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Abstract— IP-based geolocation is essential for various
location-aware Internet applications, such as online advertise-
ment, content delivery, and online fraud prevention. Achiev-
ing accurate geolocation enormously relies on the number of
high-quality (i.e., the fine-grained and stable over time) land-
marks. However, the previous efforts of garnering landmarks
have been impeded by the limited visible landmarks on the
Internet and manual time cost. In this paper, we leverage the
availability of numerous online webcams used to monitor physical
surroundings as a rich source of promising high-quality land-
marks for serving IP-based geolocation. In particular, we present
a new framework called GeoCAM, which is designed to auto-
matically generate qualified landmarks from online webcams,
providing an IP-based geolocation service with high accuracy and
wide coverage. GeoCAM periodically monitors websites hosting
live webcams and uses the natural language processing technique
to extract the IP addresses and latitude/longitude of webcams
for generating landmarks at a large-scale. Given latency and
topology constraints among webcam landmarks, GeoCAM uses
the maximum likelihood estimation to approximately pinpoint the
geolocation of a target host. We develop a prototype of GeoCAM
and conduct real-world experiments for validating its efficacy.
Our results show that GeoCam can detect 282,902 live webcams
hosted in webpages with 94.2% precision and 90.4% recall, and
then generate 16,863 stable and fine-grained landmarks, which
are two orders of magnitude more than the landmarks used in
prior works. To demonstrate the superiority of using large-scale
webcams as landmarks, we implement four different geolocation
algorithms and compare their performance between webcam
landmarks and open-source landmarks. The evaluation results
show that all the algorithms can significantly improve geolocation
accuracy by using webcam landmarks.
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I. INTRODUCTION

IP-BASED geolocation is used to determine the real-world
geographic location of an Internet-connected host [1],

which is valuable for many Internet applications, including
targeted advertising, content delivery, and online fraud detec-
tion. IP-based geolocation involves mapping an IP address (or
a domain name) to a country and region (city), as well as the
corresponding pair of latitude/longitude. However, commercial
geolocation databases only achieve less than 95.8% on the
country-level and various disagreements on the city-level [2].
Nowadays, there is no official source of geolocation databases
achieving high accuracy and wide coverage for Internet users.

Providing an accurate geolocation service is heavily depen-
dent on the number of high-quality landmarks. Given sufficient
landmarks, geolocation services would provide high accurate
mappings between IP addresses and geographical locations.
However, efforts to gather such mapping information are
impeded by the limitations of available landmarks on the Inter-
net. Those landmarks are community-based [3]–[5], leading
to a limited scale in terms of their number and coverage. For
instance, PlanetLab [5] only includes 420 available landmarks,
and most of them are located in Europe and North America.
They are mainly located on academic networks, with reduced
availability on residential or commercial networks. Prior works
proposed to increase the number of landmarks by mining
web services [6], [7]. They assumed that web services are
hosted locally. However, due to the ever-increasing popularity
of cloud services and content delivery networks (CDNs),
this assumption is no longer valid. In addition, dynamic IP
addresses of those local web services would also lower their
effectiveness.

As the pervasiveness of Internet-of-Things (IoT) systems,
we have witnessed the significant increase of online web-
cams widely deployed for monitoring physical surroundings
around the real world. Those online webcams are inherently
associated with IP addresses and geographical locations, and
more importantly, they are relatively stable over a long period,
becoming ideal candidates for being used as landmarks. Thus,
by leveraging the availability of numerous online webcams as
promising landmarks, we are able to successfully address the
challenging problem, i.e., the lack of high-quality landmarks,
in IP-based geolocation.

In this paper, we propose a framework called GeoCAM that
generates high-quality landmarks by automatically extracting
the IP addresses and latitude/longitude of online webcams at
a large scale. We first need to search for those websites that
have gathered webcams and exposed their live streams to the
public. Specifically, we utilize unique features in live streams
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of webcams to find those websites and select the top 100 sites
as the target websites for GeoCAM. After selecting target
websites, GeoCAM periodically monitors these websites via
crawling and uses the machine learning algorithm to determine
whether a webpage includes a live webcam. Once a live
webcam is found, we utilize the natural language processing
technique to extract the latitude/longitude and geographical
information of the device. Thus, the webcam landmarks gener-
ated by GeoCAM include the information of IP addresses and
corresponding pairs of latitude/longitude. We implement three
geolocation algorithms from previous research [8]–[10], and
a hybrid algorithm of our own approach. Based on webcam
landmarks, we can approximately pinpoint an individual host’s
geolocation with high accuracy and wide coverage.

To validate the efficacy of GeoCAM, we build a prototype
and conduct real-world experiments. Our results show that
GeoCAM can detect webcams from webpages with 94.2%
precision and 90.4% recall. In total, we collect 282,902 web-
cams and generate 16,863 webcam-based landmarks, which
are two orders of magnitude more than the landmarks used
in prior works. These webcams cover around 170 countries,
6,450 cities, and 2,880 ASes. We compare webcam landmarks
with open-source landmarks and commercial geolocation data-
bases, respectively, demonstrating the superiority of using
large-scale webcams as landmarks.

For the evaluation of IP-based geolocation services, we
implement four different geolocation algorithms and com-
pare their performance between webcam landmarks and
open-source landmarks. Our evaluation results show that web-
cam landmarks can help all the geolocation algorithms achieve
significant performance improvement. Note that webcam land-
marks from third-party sources might contain errors. At
present, our GeoCAM does not provide automatic calibration
for error correction. We distribute the landmark dataset to the
public at the website [11], and we will periodically update its
calibrated version in the future.

The rest of this paper is organized as follows. Section II
introduces the background of IP geolocation and webcam
recognition. In Section III, we present the architecture of
GeoCAM. Section IV describes the IP geolocation enabled
by GeoCAM. In Section V, we perform experiments on
100 aggregator websites to find webcam landmarks and mea-
sure the sheer number, stability, and coverage of these land-
marks. In Section VI, we describe GeoCAM geolocation per-
formance, and compare webcam landmarks with commercial
geolocation databases and open-source landmarks. Section VII
discusses the limitations and privacy concerns of our approach.
Section VIII surveys related works of IP geolocation, and
finally, Section IX concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we present the background of live webcams
available from online websites and the landmark generation
based on those online webcams for IP-based geolocation.

A. Live Webcam

Webcams have been increasingly connected to the Inter-
net in the past decade. A webcam is one typical Internet
of Things (IoT) device [12], [13] for monitoring physical
surroundings, such as a plaza, a street, an industrial area,
or a home theater. For the sake of remote access and control,
webcam devices are visible and accessible through their IP

Fig. 1. An example of live webcam on websites.

addresses. In contrast to web services, webcam devices are
fixed in physical places and remain relatively stable over time.
Thus, online webcams have great potential to be used as
promising landmarks but have not yet been explored.

Figure 1 shows one example, in which a live webcam hosted
on the website of https://www.pictimo.com/pictimo.com, mon-
itoring the surroundings at “Glenwood Springs hottub, United
States”. The website utilizes the web applet to host live
streams of the webcam, which is labeled with HTML tag
“<img src=IP address:port/mjpg”, disclosing the webcam’s
IP address and corresponding port. Further, the webcam’s lat-
itude/longitude pair (−107.340740, 39.527105) is also embed-
ded in the HMTL file. Therefore, we can extract a webcam’s IP
address and geographical information to generate a landmark
for IP-based geolocation services.

