predictive model.
Fig. 4 demonstrates the steps of phase 1. Furthermore, we
provide a pseudocode for computing principal core sets in the
supplementary materials (cf. Algorithm 1).

To analyze the entire feature set and to determine the predic-
tive power of a certain feature in achieving the prediction target,
we employ FS methods. Note that these methods are applied
to the training subset of the event log. In phase 1, we employ
different FS methods belonging to different FS categories and
differing in the used techniques (cf. Fig. 4, step 1). The main
criterion that qualifies an FS method to be applicable is its
ability to return importance or relevance scores for the entire

Algorithm 1 Compute Adjustable Threshold
Input: Set of all ReductFS , ThresholdOld

Output: ThresholdsList

1: Compute mean of scores foreach Reduct ∈ ReductFS

2: MinScore = min (MeanScores)
3: MaxScore = max (MeanScores)
4: Interval =MaxScore−MinScore
5: Divide the Interval into equal steps
6: stepsCount=Num of steps in the interval
7: for s in range (1, stepsCount) : do
8: Thresholdnew = ThresholdOld − (step ∗ s)
9: ThresholdsList.append(Thresholdnew)

feature set, not just a predefined number of features. The inde-
pendence of a specific ML model is another crucial criterion.
Any FS method that has the potential to satisfy both criteria is
a candidate for application in this phase.

Provided that the applied FS methods differ in their scoring
techniques, the retrieved scores are normalized for the sake of
comparability (cf. Fig. 4, step 2). Normalizing the scores results
in all scores being within the range of 0,1. Note that the scores
are shifted before being normalized in order to mitigate the
effect of negative scores in case there are any. When shifting
the scores, the absolute value of the minimum negative score
is added to all the scores, in order to shift the whole data with
the same amount before being normalized. The retrieved scores
serve two important roles. The first is being a means to rank
features according to their relevance to the prediction target.
The second is to provide a threshold to define a reduct for each
FS method based on feature scores provided by the applied FS
method. As a result, each applied FS method will provide a
reduct of the feature set (cf. Fig. 4, step 3).

As the applied FS methods rank the features instead of elim-
inating redundant ones, a mechanism is needed to reduce the
number of features denoted as the reduct. Therefore, for each
FS method, we derive a mean threshold based on the mean of
scores provided by the method (cf. Fig. 4, step 2). To define
a universal threshold that may be used across the scores of all
FS methods, the minimum mean score is used as the thresh-
old. Note that this scenario follows the “simple thresholding”
substep in Fig. 4. Features scoring higher than the defined
threshold are included in the reduct produced by the relevant
FS method. Consequently, not all reducts are expected to be of
the same size (cf. Fig. 4, step 4). Afterwards, the core set is the
result of intersecting all reducts (cf. Fig. 4, step 5). The notion
of a core and its calculation process are obtained from rough
sets theory [29]

CoreEventlog = ∩ReductFS

where ReductFS is the set of all reducts obtained using the
applied FS methods.

In our core notion, one of the most important conditions of
a core is that there can be no empty core set, not under any
given situation.
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Proposition 2: An empty core set indicates that no feature
holds valuable information for the predictive model, as a result
of disagreement of FS methods.

To ensure that the reduct obtained by applying each FS
method shares some knowledge with the other applied FS meth-
ods, the core set should not be empty. In turn, this condition
ensures that there is obvious knowledge in the data that is to
be learned by the ML model. This knowledge may further be
reflected by an XAI method. Our goal is to capture this essential
knowledge (in the form of the core set) and use it later in
comparing several XAI methods in terms of their ability to
communicate this knowledge.

In order to overcome an empty core output, whenever it
occurs, the applied reduct selection threshold has to be less
restrictive. Our approach is to define an adjustable threshold as
illustrated in Algorithm 1, whenever a simple threshold leads to
an empty core situation. Following step (2) in Fig. 4, the mean
of scores obtained by each FS method is calculated. Our goal is
to give more room for more features to be included in a reduct.
To reach this goal, we define an interval under the previously
applied threshold (line 4 in Algorithm 1). The defined interval
is equal to the difference between the maximum and minimum
mean scores and is divided into equal sections. The minimum
threshold obtained should not be less than the old one by more
than the defined interval. A new list of thresholds is computed
by reducing the old threshold by a step or more. A new threshold
is picked up randomly from the new list. The new threshold is
not less than the old one by more than the value of the interval.
A new set of reducts is computed based on the new threshold
and subsequently a new core. This procedure continues until we
obtain a nonempty core set.

After obtaining a nonempty core, the smallest reduct set is
selected as the reduct representing the event log together with
the core set, and both will be used in upcoming phases (cf.
Fig. 4, step 5)

ReductEventlog = shortest(ReductFS)

where ReductFS is the set of all reducts obtained using the
applied FS methods. The shortest reduct is selected as it is guar-
anteed to contain the common features between all reducts, i.e.,
the core set, and at the same time represents the most important
information contained in the entire feature set of the event log in
a concise form. In Algorithm 1 (cf. the supplementary materi-
als), we summarize the complete procedure followed to obtain a
reduct and a core representing the principal features. According
to [14], the achievement of some characteristics of an XAI
method on a local scale does not imply their achievement in
global explanations. As we compute the proposed principal
feature subsets based on the whole data available in an event
log, it is more consistent to study how they are reflected by
global XAI methods.

B. Phase 2: Global Explanations Generation and Analysis

This phase is concerned with obtaining the artifacts to be
evaluated. As we want to evaluate the consistency of XAI
methods outcomes with respect to principal features, evaluated

XAI methods are expected to explain predictions in terms of
features that influence a predictive model reasoning process.
Consequently, XAI methods applied in this phase fall into the
feature attributions category, i.e., they rank features based on
their importance for making a prediction. As the proposed
approach is meant to be a post hoc one, phase 2 is executed
on top of a trained predictive model.

