
IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 5, OCTOBER 2023 1129

Rethinking Logic Minimization for
Tabular Machine Learning
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Abstract—Tabular datasets can be viewed as logic functions that
can be simplified using two-level logic minimization to produce
minimal logic formulas in disjunctive normal form, which in turn
can be readily viewed as an explainable decision rule set for binary
classification. However, there are two problems with using logic
minimization for tabular machine learning. First, tabular datasets
often contain overlapping examples that have different class labels,
which have to be resolved before logic minimization can be applied
since logic minimization assumes consistent logic functions. Second,
even without inconsistencies, logic minimization alone generally
produces complex models with poor generalization because it ex-
actly fits all data points, which leads to detrimental overfitting. How
best to remove training instances to eliminate inconsistencies and
overfitting is highly nontrivial. In this article, we propose a novel
statistical framework for removing these training samples so that
logic minimization can become an effective approach to tabular
machine learning. Using the proposed approach, we are able to
obtain comparable performance as gradient boosted and ensemble
decision trees, which have been the winning hypothesis classes
in tabular learning competitions, but with human-understandable
explanations in the form of decision rules. To the best of authors’
knowledge, neither logic minimization nor explainable decision
rule methods have been able to achieve the state-of-the-art per-
formance before in tabular learning problems.

Impact Statement—Decision rule sets are an important hypoth-
esis class for tabular learning problems in which the ability to pro-
vide human understandable explanations is of critical importance.
However, they are generally not the winning hypothesis class in
terms of accuracy. Black-box models like gradient boosted and
ensemble decision trees are generally the superior models. In this
article, we revisit the use of logic minimization to derive explain-
able decision rule sets from tabular datasets. Logic minimization
alone produces complex models with poor generalization because it
exactly fits all data points as provided. We overcome this problem
by removing instances that cause inconsistencies and overfitting
via a novel statistical framework. The proposed approach makes
possible the learning of decision rules that achieve the state-of-the-
art classification performance in tabular learning problems with
explainable rule-based predictions, which has not been achieved
before.
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I. INTRODUCTION

IN MACHINE learning domains, such as healthcare and
criminal justice where human lives may be deeply impacted,

creating inherently interpretable models that can provide human
understandable explanations is critically important [1]. In these
domains, the datasets are often provided as tabular data with nat-
urally meaningful features. Due to their intrinsic explainability,
decision rule sets [2], [3], [4], [5] are often a popular hypothesis
class of choice in these applications. However, they are not
the winning class in these tabular learning problems in terms
of accuracy. For example, in Kaggle competitions, gradient
boosted, and ensemble decision trees [6], [7], [8] are generally
the superior models. While these more complex classifiers can
provide some level of feature attributions to predictions, their
interpretability is limited compared to rule-based sentences that
decision rule sets provide, which can be easily understood by
humans.

In this article, we explore the use of two-level logic mini-
mization as a means for deriving explainable decision rule sets
for tabular learning. An example of a decision rule set with two
conjunctive rules is as follows.

IF (Systolic blood pressure > 120) OR

(age > 60 AND cholesterol = very high).
THEN Presence of cardiovascular disease.

In this example, the model would predict someone to have
cardiovascular disease if the person has systolic blood pressure
above 120, or if the person is above 60 years of age and has a
very high level of cholesterol. The model not only provides a
prediction, but the corresponding matching rule also provides
an explanation that humans can easily understand.1

1As discussed in Section V on related work, prior work on decision rule
sets has established the benefits of interpretability of decision rule sets for
tabular learning problems over black-box models (e.g., [1]), primarily because
the activated IF–THEN rule also provides an explanation in terms of human-
understandable features. Beyond what has already been studied in the literature
about the interpretability of decision rule sets, we do not make further claims
in this article regarding the interpretability of decision rule sets. Instead, our
focus is on a new logic minimization approach for deriving decision rules that
can achieve the state-of-the-art classification performance in tabular learning
problems, which neither logic minimization nor decision rule methods have
been able to achieve before. We believe advancing the start-of-the-art in both
logic minimization and decision rule learning for tabular machine learning is of
important significance.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5037-1497
https://orcid.org/0000-0003-3732-2372
https://orcid.org/0000-0003-0965-7247
mailto:l1qiao@eng.ucsd.edu
mailto:wweijia@eng.ucsd.edu
mailto:billlin@penalty -@M eng.ucsd.edu
mailto:billlin@penalty -@M eng.ucsd.edu
mailto:dasgupta@eng.ucsd.edu


1130 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 5, OCTOBER 2023

TABLE I
TEST ACCURACY (AS A PERCENTAGE) FOR THE CARDIOVASCULAR DISEASE

DATASET (CARDIO) [9]

In particular, the explanations are stated directly in terms
of meaningful input features, which can be categorical (e.g.,
color equal to red, blue, or green) or numerical (e.g., age >
60) attributes, where the binary encoding of categorical and
numerical attributes is well-studied [4], [5].

When binary encoded, tabular datasets can be viewed as
logic functions to be minimized, and the minimized logic in
disjunctive normal form (DNF) can be readily viewed as an
explainable decision rule set for binary classification. However,
tabular datasets often contain overlapping examples that have
different class labels, which have to be resolved before logic
minimization can be applied since logic minimization assumes
consistent logic functions. Such inconsistencies can be resolved
by taking the majority class such that the largest consistent
subset of nonoverlapping training instances is retained. Logic
minimization can then be applied to the derived incompletely-
specified logic function to fit the data points exactly with a mini-
mal number of rules and a minimal number of conditions in each
rule with respect to the provided incompletely specified logic
function. However, in practice, the logic minimized decision rule
set derived this way tends to perform poorly in test accuracy and
contains complex rules.