B. Landmark Generation

A high-quality landmark implies that its IP address and
corresponding latitude/longitude remain stable over time. Prior
works [6], [7] utilize web mining to collect landmarks from
web services for providing IP geolocation. However, their
landmarks have become much less available to the public,
due to the wide use of CDNs and clouds for hosting web
services. In addition, the mappings between IP addresses and
geographical information of such landmarks based on web
services are not stable over the time.

For the generation of high-quality landmarks, two fun-
damental properties must be held for the candidates. First,
landmark candidates should be relatively stable over the time;
in other words, they should be publicly available for access
without changing their IP addresses and geolocations for a
long time period. Webcams are usually placed in fixed posi-
tions for a relatively long period except for being uninstalled.
We will periodically monitor websites to update the webcam
landmarks for guaranteeing their effectiveness (see details in
Section III-B). Second, landmark candidates should include
fine-grained geographical information for Internet geolocation
services. Fortunately, we found many websites provide lati-
tude/longitude and geographical information of those hosted
webcams via user provision or manual inspection. Further,
webcam images also disclose the surrounding physical infor-
mation for fine-grained geographical information.

In this work, we propose GeoCAM to automatically extract
geographical information and generate high-quality landmarks
from live webcams hosted on websites. We leverage a set of
existing resources and tools to address several practical prob-
lems in the process of GeoCAM, which are briefly introduced
below.

Webcam Distribution Websites: Many websites collect web-
cam resources and distribute live streams to the public for mul-
tiple purposes, e.g., advertising beautiful scenery, monitoring
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TABLE I

REGEX MATCHING FOR DETECTING AGGREGATION SITES

traffic and weather. Considering various webpages organized
by those websites, we need to filter out outlier webpages and
keep useful webpages for geographical information extraction.
We utilize the machine learning algorithms to build the clas-
sification model to determine whether a webpage is hosting a
live webcam.

Information Extraction: For each webpage hosting a live
webcam, we further extract the geographical information from
the webpage, including IP address and latitude/longitude. In
the Natural Language Processing (NLP) community, extracting
such elements from a document is defined as Named Entity
Recognition (NER) [14], which has been extensively studied.
However, we cannot directly use NER to extract information
because it is highly related to a specific domain. Geograph-
ical names usually are non-dictionary words, leading to low
precision and recall. In this paper, we leverage a rule-based
NER and local positions to extract landmarks from various
webpages.

III. GEOCAM: DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of
GeoCAM. Figure 2 illustrates its architecture, which consists
of two major components: the webcam content picker (WCP)
and the landmark generation (LG). The WCP first automat-
ically scrapes webpages from websites, removing irrelevant
content through the HTML parser. Cross-reference links are
extracted to remove replicated and redundant pages among
those webpages we collected. Further, the WCP utilizes
machine learning algorithms to determine whether a webpage
contains a live webcam. For each page considered to be
webcam-relevant, the LG converts all its content (scripts,
menus, and images) to texts, and preserves a snapshot of a
live webcam. We use the regex to extract IP addresses, domain
names, and geographical coordinates from webpages. The LG
uses the rule-based NER to extract geographical names from
various webpages and convert them to the latitude/longitude
pairs. The LG outputs the landmark set, as a key-value format
(IP, (lat, lon)). Note that we manually validate the effectiveness
of a landmark by conducting a comparison with the stored
snapshot of the corresponding live webcam in the Google Map.
By creating a large number of landmarks, we can provide
IP-based geolocation services. Below we elaborate on the
details of GeoCAM.

TABLE II

FULL LIST OF 100 WEBCAM AGGREGATOR WEBSITES

A. Websites

GeoCAM relies on the websites that are hosting a large
number of live webcams [15]. We collected those websites
using a heuristic rule: if a website distributes live streams
under web applets (e.g., Joint Photographic Experts Group
(JPEG) [16], Motion JPEG (MJPEG), VideoLAN media
player(VLC) [17], and FFMPEG [18]), we keep it as a
candidate site. Table I lists the regular expressions of keywords
related to web applets for finding websites that host live
webcams. Note that embedded libraries are the most popular
web applet to load live streams of webcams. We leverage a
Common Crawl to gather websites with live webcams, an open
repository of web crawl data provided by a non-profit orga-
nization [19]. The Common Crawl fetches webpages on the
Internet every month and its datasets are available to the public
through Amazon S3. To the best of our knowledge, it is the
largest open-source repository for webpages, consisting of bil-
lions of webpages with raw data and metadata, where archive
files are stored in the Web ARChive (WARC) format. We used
the keywords through the Common Crawl and the Google
search engine, and discovered more than 3,000 websites. Then,
we manually selected 100 websites (listed in Table II) that host
a large number of webcams and used them as the GeoCAM’s
input. One might concern that the limited number of websites
could hinder the scalability of our approach. However, based
on those 100 websites, we have already found 16,863 visible
and accessible webcam landmarks, which are two orders of
magnitude more than those used in the existing services. If a
new site is available in the future, our approach can generate
new landmarks with little modifications.

B. Relevant Webpage Detection

Aforementioned, to automatically generate landmarks from
websites, we first need to scrape webpages, filter out noise
and irrelevant content, and determine whether a live webcam
is running on a webpage.
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Fig. 2. The architecture of GeoCAM.

Web Crawler: Our web crawler is designed to periodically
monitor a website to collect its webpages. Since different web-
sites have different templates and HTML structures, we design
a web crawler to scrape webpages from those sites. Given
a website, the WCP first utilizes the web crawler to obtain
all its pages through the breadth-first search. Specifically,
we parse the website homepage to explore all its URL links,
and iteratively parse the URL links to explore the next-layer
pages, until no more links are found.

A problem here is that websites might change webpages or
live webcams over time, e.g., new pages are added or old pages
are removed. However, we believe that webcams are relatively
stable for a long time period. The WCP periodically monitors
websites/webpages by re-accessing those URL links to identify
whether they are still available. In practice, the monitoring
period for websites is one month and the period for webpages
is one week.

Pre-Processing: Webpages collected by the web crawler
involve irrelevant information, such as advertisements, icons,
and navigation bars. The WCP utilizes the HTML parser to
remove those irrelevant elements from webpage files, e.g.,
<ad> and <icon>. Websites usually utilize Javascript and
Frame in HTML to post live streams of webcams. We keep
the content of webpages together with javascript and frame
for extracting webcam information. In addition, there are
many cross-reference links in those webpages. Some URL
links belong to a same site, while some come from differ-
ent websites. If a link involves a page we have collected,
we remove the duplicated one. If a link comes from different
sites, we extract its domain name as a candidate website. We
manually inspect those candidate sites to determine whether
they host a large number of webcams. After scraping and pre-
processing, we store all HTML files and use URL links as
their index.

