
1786 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

A Quantitative Analysis of Interfaces to
Time-Triggered Communication Buses

Raimund Kirner , Senior Member, IEEE, and Peter Puschner

Abstract— Nodes connected to a time-triggered (TT) network
can access the network interface in two different ways, synchro-
nously or asynchronously, which greatly impacts communication
timing and message lifespans (i.e., the time from writing a mes-
sage to its send buffer till the time when the message is read by the
receiver). In this paper we present a clear timing model to reason
about the timing variation possible with TT interfaces. This
model facilitates the quantitative analysis of the message lifes-
pans of synchronous and asynchronous TT interfaces. Further,
we develop a tool to search for node and network configurations
that minimise or maximise message lifespans. We show that
choosing the right configuration for synchronous interface access
can reduce message lifespan significantly (we observed a factor
of 9 even for small scenarios). While industrial practice typically
is to choose a slot allocation a priory, we show that optimising the
slot allocation in coordination with task scheduling gives an extra
edge in obtaining minimal message lifespans. For nodes with
synchronous interface access, the tool determines the parameters
needed to obtain minimal message lifespan and jitter.

Index Terms— Real-time systems, networks, time-triggered
communication.

I. INTRODUCTION

T IME-TRIGGERED networks provide a communication
service for dependable real-time systems. This commu-

nication service offers time predictability at its interfaces,
as message transmission is under full control of the TT
network with its global clock and pre-defined transmission
schedule. The message transmission rate as well as send and
receive times of all messages are clearly determined before
runtime. As a consequence, events observed by communi-
cating nodes at runtime have no influence on the points in
time and rate at which messages are sent or received, and
sending nodes cannot exercise any control pressure on and
across the communication network, which protects both the
network and the receiving nodes from load changes or even
overload and allows system designers to give guarantees for
message-transmission deadlines.

While the TT communication network delivers its commu-
nication service with precisely defined timing, the degree to
which applications leverage the timing properties of the net-
work depends on how the nodes connected to the TT network

Manuscript received September 23, 2020; revised February 12, 2021 and
March 25, 2021; accepted March 26, 2021; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor C. F. Chiasserini. Date of publication
April 28, 2021; date of current version August 18, 2021. (Corresponding
author: Raimund Kirner.)

Raimund Kirner was with the Department of Computer Science, University
of Hertfordshire, Hatfield AL10 9AB, U.K. (e-mail: r.kirner@herts.ac.uk).

Peter Puschner was with the Faculty of Computer Science, TU Wien,
1040 Vienna, Austria (e-mail: peter@vmars.tuwien.ac.at).

Digital Object Identifier 10.1109/TNET.2021.3073460

configure and access the network interface. We distinguish two
different strategies that nodes use to access the TT communica-
tion interface, asynchronous and synchronous access [1]. Both
access strategies allow for the construction of composable and
time-predictable real-time applications. However, the timing
parameters and the response-time guarantees achievable with
each of the two access strategies differ significantly.

In this article we therefore investigate into the timing of
applications that use the two different strategies of interfacing
to TT systems. To this end, we extend the work on asyn-
chronous and synchronous TT interfaces [1]. We propose a
precise timing model that allows us to analyse the lifespan
of messages (i.e., the time interval between a message write
operation by a sending task and the message read operation by
its receiving task) in TT communication and evaluate the effect
of the TT network-interfacing strategies on message lifespans.
The contributions of this article are:

• Development of a timing model to reason about the
timing variation possible with TT interfaces. This model
facilitates the quantitative analysis of the message lifes-
pans of synchronous and asynchronous TT interfaces.

• Implementation of the timing model in a tool in order
either to mimimise the maximum message lifespan in the
system or to minimize the sum of the lifespans of all
messages in the system.

• We explain how to use this timing model to analyse the
possible lifespan values in systems with asynchronous TT
interfaces.

• We explain how to use this timing model to configure sys-
tems with synchronous TT interfaces in order to obtain
a minimised message lifespan with a jitter limited to the
precision of clock synchronisation.

• We provide a detailed quantitative analysis to show that
the slot allocation on the TT bus can significantly influ-
ence the achievable message-lifespan minimum. While
industrial practice is to allocate TT slots a-priori, our
results indicate that optimising the TT slot allocation
together with local task activation times is crucial to
arrive at minimal message lifespans.

While research has been done on optimising the bus timing,
no research has been done on the quantitative effects of TT
interfaces.

