
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022 1865

Joint Wireless and Edge Computing Resource
Management With Dynamic Network

Slice Selection
Sladana Jošilo and György Dán , Senior Member, IEEE

Abstract— Network slicing is a promising approach for
enabling low latency computation offloading in edge computing
systems. In this paper, we consider an edge computing system
under network slicing in which the wireless devices generate
latency sensitive computational tasks. We address the problem
of joint dynamic assignment of computational tasks to slices,
management of radio resources across slices and management of
radio and computing resources within slices. We formulate the
Joint Slice Selection and Edge Resource Management (JSS-ERM)
problem as a mixed-integer problem with the objective to mini-
mize the completion time of computational tasks. We show that
the JSS-ERM problem is NP-hard and develop an approximation
algorithm with bounded approximation ratio based on a game
theoretic treatment of the problem. We use extensive simulations
to provide insight into the performance of the proposed solution
from the perspective of the whole system and from the perspective
of individual slices. Our results show that the proposed slicing
policy can achieve significant gains compared to the equal slicing
policy, and that the computational complexity of the proposed
task placement algorithm is approximately linear in the number
of devices.

Index Terms— Edge computing, network slicing, resource
allocation, computation offloading, game theory, decentralized
algorithms.

I. INTRODUCTION

NETWORK slicing is emerging as an enabler for providing
logical networks that are customized to meet the needs of

different kinds of applications, mostly in 5G mobile networks.
Horizontal network slices are designed for specific classes of
applications, e.g., streaming visual analytics, real-time control,
or media delivery, while vertical network slices are designed
for specific industries. Slicing is expected to allow flexible and
efficient end-to-end provisioning of bandwidth, composition of
in-network processing, e.g., in the form of service chains com-
posed of virtual network functions (VNF), and the allocation
of dedicated computing resources. At the same time it provides
performance isolation. Slicing is particularly appealing in

Manuscript received 13 March 2020; revised 3 May 2021 and 5 November
2021; accepted 21 February 2022; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor T. Spyropoulos. Date of publication 10 March 2022;
date of current version 18 August 2022. This work was supported in part by
the Vinnova Competence Center for Trustworthy Edge Computing Systems
and Applications at KTH and in part by the Swedish Research Council under
Project 2020-03860. (Corresponding author: György Dán.)

The authors are with the Division of Network and Systems Engineer-
ing, School of Electrical Engineering and Computer Science, KTH Royal
Institute of Technology, 11428 Stockholm, Sweden (e-mail: josilo@kth.se;
gyuri@kth.se).

Digital Object Identifier 10.1109/TNET.2022.3156178

combination with edge computing, as network slicing could
allow low latency access to customized computing services
located in edge clouds [1], [2].

Flexibility in network slicing is achieved through service
orchestration. Orchestration focuses on the deployment and
service-aware adaptation of VNFs and edge cloud services
based on predicted workloads. Recent works in the area
addressed the joint placement and routing of service function
chains, formulated as a virtual network embedding prob-
lem [3], and the problem of joint resource dimensioning and
routing [4], [5]. Typical objectives are maximization of the
service capacity or profit under physical (bandwidth and com-
putational power) resource constraints, or the minimization of
the energy consumption subject to satisfying service demand.

Common to the works on service orchestration is that they
assume that each application is mapped to a specific slice
deterministically, and assume a static resource pool per slice
so as to ensure performance isolation [3]–[5]. A deterministic
mapping is, however, not mandatory in practice. While there
may be a designated (default) slice for every application,
most proposed architectures for network slicing define a set
of allowed slices, and the assignment of an application to
a slice can be decided dynamically based on the current
workload and SLA requirements [6]. The dynamic assignment
of applications to slices thus results in a mixture of workloads
in the slices, and consequently calls for flexibility in allocating
resources to slices.

The importance of resource management across slices has
been widely accepted in the case of the radio access net-
work (RAN) [6]. Such inter-slice resource allocation should
happen at short time scales, taking into account slice-level
service level agreements (SLAs) and technological constraints
(e.g., available RAN technology, such as 5GNR or WiFi-
Lic). Recent works in the area have focused on system
aspects of virtualizing RANs [7]–[9], and on the allocation
of virtual resource block groups to slices so as to maximize
efficiency [10], [11]. These works have not addressed, how-
ever, the potential impact of inter-slice resource management
on service orchestration and on the dynamic assignment of
applications to slices, from an algorithmic point of view. It is
thus so far unclear how to perform service orchestration and
joint management of communication and computing resources
in an edge computing system under network slicing. Yet,
designing efficient inter-slice and intra-slice policies for allo-
cating communication and computing resources together with

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6466-8304
https://orcid.org/0000-0002-4876-0223

1866 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

developing low complexity algorithms for dynamic assignment
of computational tasks is an inherently challenging problem.

In this paper we address this problem by considering joint
dynamic slice selection, inter-slice radio resource management
and intra-slice radio and computing resource management
for latency sensitive workloads, and make three important
contributions. First, we formulate the joint slice selection and
edge resource management (JSS-ERM) problem, and show
that it is NP-hard. Second, we analyze the optimal solution
structure, and we develop an efficient approximation algorithm
with bounded approximation ratio inspired by a game theoretic
treatment of the problem. Third, we provide extensive numer-
ical results to show that the resulting system performance
significantly outperforms baseline resource allocation policies.

The rest of the paper is organized as follows. Section II
introduces the system model and Section III the problem
formulation. Sections IV and V provide the analytical results,
and Section VI shows numerical results. Section VII discusses
related work and Section VIII concludes the paper.

II. SYSTEM MODEL

We consider a slicing enabled mobile backhaul including
mobile edge computing (MEC) resources that serves a set
N = {1, 2, . . . , N} of wireless devices (WDs) that generate
computationally intensive tasks. WDs can offload their tasks
through a set A={1, 2, . . . , A} of access points (APs) to a
set C = {1, 2, . . . , C} of edge clouds (ECs). APs and ECs
form the set E � A ∪ C of edge resources. We denote by
S = {1, 2, . . . , S} the set of slices in the network, which
include certain combinations of computing resources (e.g.,
CPUs, GPUs, NPUs and/or FPGAs), optimized for executing
some types of tasks.

We characterize a task generated by WD i by the size Di

of the input data and by its complexity, which we define as
the expected number of instructions required to perform the
computation. Since the WDs and the slices may have differ-
ent instruction set architectures, the number of instructions
required to execute the same task may also differ. Hence, for a
task generated by WD i we denote by Li and Li,s the expected
number of instructions required to perform the computation
locally and in slice s, respectively. Similar to other works [12]–
[14], we consider that Di, Li and Li,s can be estimated from
measurements by applying the methods described in [15]–[17].

We consider that each WD i generates a computational task
at a time; each task is atomic and can be either offloaded for
computation or performed locally on the WD it was generated
at. In the case of offloading, the WD will be assigned to
exactly one slice s ∈ S and within the slice to exactly one AP
a ∈ Ai ⊆ A through which it can offload the computation to
exactly one EC c ∈ C. Therefore, we define the set of feasible
decisions for WD i as Di � {i}∪{(a, c, s)|a ∈ Ai, c ∈ C, s ∈
S} and we use variable di ∈ Di to indicate the decision for
WD i’s task (i.e., di = i indicates that WD i performs the
task locally and di = (a, c, s) indicates that WD i should
offload its task through AP a to EC c in slice s). Furthermore,
we define a decision vector d � (di)i∈N as the collection of
the decisions of all WDs and we define the set D � ×i∈NDi,
i.e., the set of all possible decision vectors.

For a decision vector d ∈ D we define the set Oa,s(d) �
{i ∈ N|di = (a, ·, s), a ∈ Ai, s ∈ S} of all WDs that use AP
a in slice s and the set Oa(d) = ∪s∈SOa,s(d) of all WDs that
use AP a. Similarly, considering that the offloading decisions
of WDs are given by d, we define the set Oc,s(d) � {i ∈
N|di = (·, c, s), c ∈ C, s ∈ S} of all WDs that use EC c
in slice s and the set Oc(d) = ∪s∈SOc,s(d) of all WDs that
use EC c. Finally, we define the local computing singleton
set Oi(d) ⊂ {i, ∅} for WD i (i.e., Oi(d) = {i} when WD i
performs the computation locally and Oi(d) = ∅ otherwise)
and the set Ol(d) = ∪i∈NOi(d) of all WDs that perform the
computation locally in a given decision vector d.

Figure 1 shows an example of a slicing enabled MEC
system that consists of N = 7 WDs, C = 2 ECs and A = 3
APs and S = 4 slices; WDs 1 and 2 offload their tasks through
AP a, WD 3 offloads its tasks through AP b, WDs 4 and
5 offload their tasks through AP c, and WDs 6 and 7 perform
their computation locally. In what follows we discuss our
models of communication and computing resources.

A. Communication Resources

Communication resources in the system are managed at two
levels: at the network level and at the slice level.

