
IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 6, DECEMBER 2023 1691

Scaling the Inference of Digital Pathology Deep
Learning Models Using CPU-Based

High-Performance Computing
Weizhe Li, Mike Mikailov , Member, IEEE, and Weijie Chen

Abstract—Digital pathology whole-slide images (WSIs) are
large-size gigapixel images, and image analysis based on deep learn-
ing artificial intelligence technology often involves pixelwise testing
of a trained deep learning neural network (DLNN) on hundreds of
WSI images, which is time-consuming. We take advantage of high-
performance computing (HPC) facilities to parallelize this proce-
dure into multiple independent (and hence delightfully parallel)
tasks. However, traditional software parallelization techniques and
regular file formats can have significant scaling problems on HPC
clusters. In this work, a useful computational strategy is designed
to localize and extract relevant patches in WSI files and group them
in Hierarchical Data Format version 5 files well suited for parallel
I/O. HPC’s array job facilities are adapted for hierarchical scaling
and parallelization of WSI preprocessing and testing of trained
algorithms. Applying these techniques to testing a trained DLNN
on the CAMELYON datasets with 399 WSIs reduced the theoretical
processing time of 18 years on a single central processing unit (CPU)
or 30 days on a single graphics processing unit to less than 45 h on an
HPC cluster of 4000 CPU cores. The efficiency–accuracy tradeoff
we demonstrated on this dataset further reinforced the importance
of efficient computation techniques, without which accuracy may
be sacrificed. The framework developed here for testing DLNNs
does not rely on any specific neural network architecture and
HPC cluster setup and can be utilized for any large-scale image
processing and big-data analysis.

Impact Statement—The exponential growth of imaging and other
biomedical data along with advanced AI technologies hold greart
promise to revolutionize medicine. However, handling big data
and intensive computations represent a tremendous challenge. Our
techniques of data handling and computations parallelization pro-
vide a seamless and efficient solution for imaging and other big-data
applications. Specifically, we demonstrated the usefulness of our
parallelization technique coupled with the HDF5 file handling for
processing large amount of image data in a high-performance
computing environment. Such a technique is particularly useful
when an HPC facility is readily available and GPU resources are
limited. Moreover, when a computation task involves code that has
been programmed only for CPU, the CPU code can limit the use rate
of GPU thereby becoming the bottleneck of the computational job.

Manuscript received 7 March 2022; revised 7 November 2022; accepted 11
February 2023. Date of publication 17 February 2023; date of current version
22 November 2023. This article was recommended for publication by Asso-
ciate Editor Mehmet Onder Efe upon evaluation of the reviewers’ comments.
(All authors contributed equally to this work.) (Corresponding authors: Mike
Mikailov; Weijie Chen.)

Weizhe Li was with the U.S. Food and Drug Administration, Silver Spring,
MD 20993 USA. He is now with Pangiam, McLean, VA 22102 USA (e-mail:
weizheli@gmail.com).

Mike Mikailov and Weijie Chen are with the U.S. Food and Drug Admin-
istration, Silver Spring, MD 20993 USA (e-mail: mike.mikailov@fda.hhs.gov;
weijie.chen@fda.hhs.gov).

Digital Object Identifier 10.1109/TAI.2023.3246032

Although one could run the two parts in an HPC facility and a GPU
facility separately, this would need extra storage space for saving
data and extra overhead time for file I/O and data transfer. Our
technique as a seamless and efficient solution is generally useful for
big-data and computationally intensive applications.

Index Terms—Artificial intelligence (AI), distributed archi-
tectures, machine learning (ML), parallelism and concurrency.

I. INTRODUCTION

D IGITAL pathology has become popular thanks to tech-
nological advances in whole-slide image (WSI) scanners,

image viewers, and displays, as well as the regulatory approval
of such technologies by the US Food and Drug Administration
(FDA) for primary diagnosis. The advantages of WSI-based
digital pathology over traditional microscopy methods include
remote consultation and diagnosis, ease of access to archival
cases, and computerized image analysis. The availability of the
big amount of WSI data has spurred large-scale data analytic
applications, giving birth to the field of computational pathology,
where artificial intelligence (AI) and machine learning (ML)
algorithms are developed for a variety of clinical tasks, such
as cancer metastasis detection, cancer subtype classification,
mitotic cell counting, and tumor-infiltrating lymphocyte quan-
tification, among many others.

One of the mainstream choices of AI/ML algorithms in digital
pathology WSI applications is deep learning neural networks
(DLNN) [1]. As is well known, DLNN involves estimating
millions of parameters and is computationally intensive. Further-
more, DLNN presents unique challenges in digital pathology
applications because WSIs are multiple-resolution gigapixel
microscopic images that are much larger than images in other
computer vision applications (e.g., natural images and radiolog-
ical images). The graphics processing unit (GPU) technology is
a natural choice for these highly complex big-data applications,
due to their parallel nature. The central processing unit (CPU)-
based DLNN training parallelization solutions usually involve
significant modifications of the current training framework [2],
which limits the usage of CPU on training popular DLNN
architectures. Although DLNN training typically uses GPU,
other time-consuming tasks, such as image preprocessing and
testing of a trained DLNN model on a test dataset of hundreds
or even thousands of WSIs, can utilize CPU-based distributed
computation facilities to speedup the process. Therefore, the use
of available high-performance computing (HPC) clusters in such

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1700-4230
https://orcid.org/0000-0001-7437-7829
mailto:weizheli@gmail.com
mailto:mike.mikailov@fda.hhs.gov
mailto:weijie.chen@fda.hhs.gov

1692 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 6, DECEMBER 2023

CPU-friendly tasks can greatly facilitate performance assess-
ment studies of AI algorithms for digital pathology applications,
especially when the GPU facility is limited. Our purpose in this
article is to present computational techniques for scaling digital
pathology deep learning AI at the stage of inference (testing)
on CPU-based HPC clusters, which are easy to implement and
independent of DLNN architectures and HPC cluster setup.

WSI image analysis (e.g., lesion classification and detection)
often involves pixelwise classification, which has also been
widely used for general image segmentation, scene labeling, and
object detection and tracking, where the output of the analysis is
a heatmap, with each pixel value representing the likelihood that
certain signal or condition of interest exists [3], [4], [5], [6]. The
widely used deep learning classifier, namely the convolutional
neural network (CNN), is usually trained using small image
patches with binary labels (with versus without the condition).
When the trained CNN is applied to a test WSI, the score for
one or a few pixels is determined by the trained neural network
using the subimage centered at the pixel(s) as input, i.e., a sliding
window of the same size as the training patches. The sliding
window method was the first method introduced to produce pix-
elwise classification and is still widely used because it does not
rely on specific architectures of neural networks [7]. However,
the sliding window method is computationally expensive on gi-
gapixel WSIs. Although GPU has been routinely adopted for its
high capacity of dealing with computationally intensive tasks by
massive parallelization, the efficiency of a single GPU is limited
given the gigapixel WSI images [7] due to the large number of
patches it would have to process. Alternative solutions, such as
parallelization techniques, in a CPU-based HPC environment
are highly motivated for DLNN in digital pathology.

One of the most challenging tasks in using HPC clusters
and GPU platforms for solving increasingly computation- and
data-intensive deep learning algorithms is how to parallelize and
scale these algorithms to take advantage of massively parallel
hardware resources efficiently. Traditional software paralleliza-
tion techniques, such as OpenMP and POSIX multithreading, are
designed for shared-memory computing environments confined
to one computing node and therefore cannot be applied to
distributed computing environments, like HPC clusters. Limi-
tations of the most dominant parallelization technique Message
Passing Interface (MPI), used in distributed environments, are
described in Section II.