Consider the cardiovascular disease dataset (cardio) from the
Kaggle competition [9]. This task predicts whether a patient
has cardiovascular disease or not based on the patient’s basic
information, the results of medical examinations, and the extra
information given by the patient. The performance of the logic
minimization derived classifier in the abovementioned manner
is shown in Table I with a test accuracy of only 66.03% [shown
in the row labeled “logic minimization (no-denoise)”], which is
quite poor in comparison, for example, to known decision rule
learners like RIPPER [2] that achieves 70.57% test accuracy or
a state-of-the-art nonexplainable tabular learner like XGBoost
(gradient boosted decision tree) [6], which achieves 73.06% test
accuracy.

Our conjecture why logic minimization used in the abovemen-
tioned manner is not effective in producing accurate classifiers
is due in part to the overfitting of the training data. In particular,
because logic minimization exactly fits all data points, noisy
data points (those whose label is not the Bayes-optimal choice)
can be quite problematic. These noisy data points can lead to a
model that both generalizes poorly and is larger than would be
needed. In addition, resolving inconsistencies by means of the
majority class is often not the best strategy. How best to remove
training instances to eliminate overfitting and inconsistencies is
highly nontrivial.

To remedy these problems, we propose a statistical frame-
work for denoising (to be detailed later) the training dataset
by removing a subset of noisy data points, both for purpose of
eliminating overfitting and inconsistencies. Logic minimization
can then be applied to this edited dataset to produce simple
and accurate decision rules from the minimized DNF formula.
With the denoising preprocessing step, logic minimization is
able to produce a classifier that achieves 73.20% test accuracy
for the cardio dataset, as shown in Table I, which is significantly
better than logic minimization without denoising, significantly
better than known decision rule learners, and comparable to
state-of-art tabular learners like XGBoost. As shown in the eval-
uation section, our logic minimization approach with denoising
is able to achieve accuracies within just 0.7% on average over
all datasets evaluated in comparison with the state-of-the-art,
but nonexplainable tabular learners. Thus, our approach is able
to achieve comparable state-of-the-art results while providing
human understandable explanations in the form of decision
rules. To the best of authors’ knowledge, neither logic mini-
mization nor explainable decision rule methods have been able
to achieve the state-of-the-art performance before in tabular
learning problems.

The rest of this article is organized as follows. Section II
formulates tabular learning as a logic minimization problem.
Section III introduces our denoising framework to enable
logic minimization to achieve the state-of-the-art performance.
Section IV provides extensive evaluation of our proposed ap-
proach. Section V outlines related work. Finally, Section VI
concludes this article.

II. TABULAR LEARNING AS LOGIC MINIMIZATION

As discussed in the previous section, a tabular dataset can be
viewed as an incompletely specified logic function that can be
minimized into a DNF formula, which can then be readily trans-
lated into independent unordered IF–THEN decision rules. In this
section, we first provide further details regarding the binarization
of tabular datasets into incompletely specified logic functions.
We then summarize the role of two-level logic minimization as
a decision rule learner.

A. Binarization of Tabular Data

Although binary features commonly appear in tabular
datasets, these datasets also generally include categorical and
numerical features, which are naturally used when the data is
collected. In this work, we assume all data are binary encoded
and, thus, categorical and numerical features need to be first
binarized using well established preprocessing steps in the
machine learning literature. In particular, we follow exactly
the same binarization approach used in some decision ruler
learners [4], [5], where we simply one-hot encode all categorical
features into binary vectors. For numerical features, we adopt
quantile discretization based on the distribution of numerical
values in the training data to get a set of thresholds for each
feature, where the original numerical value is one-hot-encoded
into a binary vector by comparing with the thresholds (e.g., age≤
25, age≤50, age≤75) and encoded as 1 if less than the threshold
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or 0 otherwise. This binarization approach for numerical features
has been widely used by decision rule learners and shown to
achieve the better performance than directly discretizing numer-
ical values into intervals [4].

B. Logic Minimization as a Decision Rule Learner

Once binary encoded, the tabular dataset can be viewed as an
incompletely specified logic function. As noted earlier, when an
instance in the dataset has both positive and negative labels,
the majority label can be taken to define the incompletely
specified logic function. In particular, a binary encoded tabular
dataset can be viewed as an incompletely specified logic function
f : {0, 1}m → {0, 1, ∗} that maps an m-dimensional binary
encoded vector x ∈ {0, 1}m into either 0, 1, or ∗. The set of
vectors {x ∈ {0, 1}m : f(x) = 1} is referred to as the ON-set,
the set of vectors {x ∈ {0, 1}m : f(x) = 0} is referred to as
the OFF-set, and the set of vectors {x ∈ {0, 1}m : f(x) = ∗} is
referred to as the dc-set (the do not care set) [10].

With respect to a binary encoded tabular dataset, all instances
x with a positive label would be included in the ON-set (i.e.,
f(x) = 1), and all instances x with a negative label would be
included in the OFF-set (i.e., f(x) = 0). All other input combi-
nations x ∈ {0, 1}m not specified in the encoded dataset would
belong to the dc-set (i.e., all input combinations x not specified
in the encoded dataset are implicitly defined to be f(x) = ∗).

Given an incompletely specified logic function, well estab-
lished two-level logic minimization algorithms can be employed
to produce a minimized DNF formula as a disjunction (OR) of
conjunctive (AND) terms [10]. Modern two-level logic minimiza-
tion algorithms are able to guarantee a prime and irredundant
cover for a given incompletely specified logic function, which
means no conjunctive (AND) term can be made simpler by
removing a feature (i.e., the conjunctive term is a prime), and
no conjunctive term can be removed to further simplify the
DNF formula (i.e., the cover is irredundant). In terms of the
corresponding decision rule set, it means no rules can be further
simplified or removed from the rule set. However, as noted
earlier, logic minimization alone can lead to models with poor
generalization due to the presence of noisy instances in the train-
ing data that leads to detrimental overfitting. This problem can
be remedied by first removing these noisy data points through a
denoising process, as described in Section III.