After explaining a predictive model with the selected XAI
methods, each method returns a set of features along with
their associated scores. However, these scores do not always
represent the importance of a feature. Instead, each XAI method
returns scores that represent a criterion used in the ranking
mechanism of the method. For example, accumulated local
effects (ALE) [10] returns scores that represent expected predic-
tion change in response to changing the feature value. Another
example is SHAP values, that are resulting after applying SHAP
method, [13] represent the contribution of a feature value in
reaching a specific prediction for a single process instance.
A transformation technique is applied to convert feature scores
into a form representing the importance of a feature in driving
the reasoning process of the predictive model over the whole
event log.

For example, we use entropy to obtain conclusive scores of
the set of features after applying ALE. In the case of SHAP,
scores are calculated for each process instance separately.
The latter values should be scaled up to be representative on
a global scale rather than locally to a specific process instance.
Following the procedure defined by the author of SHAP [30],
We aggregated scores of a specific feature over the whole event
log into one score representing the contribution of such feature
in the general prediction process. In permutation importance
(perm) [18], the method returns importance scores indicating
the average prediction error after shuffling the values of the
feature for a number of predefined times.

The n- and m- top-ranked features are obtained from the
features returned by each XAI method, where n and m are the
sizes of the reduct and core obtained in phase 1. The extracted
feature subsets are called reductXAI and coreXAI, respectively,
and they represent the principal features obtained using a certain
XAI method. This phase concludes with a number of reducts
and cores equivalent to the number of applied XAI methods.

C. Phase 3: Consistency Analysis

The main focus of phase 3 is to measure the percentage of
consistency between the principal features and the important
features concluded by each XAI method. In other words, the
CR denotes the knowledge that an XAI method can reflect in
the generated explanation when being applied to a specific ML
model. Therefore, we introduce a metric to enable evaluate the
degree to which an XAI method can reflect the ground truth
found in the underlying data. The following equation shows
how to compute the CR metric:

CR =

∑
Scores(TargetXAI ∩ TargetEventlog)∑

Scores(TargetEventlog)
. (1)

Seeking shared knowledge requires obtaining the intersection
between the principal features and the explanation generated
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Fig. 5. Steps of phase 3.

by an XAI method. The consistency_ratio can be measured
using either the reduct_ratio or the core_ratio depending on
which CR shall be computed. Regarding the reduct_ratio, the
reduct sets of the complete event log and the XAI method to
be evaluated are used and, similarly, in the case of computing
the core_ratio. Therefore, in (1), the notion Target is varying
based on the target ratio to be computed. If the ratio to be
computed is the reduct_ratio, then an intersection between the
ReductXAI and TargetEventlog is obtained, and likewise in the case
of having the core_ratio as our Target. Scores of intersection
features at the numerator part are the scores obtained by the XAI
method. (1) is an adapted version of the recall equation applied
to measure the fidelity of explanations in [14]. The introduced
change in (1) is the usage of the features scores, not the features
themselves. The proposed change enables differentiating XAI
methods in case of having equally sized reducts or cores. Fur-
thermore, using scores instead of the volume of the intersection
set enables preserving the magnitude of features’ influence even
if different XAI methods have the same intersection features.

The summation of scores at the denominator is equated to the
length of the target corresponding set representing the principal
features of the event log. We choose the length to be the value of
the denominator since this set represents the most relevant and
least redundant feature subset. Therefore, each feature scores
1.0 in terms of its importance, where a score of 1.0 denotes the
complete realization of the principal feature. The value of the
CR lies between 0.0 and 1.0. The higher an XAI method scores
in this measure is considered a better score. A high core ratio
indicates the ability of an XAI method to reflect the most crucial
factors contributing to the prediction process. At the same time,
a high reduct ratio indicates the ability of an XAI method to
reflect a high percentage of the features that define a form of
the event log with the minimum redundant information. Fig. 5
shows the basic steps followed in phase 3.

An XAI method shall reflect the reasoning process of a pre-
dictive model. Therefore, whenever its outcomes are to be eval-
uated, it may be argued that this is an evaluation of the reasoning
process itself. However, we can argue for the suitability of our
approach to evaluate an XAI method. First, multiple XAI meth-
ods can be compared as long as the underlying settings of an
experiment, i.e., all the PPM workflow choices regarding data,
preprocessing, and modeling, are kept stable and unchangeable
across different experiments. In this way, the only variable is
the XAI method, so any difference in the evaluation results
can be discussed in light of the properties of the applied XAI
method. Second, we need to consider a studied pitfall of many

XAI methods, namely the instability of results under multiple
executions of the same XAI method under the same conditions
[20], [31]. This pitfall implies a potential for obtaining different
ratios whenever the proposed approach is adopted to evaluate
different executions of the same XAI method without changing
the underlying settings.

D. Phase 4: XAI Methods Comparison and Selection

Individual ratios calculated in the previous phase represent
indicators of the consistency level achieved by a certain XAI
method. In phase 4, we introduce evaluation metrics that enable
comparing several XAI methods based on the consistency of
their conclusions about the important factors that affect the
outcomes of a predictive model. The first proposed metric is
inspired by Akaike information criterion (AIC) [32], which is
designed to select a predictive model with minimal prediction
error. However, we adapt the AIC to select an XAI method with
minimal inconsistency with underlying data facts learned in
phase 1 of this approach. In other words, the metric proposed in
this phase selects an XAI method that maximizes the agreement
with the ground truth. The proposed metric takes the form of
the following equation:

AICConsistency =−2 ∗ log2(CR) + 2 ∗K. (2)

K is the number of features of the intersection feature subset.
However, to compute AICConsistency to favor the XAI method
with minimal inconsistency, we use complements of CR and
K. With a log function applied to the CRs, a small change in
the values of the ratios introduces a remarkable difference in the
resulting AIC values. In addition to AICConsistency, we propose
another metric called BICConsistency. BICConsistency is an adapta-
tion of the Bayesian information criterion (BIC) [33], which is
similar to AIC in its usage as a model selection metric, except
that BIC penalizes complex ML models depending on more
parameters. Again, we adapt the metric computations to be
based on the complement of the number of intersection features.
The following equation represents the form of BICConsistency:

BICConsistency =−2 ∗ log2(CR) +K ∗ log2(N). (3)

N is the number of process instances contained in the event
log under analysis. For an XAI method to be selected, it has to
achieve low values of AICConsistency and BICConsistency metrics.
The proposed metrics in this phase facilitate differentiating the
target methods based on the tradeoff between the CR, (i.e.,
the method fitness function in this context), and the method
coverage range (represented by the number of process instances
and the number of features).