Another challenge in the parallel processing of WSIs is their
extremely large sizes. A single WSI in uncompressed format
could be up to 30–40 GB in size, which creates challenges
in loading the entire image to the memory of a computing
node for processing. To overcome these challenges, traditional
approaches introduce a preprocessing step, where the images
are split into smaller size patches and stored as separate files in
the storage system [8]. Applying this technique to WSI datasets
(like in CAMELYON) used for deep learning algorithms may
produce millions of such patch files, which leads to contention
and I/O failures when too many files are to be opened at the
same time. Thus, this approach limits the scalability of the
application by placing a heavy burden on the storage systems
and computational infrastructure of the HPC clusters.

To overcome these deficiencies, another novel aspect of our
approach is to extract patches from WSIs, group them, and save
them in Hierarchical Data Format version 5 (HDF5) [9] files as a
preprocessing step. The HDF5 format is well suited for parallel
data access (PDA) via Lustre [10], IBM Spectrum Scale also
known as general parallel file system (GPFS) [11], or any other
parallel cluster file system. For each WSI, only one HDF5 file
is created, which contains groups of patches extracted from the
WSI. A Python package py_wsi [12] is available for converting
and saving a single WSI file in an HDF5 file to facilitate deep
learning with WSI. However, this package does not split the
WSI into sets of patches and strategically group them in the
HDF5 file to help with parallel processing. In this work, we
further developed the technique by taking advantage of the built-
in hierarchical features of HDF5 for grouping WSI patches to
facilitate their parallel processing. At the WSI processing step,
each group in the HDF5 file is accessed and processed by one
array job task in a distributed, parallel, and scalable manner.

We demonstrate our computational technique using a deep
learning pipeline on the WSIs from CAMELYON datasets.
Specifically, part of the pipeline using our technique includes
the following.

1) Data preparation stage, also referred to as patch extrac-
tion and grouping step. At this stage, the WSIs are split
into smaller size patches, grouped, and then saved in HDF5
files in parallel using the array job technique of the job
scheduler on our HPC cluster.

2) Heatmap generation stage. The patch groups created at the
data preparation stage are processed to generate heatmaps
through a trained DLNN using the hierarchical scaling
technique proposed in this article.

The rest of this article is organized as follows. Section II de-
scribes the existing methods and their limitations for processing
large-scale WSIs on high-performance computing platforms.
Section III presents our novel techniques and implementation
for the parallel processing pipeline. Section IV contains the
results of our experiments in applying the techniques to WSIs
from CAMELYON datasets. Section V presents the general
applicability of the techniques presented in this article. Finally,
Section VI concludes this article.

II. EXISTING METHODS AND THEIR LIMITATIONS

A. GPU-Based Techniques

The dominant use of GPU is because of its large numbers of
processors and the easy access to CUDA libraries such as the
NVIDIA CUDA Deep Neural Network (cuDNN) by high-level
programming languages, such as C/C++ and Python, which
make GPU easier to program in a wide range of computa-
tional tasks [13]. GPU is generally used for DLNN training
involving intensive matrix multiplications in the standard back-
propagation training framework. Data and model parallelization
are the major methods used for GPU-based training paralleliza-
tion, which suffers from scaling and efficiency issues [14], [15].
For the testing of a trained neural network, several methods
have been developed to speedup pixelwise classification on GPU
platforms. The “sparse/strided kernels” methods avoid lots of

LI et al.: SCALING THE INFERENCE OF DIGITAL PATHOLOGY DEEP LEARNING MODELS 1693

redundancy of the sliding-window method by introducing d-
regularly sparse kernels, which are formed by inserting multiple
zeros in the columns and rows of regular convolutional and
pooling kernels and separating the entries of the original kernels
d pixels away. The combination of sparse kernels and 1-strides
allows continuous access to GPU memory and maximization
of GPU use [16], [17]. However, the computation for strided
kernel convolution was not supported by cuDNN when it was
published.

Fully convolutional networks also provide an efficient way
for pixel-level prediction of an image by adding upsampling
transposed convolution layers in the network [18], [19], [20].
After a series of transposed convolution layers, the output of the
prediction is usually a score map (“labelmap”) of the same size
as the input image. The regular classification network relying on
sliding windows for the prediction can produce fast pixelwise
prediction by adding transposed convolution layers [16].

The convolutional implementation of the sliding window
algorithm is now a common method to speedup pixelwise predic-
tion using classification models. The sliding window algorithm
is embedded by converting the fully connected layer to the con-
volutional layer after classification neural networks get trained
[21]. The modified neural network is able to accept input images
with the size larger than the training image, therefore increasing
the prediction speed.

Although the above-mentioned GPU-based solutions can in-
crease the prediction speed significantly, the traditional sliding
window method is still widely used as it is independent of
the architecture of classifiers. The “sparse/strided kernels” and
fully convolutional networks require adopting these networks
to make fast prediction possible. The method of converting
the fully connected layer to a convolution layer requires a
preset output dimension, which limits the choices of heatmap
resolution, whereas the sliding window method allows more
flexible resolution choices by setting the stride size (skipping
pixels). Moreover, if the prediction involves CPU-based image
processing, such as color normalization, the speedup effect will
be mostly counteracted by the long processing time on the CPU,
which bottlenecks GPU use. Recently, image compression and
resolution reduction have been adopted to reduce the computa-
tion burden in gigapixel WSI and radiographic image applica-
tions [22], [23]; however, the fast training and inference were
reported to tradeoff with the price of suboptimal classification
performance. In this work, we propose an HPC-based scaling
up method that is independent of the architecture of classifiers
and can be used for speeding up sliding-window-based methods
as reported here and other methods such as fully convolutional
networks.

B. HPC-Based Approaches With Traditional Parallelization
Techniques

The most dominant parallelization technique used in dis-
tributed environments is MPI [24]. However, current imple-
mentations of MPI require all needed resources to be available
simultaneously for the jobs to start. This may lead to “job
starvation”: Jobs requesting significant resources may never be

scheduled or may be delayed in the queue for a prohibitively
long time, even if their priorities are high and increasing over
time [25]. This is because available resources are first assigned
to jobs requesting a small amount of resources. On the other
hand, applying the reservation feature to reserve a large amount
of resources may lead to low system performance.

Moreover, MPI does not include the checkpointing feature by
default. As the number of CPU cores requested by a large-scale
application increases, the probability of getting unhealthy com-
puting nodes also increases, which in turn leads to unrecoverable
failures.

Even though MPI supports dynamic processes, current HPC
job schedulers assign only a fixed amount of resources (e.g.,
CPU cores) to MPI jobs at their start-up, and this number cannot
exceed the current capacity of the clusters. Therefore, newly
available resources of the clusters cannot be assigned (under
the control of the job schedulers) dynamically to running MPI
applications. This leads to two scalability limitations: 1) The
amount of requested resources cannot exceed the maximum
capacity of the clusters; 2) newly available resources cannot
be assigned to running MPI applications under the control of
the job schedulers.

The built-in array job facility of the job schedulers [26] used
in this work for processing WSI in a perfectly parallel manner
(no intertask dependencies exist) avoids the above-mentioned
limitations. This facility can launch parallel independent tasks of
an array job across the distributed computing environment of the
HPC clusters in a scalable manner—the array job starts whenever
computational resources are available, even for a single task
of the job, thereby avoiding the job starvation problem. Other
tasks of the job are started automatically by the job schedulers
as more resources become available. The number of tasks in
a single array job can exceed the maximum capacity of the
HPC clusters; however, the number is limited by the system
implementations. A hierarchical scaling technique based on the
array job mechanism offered in this work overcomes the system
limitation of the maximum number of tasks per array job as well.

Array jobs also provide natural checkpointing capabilities,
and a system failure can thus affect only a subset of running
tasks. Only the failed tasks need to be rerun to recover from the
system failures. There are workflow systems, such as Swift [27]
and Pegasus [28], designed to avoid MPI’s rigidity and lack of
elasticity. However, there are some limitations, which are listed
as follows.