The article is structured as follows: Section II presents an
overview of related work. The foundations of time-triggered
communication systems are reviewed in Section III. The
timing model for TT interfaces is described in Section IV.
Section V presents an implementation of the timing model
used to optimise the message lifespan (i.e., either the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2495-0778
https://orcid.org/0000-0003-3921-6813

KIRNER AND PUSCHNER: QUANTITATIVE ANALYSIS OF INTERFACES TO TT COMMUNICATION BUSES 1787

maximum or the sum of all message lifespans). Experiments
exemplify the quantitative effect of message lifespans. Finally,
Section VI concludes this article.

II. RELATED WORK

Time-triggered message communication is highly attractive
for real-time communication networks, as message transfer is
pre-planned and therefore temporally predictable. The most
prominent protocol for time-triggered message communica-
tion is the Time-Triggered Protocol (TTP) [2]. Besides time-
predictable, cyclic message transport, TTP provides support
for precise clock synchronization, redundant message trans-
mission, error detection, and clique avoidance that make
TTP the preferred choice for safety-critical real-time applica-
tions [3]. The TTEthernet protocol [4] makes time-triggered
communication available to the world of switched Ethernet.
TTEthernet uses standard Ethernet messages with a dedicated
TTEthernet message type. The protocol integrates the real-time
features of TTP with Ethernet compatibility, i.e., by means
of TTEthernet switches time-triggered Ethernet messages and
standard event-triggered Ethernet traffic can be merged on the
same network. Another variant of a TT communication bus is
FlexRay, which is used in the automotive domain [5].

TT protocols provide an infrastructure for time-predictable
communication, but do not dictate when applications must
access the network interface. I.e., applications may operate
in synchrony or asynchronously to the operation of the TT
communication protocol. Giotto [6] is a framework for design-
ing and validating applications according to the paradigm of
synchronous operation, i.e., all computation steps are clearly
defined together with the synchronous points in time when
communication takes place and state changes occur. Appli-
cations developed with Giotto can be compiled to utilize the
synchronous operation of TT communication to maintain the
synchrony of tasks and communication in the final applica-
tion. This makes the whole applications time-predictable and
time-repeatable.

TT communication has been also used inside silicon chips,
i.e., in so-called network-on-chips [7]. Even more, TT commu-
nication has not only been used with wired communication, but
also in wireless communication, e.g., with ZigBee by Koubaa
et al. [8] and Ahmad and Hanzalek [9].

Network behaviour simulation is an established topic, e.g.
the simulation framework OMNeT++ is often used [10].
OMNeT++ is a framework to build simulators; network pro-
tocol models have to be provided or developed separately.
For example, for communication networks with event-based
semantics, queuing theory [11] can be used to model the
temporal behaviour of the network. The contribution of this
article is the development of a behaviour model and analysis
methods for TT networks.

The asynchronous and synchronous TT interfaces have been
described by Puschner and Kirner [1]. The authors provided
a bound for the jitter of the message lifespan, i.e., the time
between writing a message by the sender task and reading the
message by the receiver task.

For asynchronous TT interfaces there had been interface
access protocols proposed that aim to avoid concurrency-based

Fig. 1. Time-triggered system model.

access delays. Kopetz and Reisinger proposed the original
non-blocking write protocol, which guaranteed that the writer
has no delay, only readers might have additional delay in case
of an access contention [12]. Puschner and Frömel converted
the original NBW protocol into a single-path variant, for
which also the readers have no execution-time jitter but instead
wait for the worst-case delay [13]. Puschner and Kirner pro-
posed the Rate-bounded Non-Blocking Communication Pro-
tocol (RNBC), which has less execution time overhead than
NBW and at the same time guarantees that both writer and
reader are free of concurrency-based execution-time jitter [1].

There has been also work done in building optimised
schedules for systems with TT networks. Pop et al. did an
optimisation of slot allocations and task offsets for the TTP [2]
protocol [14]. Their experiments compare two heuristics
against a reference optimisation based on simulated annealing.
It is not described in detail what optimisation criteria is used
in their work to denote the ’best schedule’. Craciunas et al.
described an optimisation framework for systems with TT
networks using integer-linear programming [15]. The authors
assume a given slot allocation on the TT bus and search
for task offsets to yield an optimal scheduling table for
TTEthernet [16]. Minaeva et al. describe the search of task
offsets for TT systems with hyper periods [17]. The authors
focus on finding a feasible schedule with limited jitter within
a hyper period, in contrast to the typical zero-jitter scheduling.