At the network level, the radio resources of each AP
a ∈ A are shared across the slices according to the inter-
slice radio resource allocation policy Pb : D → R

|A|×|S|
[0,1] ,

which determines the inter-slice radio resource provisioning
coefficients bs

a∈ [0, 1], ∀(a, s)∈A×S such that
�

s∈S bs
a ≤ 1,

∀a ∈ A.
At the slice level, the radio resources assigned to each slice

s ∈ S are shared among the WDs according to an intra-
slice radio resource allocation policy Ps

wa
: D → R

|A|×|N|
[0,1] ,

which determines the intra-slice radio resource provisioning
coefficients ws

i,a ∈ [0, 1], ∀a ∈ A and ∀i ∈ Oa,s(d) such that�
i∈Oa,s(d) ws

i,a ≤ 1, ∀(a, s) ∈ A× S.
We denote by Ri,a the achievable PHY rate of WD i at AP

a (i.e., if WD i was the only transmitter), which depends on
the characteristics of the physical layer, such as the wireless
medium, interference, and the modulation and coding scheme.
We consider that Ri,a captures the expected channel condi-
tions, which can be estimated through historical measurements
of the path loss, fading, and interference. Therefore, given Ri,a

and provisioning coefficients bs
a and ws

i,a, we can express the
uplink rate of WD i at AP a in slice s as

W s
i,a(d,Pb,Ps

wa
) = bs

aw
s
i,aRi,a. (1)

The uplink rate (1) together with the input data size Di

determines the transmission time of WD i ∈ Oa,s(d),

T tx,s
i,a (d,Pb,Ps

wa
) =

Di

W s
i,a(d,Pb,Ps

wa
)
. (2)

Similar to previous works [13], [18]–[20] we make the
assumption that the time needed to transmit the results of the
computation from the EC to the WD can be neglected because
for many applications (e.g., face recognition and tracking) the
size of the output data is significantly smaller than the size Di

of the input data.

JOŠILO AND DÁN: JOINT WIRELESS AND EDGE COMPUTING RESOURCE MANAGEMENT 1867

Fig. 1. An example of a slicing enabled MEC system that consists of N = 7
WDs, C = 2 ECs and A = 3 APs and S = 4 slices.

B. Computing Resources

Our system model distinguishes between edge cloud
resources and local computing resources.

1) Edge Cloud Resources: We consider that each slice
s ∈ S is equipped with a certain combination of computing
resources optimized for executing specific types of tasks (e.g,
CPUs, GPUs, NPUs, FPGAs), and we denote by F s

c the
computing capability of EC c in slice s. The computing
resources within a slice are shared among the WDs according
to the intra-slice computing power allocation policy Ps

wc
:

D → R
|C|×|N|
[0,1] , which determines the intra-slice computing

power provisioning coefficients ws
i,c ∈ [0, 1], ∀c ∈ C and

∀i ∈ Oc,s(d) such that
�

i∈Oc,s(d) ws
i,c ≤ 1, ∀(c, s) ∈ C × S.

Given the computing capability F s
c we can express the

computing capability allocated to WD i in EC c in slice s
as

F s
i,c(d,Ps

wc
) = ws

i,cF
s
c . (3)

In order to account for the diversity of computing resources
provided by different slices we use the coefficient hi,s ∈ R≥0

to capture how well a slice s is tailored for executing a task
generated by WD i and we express the expected number of
instructions Li,s required to execute a task generated by WD
i in slice s as Li,s = Li/hi,s (i.e., a high hi,s indicates that
a task generated by WD i is a good match for the computing
resources in slice s). Thus, in our model the computing
capability (3) together with the expected task complexity Li,s

determines the task execution time of WD i ∈ Oc,s(d) as

T ex,s
i,c (d,Ps

wc
) =

Li,s

F s
i,c(d,Ps

wc
)
. (4)

2) Local Computing Resources: We denote by F l
i the com-

puting capability of WD i and we express the local execution
time T ex

i of WD i as

T ex
i =

Li

F l
i

. (5)

C. Cost Model

We define the system cost as the aggregate completion time
of all WDs. Before providing a formal definition, we introduce

the shorthand notation

τ s
i,e =

⎧⎪⎨
⎪⎩

Di

Ri,e
if i ∈ N , e ∈ E ∩ A

Li,s

F s
e

if i ∈ N , e ∈ E ∩ C.
(6)

Observe that for e ∈ E ∩ A we have that e is a commu-
nication resource and τ s

i,e is the minimum transmission time
that WD i would achieve if it was the only WD offloading its
computation through AP e in slice s. Similarly, for e ∈ E ∩ C
we have that e is a computing resource and τ s

i,e is the minimum
execution time that WD i would achieve if it was the only WD
offloading its computation to EC e in slice s.

Finally, for notational convenience let us define the indicator
function I(di, d) for WD i as

I(di, d) =

�
1 if di = d,

0 otherwise.
(7)

Cost of WD i: When offloading, the task completion time
consists of two parts: the time needed to transmit the data
pertaining to a task through an AP and the time needed to
execute a task in an EC. In the case of local computing, the
task completion time depends only on the local execution time.
Therefore, the cost of WD i can be expressed as

Ci(d,Pb,Pwa ,Pwc)
= T ex

i I(di, i)

+
�
s∈S

�
c∈C

�
a∈A

(
τ s
i,a

bs
aws

i,a

+
τ s
i,c

ws
i,c

)I(di, (a, c, s)). (8)

where (Pwa ,Pwc) = ((Ps
wa

,Ps
wc

))s∈S denotes the collection
of the slices’ policies.

Cost per slice: We express the cost in slice s as a sum of
transmission and executions times of all WDs offloading their
tasks in slice s

Cs(d,Pb,Ps
wa

,Ps
wc

)=
�
e∈E

�
i∈Oe,s(d)

τ s
i,e

bs
ew

s
i,e

, (9)

where bs
e = 1 if e is a computing resource (i.e., e ∈ E ∩ C).

System cost: Finally, we express the system cost as

C(d,Pb,Pwa,Pwc) =
�
i∈N

Ci(d,Pb,Ps
wa

,Ps
wc

)

=
�
s∈S

Cs(d,Pb,Ps
wa

,Ps
wc

)+
�

i∈Ol(d)

Cl
i .

(10)

For ease of reference, the key notations used in the paper
are summarized in Table I.

III. PROBLEM FORMULATION

We consider that the network operator aims at minimizing
the system cost C(d,Pb,Pwa ,Pwc) by finding an optimal
vector d̂ of offloading decisions, and an optimal collection
(P̂b, P̂wa , P̂wc) of policies for sharing the edge resources
across slices and within slices. We refer to the problem as
the Joint Slice Selection and Edge Resource Management
(JSS-ERM) problem. Since the WDs generate atomic tasks

1868 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

TABLE I

SUMMARY OF KEY NOTATIONS

that cannot be further split, the JSS-ERM is a mixed-integer
optimization problem, and can be formulated as

min
d,Pb,Pwa ,Pwc

C(d,Pb,Pwa ,Pwc) (11)

s.t.
�

d∈Di

I(di, d) = 1, ∀i ∈ N , (12)

Ci(d,Pb,Pwa ,Pwc) ≤ T ex
i , ∀i ∈ N , (13)�

s∈S
bs
a ≤ 1, ∀a ∈ A, (14)

�
j∈Oe,s(d)

ws
j,e ≤ 1, ∀e ∈ E , ∀s ∈ S, (15)

bs
a ≥ 0, ∀a ∈ A, ∀s ∈ S, (16)

ws
i,e ≥ 0, ∀i ∈ N , ∀e ∈ E , ∀s ∈ S. (17)

Constraint (12) enforces that each WD either performs the
computation locally or offloads its task to exactly one logical
resource (a, c, s) ∈ A × C × S; constraint (13) ensures that
the task completion time in the case of offloading is not
greater than the task completion time in the case of local
computing; constraint (14) enforces a limitation on the amount
of communication resources of an AP that can be provided to
each slice; constraint (15) enforces a limitation on the amount
of communication resources of an AP and the amount of

computing resources of an EC that can be provided to each
WD in each slice.

Theorem 1: The JSS-ERM defined by (11)-(17) is NP-hard.
Proof: We provide the proof in Section IV-B. �

In the rest of the paper we develop an approximation scheme
for the JSS-ERM problem based on a decomposition of the
problem, and by adopting a game theoretic interpretation of
one of the subproblems.

IV. NETWORK SLICE ORCHESTRATION AND EDGE

RESOURCE ALLOCATION

In what follows we show that the JSS-ERM problem can
be solved through solving a series of smaller optimization
problems. To do so, we start with considering the problem
of finding the collection (P̂b, P̂wa , P̂wc) of optimal resource
allocation policies for a given vector d of offloading decisions.
Our first result concerns the convexity of the resulting opti-
mization problem.