1) The workflows need to be learned, which could be a burden,
whereas our approach is based on widely used and well-known
open-source programming tools, Python and Linux.

2) None of these workflows provide an integrated approach (as
presented in this work) for scaling digital pathology AI (DPAI)
on HPC clusters.

3) The workflows do not address the system limitation of
the job schedulers, whereas hierarchical scaling is introduced to
avoid the limitation.

The use of HPC clusters and parallel processing algorithms for
digital pathology deep learning AI is currently limited. Yildirim
and Foran [8] investigated deficiencies in existing approaches
[29], [30], [31], [32], [33] and proposed two enhancements: 1)

1694 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 6, DECEMBER 2023

PDA, which makes use of parallel file systems, such as Lustre
[10] and MPI-based libraries; and 2) distributed data access
(DDA), which utilizes distributed file/object storage systems
such as hadoop distributed file system (HDFS) and amazon
web services simple storage service (AWS S3). Even though the
PDA approach improves the scalability of WSI processing by
distributing/delegating read operations to worker nodes (versus a
single-master node in earlier designs), this approach 1) inherits
(as other MPI-based technologies) the limitations of the MPI
implementations mentioned earlier in this article and 2) adds
its own deficiency by allowing potentially thousands of worker
nodes to access the same WSI file saved in its original format (not
well suited for parallel access), which may lead to unrecoverable
system failures [34]. Thus, this approach limits the scalability of
the application by making the deployment of a trained network
more vulnerable to I/O errors. The DDA approach, on the
other hand, dynamically distributes WSIs to YARN containers
(no parallel cluster file system is needed) and concentrates the
processing of a whole image to only one YARN container
(computing node), which in turn limits the scalability of the
image processing. The hierarchical scaling technique introduced
in this work distributes subsets of a single WSI (extracted and
grouped in an HDF5 file beforehand) to different computing
nodes, thus avoiding scalability limitation.

A modular pipeline with three independent layers for de-
tection of tumor regions in digital specimens of breast lymph
nodes with deep learning models using CAMELYON dataset is
described in [35]. Similar to our work, this pipeline also uses
CPU-based HPC for image preprocessing and patch extraction,
along with HDF5 as an intermediate database.

1) However, the work presented in [35] showed that 10 000
CPU cores were used to extract data from 5 WSIs in about
1 h. Using our techniques, patches can be extracted from
399 WSIs and grouped in HDF5 files in less than 3 h using
only 399 CPU cores.

2) In [35], the patches were not grouped in HDF5 files.
GPUs were used, which are scarce and do not scale well
because of the limited amount of RAM accompanied by
the massive compute capacity [36]. The use of HDF5
files in our techniques facilitates distributed and parallel
processing on the CPU-based HPC at the inference step.

III. MATERIALS AND METHODS

A. CAMELYON Dataset

The CAMELYON16 challenge aimed to assess deep learn-
ing algorithms in detecting metastases in hematoxylin- and
eosin-stained tissue sections of the lymph nodes of women
with breast cancer. The dataset contains 399 WSIs: 270 training
WSIs (159 normal WSIs and 111 tumor WSIs) and 129 testing
WSIs. These WSIs were acquired from two medical centers, the
Radboud University Medical Center and the Utrecht University
Medical Center, where the WSIs were acquired at a resolution of
0.23–0.24µm per pixel using a 3D Histech (Budapest, Hungary)
Pannoramic 250 Flash II digital slide scanner and a Hamamatsu
(Hamamatsu, Japan) NanoZoomer-XR C12000-01 digital slide
scanner, respectively [37], [38]. The acquired WSI images were

Fig. 1. DLNN pipeline for digital pathology. In training, the normal and tumor
image patches were randomly extracted from normal (green contours) and tumor
(red contours) tissue regions. After image augmentation (e.g., random cropping,
rotation, adding color noise, and color normalization), the image patches were
used to train a neural network on GPUs (Inception v1 in this work). In testing,
the trained classifier is used to generate a pixelwise heatmap (red) for lesion
detection and classification on WSI images by a sliding window (blue box),
which is time-consuming, and a CPU-cluster-based parallelization framework
is proposed in this study to significantly speedup this step.

then transformed into bigTiff format from their generic formats
with JPEG compression and were stored as a pyramid of images
composed of several levels of magnifications [37].

The ground truth includes the slide-level binary labels (i.e.,
whether the slide contains tumor or is normal) and XML files
delineating the contours of metastatic cancer regions on tumor
slides. The ground truth was established by two pathologists,
who utilized immunohistochemistry (anti-cytokeratin) when
they could not agree with each other [37].

B. Deep Learning Pipeline

Fig. 1 illustrates part of our processing pipeline for the
CAMELYON detection/classification problem. Although a
trained neural network was used in this study, here we still
list the key parameters and steps for model training. Because
the tissue region only accounts for approximately 20% of the
whole slide [39], we first segmented the tissue regions from the
WSI image to focus the subsequent analysis on these regions.
For tissue segmentation, the WSIs were first downsampled to
fit into RAM by 32 folds over their length and width. The

LI et al.: SCALING THE INFERENCE OF DIGITAL PATHOLOGY DEEP LEARNING MODELS 1695

downsampled image was then converted from red, green, blue
(RGB) color space to HSV color space, and optimal threshold
values for Hue (H), Saturation (S), and Value (V) channels were
retrieved by the Ostu algorithm [40]. The threshold values were
applied to the downsampled image to generate a binary mask
and, subsequently, a bounding box for the tissue region. The
image patches with a size of 256 × 256 pixels were randomly
extracted from the region enclosed in the bounding box and
screened by the threshold values to exclude the image patches
from the background area.

For training WSIs, truth mask images with the same size as
WSIs were generated from XML files containing ground truth
information provided by CAMELYON using the Automated
Slide Analysis Platform [37]. The training image patches of size
224 × 224 were generated from random cropping of the 256
× 256 patches. The tumor image patches were extracted and
labeled as “1” if at least 50% of the pixels in the corresponding
truth mask image patch are tumor pixels; the normal image
patches were extracted and labeled as “0” if none of the pixels is a
tumor pixel. All the training image patches were extracted using
OpenSlide [41]. The extracted training image patches were then
augmented with random cropping, horizontal flipping, rotation
(90°, 180°, 270°), color normalization [42], and adding color
noise (The image patches were converted from RGB to HSV
color space, and a random integer from 0 to 20 was added to the
H, S, and V channels. Then, image patches were converted back
to the RGB color space.) [43]. We used these training patches
to train the Inception V1 network [44] on a GPU platform.

Note that the input to the neural network is a patch image (of
size 224× 224, in our case) and the output is a single score repre-
senting the probability of a tumor. In testing, each pixel can have
such a score output using a patch image centered at that pixel as
input (i.e., a sliding window) to the neural network, thereby
resulting in a pixelwise heatmap. This is a computationally
intensive procedure due to the large number of pixels in a WSI.
Furthermore, we applied the heatmap generation procedure to all
the WSIs, including both the training and test images. A super-
vised classifier (random forest, RF) was trained for slide-level
classification in our pipeline (not shown in Fig. 1; refer to [38]
for more details). The feature extraction and RF model training
were conducted based on the descriptions given in [38] and [44].
Therefore, the time-consuming pixelwise heatmap generation
(a.k.a. prediction) procedure has to be applied to all the 399
WSIs in the CAMELYON16 dataset. Fortunately, it is a natural
parallel task that can take advantage of HPC capabilities. We
used the HPC cluster at the FDA for this task. Next, we describe
the techniques we used in this facility.