The described work on searching TT schedules does not
cover the quantitative analysis of the TT communication inter-
face. None of the research focuses studies the effect of using a
given slot allocation versus searching for a minimal one. Also
none of the research analyses the difference between synchro-
nous TT interfaces and asynchronous TT interfaces. Besides
showing the effect of slot allocation and task alignment, in our
work we also show that there are different optimisation criteria
possible when optimising the message lifespans of TT buses.

III. TIME TRIGGERED COMMUNICATION

Following the time-triggered approach, a distributed
real-time computer system consists of the time-triggered com-
munication system (TTCS) and the computational components
(CCs) or nodes that exchange data via the TTCS. CCs connect
to the TTCS via the linking interface subsystem (LIFSS), see
Figure 1.

The TTCS is an autonomous subsystem of the distrib-
uted real-time computer system that transports messages in a
time-predictable way. It transfers time-triggered state messages
from the LIFSS interfaces of the sending nodes to one or more

1788 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

receiver nodes of the distributed computer system [18]. Typ-
ically, the TTCS transports messages periodically, according
to a static message-transmission schedule that is constructed
at design time.

The clock synchronization service of the TTCS provides
a global clock to the distributed system. Communication end
points of the TTCS, the LIFSS of the nodes, use this global
clock to maintain a uniform view about the progress of time
and to coordinate their message send and receive operations
according to the message schedule. Further, the TTCS offers
access to the virtual global clock and a clock-interrupt service.
The computational components of the nodes can use these
services to synchronize their operation to the progression of
global time. (see e.g., [19]).

A. Synchronous and Asynchronous Interfaces

Time-triggered communication allows components of
multi-component systems to autonomously control their timing
behavior [20]. Reading from or writing to the LIFSS of
a component is similar to reading or writing volatile pro-
gram variables that are periodically updated. In contrast to
event-triggered interfaces, where every received message has
to be read and consumed in order to keep the receiving com-
ponent in a consistent state (i.e., the receiver must read/process
every message before its validity time expires), time-triggered
communication does not impose such a control pressure on
components that read interface data from the LIFSS [21].

Depending on whether computing components use only the
data-sharing semantics of the LIFSS or also utilize its global
notion of time to synchronize their actions to the progression
of time and message send and receive times, we distinguish
two interfacing strategies at the LIFSS [1]:

In the first approach, computational components access the
LIFSS asynchronously, and do not take the timing of the
TTCS into consideration. This has the advantage that the
respective components maintain full control over the pace
of their activities. Even mutual-exclusion access conflicts
are masked and do not impact the temporal control of the
component. On the other hand, this loose temporal coupling
between the activities of the CCs and the TTCS prolongates
message lifespans, i.e., the intervals between the creation and
the consumption of messages by tasks on the CC.

In the second approach, computing components access the
LIFSS in synchrony with the TTCS. I.e., components are
aware of global time and the timing of the message transport
service of the TTCS wrt. global time. They synchronize to
the global time of the communication system (thus accept-
ing some restriction of their temporal autonomy) and take
advantage of the statically available information about the
send and receive times of messages to optimize response
times (i.e., minimize message lifespan) and avoid control
conflicts when accessing the LIFSS. Further, synchronizing
component activities with global time yields a high degree of
overall temporal predictability and facilitates the realization of
replica determinism and therefore fault-tolerance mechanisms
in distributed real-time applications [1].

Fig. 2. Data delay in asynchronous and synchronous TT interfaces.

Figure 2 visualises different message-lifespan scenarios of
asynchronous and synchronous TT interfaces. Figure 2.a and
Figure 2.c show that without optimised alignment of read/write
of tasks with the CC can cause data delays for both read
and write of one message period, resulting in a total message
lifespan of two message periods plus one communication slot
lengths. Figure 2.b and Figure 2.d show that with synchronised
TT interfaces the read/write delay can be potentially zero,
resulting in a total message lifespan of just one communication
slot length. As shown later, the minimal lifespan of multiple
messages can be significantly higher than zero due to their
relationships with tasks.

In the rest of the paper we will investigate in further
detail how the two LIFSS access strategies influence message
lifespan, i.e., what minimal and maximum message lifespans
can occur. We will also show, that synchronizing the activities
of computational components to the message transport of the
TTCS leads to minimum message lifespans, thus facilitating
the construction of real-time systems with short response
times.