Proposition 1: Consider an offloading decision vector d for
which constraint (13) can be satisfied. Furthermore, define
the problem of finding a collection (P̂b, P̂wa , P̂wc) of optimal
resource allocation policies,

min
Pb,Pwa ,Pwc

C(d,Pb,Pwa ,Pwc) (18)

s.t.(13) − (17). (19)

The problem (18)-(19) is convex.
Proof: The proof is given in Appendix A. �

Proposition 2: The collection (P̂b, P̂wa , P̂wc) of optimal
resource allocation policies that solves problem (18)-(19) sets
the provisioning coefficients according to

ŵs
i,e=

	
τ s
i,e�

j∈Oe,s(d)

	
τ s
j,e

,∀e∈E , ∀s∈S, ∀i∈Oe,s(d), (20)

b̂s
a =

�
j∈Oa,s(d)

	
τ s
j,a

�
s�∈S

�
j∈Oa,s�(d)

τ s�
j,a

, ∀a ∈ A, ∀s ∈ S. (21)

Proof: The proof is given in Appendix B. �
As a first step in the decomposition, let us consider the

problem of finding an optimal collection (P∗
wa

,P∗
wc

) =
((Ps,∗

wa
,Ps,∗

wc
))s∈S of resource allocation policies of slices for

fixed offloading vector d and inter-slice policy Pb.
Proposition 3: Consider an offloading decision vector d for

which constraint (13) can be satisfied and a policy Pb for
setting the inter-slice radio resource provisioning coefficients
bs
a, ∀a ∈ A, ∀s ∈ S. Then the solution to the problem

min
Ps

wa
,Ps

wc

Cs(d,Pb,Ps
wa

,Ps
wc

) (22)

s.t.(13), (15), (17). (23)

is given by (20), i.e., (Ps,∗
wa

,Ps,∗
wc

) = (P̂s

wa
, P̂s

wc
), ∀s ∈ S.

Proof: The result can be proved by following the approach
presented in the proof of Proposition 2. �
As a second step, let us consider the problem of finding an
optimal policy P∗

b for a fixed vector d of offloading decisions

JOŠILO AND DÁN: JOINT WIRELESS AND EDGE COMPUTING RESOURCE MANAGEMENT 1869

and the optimal collection (P∗
wa

,P∗
wc

) = (P̂wa , P̂wc) of the
slices’ policies.

Proposition 4: Consider an offloading decision vector d for
which the constraint (13) can be satisfied. Furthermore, let us
substitute (20) into (11)-(17) and define the problem of finding
an optimal inter-slice radio resource allocation policy P∗

b , i.e.,
a solution to

min
Pb

�
s�∈S

�
a�∈A

1
bs�
a�

� �
j∈Oa�,s�(d)

τ s�
j,a�

�2
(24)

s.t.(13), (14) and (16). (25)

Then, the optimal inter-slice radio resource allocation policy
P∗

b sets the inter-slice provisioning coefficients according
to (21), i.e., P∗

b = P̂b.
Proof: The result can be proved by following the approach

presented in the proof of Proposition 2. �
By combining the above two results, we are now ready to

show that the JSS-ERM problem can be decomposed into a
sequence of optimization problems.

Theorem 2: The solution to problem (18)-(19) can be
obtained by finding the optimal policies (P̂wa , P̂wc) first, and
finding the optimal policy P̂b second, i.e.,

min
Pb,Pwa ,Pwc

C(d,Pb,Pwa ,Pwc)

= min
Pb

min
Pwa ,Pwc

C(d,Pb,Pwa ,Pwc) (26)

Proof: The result follows from the proofs of Proposition 2,
Proposition 3 and Proposition 4. �
Furthermore, as the next theorem shows, we can use this
decomposition structure also for computing the optimal
offloading decision vector.

Theorem 3: The solution to problem (11)-(17) can be
obtained by finding the optimal collection (P̂b, P̂wa , P̂wc)
of resource allocation policies first, and finding an optimal
offloading decision vector d̂ second, i.e.,

min
d,Pb,Pwa ,Pwc

C(d,Pb,Pwa ,Pwc)

= min
d

min
Pb

min
Pwa ,Pwc

C(d,Pb,Pwa ,Pwc) (27)

Proof: It is easy to see that the exact values of the provi-
sioning coefficients are functions of d̂. However, the optimal
policies according to which the resources are shared are the
same for every offloading decision vector d ∈ D, as defined
by (20) and (21). Therefore, one can solve the problem (18)-
(19) first, assuming an arbitrary offloading decision vector d,
and then given the solution (P̂b, P̂wa , P̂wc) of (18)-(19) find
the optimal offloading decision vector d̂ that will determine
the exact values of the provisioning coefficients. This proves
the result. �

A. Discussion and Practical Implications

So far we have shown that the JSS-ERM problem can be
decomposed into a S+2 coupled resource allocation problems
that can be solved sequentially. It is of interest to discuss
the relationship between the decomposition and the potential

Fig. 2. An example of the potential implementation of a resource allocation
and orchestration framework.

implementation of a resource allocation and orchestration
framework.

The proposed decomposition results in an optimization
problem to be solved at the network level (eqns. (24)-(25))
and one in each slice (eqns. (22)-(23)), followed by the
problem of finding an optimal offloading decision vector. This
structure is aligned with the slice-based network architecture
proposed in [6], where inter-slice radio resource allocation and
service orchestration are performed by a centralized entity,
while intra-slice radio and computing resource management is
performed by the slices themselves, i.e., each slice manages
its own radio and computing resources. We refer to the cen-
tralized entity that decides about the inter-slice radio resource
allocation policy Pb and the offloading decision vector d as
the slice resource orchestrator (SRO).

Figure 2 illustrates the interaction between the SRO and
slices in the potential implementation of a resource allocation
and orchestration framework. As shown in the figure, the
slices can first decide about the collection (Pwa ,Pwc) of their
intra-slice radio and computing resource allocation policies as
each slice can assume an arbitrary offloading decision vector
d when solving the optimization problem (22)-(23). After
the slices inform the SRO about their radio and computing
resource allocation policies, the SRO can decide about its
own inter-slice radio resource allocation policy Pb by solving
the optimization problem (24)-(25) for an arbitrary offloading
decision vector d. Finally, given the collection (Pb,Pwa ,Pwc)
of all resource allocation policies and the estimates of the
average parameters that are the inputs to the algorithm, the
SRO solves the service optimization problem through finding
the offloading decision vector d. The SRO then informs each
WD i about its offloading decision di. Whenever the estimates
of the average parameters that are the inputs to the algorithm
are updated or when the set of WDs in the system changes,
the SRO can recompute the vector of offloading decisions
and send the updated decisions to the WDs. The proposed
centralized implementation is based on the average system
parameters only, and hence it requires low signaling overhead.

B. Problem Complexity
In what follows we provide a result concerning the complex-

ity of the JSS-ERM problem. For notational convenience let us

1870 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

first define the set of resources R̃ � {{A×S}∪{C×S}∪N}
and let us introduce the following shorthand notation

qi,(a,s) �

Di

Ri,a
, qi,(c,s) �

Li

hi,s
, qi,i �

	
Li,

qr(d) �
�

j∈Or(d)

qj,r, ∀r ∈ R̃. (28)

First, by substituting (20) into (8) and by using the notation
introduced in (28), we can express the cost of WD i under a
policy Pb and the collection (P̂wa , P̂wc) of optimal allocation
policies of slices as

C̃i(d) =
�

r∈R̃di

mrqi,rqr(d), (29)

where R̃di is the set of resources that WD i uses for perform-
ing its task in d (i.e., R̃di = {(a, s), (c, s)} if di = (a, c, s)
and R̃di = {i} if di = i) and m(a,s) = 1/bs

a, m(c,s) = 1/F s
c

and mi = 1/F l
i .

Second, by summing the expressions (29) over all WDs
i ∈ N and by reordering the summations we can express
the system cost (10) under a policy Pb and the collection
(P̂wa , P̂wc) of optimal allocation policies of slices as

C̃(d) =
�
i∈N

C̃i(d) =
�
r∈R̃

mrq
2
r (d). (30)

Next, let us define the set of resources R̄ � {A ∪ {C ×
S} ∪ N} and a coefficient qi,a � qi,(a,s) =

	
Di/Ri,a.

By substituting (21) into (29), we can express the cost of WD
i under the collection (P̂b, P̂wa , P̂wc) of optimal allocation
policies as

C̄i(d) =
�

r∈R̄di

mrqi,rqr(d), (31)

where R̄di is the set of resources that WD i uses for perform-
ing its task in d (i.e., R̄di = {a, (c, s)} if di = (a, c, s) and
R̄di = {i} if di = i) and ma = 1.

Finally, by summing the expressions (31) over all WDs
i ∈ N and by reordering the summations we can express
the system cost (30) under the collection (P̂b, P̂wa , P̂wc) of
optimal allocation policies as

C̄(d) =
�
i∈N

C̄i(d) =
�
r∈R̄

mrq
2
r (d). (32)

Theorem 4: Consider the problem of finding the optimal
vector d̂ of offloading decisions of WDs under the collection
(P̂b, P̂wa , P̂wc) of optimal allocation policies that set provi-
sioning coefficients according to (20) and (21)

min
d

C̄(d) (33)

s.t.(12). (34)

Problem (33)-(34) is NP-hard.
Proof: We prove the NP-hardness of the problem by

reduction from the Minimum Sum of Squares problem (SP19
problem in [21]): given a finite set B, a size s(b) ∈ Z

+, ∀b ∈ B
and positive integers K ≤ |B| and J , the question is whether

Fig. 3. Pseudo code of the COS algorithm.

B can be partitioned into K disjoint subsets B1,B2, . . . ,BK

such that
K�

k=1

� �
b∈Bk

s(b)
�2

≤J .