IV. EXPERIMENTS

To prove the applicability of the proposed approach, we
performed experiments with different settings for different
purposes.
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A. Research Questions

In our pursuit of an approach for quantitatively evaluat-
ing global XAI methods in the context of PPM, we aim to
measure consistency as a quality of the produced explana-
tions, regardless of the executed ML model, despite consid-
ering the features that are important from the perspective of
the model. However, in order to consider the influence of PPM
workflow, we perform experiments to answer the following
research questions:

1) RQ1: Is there an observable effect of using different PPM
workflow settings on the results of the applied consis-
tency metrics?

We need to examine the effect of underlying choices made in
the context of the PPM workflow, e.g., preprocessing choices,
on obtained results. We need to understand whether the un-
derlying choices can propagate their characteristics to the ap-
plied XAI methods and whether this is discoverable through
the performed experiments. For example, consider the situation
when applying different preprocessing configurations and hav-
ing all other choices stable. Obtaining distinguishable results
in terms of consistency metrics can initiate further exploration
of how preprocessing configurations can affect explainability
results. With stable choices, we mean having the selected FS
methods, ML model, and XAI method unchangeable during
several experiments on the same event log when changing the
preprocessing configuration at each experiment.

2) RQ2: How are the proposed metrics and ratios dependent
on each other?

The proposed ratios are based on computations of importance
scores provided by an XAI method. Furthermore, AIC and BIC
metrics penalize/ favor an XAI method for different reasons.
We want to understand how these claims are proven by exper-
iments. We need to investigate the ability of both metrics to
distinguish and compare the evaluated XAI methods. Further-
more, we need to study the factors that influenced the ability of
the metrics to differentiate the XAI methods.

B. Settings

We conducted experiments on three real-life event logs which
are publicly available from the 4TU Centre for Research Data
[34]. We adopted the same labeling functions applied in [9] to
classify each process instance into one of two classes, i.e., a
binary classification task. The three basic event logs [34] used
are as follows.

1) Sepsis. This event log belongs to the healthcare domain
and reports on cases of patients with sepsis as a life-
threatening condition. It further reports on their rele-
vant diagnostic paths. Labeling of this event log defines
whether the patient is admitted to the intensive care unit.

2) Traffic fines. This event log is a governmental one ex-
tracted from an Italian information system for managing
road traffic fines. Hence, a process instance in this event
log contains information about a fine, amount, and pay-
ment method. The event log is labeled to indicate whether
a fine is fully paid or paid in installments.

TABLE II
STATISTICS OF THE THREE EVENT LOGS

Event Log #Traces
#Max

Prfx Len
%Pos
Class

#Static
Cols

#Dynamic
Cols

#Cat
Cols

#Num
Cols

#Cat Levels
Static Cols

#Cat Levels
Dynamic Cols

Sepsis 776 60 14 24 13 28 14 76 39
Traffic fines 129615 20 45.5 4 14 13 11 54 173
BPIC2017 31413 180 41 3 20 12 13 6 682

3) BPIC2017. This event log documents the loan application
process in a Dutch financial institution. The event log is
labeled to identify whether a loan application is accepted.

Table II shows basic statistics of the event logs used in
our experiments. We expect that differences may enable more
variability in the results. Different data characteristics have
implications for the characteristics of the preprocessed event
logs. Consider, for example, the relation between the max prefix
length of an event log and the number of prefix logs after
applying prefix bucketing.

1) Preprocessing: As discussed in Section II-A, bucketing
and encoding are necessary preprocessing steps that need to
be performed to transform an event log into a format compat-
ible with the requirements of ML models. According to the
benchmarks available in [8], [9], in the PPM literature, only five
bucketing techniques are available. Moreover, four encoding
techniques exist that are applicable according to these bench-
marks. We applied single and prefix-based bucketing techniques
in association with aggregation and index encoding techniques,
respectively. In single bucketing, all prefix traces are grouped
within a single bucket, unlike in prefix-based bucketing when
prefixes of traces are grouped based on their lengths [8]. We ap-
plied prefix-based bucketing with a gap of five. The latter setting
means that for each prefix length of 1 to the maximum trace
length (cf. Table II), separated by a gap of five activities, a
separate bucket is created, prefixes of this length are grouped,
and consequently, a separate ML model is trained. We apply a
gap of five, as it is not desirable to overload the resulting logs
with more features (in case of a shorter gap size) on one hand
and to avoid losing valuable information about activities (in
case of a longer gap size) on the other. As a result, we obtained
three subevent logs from sepsis (lengths in 1, 6, and 11), two
from traffic fines (lengths in 1 and 6), and four from BPIC2017
(lengths in 1, 6, 11, and 16) after bucketing the prefixes based on
their lengths. Aggregation and index-based techniques are se-
lected as the encoding techniques. Both agree on the way static
attributes are processed with numerical columns being encoded
as–is, while one-hot encoding is used to encode categorical
columns [9]. However, note that aggregation and index-based
encoding differ in how they process the dynamic attributes of
a process instance. In aggregation encoding [8], aggregation
functions (e.g., sum and average) are applied on numerical
columns, whereas either a boolean function (occurred or not)
or a frequency-based function (number of times a value occurs)
is applied to categorical columns. In contrast, in index-based
encoding [8], numerical columns are encoded as–is, while a
separate column is created for each subcategory in each column
with a value of 0 or 1 indicating the absence/presence of this
value along all process instances. Hence, single-aggregation
and prefix-index preprocessing configurations are applied to the
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TABLE III
SEARCH SPACES FOR HYPERPARAMETERS OF THE EXECUTED ML MODELS

ML Model Hyperparameter Search Space

Logit Regularization (c) 2x, x ∈ [−5, 5]