IV. TIMING MODEL FOR MESSAGE LIFESPAN IN

TIME-TRIGGERED COMMUNICATION

In this section we introduce a formal timing model for
the TTCS. While TTCSs focus on periodic and predictable
communication, these systems can also support multi-rate
communication by constructing a hyper-period [22] that is
the least common multiple of all the message periods in the
system. In this article we focus on systems with all message
periods being equal, i.e., the hyper-period is equal to the period
of the messages.

A TTCS can be expressed as the following tuple:

TTCS = �Ttt, ts, M, B�

Ttt …length of a TT communication round (also known
as communication period or TDMA round).

ts …length of one TT communication slot within Ttt.
We enumerate the slot numbers in a Ttt starting
with 0.

KIRNER AND PUSCHNER: QUANTITATIVE ANALYSIS OF INTERFACES TO TT COMMUNICATION BUSES 1789

Fig. 3. Timing model for TT communication.

M …set of TT messages sent via the TTCS. Assuming
only one message is sent per TT slot, it must hold
that: |M |·ts ≤ Ttt .

B …bus configuration is a mapping of the form M ⇒
SNum with SNum = [0, Ttt

ts
−1], i.e., each message is

assigned to a TT slot number. B(m) is the TT slot
number of a message m.

It shall be noted that this model allows for the size of
the set of TT messages |M | to be less than the number of
available TT slots. In this case the remaining TT slots could
be used for other forms of communication, like event-based
communication. E.g., the FlexRay protocol uses such a hybrid
communication system [23].

Each real-time task τ ∈ T running at each TT node can be
described as a tuple:

τ = �tr, C, MR, mW �
T …set of all tasks
tr …the trigger time of the task relative to the beginning

of a TT round. This parameter is only specified when
using a synchronous TT interface.

C …the WCET of the task
MR …the set of TT messages this task reads: MR ⊆ M
mW …the TT message this task writes: mW ∈ M .

For simplification, we use only one output message per task.
This is also the typical use case of a TT system, as the output
is written at the end of a task’s execution, which then can be
read by all other nodes connected to the TTCS. To formulate
the timing model of the TTCS, we use the following additional
notation:

C(τ) …WCET of task τ
b(τ) …relative TT slot number within a TT communica-

tion round for task τ to send a message
tr(τ) …relative start time of task τ

(relative to begin of a TT round)
tw(τ) …writing time of output message of task τ relative

to begin of a TT round: tw(τ) = tr(τ) + C(τ) (for
simplicity we assume the execution time of τ is the
WCET of τ)

S(m) …sender task of message m
R(m) …set of receiver tasks of message m

To give a further intuition to the above definitions, Figure 3
shows a simple TT system with two tasks τA, τB . The message
sent from τA to τB is denoted as mAB . The length of a TT
communication round Ttt is 4ms, consisting of 4 TT slots
of length ts = 1ms. The two top rows show the execution
of tasks τA (blue) and τB (orange). The bottom row shows
the communication timing of the TTCS, with the slot color
matching the color of the writer task, e.g., in TT slot 0 (blue)
the message of task τA is sent.

Based on the introduced notation we calculate the lifespan
l(m) of a message m, which is the time from the termination
of the sender task S(m) (writing the message to the LIFSS)
till the start of receiver task R(m) (reading the message from
the LIFSS; when R(m) contains more than one task we get
different lifespans for the receivers). We have to take into
account that the writing, communicating, and reading of a
message can take place in different TT rounds, which is why
we use this extra notation:

rS(m)…number of TT round in which message m is
transmitted by the TTCS relative to the TT round
it was written (e.g., rS(m) = 1 if the message is
transmitted in the TT round after it was written)

rR(m)…number of TT round where message m is read
by the receiver task relative to the TT round it was
written

l(m) …lifespan of message m, i.e., the time span between
its write by task S(m) and its read by task R(m).

To calculate the lifespan l(m) of a message m we use
the following abbreviations: τS=S(m), τR∈R(m). Note that
R(m) can contain more than one task, in which case we
calculate the message lifespan separately for each case. In
addition, Equation 1 introduces the notation of a ceiling
function based on arbitrary multiples (y) rather than 1:

�x	y = �x

y
	 · y (1)

Based on that, the communication round rS(m) can be
calculated using the following minimisation problem:

rS(m) = k | min
k

(�tw(τS)	ts ≤
k·Ttt + b(τS)·ts

)
(2)

1790 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

In simple terms, rS(m) is the minimum number of multiples
of Ttt that have to be added to the relative beginning of
message m’s communication slot (b(τS)) to be equal or more
than the write time of m (tw(m)). Referring to the example
in Figure 3, rS(mAB) is 1, see the labels “write mAB” and
“send mAB” which are one communication round apart.