For the reduction we set S = 1, C = 0 and F l
i = 0,

∀i ∈ N , i.e., in this simplified version of the problem E =
A. Next, we let N = B, |A| = K , Ri,a = Ri, ∀i ∈ N ,
∀a ∈ A and

	
Di/Ri = s(b). Then, it follows from (30) that

the optimal solution of (33)-(34) provides the solution to the
SP19 problem. As SP19 is NP-hard, problem (33)-(34) is also
NP-hard, which proves the theorem. �

Proof: [Proof of Theorem 1] The result follows from
Theorem 3 and Theorem 4. �

V. APPROXIMATION SCHEME FOR THE JSS-ERM
PROBLEM

In what follows we propose the choose offloading slice
(COS) algorithm that the SRO can use for computing an
approximation to the optimal solution of the JSS-ERM prob-
lem. In particular, the algorithm serves as an approximation
scheme to the problem of finding an optimal offloading deci-
sion vector. The algorithm starts from an offloading decision
vector d0 in which all WDs perform computation locally, and
it lets the SRO to update the offloading decisions of the WDs
one at a time, based on their cost functions C̃i(d). We show
the pseudo code of the algorithm in Figure 3.

Theorem 5: Consider an allocation policy Pb and the col-
lection (P̂wa , P̂wc) of optimal allocation policies of slices.
The COS algorithm terminates after a finite number of the
iterations.

Proof: The proof is based on a game theoretic treatment
of the problem

min
d

C̃(d) (35)

s.t.(12), (36)

in which the inter-slice radio resource provisioning coefficients
are set according to an arbitrary policy Pb and the intra-slice
radio and computing power provisioning coefficients are set
according to the optimal policies P̂wa and P̂wc , respectively.

In what follows we show that the problem (35)-(36) can
be interpreted as a congestion game Γ(Pb, P̂wa , P̂wc) =<
N , (Di)i∈N , (C̃i)i∈N > with resource-dependent weights
qi,r, i ∈ N , r ∈ R̃, and the cost of WD i in the resulting game
is given by (29). First, observe that qi,r can be interpreted as

JOŠILO AND DÁN: JOINT WIRELESS AND EDGE COMPUTING RESOURCE MANAGEMENT 1871

the weight that WD i contributes to the congestion when using
resource r ∈ R̃ and thus qr(d) can be interpreted as the total
congestion on resource r in strategy profile d. This in fact
implies that the cost (29) of WD i in strategy profile d depends
on its own resource-dependent weights qi,r and on the total
congestion qr(d) on the resources it uses. Therefore, it follows
from [22] that the problem (35)-(36) can be interpreted as
a congestion game Γ(Pb, P̂wa , P̂wc) with resource dependent
weights. Consequently, the COS algorithm terminates after a
finite number of iterations iff the game Γ(Pb, P̂wa , P̂wc) has
a pure strategy Nash equilibrium. 1

Since the cost cr(d) � mrqr(d) of sharing every resource
r ∈ R̃ is an affine function of the congestion qr(d) on
resource r, it follows from Theorem 4.2 in [22] that the game
Γ(Pb, P̂wa , P̂wc) has the exact potential function2 given by

Ψ(d) =
�
i∈N

�
r∈R̃di

qi,rc
≤i
r (d), (38)

where c≤i
r (d) = mrq

≤i
r (d) and q≤i

r (d) =
�

{j∈Or(d)|j≤i}
qi,r.

It is well known that in a finite strategic game that admits an
exact potential all improvement paths3 are finite [23] and thus
the existence of the exact potential function (38) allows us to
use the COS algorithm for computing a pure strategy Nash
equilibrium d∗ of the game Γ(Pb, P̂wa , P̂wc), which proves
the result. �

Theorem 6: The COS algorithm terminates after a finite
number of the iterations for the collection (P̂b, P̂wa , P̂wc) of
optimal allocation policies.

Proof: By following the same approach as in the
proof of Theorem 5, it is easy to show that given the
collection (P̂b, P̂wa , P̂wc) of optimal allocation policies,
the problem (33)-(34) can be interpreted as a congestion
game Γ(P̂b, P̂wa , P̂wc) =< N , (Di)i∈N , (C̄i)i∈N > with
resource-dependent weights qi,r, i ∈ N , r ∈ R̄, and the cost
of WD i in the resulting game is given by (31).

Since ma = 1, ∀a ∈ A, the cost cr(d) � mrqr(d) of
sharing every resource r ∈ R̄ is an affine function of the con-
gestion on resource r. Therefore, the game Γ(P̂b, P̂wa , P̂wc)
is also an exact potential game, and thus the COS algorithm
computes a pure strategy Nash equilibrium d∗ of the game
Γ(P̂b, P̂wa , P̂wc), which proves the result. �

In general, the number of improvement steps can be expo-
nential in a potential game, but as we show next the COS
algorithm can compute an equilibrium d∗ of offloading deci-
sions efficiently.

1A pure strategy Nash equilibrium of a strategic game is a collection
d∗ of decisions (called a strategy profile) for which C̃i(d∗i, d∗−i) ≤
C̃i(di, d∗−i), ∀di, where d∗i and d∗−i are standard game theoretical
notations for an improvement step of player i and for the collection of
decisions (strategies) of all players other than i, respectively.

2A function Ψ : ×i(Di) → R is an exact potential for a finite strategic
game if for an arbitrary strategy profile (di, d−i) and for any improvement
step d∗i the following holds:

Ψ(di, d−i)−Ψ(d∗i , d−i)= C̃i(di, d−i)−C̃i(d
∗
i , d−i). (37)

3An improvement path is a sequence of strategy profiles in which one player
at a time changes its strategy through performing an improvement step.

Theorem 7: The COS algorithm terminates in
O(NCmax

� log
�

i∈N T ex
i

Ψmin) iterations, where Cmax and �
are system parameter dependent constants and Ψmin is the
minimum value of the potential function.

Proof: First, let us denote by d�i ∈ A × C × S the
offloading decision of WD i for which it would have the
highest offloading cost if it was the only WD offloading, i.e.,
d�i = (a�, c�, s�) = arg max(a,c,s)∈A×C×S(Di/Ri,a+Li,s/F s

c).
Furthermore, let us denote by T off,max

i the highest offloading
cost that a WD i can experience in the system. It is easy to
see that WD i experiences offloading cost T off,max

i when all
WDs j ∈ N offload their tasks through AP a� to EC c� in
slice s�, i.e., when dj = (a�, c�, s�) for each j ∈ N . Finally,
let us define the maximum cost that a WD can experience in
the system as Cmax � maxi∈N max{T ex

i , T off,max
i }.

Now, let us denote by �i the smallest decrease in the
cost that WD i can experience when its decision is updated
using the COS algorithm and let us define the constant � �
mini∈N �i. Next, let us consider an iteration of the COS
algorithm where the offloading decision of WD i is updated
from di to di∗. We can then write

Ψ(di, d−i)−Ψ(d∗i, d−i) = Ci(di, d−i)−Ci(d∗i, d−i)

≥ � ≥ �
Ψ(di, d−i)
NCmax

, (39)

where Ci(·) is defined by (29) in the case of Γ(Pb, P̂wa , P̂wc)
and by (31) in the case of Γ(P̂b, P̂wa , P̂wc). Observe that
in (39) we have that the equality follows from the definition
of the exact potential function (37), the first inequality follows
from the definition of �, and the last inequality follows from
the facts that C(d) =

�
i∈N Ci(d) ≤ NCmax and Ψ(d) ≤

C(d) for any vector d of offloading decisions (c.f., (30), (32)
and (38)).

We can rewrite (39) as

Ψ(di∗, d−i) ≤ (1 − �

NCmax
)Ψ(di, d−i). (40)

Observe that from (40) it follows that the COS algorithm
decreases the potential function by at least a factor of (1 −

�
NCmax). Since � is defined such that 0 < � < Cmax holds,
we have that (1 − �

NCmax)
NCmax

� ≤ 1
e and thus every NCmax

�
iterations decrease the potential function by a constant factor.4

Next, let us recall that Ψ(d) ≤ C(d) holds for any vector
d of offloading decisions (c.f., (30), (32) and (38)) and
that the COS algorithm starts from an offloading decision
vector d0 in which all WDs perform computation locally.
Consequently, we have that the potential function starts from
a value Ψ(d0) ≤ C(d0) =

�
i∈N T ex

i and it cannot drop
lower than Ψmin. Therefore, assuming that the COS algo-
rithm converges after K NCmax

� iterations we obtain from (40)

that
�

i∈N T ex
i

Ψmin (1
e)K ≥

�
i∈N T ex

i

Ψmin (1 − �
NCmax)K NCmax

� ≥
Ψ(d0)
Ψmin (1 − �

NCmax)K NCmax
� ≥ 1 hold. After taking the loga-

rithm, we obtain that K ≤ log
�

i∈N T ex
i

Ψmin and thus that the COS

algorithm converges in O(NCmax

� log
�

i∈N T ex
i

Ψmin) iterations,
which proves the result. �

4To see this, note that (1 − x)
1
x ≤ (e−x)

1
x ≤ 1

e
for x ∈ (0, 1).

1872 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

In what follows we address the efficiency of the COS
algorithm in terms of the cost approximation ratio.

Theorem 8: The COS algorithm is a 2.62-approximation
algorithm for the optimization problem (35)-(36) in terms of
the system cost, i.e., C̃(d∗)

C̃(d̂)
≤ 2.62.