C. Patch Extraction and Grouping in the HDF5 File

To generate a heatmap for each WSI, we first extract patches
from the tissue regions and put them in an HDF5 file, which
are retrieved later for prediction. As shown in Fig. 2, each
WSI is divided into a matrix composed of 224 × 224 image
patches. Each patch is determined as “tissue” (coded as 1) or
“background” (coded as 0) using the tissue thresholds by the
Ostu algorithm as described in the previous section, but only
applying to the H and S channels to make sure most of the

Fig. 2. WSI image segmentation and look-up table construction. The (X, Y)
coordinates are indices of a patch in the patch-matrix, counting from the upper-
left corner of the WSI.

tissue regions are preserved for testing (thresholding all the three
channels may lose some tissue regions). The indices in the patch
matrix and the tissue/background codes of these patches are
stored in a table such that only tissue patches are processed for
heatmap generation, and these heatmap patches can be correctly
stitched together or overlapped on the WSI. It is important to
note, however, that each patch actually extracted and stored
in the HDF5 file for processing is of size 448 × 448, which
is centered at each target 224 × 224 patch and extended 112
pixels on each of the four sides. This is because, as mentioned
earlier, the prediction for each pixel in the target 224× 224 patch
requires an input patch of size 224 × 224 to the neural network
and the extension is to have the input patch for every pixel in the
target 224 × 224 patch.

An HDF5 file contains a root group that, in turn, contains
other groups. A group is a folder-like structure that may contain
other groups or datasets within it. The datasets may contain
many different types of data. HDF5 supports concurrent read
access to datasets in a single HDF5 file from multiple processes
running on the same or different computing nodes across the
HPC cluster.

Patches of size 448 × 448 pixels from 40x WSIs are extracted
and grouped in HDF5 files [45]. A much larger size of image
patches could be used here to further reduce the I/O burden
because of the greater accessibility of larger memory on the
CPU compared to the limited memory of the GPU. The image
size of 448 × 448 pixels is used here to avoid nontissue regions
as much as possible. The same image size and batch size are also
used for testing the trained model on GPU to ensure the loaded
images fit the GPU memory. One HDF5 file containing groups
of up to 400 patches (a total of up to ∼230 MiB) is produced for
each slide. As mentioned earlier, only the patches from the tissue
region are included in the groups, which significantly decreases
the number of groups, thereby reducing processing time and the
required storage size.

Each WSI image is converted into one HDF5 file. The number
of groups in each HDF5 file is variable and depends on the size
of the WSI image and the number of patches in a group. Recall
that “group” is the unit of data assigned to and processed by
one array job task. More than 80% of computing nodes in the

1696 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 6, DECEMBER 2023

Fig. 3. Extracting and grouping of WSI patches in HDF5 files.

HPC cluster contain eight CPU cores. By using only seven CPU
cores for processing a group, we reserve one CPU core for the
operating system’s needs. With one patch size of 448 × 448
× 3 bytes, the maximum size of a group (with 400 patches)
equals ∼230 MiB. The number of patches (Np) per group could
be determined by the formula Np = �M/S�, where M is the
amount of available RAM for the application in a computing
node, S is the size of one patch, and �·� denotes the floor integer.
Then, the number of groups (Ng) in an HDF5 file could be
determined byNg = �Tp/Np�, orNg = �Tp/(�M/S�)�, where
Tp is the total number of patches of size S in one WSI that
has been determined in patch extraction and �·� denotes the
ceiling integer. For example, for a randomly selected WSI in our
datasets, we ended up with 22 199 tissue patches. Considering
that we have a total of 4000 CPU cores available at a time
for our use and 7 CPU cores are used for processing a group
using the multithreaded Python program, we decided to put
400 patches (assuming 230 MiB of RAM is available for the
group data) in each group, and so this WSI ended up with 56
groups [56 = CEILING (22199/4001)] in the HDF5 file. With
these settings, the total processing time of all groups in all 399
HDF5 files is less than 45 h. Every group in an HDF5 file is also
accompanied by WSI metadata containing information about the
patches (e.g., coordinates of the patches in the WSI) in the group.
The built-in array job facility of Son of Grid Engine (SGE) [46]
is used to launch N independent tasks to parallelize and scale
reading patches from each slide, generating groups of patches,
and placing them in HDF5 files as shown in Fig. 3. Here, N is the
number of slides, and each slide is processed by one independent
task in parallel.

LISTING 1 in the Appendix contains a Linux shell script code
excerpt that creates a list of names (in file LISTFILE) of WSIs
located at directory FILE_DIR and submits an SGE array job

using the ARRAY_SCRIPT script, which in turn uses LISTFILE
to launch one task per WSI for extracting patches from the WSI,
grouping them, and saving them in an HDF5 file.

The ARRAY_SCRIPT SGE script code excerpt is shown in
LISTING 2 (see Appendix). Every task of this array job uses
the Python program split_grp.py (source code could be found in
our GitHub repository [47]) for extraction, grouping, and saving
patches in HDF5 files.

After completion of all the array job tasks, a special procedure
(pseudocode shown in LISTING 3 in the Appendix) is run to
create a look-up table associating (in each row) an HDF5 file
with a pair of numbers indicating the first and last group IDs in
the HDF5 file. The look-up table is used later for dynamically
launching array jobs for processing the groups in all HDF5 files:
The number of array jobs is determined by the number of rows in
the table, and the number of tasks in each array job is determined
by the corresponding pair of group IDs.

D. Hierarchical Scaling

The number of groups of the image patches produced at the
data preparation stage may well exceed the maximum number
of tasks allowed within an array job, which in turn limits the
scalability of the image processing using an array job. Instead, a
hierarchical approach is taken in which the master job launches
N array jobs, each of which in turn runs Gi tasks, where N is the
number of WSIs and Gi is the number of groups in the ith WSI
as shown in Fig. 4. Once launched, every task retrieves patches
from the respective group using a Python program, OpenSlide,
and HDF5 libraries and processes them. Seven CPU cores are
used in a task for processing the respective group.

The master job code excerpt is shown in LISTING 4 in the
Appendix. This job uses the look-up table prepared earlier to
determine (for each WSI) the first and last task IDs of array jobs
associated with the WSI and its corresponding HDF5 file. Then,
it creates working directories and runs the array jobs with a
varying number (corresponding to the number of groups in each
HDF5 file) of Gi tasks using an SGE script process_array.sh.

A code excerpt from the process_array.sh SGE script is
shown in LISTING 5 in the Appendix. Based on its task ID,
SGE_TASK_ID, every task of this array job script determines
the group number in the HDF5 file for the associated WSI
and runs a Python program (source code could be found at
our GitHub repository [47]), which in turn uses OpenSlide and
HDF5 libraries to retrieve and process the patches of WSIs. The
testing scores of pixelwise classification for extracted image
patches in each group of HDF5 files are generated using the
trained neural network and stored in the format of a Python
numpy array with hierarchical labels of HDF5 file name and
group name. These labels are then used to correlate the testing
scores (numpy arrays) to the respective image patches and
the relative positions in WSI images. Then, heatmaps were
constructed by stitching the numpy arrays according to their
positions (see Fig. 4).

LI et al.: SCALING THE INFERENCE OF DIGITAL PATHOLOGY DEEP LEARNING MODELS 1697

Fig. 4. Hierarchical scaling technique and heatmap construction.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental evidence to demon-
strate the computation efficiency of our techniques using run-
time statistics (see Section IV-A). In addition, we investigated
the tradeoff between computation efficiency and classifica-
tion/detection accuracy, i.e., the effect of algorithmic choices
for computation efficiency on accuracy (see Section IV-B).