C. Example Rule Set From Logic Minimization

Consider a toy example shown in Table II, corresponding to a
truth table derived from a binary-encoded tabular dataset. Logic
minimization can be applied to this incompletely specified logic
function to produce the following DNF formula:

f(x) = x1 ∨ ¬x2 ∨ (x3 ∧ x4).

This minimized DNF formula corresponds to the following
decision rule set.

IF (Age ≤ 50) OR

(NOT smoker) or
(Cholesterol ≤ 130 AND blood pressure ≤ 120)

THEN Low heart disease risk.

TABLE II
TOY EXAMPLE OF AN INCOMPLETELY SPECIFIED LOGIC FUNCTION, WHERE

x1, x2, x3, AND x4 CORRESPOND TO AGE ≤ 50, SMOKER, CHOLESTEROL ≤
130, AND BLOOD PRESSURE ≤ 120, RESPECTIVELY, AND f(x) REPRESENTS

LOW HEART DISEASE RISK

Overall, given a binary-encoded tabular dataset as an incom-
pletely specified logic function, logic minimization produces a
decision rule set in DNF as a classifier.

III. DENOISING FORMULATION

We now present a formal model in which the denoising
process can be analyzed and understood.

Consider a binary classification task in which data points lie
in an instance space X and the possible labels are Y = {0, 1}.
There is an unknown distribution P over X × Y from which all
instances and labels—past, present, and future—are drawn.

The distribution P over (X,Y ) pairs can as usual be broken
into two parts: the marginal distribution of X , denoted μ, and
the conditional probability distribution of Y given X

η(x) = Pr(Y = 1|X = x).

A classifier h : X → Y has error rate, or risk, err(h) =
P (h(X) �= Y ). The lowest achievable risk is that of the Bayes-
optimal classifier

g∗(x) =
{

1 if η(x) ≥ 1/2
0 otherwise.

Notice that if η(x) = 1/2, then either prediction is optimal.
The risk of g∗, that is, R∗ = err(g∗), is called the Bayes risk.

In many applications, a significant part of the instance space has
η bounded away from 0 and 1 and, thus, R∗ > 0.

A. Lack of Consistency of Learning Decision Rules by Logic
Minimization

Given a dataset D = {(x1, y1), . . . , (xn, yn)}, logic mini-
mization will find a DNF formula that exactly fits all these points.
In cases where there is even a little bit of stochasticity in the
labels—that is, R∗ > 0—this can be problematic.

To see this, consider a situation where X is finite and η(x) �∈
{0, 1} (that is, there is some stochasticity in xs label) for all x.
Thus, any point x can potentially occur in the dataset with both
labels. Given a sufficiently large dataset, this will happen with
every point.

For this reason, logic minimization alone is not a consistent
method for learning a classifier: it is not guaranteed to converge
to g∗ as the size of the training set grows. More generally,
stochasticity in the labels can lead to the selection of a model
that both generalizes poorly and is larger than would be needed
for, say, the Bayes-optimal labeling. In particular, the problem
is the presence of noise in the dataset, where a point (x, y) is
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said to be noisy if y �= g∗(x) and η(x) �= 1/2, i.e., y is not the
Bayes-optimal label for x.

B. Preprocessing as a Denoising Step

Our proposed preprocessing step has the effect of denoising
the labels in the training set. We now establish this formally.

Given training data D = {(x1, y1), . . . , (xn, yn)}, we fit a
classifier gn to D and then define an edited training set

D′ = {(x, y) ∈ D : y = gn(x)}. (1)

That is, the edited training set will contain the instances whose
labels agree with the predicted labels of the classifier. Finally,
we apply logic minimization to the edited data to get a set of
decision rules.

In the original data D, the labels yi can disagree with the
Bayes-optimal predictions g∗(xi) on as many as half of the
points, since η(xi) can be arbitrarily close to 1/2. We will now
see that for the edited data, the fraction is much smaller.

In interpreting the following lemma, recall that when η(x) =
1/2, either prediction (0 or 1) is Bayes-optimal. This leads to
some messiness when stating results; to avoid it, we assume
that none of the xi has η(xi) exactly 1/2. This holds with
probability one if the decision boundary has measure zero, i.e.,
μ({x : η(x) = 1/2}) = 0.

Lemma 1: Fix any x1, . . . , xn ∈ X . Assume that η(xi) �=
1/2 for all of these points. Suppose each label yi is drawn ac-
cording to the conditional probability distribution η(xi), and let
D = {(x1, y1), . . . , (xn, yn)}. Let gn be any classifier learned
from D, and let εn denote the fraction of the points {xi}
for which gn(xi) �= g∗(xi). Finally, define the edited dataset
D′ ⊂ D as in (1) above. Then,

a) |{(x, y) ∈ D′ : y �= g∗(x)}| ≤ εnn.
b) E[|D′|] ≥ n(1/2− εn), where the expectation is over the

randomness in the labels yi.
Proof: Let B denote the set of “bad” data points xi on which

gn disagrees with g∗

B = {xi : 1 ≤ i ≤ n, gn(xi) �= g∗(xi)}.
We are given that |B| = εnn.

For part (a), note that any xi that makes it into D′ has yi =
gn(xi). Therefore, the only way that yi could differ from g∗(xi)
is if xi ∈ B.

For part (b), if a data point (xi, yi) satisfies both gn(xi) =
g∗(xi) and yi = g∗(xi), then yi = gn(xi) and thus the point is
included in D′. Hence

|D′| ≥ n− {1 ≤ i ≤ n : gn(xi) �= g∗(xi)}
− {1 ≤ i ≤ n : yi �= g∗(xi)}.