Proof: Let us denote by D∗ ⊆ D the set of all vectors of
offloading decisions that can be computed using the COS algo-
rithm given any policy Pb and the collection (P̂wa , P̂wc) of the
optimal resource allocation policies of slices. Furthermore, let
us consider a vector d∗ ∈ D∗ and an arbitrary vector d̂ ∈ D
of offloading decisions. Since there is no WD i for which
the cost C̃i(d∗) can be decreased by unilaterally changing its
offloading decision we have the following

C̃i(d∗) ≤
�

r∈R̃d∗
i
∩R̃d̂i

mrqi,rqr(d∗)

+
�

r∈R̃d̂i
\R̃d∗

i

mr

�
qr(d∗) + qi,r

�
qi,r

≤
�

r∈R̃d̂i

mr

�
qr(d∗) + qi,r

�
qi,r, (41)

where R̃d∗
i
⊂ R̃ and R̃d̂i

⊂ R̃ denote the the set of resources
that WD i uses in d∗ and d̂, respectively. By summing (41)
over all WDs i ∈ N and by reordering the summations we
obtain

C̃(d∗)≤
�
r∈R

�
i∈Or(d̂)

mr

�
qr(d∗)qi,r+q2

i,r

�
. (42)

From the definition (28) of the total weight qr(d) on resource
r∈R̃ and from

�
i∈Or(d)

q2
i,r ≤ q2

r (d) we obtain

C̃(d∗)≤
�
r∈R

mrqr(d∗)qr(d̂) +
�
r∈R

mrq
2
r (d̂).

Next, let us recall the Cauchy-Schwartz inequality
�

r∈R
arbr ≤� �

r∈R
a2

r

�
r∈R

b2
r. By defining ar � √

mrqr(d∗) and br �
√

mrqr(d̂) we obtain the following

C̃(d∗)≤
�

r∈R
mrq2

r(d∗)
�
r∈R

mrq2
r(d̂)

+
�
r∈R

mrq
2
r(d̂). (43)

By dividing the right and the left side of (43) by
�

r∈R
q2
r (d̂) >

0 and by using (30) we obtain

C̃(d∗)
C̃(d̂)

≤

C̃(d∗)
C̃(d̂)

+ 1. (44)

Since (44) holds for any vector d∗ ∈ D∗ of offloading deci-
sions computed by the COS algorithm and for any vector d̂ ∈
D of offloading decisions of the WDs, it holds for the worst
vector d∗ = argmaxd∈D∗ C̃(d) of offloading decisions that
can be computed using the COS algorithm and for the optimal
d̂ = argmind∈D C̃(d) solution too. Therefore, by solving (44)

Fig. 4. Performance gain vs. number of WDs N .

Fig. 5. Performance gain vs. number of APs A.

we obtain that the cost approximation ratio C̃(d∗)

C̃(d̂)
of the COS

algorithm is upper bounded by (3 +
√

5)/2 ∼= 2.62, which
proves the theorem. �

Theorem 9: The COS algorithm is a 2.62-approximation
algorithm for the optimization problem (33)-(34) in terms of
the system cost, i.e., C̄(d∗)

C̄(d̂)
≤ 2.62.

Proof: The result can be easily obtained by following the
approach used to prove Theorem 8. �
Finally, from Theorem 3 and Theorem 9 we obtain the
approximation ratio bound for the proposed decomposition-
based algorithm.

Theorem 10: Given the collection (P̂b, P̂wa , P̂wc) of opti-
mal allocation policies, the proposed decomposition-based
algorithm computes a 2.62-approximation solution to the
JSS-ERM problem.

VI. NUMERICAL RESULTS

We used extensive simulations to evaluate the cost perfor-
mance of the proposed solution from the perspective of the
operator, individual slices and devices, and for assessing the
computational complexity of the proposed COS algorithm.

To capture the potentially uneven spatial distribution of ECs,
WDs and APs in a dense urban area, we consider a square area
of 1km×1 km in which WDs and 3 ECs are placed uniformly
at random and 5 APs are placed at random on a regular grid
with 25 points. The channel gain of WD i to AP a depends on
their Euclidean distance di,a and on the path loss exponent α,

JOŠILO AND DÁN: JOINT WIRELESS AND EDGE COMPUTING RESOURCE MANAGEMENT 1873

which we set to 4 according to the path loss model in urban
and suburban areas [24]. Unless otherwise noted, we set the
bandwidth Ba of 2 APs to 18MHz and the bandwidth of 3
APs to 27MHz, corresponding to 25 and 75 resource blocks
that are 12 × 60KHz and 12 × 30KHz subcarriers wide [25],
[26], respectively. We consider that the transmit power Pi,a of
every WD i is uniformly distributed on [10−6, 0.1]W according
to [27]. We calculate the total thermal noise in a BaMHz
channel as N0(dBm) = −174+10 log(Ba) according to [28]
and the transmission rate Ri,a achievable to WD i at AP a as
Ri,a =Balog(1+d−α

i,a
Pi,a

N0
).

To set the values for the computational capabilities of
the WDs, we consider a line of Samsung Galaxy phones,
from the oldest version with 1 core operating at 1GHz to
the one of the newest versions with 8 cores operating at
2.84GHz. We consider that EC c1 is equipped with 36 vCPUs
operating at 2.3GHz and 96 vCPUs operating at 3.6GHz.
We consider that EC c2 and EC c3 are equipped with 1 GPU
each (with 2048 parallel processing cores operating at 557MHz
and 2496 parallel processing cores operating at 560MHz,
respectively). Given the measurements reported in [29]–[31]
we assume that a WD, a CPU and a GPU can execute on
average 2, 3 and 1 instructions per cycle (IPC), respectively.
Based on this, we consider that the computational capability
F l

i of every WD i is uniformly distributed on [2, 45.4]GIPS,
where the lower and the upper bound correspond to the oldest
and the newest version of the phone, respectively. Similarly,
we calculate the computational capabilities of ECs, and set
them to Fc1 = 1285.2GIPS, Fc2 = 1140.7GIPS and Fc3 =
1397.8GIPS.

The input data size Di is drawn from a uniform distribution
on [1.7, 10]Mb according to measurements in [32]. The number
X of instructions per data bit follows a Gamma distribu-
tion [33] with shape parameter k = 75 and scale θ = 50.
Given Di and X , we calculate the complexity of a task as
Li =DiX .

Motivated by Amazon EC2 instances [34] designed to sup-
port different kinds of applications (e.g., G3 and P2 instances
for graphics-intensive and general-purpose GPU applications,
and C5 and I3 instances for compute-intensive and non-
virtualized workloads), we evaluate the system performance
for the following four cases.

S= 1: The slice s1 contains all ECs, and thus is able to
support all of the above applications.

S= 2: The ECs are sliced such that slice s1 supports the
G3.4 instance and slice s2 supports instances C5 and I3.

S= 3: The ECs are sliced such that slices s1 and s2 support
P2 and G3s instances, respectively and slice s3 supports
instances C5 and I3.

S= 4: The ECs are sliced such that slices s1, s2, s3 and
s4 support P2, G3s, C5 and I3 instances, respectively.

The coefficients 1
hi,s

were drawn from a continuous uniform
distribution on [0, 1] and unless otherwise noted, the results are
shown for all of the above scenarios.

We use two bandwidth allocation policies Pb of the slice
orchestrator as a basis for comparison. The first policy Pcp

b

shares the bandwidth of each AP a among slices proportionally
to the ECs’ resources that slices have. The second policy Peq

b

Fig. 6. Number of offloaders per slice vs. number of WDs N .

Fig. 7. Cost ratio per slice vs. number of WDs N .

gives an equal share of the bandwidth of each AP a to each
slice s. Observe that the COS algorithm computes an approx-
imation vector d∗ of offloading decisions for both policies
(c.f. Theorem 5 and Theorem 8). The results shown are the
averages of 300 simulations, together with 95% confidence
intervals.

A. System Performance

We start with considering the system performance from the
point of view of the slice orchestrator. To do so we consider
the collection (P̂wa , P̂wc) of optimal intra-slice policies and
define the system performance gain PG(Pb) for an inter-slice
radio allocation policy Pb as the ratio between the system cost
reached under policy Peq

b and the system cost reached under
policy Pb

PG(Pb) =
C(d∗,Peq

b , P̂wa , P̂wc)
C(d∗,Pb, P̂wa , P̂wc)

.

We investigate the system performance gain PG(Pb) for the
optimal P∗

b and for the cloud proportional Pcp
b allocation

policies.
We first show PG(Pb) as a function of the number N of

WDs in Figure 4. We observe that PG(P∗
b) = PG(Pcp

b) =
1 when S = 1 and this is because the three solutions are
equivalent when there is no slicing. On the contrary, for
S > 1 we observe that PG(P∗

b) > 1 and PG(Pcp
b) > 1,

which is due to that the policy Peq
b does not take into

1874 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

Fig. 8. Distribution of the individual performance gain for N = 10.

Fig. 9. Computational complexity vs. number of WDs N .

account that the slices might have different amounts of ECs’
resources. We also observe that the policy P∗

b achieves better
performance gain (up to 2.5 times greater) than the policy
Pcp

b because P∗
b assigns the WDs to slices not only based

on the amount of ECs’ resources the slices have, but also
based on how well the slices are tailored for executing their
tasks. This effect is especially evident when there are few
WDs, because in this case WDs tend to offload their tasks, and
thus the system cost is mostly determined by the offloading
cost. On the contrary, as the number N of WDs increases,
the gap between considered inter-slice radio allocation policies
vanishes because the system cost becomes mostly determined
by the WDs that perform the computation locally.