Webcam Classification: Another problem here is that some
webpages do not post any live streams, while some include
multiple webcams. Hence, we divide webpages into three
groups: none, single, and multiple. In the first group (“none”),
many webpages belong to user-generated-content (UGC)
pages or others (e.g., contact pages, introduction pages,
or login pages). We cannot extract any landmark information
from those webpages that have no webcams. In the second
group (“single”), webpages have only one embedded live
webcam and distribute its live streams to the public. We can
generate a landmark from such a webpage, including its IP
address and latitude/longitude. In the third group (“multiple”),
webpages might have more than one webcams. Generally,
there are two kinds of HTML templates for multi-webcam
pages: (1) a page displays multiple webcams under a particular
topic, and (2) a page shows a single webcam together with

TABLE III

REGEXES FOR EXTRACTING FEATURES

some recommended webcams from the website owner. We can
generate multiple landmarks from those webpages.

To automatically partition webpages, we leverage the obser-
vation: a live webcam is encapsulated as the specific HTML
element to post its snapshot or live stream on webpages.
The WCP extracts webcam features to infer the classification
model of webpages as follows:

1) IP address and domain name. To post a live stream,
a website needs a webcam’s source path to load its video
content. Some sites directly use the webcam’s IP address
and port number, while others use a domain name to host
the webcam’s content.

2) Snapshot. Webpages provide a webcam snapshot as its
content to the public. The update rates of snapshots are
different according to different website configurations.
Typically, Joint Photographic Experts Group (JPEG) and
Motion JPEG (MJPEG) are used to update the webcam’s
snapshots.

3) Live stream. Webpages directly distribute live streams of
webcams to the public. VideolAN media player (VLC)
and FFMPEG are usually software libraries to load live
streams.

To present those features, we use the regex matching to extract
those features, as listed in Table III. A binary vector is to
indicate the presence of those features in a webpage. If the
regex finds a character, the corresponding factor in the vector
is set to 1, otherwise it is to 0. We use the machine learning
algorithms to derive the classification model of the webpage.
The model outputs are with three class labels: none, single,
and multiple (see details in Table VI).

Implementation: We use BeautifulSoup [20] to parse each
HTML file into a list of chunks based on the HTML tags. For
each chunk, we use regexes to extract IP addresses, domain
names, snapshots, and live streams. We use scikit-learn [21]
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Algorithm 1 Multiple Webcam Extraction
Input: HTML, webpage with multiple webcams
Output: Results, IP/Geo information of webcams
Candidates← {HTML tags within webcam features}
Results← []
dict← { } � store (parent tag, children Set)
while length(Candidates) > 0 do

for all x ∈ Candidates do
parent← parent tag of x
Append(x, dict[parent])

end for
if all candidates share same parent element then

for all x ∈ Candidates do
< ip, geo >← IP/Geo from x
Append(<ip, geo>, Results)

end forreturn Results
else

for all (i, Set) pairs ∈ dict do
if len(Set) > 1 then

remove ∀ tags ∈ Set from Candidates
else

replace Set with the tag i
end if

end for
end if

end while

to implement Support Vector Machines (SVM) algorithms. We
choose the radial basis function (RBF) as SVM kernel to learn
the classification model. We deploy the classification model in
GeoCAM. For single- and multi- webpages, GeoCAM further
extracts geographical information for landmarks.

C. Landmark Information Extraction

Once a webpage is tagged as containing a webcam, we need
to extract relevant context information from the webpage,
especially the information essential to a landmark: its IP
address and latitude/longitude pair. Below we present the
details of the LG component for generating landmarks.

1) Webcam Identification: As we mentioned earlier, we can
generate multiple landmarks from those webpages that host
multiple webcams. For multiple webcam pages, we divide
those webcams into different entities for extracting geograph-
ical information.

We use Algorithm 1 to extract different webcam entities
from multiple webcam pages. In the beginning, we extract
all HTML tags involving relevant context information (e.g.,
IP address/port, domain names, and latitude/longitude) as the
candidate-tag set. For each HTML tag with a webcam feature,
we record the tag and its parent tag. We use the dictionary
set dict to store those tags in the format of {parent tag,
children set}. If two tags have the same parent tag, we append
them into the same children set. Then, we determine the
type of multiple webcam pages according to the structures of
those candidate tags. Specifically, we partition webcam entities
based on the following rule. If all tag items have the same
parent tag, the multi-webcam page is probably used to show
several webcam entities under a particular topic. We extract the

geographical information from all webcam entities, including
the IP address and geolocation information. If those tags
cannot be merged into the same root, the multi-webcam page
is probably used to host a single webcam together with other
recommended webcams from the website owner. We do not
take recommended webcams into consideration because they
are duplicated with webcams in other webpages. Note that
recommended webcam tags share the same parent tag in
the HTML list. We repeatedly remove these tags from the
candidate set until reaching the root tag in the recommended
webcam list.

2) The Regex Extraction: We use the regex to extract the
webcam related information from webpages, including IP
address and port, domain name, and geographical coordinate.
They have distinctive character features, and the regex can
achieve high accuracy in practice, as shown in Table III.

IP Address and Port: When an IP address and port number
are directly exposed on the webpages, we use the regex to
extract them from the HTML file. Once an IP address is found,
the LG generates a candidate landmark that is formatted as
[IP, (null, null)]. Note that not all webcams expose their IP
addresses and ports on webpages.

Domain Name: Some webcams use web services to host
live streams of webcams and hide real IP addresses. Web
services registered their domain names and post their URL
links for webcams. The LG extracts URL links or corre-
sponding redirection links, and sends them to the WCP for
scraping HTML files. If an IP address is extracted from a
new HTML file, we need to validate its effectiveness. The
rule is straightforward: if their heads (<head> and </head>),
or titles (<title> and </title>) are the same, the IP address
is identified as the webcam address.

Geographical Coordinate: The geographical coordinate
refers to a (longitude, latitude) pair, which is used to directly
present the landmark geographical context. Note that not
all webpages include geographical coordinates for webcams.
There are two places to store geographical coordinates, includ-
ing the HTML body and Frame. Frame is a common place to
embed a webcam’s geographical coordinate, e.g., Google Map.
We directly use the regex (Table III) to extract a webcam’s
latitude/longitude.

3) Geographical Name Recognition: Many webpages
only expose geographical names for webcams and their
latitudes/longitudes are not available. For example, the live
stream on site https://www.pictimo.com/pictimo.com
(Figure 1) shows the geographical name “Glenwood
Springs hottub, United States”. We need to extract
those geographical names, and convert them into the
latitude/longitude pairs. There are two problems for directly
using NER for identifying geographical names, leading to
low precision and recall. First, webcam entity may have
several geographical contexts, but they expose at different
coarse levels, including non-normalized and general forms.
Second, many geographical names use non-dictionary and
non-English words, creating various name entities.

We propose the rule-based geographical name recogni-
tion (rGNR) to extract those geographical names from web-
pages. Figure 3 illustrates the overview of rGNR in the
process of GeoCAM. The rGNR leverages the observation
that many name entities are stored in fixed positions, including
<title>/<meta>, URL, and images. The <title> and <meta>
of a webpage usually contain a location description of a web-
cam. URL is an interesting place, where a webpage indicates
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Fig. 3. The rule-based geographical name recognition (rGNR).

the location information as a part of the URL. The reason is
that a website might organize its webpages in a hierarchical
structure based on the geographical name. Images or snapshots
of webcams have been embedded with relevant location and
timestamp information, e.g., the example in Figure 1. We only
extract the content from those places as the rGNR input.