XGBoost Learning rate x ∈ [0, 1]
Min child weight x ∈ [1, 6]
Subsample x ∈ [0.5, 1]
Max tree depth x ∈ [4, 30]
Colsample by tree x ∈ [0.5, 1]
n estimators 500

TABLE IV
AUC SCORES OF USED PREDICTIVE MODELS

Sepsis Traffic_Fines BPIC2017

XGBoost Single_agg 0.91374 0.73918 0.86429

Prefix_index
1 6 11 1 6 1 6 11 16

0.9273 0.90799 0.6061 0.4771 0.8259 0.5380 0.6644 0.8765 0.94365

Logit Single_agg 0.8788 0.7949 0.8244

Prefix_index
1 6 11 1 6 1 6 11 16

0.9093 0.9185 0.8292 0.55499 0.8011 0.54597 0.7144 0.8753 0.9351

Categorized according to preprocessing configurations used.

event logs. Our choices of preprocessing configurations and
predictive models are influenced by the best-performing con-
figurations as reported in [9]. Furthermore, we choose single-
aggregation and prefix-index configurations as they have the
least information lossy techniques (i.e., index encoding) or the
most comprehensive techniques that enable the input of various
sizes of prefixes to the same predictive model (i.e., single buck-
eting). We use both configurations on the sepsis, traffic fines,
and BPIC2017 event logs.

2) Predictive Models: As ML models, we selected logit [35]
and XGboost [36]. The former is selected as it is simple and
interpretable, whereas the latter is selected due to its outstanding
performance, as reported by many studies [9]. We optimize
the hyperparameters of both models using the TPE algorithm.
We perform three-fold cross-validation to choose the best-
performing hyperparameters. Table III represents the search
space of the hyperparameters of each model.

After training the selected ML models on 80% of each event
log as the training set, the two models achieved reasonable AUC
scores (see Table IV). Note that, AUC is an accuracy measure
used to differentiate classifiers in terms of how well the negative
and positive classes are separated for the decision index [37].
The higher the AUC score becomes, the better a classifier is.

3) FS Methods: As for the chosen FS methods, we selected
seven methods that meet certain criteria. The ability of the
method to rank all features based on their predictive power,
rather than returning a predefined number of selected features
is an important selection criterion. Furthermore, the selected
FS methods are not biased toward a certain ML model. Hence,
WFS methods are excluded from the selected FS methods.
We picked methods that accept a prefit ML model, whenever
inputting an ML model constitutes a prerequisite. The latter
criterion ensures that the output feature subset will be aligned
with the patterns and internal analysis made by the ML model

when generating predictions. To adhere to these prerequisites,
as embedded methods, we selected lasso and tree implemented
in the Scikit-learn library. We input the prefit models specified
in the previous subsection as inputs to lasso and tree. This
procedure ensures that the ground truth obtained after applying
these two FS methods reflects important features according to
the ML models used in the prediction process. Furthermore,
by using the pretrained models, we use the same settings the
model used in ranking the features during the training process.
For example, in the case of tree selector, the input model is
XGBoost with the feature importance setting being set to the
default, i.e., gain. From the filter methods category, we selected
Information gain [38], gini-index [38], TuRF (as one of the
ReliefF versions) [39], information value (IV) [40], and chi-
square [41] and ANOVA [42] interchangeably based on the
underlying nature of features.

4) XAI Methods: Our proposed approach aims to evalu-
ate model-agnostic XAI methods. Therefore, we selected three
different XAI methods of this category to rank important fea-
tures in the context of the performed experiments. The selected
methods can provide a list of features together with scores
indicating their rank. The selected XAI methods are SHAP [13],
perm [18], and ALE [10]. SHAP is based on game theory and
computes Shapely values by assuming the presence/absence
of a player in a game and examining all possible settings to
evaluate players’ (features) contributions to the achieved score
(prediction). Perm calculates feature importance by shuffling
values of a feature and monitoring the effect of this change on
the generated predictions. ALE divides the values of a feature
into quantiles. Based on the conditional distribution of the fea-
ture, the difference in predictions is analyzed for samples with
similar values of the feature.

5) Hardware and Software Tools: All experiments were
run using Python 3.6 and the scikit-learn library on a 96-core
Intel(R) Xeon(R) Platinum 8268 @2.90GHz with 768GB of
RAM. The code of executed experiments, in addition to exe-
cution results, are available through our Github repository1 to
enable open access for interested practitioners.

V. OBSERVATIONS AND DISCUSSION

After applying the approach proposed in Section III, within
experiments designed as specified in Section IV, we could make
several observations that we trace back to their influencing
factors in the following.

A. Observations

We obtained six values for each event log after applying the
proposed approach to the defined experiments. These values are
reduct ratio and core ratio, and the AIC and BIC values corre-
sponding to each of these ratios. Detailed results are reported
in Table V(a)–V(l) and plotted in Fig. 2 in the supplementary
materials. Table V(a)–V(i) reports on the result corresponding
to each event log preprocessed with prefix-index configuration.

1https://github.com/GhadaElkhawaga/XAI_predictivemonitoring_
Consistency.git

https://github.com/GhadaElkhawaga/XAI_predictivemonitoring_Consistency.git
https://github.com/GhadaElkhawaga/XAI_predictivemonitoring_Consistency.git
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TABLE V
EXPERIMENTS RESULTS

(a) BPIC2017 (Prefix Len=1)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.06323 0.04873 0.08324 0.00555 0.00026 0.08277
Core_ratio 0.05139 0.04968 0.04988 0.00663 0.00016 0.04932
AIC_reduct 22.18847 24.14415 44.25077 12.01605 40.00075 44.24928
AIC_core 18.15224 20.14703 38.14766 12.01919 38.00045 38.14594
BIC_reduct 160.97682 175.54962 321.82748 87.71878 292.34321 321.82599
BIC_core 131.70635 146.17485 277.873 87.72194 277.72579 277.87128
#Feats_reduct_intersection 13 12 2 18 4 2
#Feats_core_intersection 11 10 1 14 1 1