The first set in this expression is B. The second set
has expected size at most n/2, since for any i, Pr(yi �=
g∗(xi)) = min(η(xi), 1− η(xi)) ≤ 1/2. Thus, E[|D′|] ≥ n−
|B| − n/2 = n(1/2− εn).

In short, D′ contains roughly at least half the original training
points, and the fraction of faulty (non-Bayes-optimal) labels in
it is at most εn/(1/2− εn) ≈ 2εn.

Lemma 1 works for any choice of intermediate classifier gn.
We suggest taking gn from a family of classifiers that is strongly
consistent, that is, for which err(gn) → R∗ almost surely asn →
∞. Under this condition, the error εn defined in the lemma goes
to zero. Strong consistency is known to hold for the adaptive
nearest neighbor rule [11], for boosted decision trees [12], [13],
and for support vector machines with the Gaussian kernel [14].

C. Localization Properties of the Preprocessing

In data drawn from the underlying distribution P , as many
as half the points x could have labels that disagree with the
Bayes-optimal prediction g∗(x), due to the stochasticity in the
conditional probability distributions η(·). The preprocessing
step selects a subset D′ ⊂ D that is not too much smaller than
D and in which at most an O(εn) fraction of the labels are noisy.

However, even a small amount of noise can be troublesome
if it is scattered throughout the instance space. This is because
logic minimization searches for logical rules (conjunctions) that
perfectly agree with the data, and even one noisy label could
falsely invalidate a good rule.

We now show that if estimator gn is an adaptive nearest
neighbor rule [11], then any noisy points in D′ are localized:
they are not spread throughout X , but lie in a region around
the decision boundary, and this region shrinks as the size of the
training set, n, is increased.

We begin with a brief overview of the adaptive nearest neigh-
bor classifier. In contrast with k-nearest neighbor, which makes a
prediction on a query pointxby looking at itsk nearest neighbors
in the training set, the adaptive rule does not use a predefined
choice of k. Instead, it grows k until the resulting set of training
labels has a significant majority, and then predicts accordingly. If
a significant majority is never achieved, then it outputs “?” (don’t
know). The tradeoff between accuracy and level of abstention
is managed through a single confidence parameter 0 < δ < 1.
The smaller this parameter, the higher the required level of
significance; this results in more don’t-knows as well as higher
accuracy when a prediction is actually made.

In the terminology above, the adaptive nearest neighbor clas-
sifier produces predictions gn(x) ∈ {0, 1, ?}. Our editing rule
will discard any point (xi, yi) with gn(xi) �= yi; this includes
any point with gn(xi) = ?.

What are the points on which gn will fail to predict the correct
label (or abstain)? It turns out that these are guaranteed to be near
the decision boundary, that is, to have η(x) close to 1/2. The
following result is a corollary of the convergence guarantees of
the adaptive nearest neighbor estimator, [11, Th. 2].

Lemma 2: Suppose X ⊂ Rd and η is α-Holder continuous.
Let gn denote the adaptive nearest neighbor classifier with
confidence parameter 0 < δ < 1. Let D′ be the edited training
set, as defined as in Lemma 1. Then, with probability at least
1− δ (over the randomness in the original dataset), every point
in D′ with yi �= g∗(xi) has

∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤
(
C

n
log

n

δ

)β

for some constant C and β = α/(d+ 2α).
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Algorithm 1: Denoising Algorithm.
Input: Original dataset
D = {(x1, y1), (x2, y2), . . ., (xn, yn)}, a classifier gn

Output: Denoised dataset D′ ⊆ D
1: D′ = ∅
2: for i = 1 . . . n do
3: if yi = gn(xi) then
4: D′ = D′ ∪ (xi, yi)
5: end if
6: end for
7: return D′

Proof: We begin by defining a notion of closeness to the de-
cision boundary. For any τ ≥ 0, the τ -width decision boundary
is the set

BD(τ) = {x ∈ X : |η(x)− 1/2| ≤ τ}.

Thus, BD(0) is the exact decision boundary, the set of points
with η(x) = 1/2.

The adaptive nearest neighbor work introduced a notion of
margin at each point x ∈ X , called the “advantage” at x and
denoted adv(x) [11]. This is a value in the range [0,1] and cor-
responds to the statistical ease of estimating the Bayes-optimal
prediction at x. Roughly speaking, points with low advantage
are those near the decision boundary. Under Holder smoothness
conditions on η, it can be shown by following [15, Lemma 18]
that for any q ∈ [0, 1]

adv(x) < q ⇒ x ∈ BD(Lqβ)

for some L > 0 and β = α/(d+ 2α).
The key convergence guarantee (see [11, Theorem 2]) of the

nearest neighbor estimator gn is that with probability > 1− δ,
it will correctly classify all points with significant advantage

adv(x) ≥ C

n
log

n

δ
⇒ gn(x) = g∗(x).

The statement then follows by tracing the proof of Lemma 1
and observing that any mistake in D′ is also a point on which
gn disagrees with g∗.

D. Details of the Denoising Step

In the abovementioned section, the definition of an edited
training set is given by (1). We further elaborate on this denoising
step in the pseudocode shown in Algorithm 1.

The denoised datasets generated using Algorithm 1 are guar-
anteed to be functions (there is only one unique output label
for each input combination) even though the original dataset
may be a relation (each input combination may have multiple
output labels). This point can be easily derived from the fact that
all classifiers gn used for denoising are functions, and thus, the
label that corresponds to the prediction of a classifier gn(xi) is
unique for input xi, i.e., if xi = xj , then gn(xi) = gn(xj). On
the other hand, as noted before, in the original dataset, the same
xi may have both positive and negative labels. In that case, to

derive an incompletely specified logic function, one of the labels
has to be taken, for example, by taking the majority label.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Setup

1) Datasets: We performed numerical evaluations on seven
publicly available tabular datasets, most of which have more
than 10 000 instances and comprise categorical and numerical
attributes for each instance before binarization. Among them,
four are from Kaggle (churn, airline, market, and cardio), two
(adult and chess) are from the UCI Machine Learning Repos-
itory [16] and the last one (retention) is from the AIX360
package [17]. For all datasets, we adopted the preprocessing
approach discussed in Section II to encode categorical and
numerical attributes into binarized features.