A. Computation Efficiency

The techniques presented in this work have been applied
to deep learning AI using 399 WSIs from CAMELYON 16
datasets [48]. As noted in Section III-B, this includes both the
training (159 normal WSIs and 111 tumor WSIs) and the testing
(129 WSIs) subsets. We tested two trained DLNNs: One that
requires applying a color normalization procedure to the patches
before testing, and one that does not use such preprocessing.
The prediction and heatmap generation in the deep learning
pipeline were run on our Betsy HPC cluster of the U.S. Food and
Drug Administration. This cluster contains a total of 4408 cores
(x86_64 architecture, Intel Nehalem) and 40 TB of RAM in 405
computing nodes interconnected with 40 Gb InfiniBand and 10
Gb Ethernet communication paths. All computing nodes run
CentOS Linux release 7.3.1611. SGE is used as a job scheduler,
and GPFS [11] is used as a parallel cluster file system.

Table I contains run-time statistics for the extraction and
grouping of WSI patches in HDF5 files. All 399 array job tasks
have been run in parallel, and the longest task has taken 2.68 h,
which led to a total of 132-fold estimated speedup.

Table II contains run-time statistics for the prediction (i.e.,
heatmap) generation step. Since seven CPU cores are used for
a group, a total of 190 960 CPU cores are needed to process
a total of 27 280 groups placed in 399 HDF5 files beforehand.
Applying the hierarchical scaling technique on the Betsy clus-
ter, the needed computational resources have been provided in
batches of 4000 CPU cores seamlessly achieving estimated total
speedups of 3784.89 (95% parallel efficiency) and 3947.41 (99%
parallel efficiency) for the DLNN models without and with color
normalization procedures, respectively.

TABLE I
RUN TIME STATISTICS FOR EXTRACTION AND GROUPING IN HDF FILES

Thanks to grouping image patches in HDF5 files, we achieved
a significant amount of I/O reduction: about 400 times fewer
accesses to the file system. There are 400 patches in one group,
and every task reads the whole group (∼230 MiB) at once.
Further experiments showed that as the number of patches in
a group increases from 400 to 1600 (919 MiB), the reading
speedup of the whole group at once (compared to reading all
the patches in the group individually) increases almost ten-fold,
from 29 to 284, see Fig. 5, which in turn leads to a reduction
of the total time needed for the whole pipeline execution. As
the number of patches in a group exceeds 1600, the speedup
decreases. Many factors (e.g., network bandwidth, operating
system settings, file system configurations, system load, and
available RAM on computing nodes) in distributed computing

1698 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 6, DECEMBER 2023

Fig. 5. Experimental results on group file reading speedup compared to reading all patches of the group individually. X-axis in the chart represents the numbers
of patches in the groups, the red line graph represents group file reading speedup, and the bar graph reflects the sizes (in MiB) of the groups.

environments, such as HPC clusters, affect the performance of
the I/O subsystem, and the peak of speedup shown in Fig. 5 re-
flects the tradeoff among these factors. A special tool is designed
in Python to assess the speedup in various group configurations
on an HPC cluster and find the most efficient configuration for a
pipeline. As shown in Table III, for combined run time statistics,
the total estimated serial run times of 15.23 and 18.55 years are
reduced to an estimated 37.83 and 43.77 h without and with color
normalization procedures, respectively. Estimated speedups are
3526 and 3714, with parallel efficiencies of 88% and 93%,
respectively. As a comparison, it took 30 days to test the “without
color normalization” model using a single GPU (NVIDIA GTX
2080 Ti) on the same WSI images in the same task.

B. Tradeoff Between Computation Efficiency and
Classification/Detection Accuracy

Inference on WSI using a trained deep neural network is time-
consuming due to the large image size. Algorithmic choices are
frequently made to improve computation efficiency; however,
the effect on accuracy is often unclear. One of the common
practices in DLNN inference on WSI is to use a stride parameter
to slide the DLNN input image window over the WSI for
generating heatmaps (see Section II-A). A larger stride size
decreases the inference time, but the gain in efficiency may come
at a price in accuracy. Here, we present our experimental results
investigating this effect.

We first investigated the effect of stride size on the slide-level
classification (cancer versus noncancer) in terms of the area
under the receiver operating characteristic (ROC) curve (AUC).
Note that because the inference computation is time-consuming,
we generated the heatmap with a stride size of 16 and then

downsampled it to generate heatmaps that correspond to stride
sizes of 64, 128, and 224. The same global and local features
were extracted based on these heatmaps. RF models were trained
separately corresponding to each stride size based on the features
extracted from these heatmaps. The performance of the trained
RF models was then assessed by ROC analysis. As shown in
Table IV and Fig. 6, the RF models appear to have no significant
difference in the slide-level classification performance. This in-
dicates that heatmaps with lower resolution may be used for fast
slide-level prediction when computational resources are limited.
To understand this, we checked the contributions of individual
features of the RF model; the description of these features can
be found in [38]. We found that the features carrying the most
weights are “largest area” and “maximum probability of the
largest area,” which are not sensitive to stride size. This explains
the almost similar slide-level classification performance of the
RF model across different stride sizes.

We then investigated the effect of stride size on the lesion-
level detection performance. We used the free-response operat-
ing characteristic (FROC) curve to evaluate this performance,
following the method in the CAMELYON16 challenge [38].
The FROC curve plots the sensitivity of the DLNN model in
detecting metastases annotated by pathologists (truth) against
the number of false-positive detections per WSI. Our results
show that the stride parameter (i.e., heatmap resolution) has
a substantial impact on the lesion detection performance (see
FROC curves in Fig. 7). Table V shows the sensitivity values
(i.e., true positive fractions) at various numbers of false positives
(FPs) and their average (i.e., FROC score). It can be seen that the
sensitivity decreases from 0.45 to 0.236 at 0.25 average FP when
the resolution of the heatmap is reduced by the stride size of 16
to the stride size of 224. A possible reason for the low sensitivity

LI et al.: SCALING THE INFERENCE OF DIGITAL PATHOLOGY DEEP LEARNING MODELS 1699

Fig. 6. Slide-level detection based on heatmaps corresponding to different stride sizes (red and blue correspond to without and with color normalization and
color augmentation, respectively).

Fig. 7. FROC curves for the comparison of lesion-level detection performance
over different heatmap resolutions.

at the left end of the FROC curve could be that the resolution of
the heatmap is not high enough to capture small lesions.

V. GENERAL APPLICABILITY

The techniques presented in this work are generally appli-
cable to scaling large-scale image processing problems and a
wide variety of applications in bioinformatics, modeling, and
simulation. For example, we have applied our parallelization
technique to next-generation sequencing data for alignment and
search of biological sequences [49], drug–protein interaction
data for investigating how 3100 active drug ingredients can be
expected to interact at a molecular level with 10 000 proteins
known to exist in the human body [50], and Markov Chain Monte
Carlo simulations [51], [52].

1700 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 6, DECEMBER 2023

TABLE II
RUN TIME STATISTICS FOR PREDICTION GENERATION

TABLE III
COMBINED RUN TIME STATISTICS

TABLE IV
AUCS (WITH 95% CONFIDENCE INTERVALS) OF SLIDE-LEVEL CLASSIFICATION

PERFORMANCE BASED ON HEATMAPS WITH A VARIETY OF STRIDE SIZES

TABLE V
FROC ASSESSMENT OF CANCER LESION DETECTION

Fig. 8 illustrates the generic procedure of the HPC scalable
workflow applicable to general big-data processing applications
(on the left; including generic script code) and the corresponding
specific application to the inference of digital pathology deep
learning AI as presented in this article (on the right; including
reference to the listing of script code in the Appendix). It
should be noted that the techniques demonstrated in the DPAI
application can be applied to any imaging AI application that
involves image processing and testing an AI algorithm on a large
amount of data.

1) Step 1. Data preparation: In this step, independent data
files to be processed in parallel are identified and put on
a list. In the DPAI application, these are the WSIs in the
test dataset to be tested on a trained DLNN model.

2) Step 2. Data preprocessing: This step includes any data
preprocessing, such as data normalization, prior to the
primary analysis in the next step. In the DPAI application,
the WSI file is too big to be processed directly and has to
be split into patch images. These images are organized in
the HDF5 file format suitable for parallel file I/O. Note
that this preprocessing can be launched as independent
tasks in parallel on the HPC cluster.