(b) BPIC2017 (Prefix Len=6)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.03098 0.03478 0.19444 0.00124 0.00078 0.25204
Core_ratio 0.05852 0.08429 0.04873 0.00384 0.00227 0.04865
AIC_reduct 184.09079 190.10215 192.62386 182.00358 238.00224 192.83793
AIC_core 62.17398 60.25409 78.14414 54.0111 70.00655 78.14389
BIC_reduct 1344.80272 1388.66338 1403.80152 1330.09907 1739.35788 1404.01559
BIC_core 453.28344 438.74711 570.18506 394.65483 511.58174 570.18482
#Feats_reduct_intersection 37 34 33 38 10 33
#Feats_core_intersection 10 11 2 14 6 2

(c) BPIC2017 (Prefix Len=11)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.02373 0.00764 0.33471 0.01504 0.00691 0.31242
Core_ratio 0.00713 0.00518 0.0 4.28986e-05 4.35956e-05 0.0
AIC_reduct 0.06929 416.02213 521.17589 240.04373 746.02001 521.08081
AIC_core 76.02065 78.01499 86 84.00012 80.00013 86
BIC_reduct 0.06929 3038.25064 3798.96153 1752.86787 5448.38172 3798.86645
BIC_core 540.4744 555.07619 613.48845 598.8817 569.66797 613.48845
#Feats_reduct_intersection 405 197 145 285 32 145
#Feats_core_intersection 5 4 0 1 3 0

(d) BPIC2017 (Prefix Len=16)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.03457 0.00414 0.48689 0.02186 0.01329 0.4578
Core_ratio 0.01729 0.00371 0.01082 0.01609 0.0062 0.00666
AIC_reduct 4.10151 608.01197 397.92531 274.06378 688.03862 397.76622
AIC_core 126.05033 124.01074 158.0314 140.04681 112.01796 158.01928
BIC_reduct 29.27296 4434.07251 2889.89895 1998.30817 5017.52818 2889.73986
BIC_core 918.95104 904.32572 1152.30371 1021.04759 816.81858 1152.29159
#Feats_reduct_intersection 405 103 209 270 63 209
#Feats_core_intersection 17 18 1 10 24 1

(e) Traffic fines (Prefix Len=1)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.04699 0.05531 0.22187 0.02949 0.02941 0.21504
Core_ratio 0.03797 0.04418 0.15667 0.03451 0.03448 0.14866
AIC_reduct 30.13889 32.16416 52.72383 32.08636 52.08614 52.69861
AIC_core 30.1117 30.13037 48.49168 32.10134 44.10125 48.46439
BIC_reduct 250.05972 266.74637 433.9199 266.66858 433.28224 433.8947
BIC_core 250.03253 250.05119 400.36499 266.68356 366.65179 400.33772
#Feats_reduct_intersection 19 18 8 18 8 8
#Feats_core_intersection 14 14 5 13 7 5

(f) Traffic fines (Prefix Len=6)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.03639 0.05448 0.14381 0.00059 0.00149 0.15799
Core_ratio 0.0211 0.06762 0.06875 0.00145 0.00375 0.05938
AIC_reduct 72.10696 74.16165 100.44799 82.00169 114.00433 100.49621
AIC_core 36.06154 38.20203 44.20552 44.00419 44.01083 44.17663
BIC_reduct 471.44621 484.59366 655.08585 536.80473 746.29148 655.13407
BIC_core 235.73117 248.96442 288.24618 288.04485 288.05149 288.21729
#Feats_reduct_intersection 24 23 10 19 3 10
#Feats_core_intersection 6 5 2 2 2 2

(g) Sepsis (Prefix Len=1)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.16295 0.15573 0.26729 5.05191e-07 0.0 0.08548
Core_ratio 0.08337 0.12635 0.22222 2.11277e-07 0.0 0.0
AIC_reduct 12.51324 14.48846 16.8974 10 18.0 16.25783
AIC_core 12.25118 14.38973 14.72514 12.0 16.0 14.0
BIC_reduct 56.16999 65.42133 75.1064 46.38062 83.48512 74.46682
BIC_core 55.90793 65.32261 65.65801 55.65675 74.20899 64.93287
#Feats_reduct_intersection 5 4 3 6 2 3
#Feats_core_intersection 3 2 2 3 1 2

(h) Sepsis (Prefix Len=6)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.08188 0.02482 0.29825 0.10524 0.0 0.27582
Core_ratio 0.045114 0.05753 0.22222 1.26994e-06 0.0 0.11111
AIC_reduct 74.24649 86.07253 61.02192 70.32086 90.0 60.93117
AIC_core 24.13319 32.17095 28.72514 32.0 36.0 28.33985
BIC_reduct 342.94401 398.34261 278.88477 324.49418 416.79427 278.79402
BIC_core 111.27834 148.36447 130.39447 148.19352 166.7177 130.00918
#Feats_reduct_intersection 20 14 27 22 12 27
#Feats_core_intersection 6 2 4 2 0 4

(i) Sepsis (Prefix Len=11)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.1470 0.02597 0.17124 0.04551 0.0 0.11603
Core_ratio 0.02033 0.0 0.11538 0.0001 0.0 0.11538
AIC_reduct 22.45879 150.07593 138.54194 54.1344 154.0 138.35585
AIC_core 40.05927 52.0 46.35376 42.00031 52.0 46.35376
BIC_reduct 98.03279 665.35329 612.5971 239.63425 683.01808 612.41101
BIC_core 177.46657 230.62948 204.37214 186.27797 230.62948 204.37214
#Feats_reduct_intersection 73 9 15 57 7 15
#Feats_core_intersection 6 0 3 5 0 3

(j) BPIC2017 (Single Aggregation)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.01727 0.01271 0.16027 0.00057 0.00579 0.14397
Core_ratio 0.00959 0.00376 0.13003 0.00081 0.00826 0.12144
AIC_reduct 136.05025 134.03692 158.50402 146.00164 166.01676 158.44852
AIC_core 92.02783 96.01087 114.40191 96.00234 118.02394 114.37356
BIC_reduct 1286.38954 1267.45945 1494.92759 1380.9247 1570.10736 1494.8721
BIC_core 870.19852 908.01508 1078.6569 908.0065 1116.11244 1078.62855
#Feats_reduct_intersection 32 33 21 27 17 21
#Feats_core_intersection 24 22 13 22 11 13

Rounded to five digits.