A fixed number of ten thresholds is used for all numeri-
cal features unless there exists less than ten unique values in
the feature column, in which case we used the unique values
as thresholds. All results in this section were obtained us-
ing the nested five-fold cross-validation that selects the best
parameters for optimizing the models’ performances on each
partition.

2) Denoising and Logic Minimization: As discussed in Sec-
tion III, we first perform a denoising step to remove noisy
training samples. In particular, we experimented with three
strongly consistent classifiers that are known to theoretically
converge to a Bayes-optimal classifier to perform the denoising,
namely adaptive nearest neighbor (AKNN) [11], support vector
machines (SVM) with the Gaussian kernel [18], and gradient
boosted decision trees (XGBoost) [6]. We then applied logic
minimization to the denoised training datasets to derive the
decision rules in DNF. For logic minimization, we used the
ESPRESSO minimizer [19], which is a widely used computer
program that efficiently solves the two-level logic minimization
problem with iterative improvements. In our experiments, the
decision rule set models derived by applying ESPRESSO to
the denoised datasets are named “Denoise-A,” “Denoise-S,” and
“Denoise-X” for AKNN, SVM, and XGBoost, respectively. We
also included the results of using ESPRESSO directly on the
original noisy datasets, which is named “no-denoise.”

3) Baselines and Parameter Tuning: Apart from the baseline
models that we used to remove the noisy training samples in the
datasets, we also included the following five other classifiers:
RIPPER [2], CG [5], random forest (RF) [8], classification and
regression tree (CART) [20], and a deep neural network (DNN).
The first two are representatives of the state-of-the-art decision
rule learners, while the next two are popular machine models
used on tabular datasets. We also included a neural network
as another black-box model for comparison. In particular, we
used a 6-layer deep fully connected neural network, with 64
neurons per layer and ReLU activation in the intermediate layers.
Overall, we consider three explainable models (CART, RIPPER,
and CG) and five nonexplainable models (AKNN,2 RF, SVM,

2Although k-nearest neighbor is often considered as an explainable model, it
is much more difficult to explain the predictions for AKNN because it potentially
requires a large number of nearest neighbors (possibly hundreds) to reach
sufficient confidence, in which case the explanation is not at all apparent.
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TABLE III
NUMBER OF TRAINING INSTANCES FOR EACH DATASET (SIZE) AND THE PERCENTAGE OF THE NOISY INSTANCES REMOVED BY EACH

CLASSIFIER FOR EACH DATASET

XGBoost, and DNN) in our evaluations. In particular, decision
trees were constructed using the CART [20] algorithm, RIP-
PER is an old variant of the sequential covering algorithm that
greedily mines rule set from the dataset, and CG formulates the
problem of learning a set of decision rule set as a mixed-integer
programming problem with a loss function that captures the
interpretability and accuracy of the decision rule set at the same
time. Since CG cannot implicitly learn the negations of the
input binarized features, the negations of the input features were
appended to the datasets for CG only so that we can get the best
models from it.

As stated before, all classifiers were trained with the best
parameters according to the nested five-fold cross-validation.
Specifically, we varied the minimum number of samples per
leaf for CART and RF, the regularization term for XGBoost, the
regularization parameter C for SVM, the parameter A corre-
sponding to the confidence parameter δ as stated in the AKNN
paper, and the learning rate for DNN. For rule learners, we tuned
the parameters used in the actual implementations that control
the complexity of the decision rule set: the maximum number of
conditions and the maximum number of rules for RIPPER; the
cost of each clause and the cost of each condition for CG. Since
there is no parameter to be tuned for ESPRESSO, the results of
no-denoise were obtained on the same training and test datasets
used by other methods without any parameter tuning. Also, the
parameters tuned for Denoise-A, Denoise-S and Denoise-X are
exactly the same as the parameters tuned for AKNN, SVM,
and XGBoost, respectively. We used the sklearn implementa-
tions [21] for RF, CART, and SVM. The implementations of
other models are publicly available on GitHub.3

B. Classification Results on Popular Tabular Datasets

1) Denoised Datasets Statistics: The sizes (total number of
data points) of the training sets and the percentages of noisy
instances in the training set removed by the denoising methods,
i.e., AKNN, SVM, and XGBoost, are shown in Table III.

The standard benchmarks shown are generally considered to
be large and sufficiently representative, with some benchmarks
containing up to 56 000 instances. The percentages of the
removed instances reflect how noisy each classifier thinks about

3Here are the GitHub links: CG (https://github.com/Trusted-AI/AIX360);
AKNN (https://github.com/b-akshay/aknn-classifier); RIPPER (https://github.
com/imoscovitz/wittgenstein).

the datasets, which spans a wide range from 0.10% to 25.72%.
Among the seven datasets, chess, retention, and airline comprise
the least amount of noise whereas cardio has around a quarter
of data points being noisy, which, as we will see later, matches
the performance of logic minimization when no denoising is
applied. In general, the number of removed noisy instances is
relatively limited compared with the size of the dataset, which
matches our theoretical expectation.