3) Step 3. Data processing: In this primary analysis step,
the preprocessed data are processed using the primary
analysis application (APP2) in parallel tasks across the
HPC cluster in a hierarchical and scalable manner—each
of the array job tasks (in the first hierarchical layer)
launches its own parallel array job tasks (in the second
hierarchical layer) and produces results in parallel. In
the DPAI application, a color normalization procedure is
applied to image patches on the fly and then the trained
deep neural network is applied to each color-normalized
patch to produce a heatmap.

LI et al.: SCALING THE INFERENCE OF DIGITAL PATHOLOGY DEEP LEARNING MODELS 1701

Fig. 8. Generic scalable HPC workflow and its application to the inference of the digital pathology deep learning AI. Highlighted steps contain scalable (parallel)
processes, black lines denote data flow, and red lines denote control flow.

1702 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 6, DECEMBER 2023

4) Step 4. Merging results and final processing: This step
collects the results produced in parallel and merges them
in some application-specific meaningful way. In the DPAI
application, the heatmaps for patches are stitched into a
WSI-size heatmap that can, for example, be displayed
overlapping the original WSI image to indicate the sus-
picious areas.

VI. CONCLUSION AND FUTURE WORK

As the demand for deep learning AI is increasing, sophis-
ticated hardware platforms (also called AI accelerators) are
rapidly evolving. While GPU and tensor processing unit remain
the mainstream technologies, CPU platforms are considered a
suitable and important alternative solution for certain applica-
tions [53], especially if a powerful CPU-based HPC facility
is already available. MIT professors Dr. Nir Shavit, Dr. Alex
Matveev, and others offered and patented a technology to run ML
models on CPUs [54], [55], [56]. The practically “unlimited”
memory of CPU clusters means these machines could unlock
larger problems and architectures than GPUs and other specialty
hardware devices. Our techniques could be combined with this
technology to provide an end-to-end solution.

The techniques presented in this work do not require any spe-
cial tools for their implementation. Publicly available and widely
used open-source software (Linux, Python, OpenSlide, and
HDF5 libraries) along with our source codes written in familiar
Linux shell, SGE scripts, and Python programming language and
available on GitHub [47] could be used on any HPC cluster with
an SGE job scheduler for applying these techniques to similar
problems. SGE scripts could also be easily adapted to run under
other job schedulers, such as SLURM, PBS, and MOAB.

In conclusion, we developed a technique for scaling pixelwise
testing of trained deep learning AI models on HPC clusters.
We demonstrated our technique on a digital pathology WSI
application. Our technique involved using the HDF5 file format
to deal with the parallel I/O of a large number of patch images and
the hierarchical scaling and parallelization of the computation
jobs using HPC’s array job facilities. Our technique is generally
applicable to any large-scale image analysis problem involving
computationally intensive AI/ML or other analyses on a large
number of patch images. We demonstrated our techniques in this
article and also shared our source code on Github [47].

APPENDIX

LISTING 1: A Linux Shell Script Code Excerpt.

LISTING 2: An SGE Script Code Excerpt.

LISTING 3: A Linux Shell Script Pseudo-Code.

LISTING 4: Master Job Code Excerpt.

LI et al.: SCALING THE INFERENCE OF DIGITAL PATHOLOGY DEEP LEARNING MODELS 1703

LISTING 5: A Code Excerpt From process_array.sh.

ACKNOWLEDGMENT

Disclaimer: The authors would like to thank Dr. Nicholas
Petrick and Dr. Kenny Cha of FDA for their valuable feedback
that greatly improved the manuscript. This study used the com-
putational resources of the HPC clusters at the FDA, Center for
Devices and Radiological Health (CDRH). The authors would
also like to thank the anonymous reviewers for their constructive
suggestions on highlighting the general applicability of the
techniques presented in this article and improving the clarity
of the manuscript.

REFERENCES

[1] C. L. Srinidhi, O. Ciga, and A. L. Martel, “Deep neural network models
for computational histopathology: A survey,” Med. Image Anal., vol. 67,
2021, Art. no. 101813.

[2] B. Chen, T. Medini, J. Farwell, S. Gobriel, C. Tai, and A. Shrivastava,
“Slide: In defense of smart algorithms over hardware acceleration for large-
scale deep learning systems,” in Proc. Mach. Learn. Syst., 2020, vol. 2,
pp. 291–306.

[3] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D.
Terzopoulos, “Image segmentation using deep learning: A survey,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7, pp. 3523–3542, Jul. 2022.

[4] L. Jiao et al., “A survey of deep learning-based object detection,” IEEE
Access, vol. 7, pp. 128837–128868, Sep. 5, 2019, doi: 10.1109/AC-
CESS.2019.2939201.

[5] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: Features and
algorithms,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012,
pp. 2759–2766, doi: 10.1109/CVPR.2012.6247999.

[6] R. Yao, G. Lin, S. Xia, J. Zhao, and Y. Zhou, “Video object segmentation
and tracking: A survey,” ACM Trans. Intell. Syst. Technol., vol. 11, no. 4,
pp. 1–47, 2020.

[7] A. BenTaieb and G. Hamarneh, “Deep learning models for digital pathol-
ogy,” Oct. 27, 2019, arXiv:1910.12329.

[8] E. Yildirim and D. J. Foran, “Parallel versus distributed data access
for gigapixel-resolution histology images: Challenges and opportunities,”
IEEE J. Biomed. Health Inform., vol. 21, no. 4, pp. 1049–1057, Jul. 2017.

[9] M. Folk et al., “An overview of the HDF5 technology suite and its appli-
cations,” in Proc. EDBT/ICDT March 2011 Workshop Array Databases,
ACM USA, 2011, pp. 36–47, doi: 10.1145/1966895.1966900.

[10] P. Braam, “The Lustre storage architecture,” arXiv:1903.01955, Mar.
5, 2019. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1903/1903.
01955.pdf

[11] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for large
computing clusters,” FAST, vol. 2, no. 19, Jan. 28, 2002. [Online]. Avail-
able: https://cse.buffalo.edu/faculty/tkosar/cse710_spring14/papers/gpfs.
pdf

[12] R. Stone, “py-wsi,” 2020, Accessed: Mar. 28, 2020. [Online]. Available:
https://github.com/ysbecca/py-wsi

[13] S. Mittal and S. Vaishay, “A survey of techniques for optimizing deep
learning on GPUs,” J. Syst. Architecture, vol. 99, 2019, Art. no. 101635,
doi: 10.1016/j.sysarc.2019.101635.

[14] J. Keuper and F. Preundt, “Distributed training of deep neural net-
works: Theoretical and practical limits of parallel scalability,” in Proc.
2nd Workshop Mach. Learn. HPC Environments, 2016, pp. 19–26,
doi: 10.1109/MLHPC.2016.006.

[15] S. Pal et al., “Optimizing multi-GPU parallelization strategies for deep
learning training,” IEEE Micro, vol. 39, no. 5, pp. 91–101, Sep./Oct. 2019,
doi: 10.1109/MM.2019.2935967.

[16] H. Li, R. Zhao, and X. Wang, “Highly efficient forward and backward
propagation of convolutional neural networks for pixelwise classification,”
2014, arXiv, abs/1412.4526.

[17] F. Tschopp, J. N. P. Martel, S. C. Turaga, M. Cook, and J. Funke,
“Efficient convolutional neural networks for pixelwise classification on
heterogeneous hardware systems,” in Proc. IEEE 13th Int. Symp. Biomed.
Imag., 2016, pp. 1225–1228, doi: 10.1109/ISBI.2016.7493487.