TABLE V
EXPERIMENTS RESULTS

(k) Traffic Fines (Single Aggregation)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.0909 0.01375 0 0 0.0004 0
Core_ratio 0 0 0 0 0 0
AIC_reduct 20.275 20.03995 22 22 20.00117 22
AIC_core 10 10 10 10 10 10
BIC_reduct 184.93505 184.69999 203.12605 203.12605 184.66122 203.12605
BIC_core 92.33 92.33 92.33 92.33 92.33 92.33
#Feats_reduct_intersection 1 1 0 0 1 0
#Feats_core_intersection 0 0 0 0 0 0

(l) Sepsis (Single Aggregation)
Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.07827 0.05527 0.3119 0.0099 0.02857 0.0
Core_ratio 0.01757 0.11624 0.1 0.0 0.0 0.0
AIC_reduct 46.23515 42.16406 49.07883 60.02873 52.08364 48.0
AIC_core 16.05114 12.35655 18.304 20.0 20.0 18.0
BIC_reduct 295.05335 269.34589 308.71522 384.57421 333.35639 307.63638
BIC_core 102.5966 77.26564 115.66765 128.18183 128.18183 115.36364
#Feats_reduct_intersection 12 14 11 5 9 11
#Feats_core_intersection 2 4 1 0 0 1

Rounded to five digits.

Furthermore, Table V(j)–V(l) reports the result corresponding
to each event log preprocessed using single-aggregation con-
figuration. Each table is constituted of six columns, and each
reports results after applying one of the three XAI methods to
explain predictions of one of the two predictive models used.
The last two rows in each table report the number of features
in the intersection set between the reduct/core set computed for
an XAI method and its corresponding set of principal features
computed for the analyzed event log. As illustrated in phases 3
and 4 of the proposed approach (cf. Sections III-C and III-D),
there exist certain criteria that qualify an XAI method to per-
form the best across any of the computed ratios and the applied
metrics. An XAI method has to obtain.

1) the highest reduct/core ratios, or
2) the lowest corresponding AIC/BIC values, or
3) the highest number of features at the intersection between

its reduct/core and the corresponding reduct/core of the
event log.

Therefore, for each of the two ML models, we highlighted
scores meeting these criteria in Table V. Based on the design
mechanism of the proposed approach, the former criteria
are somehow related and can be considered dependent on
each other. Results from Table V are concluded in the rest of
this subsection.

Observation (1). SHAP is scoring better than other XAI meth-
ods with respect to AIC and BIC scores in logs preprocessed
using prefix-index configuration. In logs preprocessed using
single-aggregation configuration, perm is well-performing.

In terms of the number of features at the intersection
sets, SHAP has the highest number of features in the
reduct intersection set, with an exception of the sepsis event
log preprocessed using prefix-index configuration [prefix
length= 6 with both predictive models and prefix length= 11
with logit, cf. Table V(h) and V(i)]. In sepsis with prefix
length= 6, ALE has the highest number of features in the
reduct intersection set. Perm, interchangeably with SHAP, has
the highest number of features in the core intersection set.

Observation (2). Having a high number of features in the
intersection set does not guarantee to obtain the highest cor-
responding reduct/core ratio.
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When considering the number of features in core inter-
section sets, we observe the superiority of SHAP when
explaining XGBoost predictions. In turn, perm started to
obtain the highest number of features in event logs with longer
prefixes of BPIC2017, when explaining logit predictions [cf.
Table V(b)–V(d)].

In most cases, ALE is scoring the highest reduct ratios, de-
spite not having the highest number of features in the respective
intersection set. This observation can be explained by having
high entropy values associated with the features in the intersec-
tion set. Note that such high entropy values compensate for the
lower number of features when computing the respective ratio.
Consequently, ALE could beat SHAP, which has the highest
number of features.

As stated in phase 4, AIC tends to penalize the method
with minimal inconsistency, i.e., it selects the method with the
highest ratio. Consequently, XAI methods scoring the highest
reduct/core ratios are expected to have the lowest AIC value.

Observation (3). Unexpectedly, we observed no relation be-
tween reduct/core ratios and their respective AIC values. Ob-
servation 3 is not valid in few cases. As an example, consider
ALE results on sepsis with prefix length= 6 [cf. Table V(h)].
In all obtained results, including the latter exception, AIC val-
ues are the lowest for XAI methods with the highest number
of features in the intersection sets.

Observation (4). BIC metric is expected to penalize methods
with the minimum number of features in the intersection
sets. This implies selecting the XAI method that captures the
largest amount of ground truth, i.e., the XAI method with the
highest number of intersection features.This hypothesis is met
by the results of all XAI methods on all event logs under all
performed experimental settings. Interestingly, observations
2, 3, and 4 are tightly related to answer RQ2.

Observation (5). The empty intersection core set is an in-
teresting observation made in results associated with sepsis
and traffic fines event logs when preprocessed using single-
aggregation configuration. These observations are made
clearer in their respective plots [cf. Fig. 1(h) and 1(i) in the
supplementary materials]. In the case of traffic fines event
log, it has relevantly shorter prefix lengths (cf. Table II).
Shorter prefixes, and consequently fewer features, provide
lower chances for an XAI method to achieve an intersection
with the underlying data. The same case does not hold in other
event logs with longer prefixes, e.g., BPIC2017 preprocessed
using single-aggregation configuration and does not apply to
traffic fines prefixes that are preprocessed using prefix-index
configuration.