We convert sentences from those places into tokens. They
are connected through delimiters, include “\” and webcam
characters. We utilize the POS tagger to split sentences into
different segments. POS taggers have four types of context,
including capitalized characters, webcam characters, location
words, and delimiters. Domain names and titles might be capi-
talized characters. Webcam characters usually appear together
with geographical names in the same sentence, e.g., “web-
cam”, “kamera”(Cezch, Indonesian), and webcam vendors.
Location words are the textual descriptions before or after
a specific geographical name, e.g., park or harbor. After
segmenting, we apply the name entity recognition (NER) [22]
to recognize those geographical names.

Once a geographical name is recognized, we convert the
geographical name into the corresponding latitude/longitude
pair. Here, we use the public geoname database to find its
geographical coordinate. For providing IP-based geolocation
services, the LG generates the landmarks that are formatted
as the [IP, (lat, lon)].

Implementation: For webcam images, we use an optical
character recognition engine Tesseract [23] which recognizes
the text from an image. However, its performance is low due
to low quality of images and non-dictionary words under
different languages. For textual descriptions on webpages,
we use the POS tagger tool [22] to obtain segments from
webpages. We further use rGNR to recognize geographical
names on webpages. We use open source geoname database
provided by OpenStreetMap [24], a free online map service
with over 20 million names and corresponding coordinates,
to build geoname-coordinate mappings.

IV. IP GEOLOCATION COMPUTATION

The objective of a geolocation service is to determine an
IP host’s physical location. The related IP geolocation com-
putation involves two major aspects: landmark-based probing
and geolocation algorithms. The landmark-based probing is
to obtain the latency and network topology constraints of
the target and landmarks. The geolocation algorithm is to
estimate the distance between the target and landmarks based
on measured latencies and then calculate the coordinates
of the target. In this work, we use three geolocation algo-
rithms, including Constraint-Based Geolocation (CBG) [8],
Octant [9], Spotter [10], and our GeoCAM. Since we cannot
find the open-source code for those three algorithms, we have
to re-implement them based on the descriptions presented in
previous work.

A. Landmark-Based Probing

As we mentioned before, GeoCAM can generate a large
number of webcam landmarks, which obviously improve
geolocation accuracy. However, the measurement cost is high
because our server must send packets to all landmarks and
wait for replies. Further, if we do this simultaneously, the extra
network traffic may induce congestion and then cause the inac-
curacy of the latency measurement. To address this challenge,
we use a two-stage measurement process proposed by prior
works [25], [26].

First, we identify the coarse region of the target host.
We simply estimate the coarse-grained region based on the
delay-distance relationship. We use the following equation to
compute the distance between the probing server and the target
host:

d(i, j) = T (i, j) ∗ c ∗ f,

where T (i, j) is the latency between two nodes i and j, c
is the speed of light in vacuum (3 × 108), and factor f is a
self-calibration coefficient, which is set to 2/3. Once we know
the coarse region of the target host, we select the landmarks
on this region and those landmarks that are far away from the
target are less useful. Then, based on the selected landmarks
on the course region, we select a larger group of candidate
landmarks to approximately pinpoint the target host by using
geolocation algorithms.

Measurement Tools: Given webcam landmarks and target
hosts, we use the measurement tools to obtain their network
topology constrains and the time delay. In our experiment,
the traceroute TCP on a commonly used port has the highest
success rate. Thus, we use the traceroute [27] to measure the
latency and network topology, as well the routing path between
our probe server and targets. In addition, we can obtain the
routing path through the traceroute and figure out the common
routers between the landmarks and the target host.

Vantage Point (VP): A VP is one of our servers with the
known geographic location, which sends packets to the target
and wait for the responses. The number and distribution of
vantage points (VPs) are vital for inferring the target’s region.
Once VPs are fixed, we use them to send the traceroute
probing traffic to measure the latency and network topology
constraints between the target and landmarks.

B. Geolocation Algorithms

Besides the geolocation algorithms of GeoCAM, we also
implement three geolocation algorithms from prior works for
comparison purposes.

1) Constraint-Based Geolocation: Gueye et al. [8] proposed
the CBG that builds a linear programming model between the
distance and the latency, i.e., di ∼ a ∗ ti + b. For a target
host, CBG measures the latency and uses the linear model to
calculate its distance. Noted that the distance is limited by the
speed of the signal propagation in fiber-optic cable. CBG uses
the distance to obtain a coarse-grained region for a target IP
address. Further, CBG can utilize landmarks either from our
GeoCAM or other accessible sources to multilaterally locate a
fine-grained region for the target host. In our implementation,
the webcam’s latitude/longitude is the circle center, and the
estimated distance by CBG is the radius. The intersection of
these circle regions is the geographic range of the target host.
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Fig. 4. The network topology constraints for GeoCAM.

2) Octant: Wong et al. [9] proposed the Octant that pro-
vides upper bound and lower bound curves for representing the
range of latency-distance relationship. Specifically, the Octant
uses the convex hull to learn the smallest convex set that
contains the points (latency, distance) in two dimensions.
For every targeted host, the Octant utilizes the curves to
calculate the maximum and the minimum distances, up to
50% and 75% of all round-trip times, respectively. Similar
to CBG, the Octant uses landmarks to multilaterally locate a
coarse-grained region for a target IP address.

3) Spotter: Laki et al. [10] proposed the Spotter that uses
the polynomial model to fit the function of the delay-distance
relationship. Specifically, it uses the quadratic or cubic poly-
nomial to learn the regression model. Given a latency from
a landmark or target, the Spotter calculates its distance as a
Gaussian distribution with mean μ and standard deviation σ.
Similar to CBG and Octant, the Spotter also uses landmarks
to multilaterally geolocate a predicted region for a target IP
address.

4) GeoCAM: The geolocation algorithm of GeoCAM is
a hybrid that integrates the Spotter and network topology
constraints. Given a target host, we geolocate it in the fol-
lowing three stages: (1) using traceroute, VPs measure the
RTTs to landmarks and the target; (2) we identify the shared
routers and calculate the distance between landmarks and the
target; and (3) we utilize the maximum likelihood estimation
to approximately locate the target. Below we elaborate on the
details of the last two stages.

The inflated latencies and indirect routers could introduce
errors for the function of the delay-distance relationship.
We utilize the network topology constraints to reduce errors
caused by active measurements. Figure 4 depicts the network
topology for estimating the latency and distance. The vantage
point (VP) is the probing server with the known geographic
location, which sends packets to the IP hosts. The routing path
between the VP and the webcam landmark is denoted as (R1,
R2, …, Rn), and the path between the VP and the target host
is (R�

1, R�
2, …, R�

m). We search for the same set of routers
shared by the two paths and locate the same router that is
the closest to the two destinations, denoted as Rk = R�

k. The
sum of T (Rk, L) and T (Rk, H) presents the latency between
the webcam landmark and the target, where T is the latency,
Rk is the same router closest to both destinations, L is the
landmark, and H is the target.