2) Improvements Over Standard Logic Minimization: As
seen in the first four rows of Table IV, logic minimization with
denoising techniques (Denoise-A, Denoise-S, and Denoise-X)
always achieve significant improvements over standard logic
minimization (no-denoise), where the latter on average shows
the weakest competitiveness among all models due to the lack of
consistency as a classifier. In particular, logic minimization with
denoising yields an improvement in test accuracy by as much as
9% (adult, churn) comparing to its no-denoise counterpart when
a clear degree of noisiness (e.g.,> 13%) is present in the dataset,
which validates that preprocessing the dataset by removing
the noisy data points is an effective method to enhance logic
minimization as a machine learning model. On the other hand,
no-denoise outperforms or is on par with all other explainable
models (CART, RIPPER, and CG) and AKNN on the chess,
retention, and airline datasets, indicating that logic minimization
without any preprocessing might be a good choice for the
datasets that come with low stochasticity. In both scenarios,
we can always expect a performance gain by denoising the
datasets first before applying logic minimization, with logic
minimization benefiting more substantially from noise removal
when the noise percentage is higher.

As already shown in Tables III and IV, denoising noisy
datasets can significantly improve the performance of mod-
els derived from logic minimization. We further show this in
Fig. 1, where we see four quadrants depicted. In the upper-
right quadrant, we see that a large reduction in the denoised
dataset generally correlates with a significant improvement in
test accuracy. This is because a large reduction implies that the
dataset is noisy, which causes detrimental overfitting problems
for the logic minimizer. Therefore, logic minimization gains
significant improvements by first denoising the dataset. On the
other hand, we see in the lower-left quadrant that a small re-
duction in the denoised dataset generally correlates with a more
modest improvement in test accuracy. This demonstrates a clear
positive correlation between the noise ratio and the correspond-
ing accuracy improvement after denoising.

https://github.com/Trusted-AI/AIX360
https://github.com/b-akshay/aknn-classifier
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
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TABLE IV
TEST ACCURACY (AS A PERCENTAGE) FOR ALL CLASSIFIERS WITH STANDARD DEVIATION

Fig. 1. Percentage of the noisy instances removed by each classifier (X-axis)
versus the test accuracy improvement by applying logic minimization to the
denoised dataset compared with the no-denoise results (Y -axis).

3) An Overall Better Explainable Model: The benefit of de-
cision rule set in DNF is that the user can always extract satisfied
rules to reason a decision. In comparison with other explainable
models, our paradigm generates explainable decision rule sets

that achieve the superior predictive performance, as can be seen
in Table IV (rows 2–7). The accuracies across all datasets of
Denoise-A, Denoise-S, and Denoise-X are as much as 11%
better than CART, RIPPER, and CG.

4) Competitive Compared to Nonexplainable Models: Not
only are the decision rule sets from logic minimization on
denoised datasets dominant over other explainable models, but
they are also very competitive even when compared with non-
explainable models. As can be seen by comparing the logic
minimization models (rows 2–4) and the nonexplainable models
(rows 8–12) in Table IV, ESPRESSO applied on the denoised
datasets are very closed to the performances of the nonexplain-
able models with the maximum difference less than 1.5%, while
still being completely explainable. This is significant because
it has been generally thought that explainable models are not
competitive with nonexplainable models, but our results show
otherwise.

5) Decision Rule Set Without Loss of Performance: Lastly,
we compare the performance of the ESPRESSO models with
their corresponding classifiers that were used to remove the noisy
data points in the training dataset, and the difference can be seen
in Table V. Both Denoise-S and Denoise-X only decreased by
less than 1%, providing further evidence that logic minimiza-
tion applied to the denoised dataset can achieve comparable
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TABLE V
DIFFERENCE IN TEST ACCURACY (AS A PERCENTAGE) BETWEEN THE CLASSIFIERS USED TO REMOVE NOISY INSTANCES AND THEIR CORRESPONDING LOGIC

MINIMIZATION RESULTS

performance as the corresponding denoising classifier. More-
over, Denoise-A actually outperformed AKNN by more than
1%, further indicating that logic minimization can potentially
generalize better on the datasets that have low stochasticity. The
last row in the table shows that the difference between logic
minimization after the denoising process is very close to the
state-of-the-art nonexplainable models with only less than 0.7%
discrepancy in the average test accuracy.

C. Denoising Example

In this section, we provide some intuition behind what de-
noising is doing by means of an example. Consider again the
cardiovascular disease dataset (cardio) from the Kaggle compe-
tition [9], where the classification task is to predict the presence
of cardiovascular disease based on the patient’s information.
This is a large training dataset comprising 56 000 data points.
As shown in Table III, this is a noisy dataset, where the denoisers
removed on average 24.77% of the dataset. This correlates
with the significant accuracy improvements between the logic
minimization results with denoising versus no-denoising, with
an average improvement of about 7% in accuracy (see Table IV).
In the case of no-denoising, one of the decision rules derived by
logic minimization is as follows.

IF (Height > 170 cm) AND

(Weight ≤ 58 kg) AND

(Systolic blood pressure > 130) AND

(Systolic blood pressure > 140)
THEN Presence of cardiovascular disease.

However, this rule only applies to 14 patients in the original
dataset, which is a relatively small number of cases in com-
parison to the complete training dataset of 56 000 cases (under
0.03% of the cases). This causes logic minimization to introduce
many more rules that are more complex than would be needed
just to exactly fit the given dataset.

On the other hand, after denoising the dataset (using SVM
with a Gaussian kernel in this example), the above decision rule
simplifies to just the following.

IF Systolic blood pressure > 130
THEN Presence of cardiovascular disease.

This new rule covers 15 740 data points in the original
dataset. Our denoising step removed 2603 of these data points as
noise (about 16.5% of these data points). In particular, without
denoising, the original rule involving height, weight, and an
upper limit on the systolic blood pressure was needed to cover
relatively rare cases of patients without cardiovascular disease
that had systolic blood pressure above 130, for example, with
weight above 58 kg or height shorter than 170 cm. These rare
anomalous cases detract from the general trend that patients
with systolic blood pressure above 130 overwhelmingly have
cardiovascular disease. This is an example of denoising that led
to significant simplification of rules and much better general-
ization, as evidenced by the significant improvements in test
accuracy.