B. Discussion

1) Volume of Features in the Intersection Sets: As shown
in Fig. 1(a)–1(l) (in the supplementary materials) and as stated
in the last two rows of each table from Table V, the number

TABLE VI
CALCULATED RATIOS

(a) Traffic Fines (Prefix Len=1)

Measurement Logit_SHAP Logit_perm Logit_ALE
Reduct_ratio 0.52941 0.23529 0.23529
AIC_reduct 34.17493 52.77404 52.77404
BIC_reduct 268.75714 433.97015 433.97015
#Feats_reduct_intersection 18 8 8

(b) Traffic Fines (Prefix Len=6)

Measurement Logit_SHAP Logit_perm Logit_ALE
Core_ratio 0.08333 0.08333 0.08333
AIC_core 44.25106 44.25106 44.25106
BIC_core 288.29172 288.29172 288.29172
#Feats_core_intersection 2 2 2

(c) Sepsis (Prefix Len=1)

Measurement XGBoost_SHAP XGBoost_perm XGBoost_ALE
Core_ratio 0.33333 0.22222 0.22222
AIC_core 13.16993 14.72514 14.72514
BIC_core 56.82667 65.65801 65.65801
#Feats_core_intersection 3 2 2

Based on numbers of intersection features.

of features in the intersection sets of XAI methods that ex-
plain predictions of XGBoost are relatively higher than their
counterparts of logit, regardless of the applied preprocessing
configuration. Furthermore, the number of features increases
as the prefix length increases in event logs preprocessed us-
ing prefix-index configuration. In [31], the authors run exper-
iments to explore the data characteristics of the three event
logs used in this article. High multicollinearity between the
features is discovered in event logs that were preprocessed
using prefix-index configuration, while not being completely
absent from single-aggregation preprocessed event logs. Sepsis
event log shows high multicollinearity in general, approach-
ing complete collinearity, regardless of the preprocessing con-
figuration applied. XGBoost is not supposed to be affected
by multicollinearity. In boosting-based models like XGBoost,
whenever collinearity exists between a subset of the features,
the model chooses one feature as the data splitting criterion, to
which it assigns the entire importance score [36]. In contrast,
logit assigns similar coefficients to collinear features. With the
philosophy of applied FS methods in phase 1 being to reduce
irrelevant and redundant features, we find XAI methods built
on top of XGBoost models can capture higher numbers of
principal features compared to their counterparts built on top of
logit models.

According to (1), large intersection sets are effective in the
case when the XAI method assigns high scores to features in
these sets. High scores enable obtaining high reduct/core ratios,
especially in the case of an event log with a small reduct/core.
The number of features alone cannot be used as a distinguishing
factor between XAI methods applied to predictions of the same
predictive model. As shown in Table VI(a)–VI(c), we tried
to calculate reduct/core ratios solely based on the number of
features in the intersection set of each XAI method, rather than
their respective scores. All results shown in Table VI indicate
the inability to distinguish XAI methods whenever the number
of features at the intersection set is the same. The observed ef-
fects of using the scores of features on the obtained ratio values
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contribute partially to answer RQ2. As stated by observation
(5), results associated with traffic fines and sepsis event logs
preprocessed using single-aggregation configuration indicate
empty core sets [cf. Table V(g)–V(i), V(k), V(l), and Fig. 1(h)
and 1(i) in the supplementary materials], except in few cases
of the evaluated XAI methods. These empty sets might be the
result of having shorter prefixes in case of traffic fines event
log. These shorter prefixes provide less number of features after
preprocessing using single-aggregation configuration. Having
fewer features subsequently results in fewer chances for an XAI
method to achieve an intersection with the underlying data,
especially when taking into account the random effect of XAI
methods that apply shuffling, e.g., permutation importance. An-
other factor that might influence this phenomenon is the class
imbalance in sepsis as indicated in Table II. Despite having
relatively high-performing predictive models as indicated in
Table IV, the XAI methods used to query these models for the
most important features are unable to make conclusions about
features that are responsible for the generated predictions, as
the model itself is not able to learn obvious decisive patterns
from data. Consequently, important features as concluded by
the XAI methods in this case are not aligned with important
and principal features as concluded by the FS methods.

2) Effect of Preprocessing Configurations on Explanations
Consistency: The number of process instances for which pre-
dictions are generated is considered a secondary factor in our
analysis. While it is expected to have a direct effect on the
predictive model accuracy, or in the process of evaluating the
predictive power of a feature, it does not have a direct effect
on the XAI method. Therefore, we do not observe any effect
of the bucketing technique on the resulting ratios and met-
rics values. The encoding technique used, i.e., whether index
or aggregation, affects the resulting feature vector size, espe-
cially in the case of event logs with a remarkable imbalance
in the number of categorical versus numerical attributes. As
discussed in [9], aggregation encoding performs aggregations
on attributes’ columns to summarize them in terms of aggre-
gation functions (e.g., sum, average, etc.) applied on numer-
ical attributes or frequency of occurrence or boolean func-
tions applied on categorical attributes. Furthermore, in index
encoding, a separate column is created for each value in each
attribute column associated with each event in a given process
instance. The latter encoding can result in a dimensionality
explosion as the number of columns increases as the number
of values in an attribute differs with each process instance.
However, from Fig. 2(c)–2(e) (supplementary materials), it may
be concluded that the reduct/core ratios decrease as the prefix
length increases. The only exception is observed in ALE reduct
ratios on both ML models in BPIC2017 [cf. Fig. 2(c) in the
supplementary materials]. At the same time, the number of
features at the intersection sets does not decrease as the prefix
length increases [cf. Table V(a)–V(i)]. This may indicate that
the difference between scores associated with the top n-features
shrinks, and features become similar in the scores concluded
by each XAI method. Again, having almost similar importance
scores can justify the increasing AIC scores as the number of
intersection features increases. The observed increase is not

accompanied by an increase in the reduct ratio (for example
in the case of ALE when it has a high reduct ratio based on
a small number of intersection features with high importance
scores). The concluded relation between importance scores and
AIC scores contributes to the answer of RQ2. The effect of the
applied encoding technique together with the used XAI method
can be observed in ALE results. Despite scoring well in terms
of reduct ratios, ALE, as indicated before, does not score well in
terms of other metrics, nor in terms of the number of features
at the intersection sets. This observation can be explained in
terms of the encoding technique which increases the number
of categorical columns. Computing ALE effects for categorical
attributes can be criticized for being inaccurate since values of
these features do not maintain order [18], [31]. This discussion
concludes the answer of RQ1.