We use the maximum likelihood estimation to derive the
latitude/longitude of the target host. First, we calculate the con-
ditional probability for the geographical distance and latency.
We use the set of VPs, denoted as V , and the set of webcam
landmarks (L) to locate the target host. We calculate the
relative latency of any two landmarks in the target region as

follows:

rTij = T (V, Li) + T (V, Lj)− 2T (V, Rk), (1)

where Li, Lj ∈ L. Then we use all the relative latencies
of landmarks in the target region to infer the conditional
probability of distances. Here we use the truncated normal
distribution to represent the conditional probability as follows:

p(d|rT ) =
1

Φ (μ/σ)
· 1√

2π · σ · exp

(
− (d− μ)2

2σ2

)
,

σ = σ(d|rT ), μ = μ(d|rT ), (2)

where rT is the latency between any pair of landmarks and
Φ(μ/σ) is the cumulative distribution function of normal
distribution. For each conditional probability, we utilize the
log-likelihood function to compute the maximum likelihood
function as follows:

Li =
K∑

i=1

log (P (d(x, Li)|rTmi)). (3)

To estimate the target location xm that maximizes Li

x̂m = arg max
x∈C

Li(x), (4)

we choose the maximum likelihood probability to compute the
latitude/longitude of the target host.

V. LANDMARK EXPERIMENTS

In this section, we validate the efficacy of webcam land-
marks created by GeoCAM based on two datasets.

A. Settings

We implemented a prototype of GeoCAM and ran it to
automatically analyze 1.9 million webpages, using Ubuntu
14.04 on an AWS server with two 3.1GHz Intel Xeon Platinum
8175 vCPU, 8GB memories, and 10Gbps bandwidth. Here we
detail the datasets used in this study.

Datasets: (1) We used a labeled dataset for training/testing
the classification model and our geographical name recogni-
tion. This dataset contains 2,300 webpages and their corre-
sponding webcams. These live webcams were manually col-
lected from websites such as pictimo, goowebcams, racamera,
and insecam. For every page, we manually provided its label,
including none, single, and multiple. About 1,600 of them are
tagged as single, 300 of them are tagged as multiple, and
the rest (400) are tagged as none web pages. Each of them
was manually checked to ensure that they were accurately
extracted by GeoCAM. (2) We used a large-scale dataset from
1.9 million webpages to further validate the effectiveness of
webcams for being used as landmarks. We manually extracted
these popularity websites that are hosting live webcams on
the Internet (see Table II for details). On those websites,
we ran the GeoCAM to crawl 6 times in total (see details
in Figure 6), on May 11, 2019, October 5, 2019, October 9,
2019, October 10, 2019, October 11, 2019, and October 12,
2019, respectively.
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Fig. 5. ROC and PR curve of webpage classification.

TABLE IV

COMPARE GEOLOCATION ENTITY RECOGNITION
RESULTS OF GEOCAM AND CORENLP

B. Performance

Webpage Classification: We first evaluate the classification
model’s performance using the labeled webcam dataset. For
the multi-class classification, the SVM algorithm with RBF
kernel derives the boundary between one class to other classes.
We divide the dataset into the training set (1,610 webpages)
and the test set (690 webpages). We use false positive rate
(FPR), precision, and recall to measure its performance, where
FPR is the ratio of |FP |/|FP + TN |, the precision equals to
|TP |/|FP+TP |, and the recall is |TP |/|TP+FN |. TP is the
number of true positives, FN is the number of false negatives,
FP is the number of false positives, and TN is the number of
true negatives. Figure 5a shows the ROC curve of the TPR
and FPR, and Figure 5b illustrates the precision-recall (PR)
curve of the webcam classification performance. Our prototype
achieves a precision of 94.2%, a recall of 90.4%, and a FPR
of 21.4% in determining whether a webpage has a webcam. In
practice, GeoCAM performance is acceptable for classifying
web pages with webcams.

Webcam Location Extraction: We then evaluate the webcam
location extraction of GeoCAM. We use two methods: (1)
our proposed GeoCAM and (2) a general NER method called
CoreNLP [22]. For each webpage, we manually extract the
geographical location as the ground truth. Table IV lists
the performance of GeoCAM and CoreNLP. The CoreNLP
has a high false negative rate (FNR) on geographical name
extraction. For instance, its precision is only 24% on the site
racamera.com. By contrast, GeoCAM achieves very promising
performance for extracting geographical names.

Overhead of GeoCAM: We first conduct experiments to
measure the time cost of GeoCAM for generating webcam
landmarks. Our GeoCAM prototype runs on a desktop com-
puter (MacOS 10.14.4, 4vCPU, 8GB of memory, 64-bit OS).
The GeoCAM process runs in a single thread. Table V lists the
average and standard deviation of the GeoCAM’s time cost.
The WCP component takes 5.8 ms to scrape and process a
webpage, and the LG component takes 22.68 ms to process

TABLE V

AVERAGE TIME COST AT DIFFERENT STAGES FOR GEOCAM

TABLE VI

THE NUMBER OF WEBPAGES COLLECTED BY

GEOCAM OVER 100 WEBSITES

a live webcam. The geolocation computation of GeoCAM
costs 102.12 ms to calculate the geolocation information of
a target host. We further compared the time cost between the
traceroute-based approach and the ping-based approach. In our
controlled experiments, we selected 200 webcam landmarks,
and the average overhead is 1,218.77ms for the traceroute
method. For the ping-based approach, the average cost is
271.63ms. Overall, the time cost of GeoCAM is low in
practice, and we could further reduce the time cost by running
GeoCAM in multiple threads.

The traffic overhead on webcams is limited to the geolo-
cation stage. In the discovery stage, we use the web crawler
to scrape the landmark information from aggregation websites.
Thus, there is no traffic overhead imposed on webcams during
the discovery stage. In the geolocation stage, we use webcams
as landmarks. We introduce The extra traffic load on the
webcam because of performing traceroute. The induced traffic
overhead on the webcam is negligible, with only one traceroute
request per VP, which does not cause any negative impact on
the normal operations of webcams.

However, the traffic cost would not be neglected if every
single VP used all the landmarks for locating a target. The
selection of suitable landmarks and VPs before conducting
traceroutes (preprocessing) is an effective way to reduce
webcam landmarks’ traffic overhead. We briefly describe the
heuristic landmark selection as follows: (1) beforehand as
preparation, we collect the ASes at the city-level and the
traceroutes to all landmarks; (2) for a given targeted IP, we first
traceroute the IP to determine its AS number and approximate
city-level, and then we select a group of suitable landmarks
for further geolocating the IP address. As a simple example,
for a given IP address (217.128.7.5) in France Neufch, we are
able to narrow down 16K landmarks into less than 100 for its
geolocation search.