Based on rS(m), rR(m) can be calculated using another
minimisation problem:

rR(m) = k | min
k

(
rS(m)·Ttt + (b(τS) + 1)·ts ≤

k·Ttt + tr(τR)

)
(3)

In other words, rR(m) is the minimum number of multiples of
Ttt that have to be added to the relative beginning of message
m’s read time (tr(τR)) to be equal or more than the time for
the completed communication of m (rS(m)·Ttt + (b(τS) +
1)·ts). Referring to the example in Figure 3, rR(mAB) is 2,
see the labels “write mAB” and “read mAB” which are one
communication round apart.

Based on rR(m) the lifespan l(m) of a message m can be
calculated as given in Equation 4:

l(m) = rR(m)·Ttt + tr(τR) − tw(τS) (4)

The above equation calculates the difference between message
m’s write time (tw(τS)) by task S(m) and m’s read time
(rR(m)·Ttt + tr(τR)) by task R(m). Going back to the
example of Figure 3, we can see that the lifespan l(mAB)
of message mAB is 6.0ms, which is 1.5 times the length of
the TT communication round Ttt.

A. Timing of Asynchronous TT Interfaces

In our timing model we have introduced the real-time tasks
to be tuples of the following form τ = �tr, c, MR, mW �.
However, in the case of asynchronous TT interfaces the value
of tr is not specified, since the execution of tasks inside nodes
and the communication timing of the TTCS are asynchronous.
Thus, tr can be any value within the range 0 ≤ tr ≤ Ttt. The
case tr > Ttt is irrelevant, as due to the periodic nature of
the TTSC, this case is equal to the case (tr modulo Ttt). For
the asynchronous TT interface, the lifespan of a message m
is therefore not a single value, but may vary depending on the
values tr of writer and reader task.

To get the minimum and maximum of the lifespan l(m) of a
message m for the asynchronous TT interface with τS=S(m)
and any τR∈R(m) we need to search over the value range of
both tr(τS) and tr(τR):

lmin
async(m) = min

tr(τS),tr(τR)
l(m)

lmax
async(m) = max

tr(τS),tr(τR)
l(m) (5)

Since the executions of all tasks are not only asynchronous
to the TTCS, but also against each other, the variations of the
lifespan per message add up to get the variation of the lifespan
of all messages.

lmin
async(M) =

∑
m∈M

lmin
async(m)

lmax
async(M) =

∑
m∈M

lmax
async(m) (6)

The message-validity jitter for asynchronous TT interfaces
is for each message theoretically maximal 2x the TT com-
munication round Ttt [1]. Equation 6 calculates the total
message-validity jitter specifically for a given system.

B. Timing of Synchronous TT Interfaces

With synchronous TT interfaces we have the possibility to
choose the start time tr of each task relative to the beginning
of a TT communication round. This allows us to optimise
the timing of a TT system. We introduce two optimisation
methods. The first method is to find a configuration of relative
task start times such that the sum of the lifespans of all mes-
sages is minimized. The second method aims at minimising
the maximum lifespan among all messages.

Equation 7 shows the optimisation of synchronous TT
interfaces for the average lifespan of all messages m∈M .
The resulting TRavg consists of task tuples τ∈T and their
optimised tr value (τ, trmin). Optimising for the average
lifespan is equivalent to optimising for the sum of lifespans.

TRavg = {(τ, trmin) | τ∈T ∧ trmin=tr(τ)}

| min
tr(τ∈T)

(∑
m∈M

l(m)

)
(7)

The optimisation of synchronous TT interfaces for the
maximum lifespan among all messages m∈M is given in
Equation 8. The resulting TRmax consists of tuples of tasks
τ∈T and their optimised tr value.

TRmax = {(τ, trmin) | τ∈T ∧ trmin=tr(τ)}
| min

tr(τ∈T)
(max({l(m) | m∈M})) (8)

The preferable optimisation method depends on the appli-
cation requirements. Synchronous TT interfaces are meant
for hard real-time systems, where the minimisation of the
maximum lifespan of messages is usually central.