VI. RELATED WORK

Several approaches were proposed over the past few years
to apply explainability as a complementary part of the PPM
workflow. Explainability is integrated into the PPM workflow
to increase user trust in the generated predictions of a business
process. While models based on deep learning get more com-
plex as their prediction accuracy increases, several approaches
are introduced to make the outcomes of these models more
understandable. To predict the next activity transparently, [43]
uses weights generated in attention-based neural networks to
highlight different factors contributing to reaching a prediction.
[43] examines the applicability of their proposal through train-
ing three different LSTM-based attention models to predict the
next activity and the next activity associated with its executing
resource and the remaining time till the end. Using the three
different models, [43] could highlight factors contributing to
reaching the prediction at different levels of detail, i.e., in-
terpreting using influencing events only, or using influencing
events and their associated event attributes.

[44] proposes an approach based on integrating layerwise
relevance propagation (LRP) [11] into an LSTM-based model
used to predict the next activity. In a related context, [45] uses
gated graph neural networks (GGNN) to predict the outcome
of a running process instance in addition to a relevance score
corresponding to each of the activities preceding the predicted
outcome. In the same direction, [46] proposes an approach
based on explaining the outcome of a process instance in terms
of If − Then rules learned by a neuro-fuzzy network and output
in human-interpretable form. In an attempt to tailor XAI meth-
ods to suit the specific nature of PPM event logs, [47] proposes
an approach to generate counterfactual explanations. The latter
are generated using genetic algorithms while taking process
constraints into account in order to ensure the generation of
realistic process instances.

With a direct application of XAI methods to understand
the attributes contributing to different prediction tasks, i.e.,
remaining time, activity occurrence, and case total cost, [48]
applied SHAP [13] to explain local predictions generated by
an LSTM model. In [31], [49], different levels and types of
XAI methods are examined to discover how data characteristics
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and underlying model sensitivities could be propagated and
highlighted in generated explanations. Building on the ability
of post hoc XAI methods to highlight features contributing to a
prediction, [50] uses LIME [14] and SHAP to identify features
contributing to false predictions. Knowing the features affecting
the accuracy of predictions, [50] shuffles the values of these
features. Furthermore, [50] retrains the model on the new event
log in order to neutralize patterns constituted of these features
and hence improve the accuracy of the predictive model.

Without the direct application of out-of-the-box XAI meth-
ods, [51] leverages the idea of a decompositional explanation.
The proposal in [51] is based on decomposing the prediction (in
this case, cycle time) into a weighted sum of the predicted cycle
times of activities to be performed till the end of the running
process instance. To achieve this, [51] uses two ML models,
one for predicting the cycle time of each activity, and another
one to predict the branching possibilities of each decision point.
This idea is enabled by using flow analysis techniques and [51]
argues that it is a white-box interpretable one.

Unfortunately, only a few proposals exist that are concerned
with proposing evaluation approaches for XAI methods when
applied to PPM results. However, as more attention is drawn
to the importance of explaining PPM results, it is expected that
evaluating XAI methods will gain more interest. For example,
[4] proposes an approach to evaluate local XAI methods for
their fidelity, i.e., the ability of the XAI method to mimic
the behavior of the explained ML model in the vicinity of
the explained process instance. However, in this approach, the
authors evaluate the internal fidelity of the XAI method, i.e., the
similarity between the decision-making process of the explainer
proxy model and the explained complex black box model, rather
than the similarity between the decisions made by the two mod-
els. Perturbation of feature values based on a newly generated
uniform distribution is applied to replace the current feature
vector of the explained process instance with a new one. For
the new feature vector, new predictions are generated and the
error in predictions is considered the fidelity measure of the
proxy model created by the XAI method.

[5] introduces another evaluation approach to measure the
stability of generated local explanations. According to [20],
stability of explanations means the similarity between expla-
nations generated for the same data sample under the same
conditions. [5] proposes and applies two metrics to evaluate the
stability of the top-K feature subset, and their relevant weights
after explaining predictions for certain process instances mul-
tiple times. [52] introduces four out-of-the-box metrics that are
imported from relevant XAI evaluation research. The metrics
are applied the same way to process mining-related data at-
tributes. Different attributes in process mining data should be
studied separately as they differ in their characteristics, and
subsequently in the magnitude of their effect on the generated
predictions and explanations. [3] conducts experiments that are
more user-oriented in evaluating XAI methods, and studying
whether the resulting explanations are understandable and how
effective they are in the decision-making process. Participants
in user evaluations carried out in this study are working in the
PPM field and others from the ML field. This study concludes

that comprehension and usage levels of these explanations var-
ied among participants based on their domain knowledge and
experience. While quantitative evaluations confirm technical
characteristics or requirements of explanations, qualitative stud-
ies are needed to confirm the usefulness of explanations in
achieving the goals they are generated for.

VII. CONCLUSION

In this article, we propose an approach for evaluating global
model-agnostic XAI methods that use feature attributions to
explain the reasoning process of an ML model. Our goal is
to evaluate these XAI methods with respect to how consistent
their explanations are with the basic concepts extracted from
the underlying data. Using experiments on real-life predictive
monitoring event logs, we provide a functionally grounded
evaluation that was able to uncover the effect the applied pre-
processing configurations have on the generated explanations.
Furthermore, we could identify the way the sensitivities of a
predictive model can be reflected in generated explanations.
We could uncover how these sensitivities have the potential
to affect the conformance of the explanations to ground truth
extracted from the underlying data.

Our approach came to its limits whenever a large event log
was used. However, in the future, we plan to extend our proposal
to include multivariate feature analysis in order to study the
effect of feature interactions. In addition, we plan to perform
more experiments using more choices of preprocessing config-
urations and ML models. To this point, we proposed a flexible
framework that can be extended to evaluate any model-agnostic
global XAI method.
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