[18] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pp. 3431–3440, 2015. [Online]. Available: https://arxiv.org/pdf/
1411.4038.pdf

[19] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks
for Biomedical Image Segmentation. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[20] F. Xing, Y. Xie, X. Shi, P. Chen, Z. Zhang, and L. Yang, “Towards pixel-to-
pixel deep nucleus detection in microscopy images,” BMC Bioinf., vol. 20,
no. 1, 2019, Art. no. 472, doi: 10.1186/s12859-019-3037-5.

[21] A. Pezeshk, S. Hamidian, N. Petrick, and B. Sahiner, “3-D convolutional
neural networks for automatic detection of pulmonary nodules in chest
CT,” IEEE J. Biomed. Health Inform., vol. 23, no. 5, pp. 2080–2090,
Sep. 2019.

[22] D. Tellez, G. Litjens, J. van der Laak, and F. Ciompi, “Neural im-
age compression for gigapixel histopathology image analysis,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 567–578,
Feb. 2021.

[23] C. F. Sabottke and B. M. Spieler, “The effect of image resolution on
deep learning in radiography,” Radiol., Artif. Intell., vol. 2, no. 1, 2020,
Art. no. e190015, doi: 10.1148/ryai.2019190015.

[24] P. Balaji, W. Gropp, T. Hoefler, and R. Thakur, “Advanced MPI pro-
gramming,” Tutorial at SC17, Nov. 2017. Accessed: Mar. 2, 2020. [On-
line]. Available: https://www.mcs.anl.gov/∼thakur/sc17-mpi-tutorial/
slides.pdf

[25] S. Amdani and S. Jadhao, “Scheduling jobs strategies for grid computing:
A review,” Int. J. Adv. Technol. Eng. Exploration, vol. 3, no. 19, pp. 82–85,
2016, doi: 10.19101/IJATEE.2016.320002.

[26] A. Reuther et al., “Scheduler technologies in support of high performance
data analysis,” in Proc. IEEE High Perform. Extreme Comput. Conf., Sep.
13, 2016, pp. 1–6.

[27] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster,
“Swift: A language for distributed parallel scripting,” Parallel Comput.,
vol. 37, no. 9, pp. 633–652, 2011, doi: 10.1016/j.parco.2011.05.005.

[28] E. Deelman et al., “The evolution of the Pegasus workflow manage-
ment software,” Comput. Sci. Eng., vol. 21, no. 4, pp. 22–36, 2019,
doi: 10.1109/MCSE.2019.2919690.

[29] N. Zerbe, P. Hufnagl, and K. Schlüns, “Distributed computing in image
analysis using open source frameworks and application to image sharpness
assessment of histological whole slide images,” Diagn. Pathol., vol. 6,
no. 1, pp. 1–5, Dec. 2011.

[30] G. Teodoro, T. Kurc, J. Kong, L. Cooper, and J. Saltz, “Comparative
performance analysis of Intel (R) Xeon Phi (TM) GPU and CPU: A case
study from microscopy image analysis,” in Proc. IEEE 28th Int. Parallel
Distrib. Process. Symp., 2014, pp. 1063–1072.

[31] X. Qi et al., “Content-based histopathology image retrieval using Comet-
Cloud,” BMC Bioinf., vol. 15, no. 1, 2014, Art. no. 287.

[32] G. Bueno et al., “A parallel solution for high resolution histological
image analysis,” Comput. Methods Programs Biomed., vol. 108, no. 1,
pp. 388–401, 2012.

https://dx.doi.org/10.1109/ACCESS.2019.2939201
https://dx.doi.org/10.1109/ACCESS.2019.2939201
https://dx.doi.org/10.1109/CVPR.2012.6247999
https://dx.doi.org/10.1145/1966895.1966900
https://arxiv.org/ftp/arxiv/papers/1903/1903.01955.pdf
https://arxiv.org/ftp/arxiv/papers/1903/1903.01955.pdf
https://cse.buffalo.edu/faculty/tkosar/cse710_spring14/papers/gpfs.pdf
https://cse.buffalo.edu/faculty/tkosar/cse710_spring14/papers/gpfs.pdf
https://github.com/ysbecca/py-wsi
https://dx.doi.org/10.1016/j.sysarc.2019.101635
https://dx.doi.org/10.1109/MLHPC.2016.006
https://dx.doi.org/10.1109/MM.2019.2935967
https://dx.doi.org/10.1109/ISBI.2016.7493487
https://arxiv.org/pdf/1411.4038.pdf
https://arxiv.org/pdf/1411.4038.pdf
https://dx.doi.org/10.1186/s12859-019-3037-5
https://dx.doi.org/10.1148/ryai.2019190015
https://www.mcs.anl.gov/protect $elax sim $thakur/sc17-mpi-tutorial/slides.pdf
https://www.mcs.anl.gov/protect $elax sim $thakur/sc17-mpi-tutorial/slides.pdf
https://dx.doi.org/10.19101/IJATEE.2016.320002.
https://dx.doi.org/10.1016/j.parco.2011.05.005
https://dx.doi.org/10.1109/MCSE.2019.2919690

1704 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 6, DECEMBER 2023

[33] A. Aji et al., “Hadoop GIS: A high performance spatial data warehous-
ing system over MapReduce,” Proc. VLDB Endowment, vol. 6, no. 11,
pp. 1009–1020, 2013.

[34] Lustre Best Practices, Apr. 15, 2019. Accessed: Mar. 21 2020. [On-
line]. Available: https://www.nas.nasa.gov/hecc/support/kb/lustre-best-
practices_226.html

[35] M. Graziani et al., “Breast histopathology with high-performance com-
puting and deep learning,” Comput. Inform., vol. 39, no. 4, pp. 780–807,
2020, doi: 10.31577/cai_2020_4_780.

[36] D. Kalamkar, E. Georganas, S. Srinivasan, J. Chen, M. Shiryaev, and
A. Heinecke, “Optimizing deep learning recommender systems’ train-
ing on CPU cluster architectures,” in Proc. SC20, Int. Conf. High
Perform. Comput., Netw., Storage Anal., Atlanta, GA, USA, 2020,
pp. 1–15.

[37] G. Litjens et al., “1399 H&E-stained sentinel lymph node sections of breast
cancer patients: The CAMELYON dataset,” GigaScience, vol. 7, no. 6,
2018, Art. no. giy065.

[38] B. E. Bejnordi et al., “Diagnostic assessment of deep learning algorithms
for detection of lymph node metastases in women with breast cancer,”
JAMA, vol. 318, no. 22, pp. 2199–2210, 2017.

[39] Y. Liu et al., “Artificial intelligence-based breast cancer nodal
metastasis detection: Insights into the black box for pathologists,”
Arch. Pathol. Lab. Med., vol. 143, no. 7, pp. 859–868, 2019,
doi: 10.5858/arpa.2018-0147-OA.

[40] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979,
doi: 10.1109/tsmc.1979.4310076.

[41] A. Goode, B. Gilbert, J. Harkes, D. Jukic, and M. Satyanarayanan,
“OpenSlide: A vendor-neutral software foundation for digital pathology,”
J. Pathol. Inform., vol. 4, no. 1, pp. 27–27, Jan. 2013.

[42] A. Vahadane et al., “Structure-preserving color normalization and sparse
stain separation for histological images,” IEEE Trans. Med. Imag., vol. 35,
no. 8, pp. 1962–1971, Aug. 2016, doi: 10.1109/TMI.2016.2529665.

[43] W. Li and W. Chen, “Reproducibility in deep learning algorithms
for digital pathology applications: A case study using the CAME-
LYON16 datasets,” in Proc. SPIE, vol. 11603, 2021, Art. no. 1160318,
doi: 10.1117/12.2581996.