Next, in Figure 5 we show PG(Pb) for N = 25 WDs
as a function of the number A of APs, each of them with
Ba = 18MHz. We first observe that PG(P∗

b) increases with
both the number A of APs and the number S of slices and that
PG(P∗

b) > 1 already for S = 2. On the contrary, PG(Pcp
b) >

1 only for S = 4, and PG(P∗
b) for S = 2 is approximately

the same as PG(Pcp
b) for S = 4, which illustrates the superior

performance of the proposed policy P∗
b .

B. Performance Within the Slices

We continue with considering the performance from the
point of view of the slices. For an inter-slice radio allocation
policy Pb, we denote by ns(Pb) the number of offloaders per
slice in the vector d∗ of offloading decisions computed by the

COS algorithm and we define the cost ratio CRs(Pb) per slice
w.r.t. the system cost as

CRs(Pb) =
Cs(d∗,Pb, P̂s

wa
, P̂s

wc
)

C(d∗,Pb, P̂wa , P̂wc)
.

Figure 6 and Figure 7 show ns(Pb) and CRs(Pb), respectively
for the optimal P∗

b , the cloud proportional Pcp
b and the equal

Peq
b inter-slice radio allocation policy of the slice orchestrator.

The results are shown for S = 2 and the red lines in Figure 7
show the share of the ECs’ resources among the slices s1 and
s2 (i.e, slices s1 and s2 have approximately 72% and 28%
of the resources, respectively). We observe from Figure 6
and Figure 7, respectively that the gap between ns1(Pb) and
ns2(Pb) and the gap between CRs1(Pb) and CRs2(Pb) are
highest in the case of the policy Pcp

b and lowest in the case of
the policy Peq

b . Therefore, WDs whose tasks are a better match
with the EC resources in slice s2 than those in slice s1 cannot
fully exploit the ECs’ resources in slice s2 under the policy
Pcp

b , which allocates bandwidth resources proportionally to the
ECs’ resources. Similarly, WDs whose tasks are a better match
with the EC resources in slice s1 than in slice s2 cannot fully
exploit the ECs’ resources in slice s1 under the policy Peq

b ,
which allocates bandwidth resources equally. On the contrary,
the results show that the optimal policy P∗

b finds a good
match between the EC resources in the slices and the WDs’
preferences for different types of computing resources, which
makes it a good candidate for dynamic resource management
for network slicing coupled with edge computing.

C. Performance Perceived Per Device

In order to evaluate the performance perceived per device,
we define the individual performance gain PGi(Pb) as

PGi(Pb) =
Ci(d∗,Peq

b , P̂wa , P̂wc)
Ci(d∗,Pb, P̂wa , P̂wc)

.

In Figure 8 we show the CDF of PGi(Pb) for N = 10 and
for the same set of parameters as in Figure 4. We omit the
results for S = 1 since in this case the solutions achieved for
policies P∗

b ,Pcp
b and Peq

b are equivalent (c.f., Figure 4).
We observe that the proposed P∗

b policy outperforms the
cloud proportional policy Pcp

b since for any value of S the
probability that PGi(Pb) is less than a fixed threshold is
smaller in the case of policy P∗

b than in the case of policy
Pcp

b . Finally, we observe that in the case of both P∗
b and

Pcp
b policies the probability that PGi(Pb) is less than a fixed

threshold decreases as the number S of slices increases, which
confirms that network slicing can improve the performance of
an edge computing system.

D. Computational Cost

Figure 9 shows the number of iterations in which the COS
algorithm computes a decision vector d∗ as a function of
the number N of WDs under the optimal P∗

b , the cloud
proportional Pcp

b and the equal Peq
b inter-slice radio allocation

policy of the slice orchestrator.
Interestingly, the number of updates decreases with the

number S of slices. This is due to that the congestion on the

JOŠILO AND DÁN: JOINT WIRELESS AND EDGE COMPUTING RESOURCE MANAGEMENT 1875

logical resources decreases as S increases, and thus the COS
algorithm updates the offloading decisions less frequently.
We also observe that the number of updates scales approx-
imately linearly with N under all considered policies of the
slice orchestrator, and thus we can conclude that the COS
algorithm is computationally efficient, which makes it a good
candidate for computing an approximation d∗ to the optimal
vector d̂ of offloading decisions of WDs.

VII. RELATED WORK

There is a significant body of works that consider computa-
tion offloading problems in edge computing systems in which
multiple devices share both communication and computing
resources [35]–[40]. The authors in [35] addressed the problem
of minimizing the long-term average task completion times,
and based on the decomposition of the original problem,
proposed an iterative algorithm for which they provided a
competitive ratio. In [36] the authors considered the problem
of joint optimization of the task placement and the alloca-
tion of uplink and downlink communication resources, and
proposed an algorithm that minimizes the average completion
times of the tasks. The authors in [37] defined the cost of
each device as a function of its energy consumption and task
completion time, formulated the problem of minimizing the
sum cost of devices, and based on the relaxation of the original
problem, proposed a heuristic for computing the offloading
decisions of devices and allocating communication and com-
puting resources. In [38] and [39] the authors considered an
edge computing system with limited communication, comput-
ing and storage resources. The authors in [38] formulated the
joint computation offloading, content caching, and resource
allocation problem, and based on the generalized Benders
decomposition, proposed an iterative algorithm. In [39] the
authors considered the joint optimization of service placement
and request routing in a dense edge computing system, and
proposed an approximation algorithm that leverages a ran-
domized rounding technique. The authors in [40] addressed
the problem of joint resource dimensioning and placement of
virtualized services, and proposed an approximation algorithm
based on Lagrangian relaxation. Different from these works,
we consider an edge computing system in which the resources
are managed both at the network and at the slice level,
and we propose a novel game theory inspired approach for
designing an approximate solution to the joint task placement
and resource allocation problem.

Closest to our work are recent game theoretic treatments
of the computation offloading problem [41]–[45]. In [41] the
authors considered devices that compete for cloud resources
so as to minimize their energy consumption, and proved
that an equilibrium of offloading decision can be computed
in polynomial time. In [42] the authors considered devices
that maximize their performance and a profit maximizing
service provider, and used backward induction for deriving
near optimal strategies for the devices and the operator.
In [43] the authors considered that devices can offload their
tasks to a cloud through multiple identical wireless links,
modeled the congestion on wireless links, and used a potential

function argument for proposing a decentralized algorithm for
computing an equilibrium. In [44] the authors considered that
devices can offload their tasks to a cloud through multiple
heterogeneous wireless links, modeled the congestion on wire-
less and cloud resources, showed that the game played by
devices is not a potential game and proposed a decentralized
algorithm for computing an equilibrium. In [45] the authors
modeled the interaction between devices and a single network
operator as a Stackelberg game, and provided an algorithm for
computing a subgame perfect equilibrium. Unlike these works,
we consider the computation offloading problem together with
network slicing, provide a general model of computational
tasks that accounts for the diversity of computing resources
across the slices, and analyze the interaction between the
network operator and the slices.

Another line of works considers the network slicing
resource allocation problem [46]–[50]. In [46] the authors
considered an auction-based model for allocating edge cloud
resources to slices and proposed an algorithm for allocating
resources to slices so as to maximize the total network revenue.
In [47] the authors considered the radio resources slicing prob-
lem and proposed an approximation algorithm for maximizing
the sum of the users’ utilities. In [48] the authors modeled
the interaction between slices that compete for bandwidth
resources with the objective to maximize the sum of their
users’ utilities, and proposed an admission control algorithm
under which the slices can reach an equilibrium. In [49] the
authors proposed a deep learning architecture for sharing the
resources among network slices in order to meet the users’
demand within the slices. In [50] the authors considered
a radio access network slicing problem and proposed two
approximation algorithms for maximizing the total network
throughput. Unlike these works, we consider a slicing enabled
edge system in which the slice resource orchestrator assigns
devices to slices and shares radio resources across slices, while
the slices manage their own radio and computing resources
with the objective to maximize overall system performance.

To the best of our knowledge, ours is the first work to
consider the combinatorial problem of placing heterogeneous
computational tasks together with the problem of optimizing
the inter-slice and intra-slice resource allocation policies for
joint management of communication and computing resources
in an edge computing system.

VIII. CONCLUSION AND DISCUSSION

We have considered the computation offloading problem in
an edge computing system under network slicing in which
slices jointly manage their own communication and computing
resources and the slice resource orchestrator manages com-
munication resources among slices and assigns the WDs to
slices. We formulated the problem of minimizing the sum
over all WDs’ task completion times as a mixed-integer
problem, proved that the problem is NP-hard and proposed a
decomposition of the problem into a sequence of optimization
problems. We proved that the proposed decomposition does
not change the optimal solution of the original problem,
proposed an efficient approximation algorithm for solving

1876 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

the decomposed problem and proved that the algorithm has
bounded approximation ratio. Our numerical results show that
the proposed algorithm is computationally efficient. They also
show that dynamic allocation of slice resources is essential for
maximizing the benefits of edge computing, and slicing could
be beneficial for improving overall system performance.