C. Webcam Landmark Validation

Landscape: Table VI lists the number of webpages col-
lected by GeoCAM over 100 websites. In total, we collected
1,913,277 webpages. After filtering out unnecessary pages by
WCP, there are 282,902 webpages remaining. Among those
webpages, there are 256,210 pages hosting single live webcam,
and 26,692 pages hosting multiple webcams. We observe
that nearly 1.5 million webpages are not associated with live
webcams, and thus we drop them out from the candidate set.
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TABLE VII

RELEVANT INFORMATION EXTRACTION FROM
WEBCAM-RELATED WEBPAGES

The Number of Webcam Landmarks: Table VII lists
the amount of relevant webcam information extracting
from webpages. In total, the GS component extracts
378,899 IP addresses, 187,119 geographical names, 57,909 lat-
itude/longitude pairs. It finally has 216,974 webcam candidates
with IP addresses and geographical information (either lati-
tude/longitude or geographical name). A landmark involves
an IP address and its latitude/longitude, which we use a
key-value pair to store. Note that those webcams might be
overlapped with one another. The reason is that websites might
scrape webpages from others. For instance, web-online24.ru
and tvway.ru both collect webcams from hotel-novoros.ru. We
use their IP addresses to filter out the duplicated ones. In other
words, if two webcams have the same IP address, we remove
the duplicated one. We obtain 16,863 landmarks with unique
IP addresses and accurate latitude/longitude information.

Webcam Landmark Stability: To validate the stability of
webcam landmarks collected by GeoCAM, we measure the
number of available webcam landmarks and webpage URLs
along with time. We illustrate their dynamic changes in
Figure 6 using the datasets collected on May 11, 2019 and
October 5, 2019, as well as the most recent datasets collected
from October 9, 2019 to October 12, 2019 for four consecutive
days. We can see that the number of available webcam land-
marks remains stable even after 5 months (80.45%), with much
less variations within one week, indicating their long-term
stability. We observe that only 8.55% of webcam landmarks
change their IP addresses every 24 hours.

Moreover, we describe a landmark as the tuple {webpage
URL, webcam IP, GEO info}. We find that when a webpage
URL is stable, the IP and geoinformation never change. We
further discover the main cause of a landmark’s IP change,
i.e., webcams might get offline occasionally. At two consec-
utive observations, around 8% of webcams get offline and
might get back next time. Hence, the large drop of available
landmarks between May 11, 2019 and October 5, 2019 is
caused by some webcams becoming offline. Another reason
is the dynamic nature of IP addresses, and a webcam might
not always be tied to a specific IP address.

Landmark Coverage: We conduct the analysis on web-
cam landmark coverage, including geographical distribution,
AS distribution, and domain name distribution.

(i) Geographical Coverage. We first compare the geograph-
ical coverage of our landmarks with others. Figure 7 depicts
the world map, where the blue dots represent our webcam
landmarks, and the red dots are the landmarks from other
platforms (Planetlab [5], PingER [4], and PerfSONAR [3]).
As an example, Figure 8 depicts a more detailed geographical
distribution of landmarks in the UK and Ireland. We can see
that our webcam landmarks almost cover all geographical
places of existing landmarks from others with much higher
density. Europe and North America are the traditional regions
that open source landmarks cover well, but the other regions
are rarely covered. By contrast, our webcam landmarks well

Fig. 6. Dynamic changes of URL/webcam landmark along with time.

Fig. 7. Geographical distribution of webcam landmarks over the globe.

TABLE VIII

THE TOP 10 COUNTRIES OF WEBCAM LANDMARKS

cover much more geographical areas, including Russia, South
America, Turkey, India, and China. Interestingly, Japan has
the highest density of webcam landmarks.

Here we briefly describe the country/city distribution for
geographical coverage of webcam landmarks. In total, webcam
landmarks cover 170 countries and 6,448 cities. About 25%
of webcams are from North America and Europe. Table VIII
lists the top 10 countries that webcam landmarks cover, and
those countries are from North America, Europe, and Asia.
We also list the top 10 cities covered by webcam landmarks,
as shown in Table IX.

(ii) AS Coverage. We also analyze the autonomous sys-
tem (AS) coverage of webcam landmarks. We build block-asn
mappings based on the existing BGP routing table analysis
data [28] supported by APNIC. Table X lists the top 5 ASes
covered by webcam landmarks, where most of webcams are
from residential networks. In total, we find that webcam
landmarks cover nearly 2,875 ASes, much more than open
source landmarks that are centered on academical networks.

(iii) Domain Name Coverage. Domain names of hosts are
usually helpful to infer geolocation information. For instance,
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Fig. 8. Geographical distribution of landmarks in the UK and Ireland.

TABLE IX

THE TOP 10 CITIES OF WEBCAM LANDMARKS

TABLE X

TOP 5 ASES COVERED BY WEBCAM LANDMARKS

from a hostname of admin.umass.edu, one can infer that
the corresponding node belongs to the University of Massa-
chusetts at Amherst. Therefore, we further analyze the domain
name information of webcam landmarks. We use reversed
DNS lookups to obtain domain names associated with IP
addresses from our webcam landmarks. We resolve webcams’
IP addresses to collect their pointer records (PTR). Note
that not all IP addresses have a reverse entry for PTR. For
16,863 landmarks, there are 11,950 IP addresses with PTR
records but 4,913 of them without PTR records. We observe
that 311 PTR items have geographical clues, where 309 have
the edu TLD and 9 have the gov TLD. When a record ends
with a distinguishable TLD (edu or gov), we can infer their
location information.

VI. GEOLOCATION PERFORMANCE

In this section, we use the webcam landmarks to pro-
vide geolocation services for approximately pinpointing the
geolocation of an Internet host. More specifically, we first
compare webcam landmarks with open-source landmarks and
commercial geolocation databases, respectively, in terms of
coverage and accuracy. Then we further apply webcam land-
marks with four different geolocation algorithms and compare
its performance with that of open-source landmarks.

Dataset: We randomly selected 120 targeted hosts in Europe
from our webcam dataset. We manually inspected those
snapshots of live streams of webcams, and searched relevant
geographical contexts in Google Map to obtain their ground

TABLE XI

THE NUMBER OF VISIBLE AND ACCESSIBLE LANDMARKS

truth latitude/longitude information. Thus, every host has an
IP address and corresponding latitude/longitude information.
We use them as the targeted hosts with ground truth labels. For
every IP address, we use 10 VPs across the U.S. and Europe.

A. Landmark Comparison

Open Source Landmarks: We compare our webcam land-
marks with open source ones, including Planetlab [5],
PingER [4], PerfSONAR [3], and RIPE Atlas [29]. Table XI
lists the number of visible and accessible landmarks. Note that
we only incorporate those visible and accessible landmarks.
For instance, PerfSONAR [3] states that it has 2,143 nodes;
however, most of them has become unavailable, due to usage
restrictions on these nodes, and only 642 of them are still
accessible. Moreover, those landmarks are from academical
communities, rarely from other communities. Our webcam
landmarks distribute in various types of places with a high
geographical resolution, including residential and other envi-
ronments. Overall, our webcam landmarks are two orders of
magnitude more than the landmarks used in prior works.