D. Synthetic Data Experiments to Quantify the Impact of
Denoising

1) Quantifying the Impact of Noise on Logic Minimization:
To quantitatively evaluate the impact of noisy data points on
logic minimization, we manually generated synthetic noisy
datasets based on predefined DNF rules. In particular, we con-
sider the input space comprising 16 binarized features, which
leads to about 64 000 combinations. Then, we randomly gen-
erated five rules as the predefined rules, each of which is a
conjunction of three randomly chosen features. To generate a
synthetic dataset, we randomly sampled p “ground-truth” data
points and labeled them according to the predefined rules. Be-
sides the ground-truth data points, we further added q noisy data
points into the synthetic dataset, so that the combined dataset
contains p+ q = 10 000 data points. To generate the noisy data
points, we randomly sampled q new combinations and purposely
mislabeled them with the label opposite to the predefined rules.
For example, if we want to inject q = 3000 noisy data points,
we would randomly sample p = 7000 ground-truth data points
for a total of 10 000 data points in the synthetic dataset.

In Fig. 2, we show the impact of noise on logic minimization.
In particular, as shown in Fig. 2(a), we varied the number
of noisy data points in the synthetic dataset from q = 0 to
q = 3000 on the X-axis (with a corresponding p = 10 000 to
p = 7000 ground-truth data points). On the Y -axis, Fig. 2(a)
shows the corresponding test accuracies of both no-denoise and
Denoise-S with the parameter C for SVM fixed to be 1. The test
accuracies are based on sampling another 10 000 test instances
labeled according to the predefined rules. As expected, as we
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Fig. 2. Impact of noise on logic minimization on synthetic data. (a) Impact on test accuracy with increasing noise. (b) Impact on model complexity with increasing
noise.

increase the noise percentage from 0% to 30%, the test accu-
racy of no-denoise decreases linearly, while the performance of
Denoise-S remains relatively the same near 100%. This shows
that no-denoise poorly generalizes with increasing amount of
noise, whereas Denoise-S is robust to noisy samples.

In Fig. 2(b), we show the complexities of the decision rule
sets derived from both no-denoise and Denoise-S, where the
complexity of the rule set is calculated by summing the number
of features across all rules and the number of rules. As we
increase the noise percentage on the X-axis, the complexity
of the derived rule set from no-denoise increases dramatically
due to the overfitting of the noisy samples. On the other hand,
the rule set complexity of Denoise-S remains at a minimum
level, verifying that a classifier with provable Bayes-optimal
convergence properties can successfully remove most of the
noise in the training set so that logic minimization can uncover
the underlying distribution, which in this case is the predefined
rules.

2) Quantifying the Performance of Denoisers: We next eval-
uate the effectiveness of different denoisers in identifying noise
in datasets. To quantitatively evaluate this, we again manually
produced synthetic noisy datasets using the same randomly
generated five rules as the predefined rules, as in the previ-
ous section. In this experiment, we again generated synthetic
datasets with 10 000 data points, but this time, we randomly
sampled 9000 “ground-truth” data points labeled according to
the predefined rules. We then injected two types of noisy points
into the dataset. The first type of noise (Noise 1) is the same
type of noise in the previous section: we randomly sampled
new combinations and purposely mislabeled them with the label
opposite to the predefined rules. We also injected a second type
of noise (Noise 2): we randomly selected some combinations
among the 9000 ground-truth combinations and assigned the
opposite labels to them. In other words, these combinations have
both positive and negative labels in the synthetic dataset. We
added in total 1000 noisy points to the datasets with different
ratios of the two types. We then applied the denoisers to the
datasets consisting of 9000 + 1000 = 10 000 points and let them
identify the noisy data points. The results are shown in Table VI.

In particular, in all cases with different compositions of noise
types, SVM always perfectly removes all noisy points without

TABLE VI
DENOISING STATISTICS ON SYNTHETIC DATASETS WITH FIVE RULES, EACH AS

A CONJUNCTION OF THREE RANDOMLY CHOSEN FEATURES

mistakenly removing any correct data, which is consistent with
the results shown in Table IV where Denoise-S always achieves
the best accuracy. With respect to XGB and AKNN, both are
able to correctly identify most of the noisy data points, with
XGB successfully finding about 79%–99% of the noisy points,
and AKNN successfully finding about 90%–95% of the noisy
points. Although XGB incorrectly removes about 0.1%–0.2%
of the correct data out of the 9000 points, and AKNN incor-
rectly removes about 1.5% of the correct data, the percentage
of incorrectly removed data points is negligibly small in both
cases relative to the total number of clean points. Overall, the
amount of correctly identified noise is substantially greater than
the missed and incorrectly-removed points, which meets our
expectation: the denoisers remove almost all noisy points and
not too many of the clean points.

E. Impact of Denoising on Other Explainable Models

Throughout this article, we extensively discussed the impor-
tance of denoising when logic minimization is used to derive
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TABLE VII
AVERAGE IMPROVEMENT (AS A PERCENTAGE) IN TEST ACCURACY BY DERIVING OTHER MODELS ON THE DENOISED DATASETS

decision rule sets from tabular datasets since logic minimization
exactly fits all data points. In this section, we also evaluate how
denoising affects other models. The results are summarized in
Table VII.