We conclude with discussing two potential extensions of our
work. First, we discuss the applicability of our model to three
classes of emerging extended reality (XR) applications [51].
Our model captures well the class of uplink traffic dominated
XR conversational and conference applications. For the class
of downlink traffic dominated applications, the considered
model and problem formulation could be applicable with
minor modifications: the identity of WDs and ECs would have
to be swapped in the model, and whether or not to offload and
to which EC (i.e., WD) to send data to would not be a decision
any longer. Our model does not fit the class of XR applications
where downlink traffic and uplink traffic are equally important,
we leave this as an interesting avenue of future work.

Second, we discuss the applicability of our solution to WDs
that cannot perform the computational tasks locally, e.g., due
to lack of computing resources. The proposed game theoretic
approach extends nicely to this case, by defining the local
execution cost to be the desired completion time of the WD.
By doing so, a WD would only offload if it can meet the
desired completion time, but would not offload if offloading
violates the completion deadline, and it may thus decide not
to perform the task. An interesting avenue for future research
would be to consider a fairness objective, e.g., WDs that
cannot perform the tasks locally would receive preferential
treatment in resource allocation, but such a formulation would
have to be combined with appropriate financial incentives, i.e.,
pricing, leading to a significantly different problem formula-
tion from ours.

APPENDIX

A. Proof of Proposition 1

First, let us define the collections b � (bs
a)s∈S,a∈A and

w � (ws
i,e)i∈N ,e∈E,s∈S of inter-slice and intra-slice resource

provisioning coefficients, respectively. Observe that the total
number of provisioning coefficients in (18)-(19) is p =
NS(A + C + 1). Next, let us consider a WD i such that
di = (a, c, s) and let us express the Hessian matrix of its
cost (8)

Hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2τ s
i,a

bs3
a ws

i,a

τ s
i,a

bs2
a ws2

i,a

0 O1×(p−3)

τ s
i,a

bs2
a ws2

i,a

2τ s
i,a

bs
aw

s3
i,a

0 O1×(p−3)

0 0
τ s
i,c

ws3
i,c

O1×(p−3)

O(p−3)×1 O(p−3)×1 O(p−3)×1 O(p−3)×(p−3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Om×n is a zero matrix of m rows and n columns.
It is easy to see that Hi is a symmetric matrix, and

thus it has p eigenvalues among which p − 3 are equal
to 0. The remaining three eigenvalues are given by λ1 =

2τ s
i,c

ws3
i,c

, λ2 =
τ s

i,a(bs
2

a +ws2
i,a−
�

bs4a −bs2a ws2
i,a+ws4

i,a)

bs3a ws3
i,a

and λ3 =

τ s
i,a(bs

2
a +ws2

i,a+
�

bs4a −bs2a ws2
i,a+ws4

i,a)

bs3a ws3
i,a

, respectively. Clearly, λ1 ≥
0 since τ s

i,c, w
s
i,c ≥ 0. Furthermore, since τ s

i,a, bs
a, ws

i,a ≥ 0 we
have the following

λ2 ≥
τ s
i,a

�
bs2

a + ws2

i,a −

(bs2
a + ws2

i,a)2
�

bs3
a ws3

i,a

≥ 0,

λ3 ≥
τ s
i,a

�
bs2

a + ws2

i,a +

(bs2
a − ws2

i,a)2
�

bs3
a ws3

i,a

≥ 0.

Hence, the cost Ci(d,Pb,Pwa ,Pwc) of WD i that offloads
its computation is convex in (b, w). Since the cost of a WD
i that performs the computation locally does not depend on
provisioning coefficients b and w (c.f., equation (8)), we have
that the convexity of (18)-(19) follows from the known results
that the sum of convex functions is convex, and that the
sublevel sets of convex functions are convex. This proves the
result.

B. Proof of Proposition 2

First, observe that constraint (13) can be omitted since we
assumed that the decision vector d is such that constraint (13)
can be satisfied. From Proposition 1 we have that (18)-(19)
is a convex problem, and thus its optimal solution must
satisfy the Karush–Kuhn–Tucker (KKT) conditions. In order
to formulate the corresponding Lagrangian dual problem,
let us introduce non-negative Lagrange multiplier vectors
α = (αa)a∈A, β = (βs

e)e∈E,s∈S , γ = (γs
a)a∈A,s∈S and

δ = (δs
i,e)i∈Oe,s(d),e∈E,s∈S for constraints in (19), respectively.

Next, let us define the Lagrangian dual problem corresponding
to problem (18)-(19) as max

α,β,γ,δ�0
min

b,w�0
L(b, w, α, β, γ, δ),

where the Lagrangian is given by

L(b, w, α, β, γ, δ)

=
�
s�∈S

�
e�∈E

1
bs�
e�

� �
j∈Oe�,s�(d)

τ s�
j,e�

ws�
j,e�

�

+
�
a�∈A

αa�(
�
s�∈S

bs�
a�−1)+

�
e�∈E

�
s�∈S

βs�
e�

� �
j∈Oe�,s� (d)

ws�
j,e�−1)

�

−
�
a�∈A

�
s�∈S

γs�
a�bs�

a� −
�
e�∈E

�
s�∈S

�
j∈Oe�,s�(d)

δs�
j,e�ws�

j,e� +
�

j∈Ol(d)

Cl
j .

Now, we can express the KKT conditions as follows

stationarity:
�

j∈Oa,s(d)

τ s
j,a

ws
j,a

· 1
(bs

a)2
=αa−γs

a, a∈A, s∈S

(45)
τ s
i,e

bs
e(ws

i,e)2
=βs

e−δs
i,e, e∈E , s∈S, i∈Oe,s(d) (46)

pr. feasibility: (19) (47)

du. feasibility: α, β, γ, δ � 0, (48)

co. slackness: αa(
�
s�∈S

bs�
a − 1), a∈A (49)

JOŠILO AND DÁN: JOINT WIRELESS AND EDGE COMPUTING RESOURCE MANAGEMENT 1877

βs
e(

�
j∈Oe,s(d)

ws
j,e − 1) = 0, e∈E , s ∈ S (50)

−γs
abs

a = 0, a∈A, s ∈ S (51)

slackness: −δs
i,ew

s
i,e = 0, e∈E , s∈S, i ∈Oe,s(d). (52)

We proceed with finding ŵs
i,e. First, from the KKT dual

feasibility condition δ � 0 and complementary slackness
condition (52) we obtain that δs

i,e = 0 must hold for every
e ∈ E , s ∈ S and i ∈ Oe,s(d) as otherwise ws

i,e = 0 would
lead to infinite value of the objective function. Then, from the
KKT stationarity condition (46) and complementary slackness
condition (50) we obtain the expression (20) for coefficients
ŵs

i,e. Finally, by substituting expression (20) into the KKT sta-
tionarity condition (45) and by following the same approach as
for finding ŵs

i,e we obtain the expression (21) for coefficients
b̂s
a, which proves the result.

REFERENCES

[1] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5G with SDN/NFV:
Concepts, architectures, and challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 80–87, May 2017.

[2] S. Kekki et al. (2018). MEC in 5G networks. Sophia Antipolis, France,
ETSI, White Paper. [Online]. Available: https://portal.etsi.org/TB-
SiteMap/MEC/MEC-White-Papers

[3] M. Rost and S. Schmid, “Virtual network embedding approximations:
Leveraging randomized rounding,” IEEE/ACM Trans. Netw., vol. 27,
no. 5, pp. 2071–2084, Oct. 2019.

[4] B. Farkiani, B. Bakhshi, and S. A. MirHassani, “A fast near-optimal
approach for energy-aware SFC deployment,” IEEE Trans. Netw. Service
Manage., vol. 16, no. 4, pp. 1360–1373, Dec. 2019.

[5] I. Jang, D. Suh, S. Pack, and G. Dán, “Joint optimization of service
function placement and flow distribution for service function chaining,”
IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2532–2541, Nov. 2017.

[6] S. Redana et al., “5G PPP architecture working group: View on
5G architecture,” Version 3.0, Eur. Commission, Brussels, Belgium,
Feb. 2020, Tech. Rep., doi: 10.5281/zenodo.3265031.

[7] X. Foukas, M. K. Marina, and K. Kontovasilis, “Orion: RAN slicing for
a flexible and cost-effective multi-service mobile network architecture,”
in Proc. 23rd Annu. Int. Conf. Mobile Comput. Netw., Oct. 2017,
pp. 127–140.

[8] A. Rostami et al., “Orchestration of RAN and transport networks for
5G: An SDN approach,” IEEE Commun. Mag., vol. 55, no. 4, pp. 64–70,
Apr. 2017.

[9] D. Bega, M. Gramaglia, A. Garcia-Saavedra, M. Fiore, A. Banchs, and
X. Costa-Perez, “Network slicing meets artificial intelligence: An AI-
based framework for slice management,” IEEE Commun. Mag., vol. 58,
no. 6, pp. 32–38, Jun. 2020.

[10] C.-Y. Chang, N. Nikaein, and T. Spyropoulos, “Radio access net-
work resource slicing for flexible service execution,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2018,
pp. 668–673.

[11] A. Ksentini and N. Nikaein, “Toward enforcing network slicing on RAN:
Flexibility and resources abstraction,” IEEE Commun. Mag., vol. 55,
no. 6, pp. 102–108, Jun. 2017.