As we mentioned before, when some landmarks are far
away from the target, they become useless for geolocating that
target. We measure the physical geographic distance between
landmarks and all the target hosts that we selected. We com-
pute the physical distance between two points (latitude, longi-
tude) based on the geopy [30], which utilizes a spherical model
of the earth with mean earth radius (approx 6,371 km) defined
by the International Union of Geodesy and Geophysics. Note
that effective measurements are more likely from landmarks
close to the target. As shown in Figure 9, the gray-color bar
is the number of webcam landmarks, and the black-color bar
is the number of open-source landmarks. Obviously, there are
much more webcam landmarks than open-source landmarks.
In geolocation algorithms, the landmarks close the target are
used to produce the predicted/estimated region for the target
host.

Commercial Geolocation Database: We further compare
our webcam landmarks with popular commercial geolocation
databases, including IP2Location [31] and Maxmind Geo-
Lite2. Figure 10 shows the CDF curve of deviation dis-
tances between our landmarks and commercial geolocation
databasess. There are 44% webcam landmarks having the
deviation less than 10km, compared with IP2Location. Note
that the commercial databases cannot provide ground truth
labels for our landmarks because those databases only provide
coarse mappings between physical locations and IP hosts.

B. Geolocation Comparison

To demonstrate the superiority of using large-scale web-
cams as landmarks, we apply webcam landmarks with four
different geolocation algorithms and compare the geolocation
accuracy with that of open-source landmarks. Thu, we con-
duct four geolocation comparison experiments: (1) GeoCAM
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Fig. 9. The landmark number along with the distance between landmark and
target.

Fig. 10. Compared with the commercial geolocation database.

based on webcam/open-source landmarks, (2) CBG [8] based
on webcam/open-source landmarks, (3) Octant [9] based on
webcam/open-source landmarks, and (4) Spotter [10] based on
webcam/open-source landmarks. Similarly, all the algorithms
use the last shared routers with the shortest ping to measure
the RTT. We use multilateration to narrow down the region
and pinpoint the target to the node with the smallest relative
latency.

Aforementioned, all geolocation algorithms need to use the
correlation between distance and time latency for geolocation
estimation. The difference between real distance and estimated
distance directly determines the degree of geolocation accu-
racy for a target. The lower the distance difference, the higher
the geolocation accuracy. In geolocation algorithms, a small
relative time usually requires geographic proximity to the
target. Figure 11 shows the calibration of relative delay and
distance, where a blue point represents a pair of a landmark
and a target. We randomly select 80 pairs of landmarks and
targets from our dataset. The X-axis is the relative-delay
and the Y-axis is the physical geographic distance between a
landmark and a target. The dashed line is the baseline for the
distance-delay relationship. When the relative delay is large,
the estimated distance errors become large under the fixed
empirical speed. If we could find a small relative delay for
the target, the geolocation algorithms can accurately predict
the target location. The superiority of webcam landmarks is
to provide the worldwide coverage and have a high probability
of finding at least one landmark close to the target.

We observe the significant improvements of GeoCAM
algorithm in geolocation accuracy under webcam landmarks.
Figure 12 illustrates the CDF of the geolocation errors on the
residential hosts for evaluating the performance of GeoCAM.
The X-axis is the error distance (kilometer) between the
ground truth and the estimated geolocation. We observe that
GeoCAM using webcam landmarks achieves higher accuracy
than using open-source landmarks. When GeoCAM uses web-
cam landmarks, 20% of targets have less 89KM errors and
40% of targets have less 258KM errors. By contrast, when

Fig. 11. Calibration scatter plots of the relative-delay-distance.

Fig. 12. GeoCAM with webcam/open-source landmarks.

Fig. 13. CBG with webcam/open-source landmarks.

GeoCAM uses open-source landmarks, 20% of targets are less
321KM errors and 40% of targets have less 510KM errors.
GeoCAM achieves a 60% higher accuracy when algorithms
adopt webcam landmarks.

Next, we observe the significant gains of other three algo-
rithms using webcam landmarks, in comparison with using
open-source landmarks. Figure 13 plots the performance of
CBG with webcam landmarks and open-source landmarks, and
Figure 14 depicts the performance of Octant. We observe that
these two algorithms perform similarly in geolocation accu-
racy. Using open-source landmarks, both CBG and Octant are
close to having 40% of hosts with less 510KM errors, and 60%
of hosts with less than 800KM errors. Their geolocation accu-
racies significantly increase when both use webcam landmarks,
having 60% of hosts with less 440KM errors. Figure 15 shows
the CDF of the geolocation errors on the residential hosts
for Spotter using webcam landmarks, where 20% of targets
have 205KM errors and 40% of targets have 334KM errors.
We observe that Spotter has the worst performance compared
with the other three algorithms. It might be that Spotter under-
estimates the speed packets can travel, leading to inaccurate
prediction regions. Overall, webcam landmarks significantly
improve the geolocation accuracy for all four geolocation
algorithms (GeoCAM, CBG, Octant, and Spotter) in compar-
ison with existing landmarks (i.e., open-source landmarks).
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Fig. 14. Octant with webcam/open-source landmarks.

Fig. 15. Spotter with webcam/open-source landmarks.

TABLE XII

THE IMPACT OF THE VP NUMBER ON THE GEOLOCATION SERVICE

C. VP Impact on Performance

For the geolocation algorithms based on active measure-
ments, they rely on the quality and quantity of VPs, and our
work is no exception. However, the focus of our work is not on
investigating the impact of VPs on geolocation performance.
Thus, in this study, we only use 10 VPs across the U.S. and
Europe to actively measure traces for geolocation services.

The quality of a VP varies with respect to different targeted
IPs. Dependent upon a targeted IP, sometimes a VP can obtain
a high-quality traceroute, sometimes it cannot. When a VP is
close to a target, the RTT will be low, and the error distance
will be small too. However, when a traceroute’s quality is
poor, the latency will be high (hundred milliseconds), and
it will not be capable of providing precise measurements to
geolocate the corresponding IP address. In such scenarios,
timeouts often occur when VPs send the traceroute requests
to IP addresses. In our experiments, after removing those
unqualified VPs, the average number of qualified traceroutes
(among 10 VPs) is only 3.2 for an IP address. Note that
the geolocation accuracy would be further improved if we
leveraged more high-quality VPs to measure latency and
route of IP targets. Table XII lists the impact of varying
VP numbers upon the geolocation service.

VII. DISCUSSION

Our study shows that GeoCAM makes a first step towards
fully automated landmark generation based on webcam
devices. On the other hand, our current design could be further
enhanced. Here, we discuss the limitations and concerns of
GeoCAM.

Coverage Limitation: In the data collection, we crawled
100 different websites and retrieved 1.9 million webpages.
However, we acknowledge that GeoCAM cannot exhaus-
tively gather all live webcams on the Internet. Besides those
100 websites, some less popular websites (e.g., blogs or
forums) might also distribute webcams to the public. In our
future work, we plan to crawl more websites to find a even
larger number of webcams for being used as landmarks.

Privacy Concerns: Since we generate landmarks based on
webcams, user privacy would be a concern. However, we only
scrape webpages from websites and extract location infor-
mation of candidate landmarks, which are already publicly
accessible on the Internet. If a landmark violates user privacy
or permission, we can directly remove it from the candidate
set. More importantly, for those webcams used as landmarks,
we never attempt to log into or control them.