The average improvements of applying logic minimization to
the denoised datasets are significant, over 4%. This is shown
under the column labeled ESPRESSO. It can be seen that de-
noising also generally improves the test accuracies of CART,
RIPPER, and CG. However, the improvements are relatively
small in comparison with logic minimization, under 0.25%,
1.5%, and 0.5% for CART, RIPPER, and CG, respectively.
The reason why the improvements are much smaller with these
methods may be due to the fact that these learners are already
somewhat noise-tolerant: they tend to underfit data in favor of
simple models and are, therefore, less affected by noisy points,
but this comes at the price of inferior performance. Furthermore,
we observe that denoising can have a small negative impact on
the performances of SVM and XGBoost, which is not suprising
as both SVM and XGBoost already have good generalization
capabilities without denoising. On the other hand, because logic
minimization tends to overfit, it can greatly benefit from our
denoising framework, as shown in Table VII.

V. RELATED WORK

Satisfiability-based (SAT-based) logic minimization has been
proposed before [22], [23] to derive minimized DNF formula
that translate to decision sets. However, these methods assume
there is no inconsistency in the training data, meaning that there
are no overlapping examples that have different class labels.
They resolve inconsistencies by taking the majority class such
that the largest consistent subset of nonoverlapping training
instances is retained. In turn, these SAT-based methods act as a
logic minimizer to exactly fit the resulting dataset. As explained
throughout this article, logic minimization performed this way
(corresponding to the “no-denoise” case in our paper) often
fail to produce accurate decision models because the resulting
dataset often still contains noisy points that lead to detrimental
overfitting and poor generalization. How best to remove training
instances to create a consistent dataset is highly nontrivial,
which is precisely our key contribution: a novel theoretically
grounded denoising framework that substantially improves the
performance of two-level logic minimization in the learning of
accurate decision sets, not simply the use of logic minimization
(whether ESPRESSO [10] or a SAT-based approach) to derive
decision sets.

The consistency of learning algorithms is a central question
in statistics and machine learning. For parametric classifiers,
such as linear separators, the desired outcome is convergence to

the best model in the function class as the number of training
points grows. This typically depends upon the boundedness
of some complexity measure, such as Vapnik–Chervonenkis
(VC) dimension [24] and holds broadly. However, such function
classes might not be rich enough to capture all the intricacies of
the underlying classification task. For nonparametric models, it
is possible to hope for better: convergence to the Bayes-optimal
model. This has been established for various popular methods,
including k-nearest neighbor (with suitably growing k) [25],
[26], boosting with certain base classes [12], and families of
kernel machines including the support vector machine with RBF
kernel [14].

There is also existing literature devoted to label noise, fo-
cusing mainly on unreliable or erroneous labels. Frénay and
Verleysen [27] provided an extensive analysis of label noise
and the potential problems that they can cause in classification
problems and reviews the existing literature on algorithms for
filtering erroneously labeled instances. For example, Thongkam
et al. [28] proposed to use SVM as the filterng method to
identify misclassified instances in a breast cancer survivability
dataset. Jeatrakul et al. [29] proposed to use neural networks to
detect misclassification patterns in the training data. Northcutt
et al. [30] introduced a model-agnostic denoising framework that
identifies the noisy samples using the out-of-sample predicted
probabilities of the training instances by a user-specified clas-
sifier. However, these works either do not provide insights into
why their choice of classifiers will work in the given scenarios or
do not provide guidance regarding the choice of a user-specified
classifier. In contrast, our denoising framework takes a different
view of the problem by assuming that the true labels of the
training instances are Bayes-optimal labels. This assumption
provides us with guidance on what classifiers to select to give
an accurate estimate of the underlying true labels, which is
grounded in theory, as discussed in Section III. That is, our
denoising framework can in theory correctly identify all noisy
instances since we use classifiers with provable Bayes optimal
convergence properties to identify noise in the dataset. This is not
case, for example, in prior works like [29], [30]. To the best of au-
thors’ knowledge, our work is the first to synthesize the ideas of
logic minimization, convergence to the Bayes-optimal model for
ensuring consistency, and label noise removal to simultaneously
achieve the state-of-the-art classification performance in tabular
learning problems with explainable rule-based predictions.

Finally, the learning of rule sets has received considerable
attention due to their ability to provide human-understandable
explanations. Contrary to greedy rule mining methods devel-
oped before [2], [31], recently proposed methods [3], [4],
[5] explicitly consider the tradeoff between the explanation
complexity and the predictive performance and aim to get



QIAO et al.: RETHINKING LOGIC MINIMIZATION FOR TABULAR MACHINE LEARNING 1139

the best training accuracy under a certain complexity con-
straint. However, there is still a noticeable performance dis-
crepancy between decision rule sets and black-box models,
such as RF [8] and gradient boosted trees [6] even if there
is no constraint on the complexity of the rule set. Although
our work also generates human-understandable IF–THEN rules,
and therefore falls into the same category of decision rule set
learning, we show that our method significantly improves on
modern decision rule learners and bridges the gap with black-box
models.

VI. CONCLUSION

In this article, we explore the use of two-level logic mini-
mization as a machine learning paradigm for tabular datasets.
Although tabular datasets can be viewed as logic functions
that can be simplified with two-level logic minimization to
derive minimal logic formulas in DNF, this has not been a
successful approach in the past, leading to complex models with
poor generalizations. Our conjecture is that these problems are
caused by the presence of noisy instances in the training data.
Because logic minimization exactly fits all data points, these
noisy instances can lead to detrimental overfitting problems,
leading to models that both generalize poorly and are far more
complex than necessary. We propose a statistical framework for
denoising the training data, corresponding to the removal of
noisy data points that have anomalous labels or are close to
the decision boundary. This denoising approach allows logic
minimization to be effective in deriving simple DNF formulas
that have good generalization properties. The DNF formulas can
in turn be readily converted to explainable decision rules. Using
this approach, we are able to obtain comparable performance
as gradient boosted and ensemble decision trees, which have
been the winning hypothesis classes in tabular data learning
competitions, but with human understandable explanations in
the form of decision rules. We hope our successful results
will open the door to further fruitful research in the underex-
plored area of logic minimization as a viable machine learning
direction.
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