[44] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, “Deep learning
for identifying metastatic breast cancer,” Jun. 18, 2016, arXiv:1606.05718.
[Online]. Available: https://arxiv.org/pdf/1606.05718.pdf

[45] A. Collette, HDF5 for Python, 2008. [Online]. Available: http://www.
h5py.org/

[46] Son of Grid Engine, 2018. Accessed: Mar. 27, 2020. [Online]. Available:
https://arc.liv.ac.uk/trac/SGE

[47] “HPC_DPI,” 2020. Accessed: Jun. 30, 2020. [Online]. Available: https:
//github.com/DIDSR/HPC_DPAI

[48] “Grand Challenge,” 2015. Accessed: Mar. 26, 2020. [Online]. Available:
https://camelyon16.grand-challenge.org/

[49] M. Mikailov et al., “Scaling bioinformatics applications on HPC,” BMC
Bioinf., vol. 18, pp. 163–169, 2017, doi: 10.1186/s12859-017-1902-7.

[50] H. Luo et al., “DRAR-CPI: A server for identifying drug reposition-
ing potential and adverse drug reactions via the chemical–protein in-
teractome,” Nucleic Acids Res., vol. 39, pp. W492–W498, Jul. 2011,
doi: 10.1093/nar/gkr299.

[51] M. Mikailov, J. Qiu, F.-J. Luo, S. Whitney, and N. Petrick, “Scaling model-
ing and simulation on high-performance computing clusters,” Simulation,
vol. 96, no. 2, pp. 221–232, 2020, doi: 10.1177/0037549719878249.

[52] M. Mikailov et al., “Scaling and parallelization of big data analysis on
HPC and cloud systems,” in Proc. Int. Conf. Adv. Comput. Commun. Eng.,
2019, pp. 1–8, doi: 10.1109/ICACCE46606.2019.9079987.

[53] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking TPU, GPU,
and CPU platforms for deep learning,” Jul. 24, 2019, arXiv:1907.10701.
[Online]. Available: https://arxiv.org/pdf/1907.10701.pdf

[54] A. Matveev and N. Shavit, “Systems and methods for exchange of data
in distributed training of machine learning algorithms.” US Patent App.
16/193,051, 2019/5/23. Accessed: Apr. 17, 2020. [Online]. Available:
https://patents.google.com/patent/US20190156214A1/en

[55] R. Gelashvili, N. Shavit, and A. Zlateski, “L3 fusion: Fast transformed
convolutions on CPUs,” arXiv:1912.02165, Dec. 4, 2019. [Online]. Avail-
able: https://arxiv.org/pdf/1912.02165.pdf

[56] “Software-Delivered AI - Neural Magic,” 2019. Accessed: Apr. 17, 2020.
[Online]. Available: https://neuralmagic.com/

Weizhe Li received the B.S. degree in bioengineering
from Sichuan University, Chengdu, China, in 2002,
the Ph.D. degree in biophysics from the Chinese
Academy of Sciences, Beijing, China, in 2008, and
the MPH degree in biostatistics from the University
of Maryland, College Park, MD, USA, in 2018.

From 2018 to 2014, he was a Postdoctoral Fellow
with Johns Hopkins University. From 2014 to 2019,
he was an Optical Imaging Research Specialist with
the National Institutes of Health. He is currently a
Staff Fellow with the Center for Devices and Radio-

logical Health, U.S. Food & Drug Administration, Silver Spring, MD, USA. He
has authored/coauthored 11 multidisciplinary articles in peer-reviewed journals
and holds a patent for a three-dimensional imaging technique. His research
interests include machine learning in digital pathology and whole slide imaging.

Dr. Li was the recipient of awards and honors including the Leidos Research
Fellowship, the Mid-Atlantic Nephrology Young Investigator’s Forum Award,
and Diao Scholarship (Chinese Academy of Sciences).

Mike Mikailov (Member, IEEE) received the B.S.
and M.Sc. degrees in mathematics from Baku State
University, (Baku, Azerbaijan), former USSR, in
1980, the Ph.D. degree in computer science from
the Glushkov Institute of Cybernetics, Academy of
Sciences of Ukraine, Kyiv, Ukraine, in 1987, and the
MBA degree in international management from the
Naveen Jindal School of Management, University of
Texas at Dallas, Richardson, TX, USA, in 2006.

From October 2004 to March 2009, he was the
Director of Software Development with L-3 Commu-

nications. Since May 2009, he has been a Computer Scientist with the Center
for Devices and Radiological Health, U.S. Food & Drug Administration, Silver
Spring, MD, USA. He has authored/coauthored more than 20 articles in peer-
reviewed journals and conference proceedings in former USSR and 9 articles
in peer-reviewed journals in the USA. His current research interests include
artificial intelligence and machine learning algorithms in digital pathology and
other medical imaging applications, high-performance computing techniques,
and parallel and distributed computing techniques.

Dr. Mikailov was the recipient of many awards and honors, including the
Bronze Medal for Contributions to the Scientific and Technical Progress in
Computer Science (World Festival of Youth and Students, Moscow, former
USSR, 1985), the Scientific Achievement Award (US FDA, 2011), the Lever-
aging/Collaboration Award “For development of a new reference viral database
to enhance next-generation sequencing analysis for novel virus detection” (US
FDA, 2018), and Honor Award (US FDA, 2020).

Weijie Chen received the B.S. degree in physics from
the University of Science and Technology of China,
Hefei, China, in 1998, the M.Sc. degree in medical
physics from Peking University, Beijing, China, in
2001, and the Ph.D. degree in medical physics from
the University of Chicago, Chicago, IL, USA, in 2007.

Since 2007, he has been a Postdoctoral Fellow, a
Staff Fellow, and a Research Physicist with the Center
for Devices and Radiological Health (CDRH), U.S.
Food & Drug Administration, Silver Spring, MD,
USA. He has authored/coauthored more than 65 arti-

cles in peer-reviewed journals and conference proceedings and 3 book chapters
and holds 1 patent. He has been the Principal Investigator or Coinvestigator
in numerous FDA intramural funded research projects. His current research
interests include artificial intelligence and machine learning algorithms in digital
pathology and other medical imaging applications and statistical evaluation
methodologies in diagnostic medicine.

Dr. Chen is a Fellow of SPIE and a Member of the American Association
of Physicists in Medicine. He is an Associate Editor for the SPIE Journal of
Medical Imaging. He was the recipient of many awards and honors including the
Predoctoral Traineeship Award (US Department of Defense Breast Cancer Re-
search Program, 2004–2006), the Lawrence H. Lanzl Medical Physics Graduate
Student Award (University of Chicago, 2005), Excellence in Scientific Research
Award (CDRH, FDA, 2017), and the Excellence in Mentoring Award (CDRH,
FDA, 2020).

https://www.nas.nasa.gov/hecc/support/kb/lustre-best-practices_226.html
https://www.nas.nasa.gov/hecc/support/kb/lustre-best-practices_226.html
https://dx.doi.org/10.31577/cai_2020_4_780
https://dx.doi.org/10.5858/arpa.2018-0147-OA
https://dx.doi.org/10.1109/tsmc.1979.4310076
https://dx.doi.org/10.1109/TMI.2016.2529665
https://dx.doi.org/10.1117/12.2581996
https://arxiv.org/pdf/1606.05718.pdf
http://www.h5py.org/
http://www.h5py.org/
https://arc.liv.ac.uk/trac/SGE
https://github.com/DIDSR/HPC_DPAI
https://github.com/DIDSR/HPC_DPAI
https://camelyon16.grand-challenge.org/
https://dx.doi.org/10.1186/s12859-017-1902-7
https://dx.doi.org/10.1093/nar/gkr299
https://dx.doi.org/10.1177/0037549719878249
https://dx.doi.org/10.1109/ICACCE46606.2019.9079987.
https://arxiv.org/pdf/1907.10701.pdf
https://patents.google.com/patent/US20190156214A1/en
https://arxiv.org/pdf/1912.02165.pdf
https://neuralmagic.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