Webcam Image Recognition: As aforementioned, we used
the Tesseract [23] to recognize the text from a webcam image.
Here, we only focus on embedded characters on the webcam
image (geographic names and timestamps). With only a few
exceptions, geographic names derived from webcam images
are already included in the geolocation names from HTML
elements. Overall, only a small portion of texts extracted from
images are unique and most of them are timestamps.

Webcam Validation: is an important but difficult issue to
handle, because landmarks (both open-source platforms and
ours) could suffer from the untruthfulness of geolocation
information, where only owners can correct the misinforma-
tion. Webcam devices are submitted by device owners or
volunteers, coupling with explicit IP addresses. In those cases,
the geolocation information tied with a webcam is normally
true. In addition, we propose a manual way to validate the
geolocation information of a webcam. For webpages with
specific geolocation information, we can manually narrow the
search scope. For webpages without geolocation information,
they usually have geographic coordinates, or they will not
appear in our system. Then we can check online map and
compare snapshots with street views to validate the geoloca-
tion information.

Impacts of CDNs: Similarly, CDNs could affect the perfor-
mance of webcam landmarks. We manually labeled 200 ran-
domly selected landmarks in our dataset. We found there are
only 8.36% of webcams that either share an IP but run at
different ports or run in a cloud, which is small. The reason
is that webcam owners are prone to host live webcam streams
on individual IP addresses, as shown in Figure 1. In addition,
we will filter out unqualified webcam landmarks in the future
work. For instance, we can use a CDN list to filter out those
IP addresses behind a CDN.

Landmark Error: is an inevitable issue even when we
automatically mine and collect landmarks from online sources.
If an error occurs, there are two ways to address it: (1) a
validation through crowdsourcing, e.g., [32] and (2) manual
calibration by searching webcam images with the description
in search engines. So far, how to automatically remove incor-
rect landmarks is an unsolved problem. We will address the
removal of incorrect landmarks in our future work and update
calibrated landmarks on our website [11].

VIII. RELATED WORK

IP-based geolocation has two categories: client-dependent
and client-independent. The client-dependent approach relies
on the client-side support, such as GPS and WiFi signals.
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GeoCAM is a client-independent approach that does not
require any client-side support. In this section, we survey the
previous client-independent works.

Data Mining-Based Approach: Given geographical infor-
mation in public webpages/datasets, this approach derives
IP-location relationships using data mining techniques.
Liu et al. [33] utilized check-in data from social networks to
generate IP-user-location relationships. They mined check-in
patterns from login logs and inferred users’ geolocation and IP
addresses (such as home, office, and others). Such a method
requires private login logs and only works for active users.
Padmanabhan et al. [34] proposed geographical clusters based
on address prefixes in the border gateway protocol (BGP)
tables, and pinpointed a host using the landmarks within the
same cluster. Huffaker et al. [35] leveraged geographical hints
from hostnames to geolocate a large set of routers on the
Internet, but geo-hints of hostnames are limited and probably
inconsistent with actual locations.

Network Measurement-Based Approach: This method uses
latencies and topologies among VPs and targets to estimate
the geo-location of a target host. Gueye et al. [8] proposed a
constraint-based geolocation (CBG), which uses geographical
distance and multilateration to locate a target host. CBG
utilizes the bestline estimation to reduce errors induced by
inflated latencies and indirect routers. Katz-Bassett et al. [36]
proposed a topology-based geolocation (TBG), which intro-
duces network topology constraints for improving the perfor-
mance of CBG. Wong et al. [9] proposed a generic framework
called Octant that locates IP hosts by incorporating latency,
network topology, and hostnames. Laki et al. [10] proposed
Spotter to use the highest probability density to geolocate
target hosts.

Geolocation Database: There are several available IP
geolocation databases, including MaxMind GeoLite2 [37],
GeoIP2 [38], IP2Location [31], and NetAcuity [39]. Those
databases provide physical locations to IP addresses at the
country-level and city-level granularities. Prior works [2],
[40], [41] have evaluated the accuracy of databases from
endpoints to router geolocations. Poese et al. [40] found that
the number of unique geographical locations are much less
than the number of IP blocks, which cannot build accurate
mappings between physical locations and IP hosts. Shavitt
et al. [41] demonstrated that most of databases cannot archive
the accuracy they acclaimed at the country level, and perform
poorly at the city level. Gharaibeh et al. [2] analyzed router
geolocation accuracy across those databases, and found that
databases are not reliable for geolocating routers at the city
level.

Landmark: The accuracy of IP-based geolocation is heavily
dependent on the density of landmarks. There are several
platforms for providing landmarks with known IP addresses
and accurate geolocations to the public. PlanetLab [5] is a geo-
graphically distributed network testbed, running 1,353 nodes
at 717 sites, most of which are universities or research insti-
tutions. As yet, we find that only 420 nodes are still available.
PerfSONAR [3] is a network measurement tookit designed
to provide federated coverage of paths, and help to establish
end-to-end usage expectations. PingER [4] is a monitoring
infrastructure to understand network performance and allo-
cate resources to optimize performance between laboratories.
Ciavarrini et al. [42] proposed a crowdsourcing method to use
smartphones as vantage points for geolocating target hosts.
Jia et al. [43] employed adjacent IoT devices to verify the

geographic location of cloud hosts. They leveraged IoT devices
as landmarks and proposed a vote-based closest-shortest mech-
anism to geolocate cloud hosts.

Mining web services has been proposed to increase the
number of landmarks. Guo et al. [6] and Li et al. [44]
extracted geographical information from webpages and built
the relationships between IP addresses of websites and their
physical locations. However, the location information extracted
from websites is not the actual location of websites. Those
landmarks belong to the /24 subnet, only at the city-level
granularity. Wang et al. [7] also leveraged geographical infor-
mation on websites and searched them through online maps
for generating landmarks. Unfortunately, for those landmark
generation approaches based on mining web services, the map-
pings among domain names, IP addresses, and locations are
not stable, due to the widely used cloud services and CDN.
Thus, their landmarks have unstable and unverifiable issues,
resulting in unavailability of landmarks. By contrast, we
generate landmarks based on live webcams that are stable
with time and can be verified by manual inspection on their
live streams. Moreover, GeoCAM generates landmarks at the
latitude/longitude granularity.

IX. CONCLUSION

IP-based geolocation heavily relies on the number of
high-quality landmarks. As the pervasiveness of IoT sys-
tems, an increasing number of webcams connected to the
Internet have become an ideal set of candidates for being
used as landmarks. In this paper, we proposed a framework
GeoCAM to automatically generate webcam landmarks and
provide IP-based geolocation services. Specifically, GeoCAM
periodically monitors those websites that host live webcams
and uses the natural language processing technique to extract
the IP addresses and latitudes/longitudes of webcams. We
demonstrated the viability of different geolocation algorithms,
including CBG, Octant, Spotter, and our hybrid algorithms.
We conducted experiments to evaluate the performance and
effectiveness of GeoCAM. Our results show that GeoCAM
automatically detects webcams with 94.2% precision and
90.4% recall, and can generate 16,863 stable and fine-grained
landmarks. These webcam landmarks are two orders of mag-
nitude more than the landmarks used in existing geolocation
services. Therefore, GeoCAM is capable of providing a geolo-
cation service with high accuracy and wide coverage.
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