[12] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation offloading
for mobile cloud computing: A stochastic game-theoretic approach,”
IEEE Trans. Mobile Comput., vol. 18, no. 4, pp. 771–786, Apr. 2018.

[13] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974–983, Apr. 2015.

[14] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task
allocation in fog computing systems,” IEEE/ACM Trans. Netw., vol. 27,
no. 1, pp. 85–97, Feb. 2018.

[15] J. L. D. Neto, S. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar,
and S. Secci, “ULOOF: A user level online offloading framework for
mobile edge computing,” IEEE Trans. Mobile Comput., vol. 17, no. 11,
pp. 2660–2674, Nov. 2018.

[16] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proc. 6th Conf.
Comput. Syst., 2011, pp. 301–314.

[17] E. Cuervo et al., “MAUI: Making smartphones last longer with code
offload,” in Proc. 8th Int. Conf. Mobile Syst., Appl., Services (MobiSys),
2010, pp. 49–62.

[18] S. Jošilo and G. Dán, “Selfish decentralized computation offloading
for mobile cloud computing in dense wireless networks,” IEEE Trans.
Mobile Comput., vol. 18, no. 1, pp. 207–220, Jan. 2019.

[19] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Trans. Wireless Commun., vol. 11, no. 6,
pp. 1991–1995, Jun. 2012.

[20] S. Josilo and G. Dan, “Joint management of wireless and computing
resources for computation offloading in mobile edge clouds,” IEEE
Trans. Cloud Comput., vol. 9, no. 4, pp. 1507–1520, Oct. 2021.

[21] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
& Co., 1990.

[22] T. Harks, M. Klimm, and R. H. Möhring, “Characterizing the existence
of potential functions in weighted congestion games,” Theory Comput.
Syst., vol. 49, no. 1, pp. 46–70, Jul. 2011.

[23] D. Monderer and L. S. Shapley, “Potential games,” Games Econ.
Behavior, vol. 14, no. 1, pp. 124–143, 1996.

[24] S. R. Saunders and A. Aragón-Zavala, Antennas and Propagation for
Wireless Communication Systems. Hoboken, NJ, USA: Wiley, 2007.

[25] (2011). LTE; Evolved Universal Terrestrial Radio Access
(E-UTRA); Physical Channels and Modulation. Antipolis,
France, ETSI, White Paper, Version 10.0.0. [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/
newlin% e10.01.00_60/

[26] A. Zaidi, F. Athley, J. Medbo, U. Gustavsson, G. Durisi, and X. Chen,
5G Physical Layer: Principles, Models and Technology Components,
1st ed. New York, NY, USA: Academic, 2018.

[27] M. Lauridsen, L. Noël, T. B. Sørensen, and P. Mogensen, “An empirical
lte smartphone power model with a view to energy efficiency evolution,”
Intel Technol. J., vol. 18, no. 1, pp. 172–193, 2014.

[28] N. Da Dalt and A. Sheikholeslami, Understanding Jitter and Phase
Noise: A Circuits and Systems Perspective. Cambridge, U.K.: Cambridge
Univ. Press, 2018.

[29] L. Codrescu et al., “Hexagon DSP: An architecture optimized for
mobile multimedia and communications,” IEEE Micro, vol. 34, no. 2,
pp. 34–43, Mar. 2014.

[30] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the Intel Haswell
processor,” in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshop,
May 2015, pp. 896–904.

[31] Y. Takefuji, GPU Parallel Computing for Machine Learning in
Python: How to Build a Parallel Computer. Independently published,
Jun. 2017.

[32] L. Fletcher, L. Petersson, and A. Zelinsky, “Road scene monotony
detection in a fatigue management driver assistance system,” in Proc.
IEEE Intell. Vehicles Symp., Jun. 2005, pp. 484–489.

[33] J. R. Lorch and A. J. Smith, “PACE: A new approach to dynamic
voltage scaling,” IEEE Trans. Comput., vol. 53, no. 7, pp. 856–869,
Jul. 2004.

[34] Amazon EC2 Instance Types. Accessed: Apr. 2021. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/

[35] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line:
Joint network selection and service placement for mobile edge comput-
ing,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2019,
pp. 1459–1467.

[36] K. Guo, M. Yang, Y. Zhang, and J. Cao, “Joint computation offload-
ing and bandwidth assignment in cloud-assisted edge computing,”
IEEE Trans. Cloud Comput., early access, Oct. 30, 2019, doi:
10.1109/TCC.2019.2950395.

[37] M.-H. Chen, B. Liang, and M. Dong, “Multi-user multi-task offload-
ing and resource allocation in mobile cloud systems,” IEEE Wireless
Commun., vol. 17, no. 10, pp. 6790–6805, Oct. 2018.

[38] J. Zhang et al., “Joint resource allocation for latency-sensitive services
over mobile edge computing networks with caching,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4283–4294, Jun. 2018.

[39] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service placement and request routing in MEC networks with storage,
computation, and communication constraints,” IEEE/ACM Trans. Netw.,
vol. 28, no. 3, pp. 1047–1060, Jun. 2020.

[40] P. Zhao and G. Dan, “Joint resource dimensioning and place-
ment for dependable virtualized services in mobile edge clouds,”
IEEE Trans. Mobile Comput., early access, Feb. 18, 2021, doi:
10.1109/TMC.2021.3060118.

http://dx.doi.org/10.5281/zenodo.3265031
http://dx.doi.org/10.1109/TCC.2019.2950395
http://dx.doi.org/10.1109/TMC.2021.3060118

1878 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 4, AUGUST 2022

[41] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu, “A game theoretic resource
allocation for overall energy minimization in mobile cloud computing
system,” in Proc. ACM/IEEE Int. Symp. Low Power Electron. Design
(ISLPED), 2012, pp. 279–284.

[42] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-
based optimization framework in mobile cloud computing system,” in
Proc. IEEE 7th Int. Symp. Service-Oriented Syst. Eng., Mar. 2013,
pp. 494–502.

[43] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[44] S. Josilo and G. Dan, “A game theoretic analysis of selfish mobile
computation offloading,” in Proc. IEEE Conf. Comput. Commun. (INFO-
COM), May 2017, pp. 1–9.

[45] S. Josilo and G. Dan, “Wireless and computing resource allocation for
selfish computation offloading in edge computing,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2019, pp. 2467–2475.

[46] M. Jiang, M. Condoluci, and T. Mahmoodi, “Network slicing in 5G:
An auction-based model,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2017, pp. 1–6.

[47] P. Caballero et al., “Multi-tenant radio access network slicing: Statistical
multiplexing of spatial loads,” IEEE/ACM Trans. Netw., vol. 25, no. 5,
pp. 3044–3058, Oct. 2017.

[48] P. Caballero, A. Banchs, G. de Veciana, X. Costa-Pérez, and A. Azcorra,
“Network slicing for guaranteed rate services: Admission control and
resource allocation games,” IEEE Trans. Wireless Commun., vol. 17,
no. 10, pp. 6419–6432, Oct. 2018.

[49] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Cognitive network management in sliced 5G networks with
deep learning,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
Apr. 2019, pp. 280–288.

[50] S. D’Oro, F. Restuccia, A. Talamonti, and T. Melodia, “The slice is
served: Enforcing radio access network slicing in virtualized 5G sys-
tems,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2019,
pp. 442–450.

[51] (2020). 3GPP. Extended Reality (XR) in 5G. [Online]. Available:
https://www.3gpp.org/ftp/Specs/archive/26_series/26.928/

Sladana Jošilo received the M.Sc. degree in elec-
trical engineering from the University of Novi Sad,
Serbia, in 2012, and the Ph.D. degree in electrical
engineering from the KTH Royal Institute of Tech-
nology, Stockholm, Sweden, in 2020. She worked
as a Research Engineer with the Department of
Power, Electronics and Communication Engineering,
University of Novi Sad, from 2013 to 2014, and
as a Post-Doctoral Researcher with the Division
of Network and Systems Engineering, KTH Royal
Institute of Technology, from 2020 to 2021. She

currently works as a Researcher at Ericsson, Stockholm. Her research interests
include 5G networks, edge computing systems, and applied game theory.

György Dán (Senior Member, IEEE) received the
M.Sc. degree in computer engineering from the
Budapest University of Technology and Economics,
Hungary, in 1999, the M.Sc. degree in business
administration from the Corvinus University of
Budapest, Hungary, in 2003, and the Ph.D. degree
in telecommunications from the KTH Royal Institute
of Technology in 2006. He worked as a Consultant
in the field of access networks, streaming media,
and videoconferencing from 1999 to 2001. He was
a Visiting Researcher with the Swedish Institute of

Computer Science in 2008, a Fulbright Research Scholar at the University of
Illinois at Urbana-Champaign from 2012 to 2013, and an Invited Professor at
EPFL from 2014 to 2015. He is currently a Professor with the KTH Royal
Institute of Technology, Stockholm, Sweden. His research interests include
the design and analysis of content management and computing systems, game
theoretical models of networked systems, and cyber-physical system security
and resilience. He served as an Area Editor for Computer Communications
from 2014 to 2021, and he has been an Editor of IEEE TRANSACTIONS ON

MOBILE COMPUTING since 2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