1) Logical Execution Time (LET): The optimisation models
given in Equation 7 and Equation 8 allow to configure the
system in a way that the lifespan jitter of TT messages is
minimal. Basically, the lifespan jitter could be reduced to the
precision of the clock synchronisation in the distributed TT
system. However, to really achieve this minimal lifespan jitter,
we have to discuss the task execution times in more detail. In
the given timing model the execution time et(τ) of a task
is modelled by its WCET, denoted as C(τ). However, it can
happen that the task execution time et(τ) is smaller than C(τ).
This can happen due to multiple reasons: the execution time
might be variable due to different initial HW states before a
task’s start or dependency on input data. As another reason,
C(τ) might be an overestimation of the real WCET, i.e., C(τ)
is a safe but pessimistic upper bound of the real WCET. In
order to achieve a predictable timing behaviour, the system
would have to implement the concept of logical execution
times (LET) [6]. The basic idea is that a LET is assigned
to a task, with the important property that the LET is larger
or equal than the real WCET of a task. By using a LET,
the produced output of a task is held back at the end of its
execution and is only forwarded to the LIFSS of the TTSC

KIRNER AND PUSCHNER: QUANTITATIVE ANALYSIS OF INTERFACES TO TT COMMUNICATION BUSES 1791

TABLE I

TASKSETS USED FOR QUANTITATIVE ANALYSIS OF TT INTERFACES (VALUES IN MS)

once the end of the task’s LET has arrived. This way, from the
output side, it appears that the task has a constant execution
time. Assuming that C(τ) is a safe upper bound of a task’s
real WCET, we can set LET (τ) = C(τ).

However, if a low message lifespan jitter is not a require-
ment for the concrete system, but rather only a minimised
maximum message lifespan is needed, then the LET concept
does not have to be implemented. In this case, the message
lifespan jitter might be significantly higher than the precision
of clock synchronisation. Nevertheless, one would still get
a minimised message lifespan for the system with synchro-
nous TT interfaces, either for the maximum message lifespan
(TRmax) or the sum of message lifespans (TRavg).

V. QUANTITATIVE ANALYSIS

In this section we describe concrete experiments based on
Equation 5 of the TT timing model developed in Section IV.

A. Description of Analysis Method

To demonstrate the difference between the synchronous
and the asynchronous TT interface, we developed a tool that
implements the timing model for message lifespans given in
Equation 5. The tool computes the a) maximum lifespan l(m)
for all m∈M , b) the sum of the lifespan of all messages, and
c) the average lifespan of all messages of the TTCS. It can
be configured to iterate over different TT bus configurations
(b(τ) for all τ∈T) and different task start configurations (tr(τ)
for all τ∈T). Based on that, the tool facilitates the following
optimisations:

OMAX: search for the configuration to find the maximum
jitter of the maximum lifespan among the messages
of the TTCS.

OSUM: search for the configuration to find the maximum
jitter of the sum of the lifespan of all messages in
the TTCS.

Each of these optimisations shows on one hand the maximum
jitter possible in case of the asynchronous TT interface, and
on the other hand provides the system configuration to obtain
a minimised lifespan (OMAX or OSUM) in case of the
synchronous TT interface. The tool allows its user to visualise
the scheduling behaviour for the different optimisation goals,
using the format explained in Figure 3. As shown in Figure 3,
the tool shows the lifespan of each message using a horizontal
line from the termination of the sender task till the start of the
receiver task. The lifespan of individual messages from the
same task may overlap. In order to draw message lifespans

of unambiguous lengths in case of overlaps, in the figures the
message lifespan for only each 3rd TT period is drawn as a
horizontal line.

As mentioned above, the tool can search over both, the pos-
sible task offsets as well as over the possible slot assignment
on the bus. By searching over possible slot assignments we
are able to demonstrate that the slot assignment on the bus
(b(τ) for all τ∈T) influences the lifespan of messages. This
is particularly interesting, as the industrial practice starts with
the bus-slot assignment, and only thereafter suppliers develop
their individual tasks. We demonstrate that one has to break
with the established industrial practice of determining the slot
assignment before the task development. To get the best timing
optimisation on the bus, the slot assignment on the bus and
the task offsets need to be optimised simultaneously.

Table I shows the basic communication structure of task sets
we have used for our experiments. The syntax |ABA|CDC| is
that “|” designates separate communication groups, i.e., tasks
τA,τB communicate with each other and tasks τC ,τD com-
municate with each other. A sequence of two letters within
a communication group means that the 2nd task reads the
message written by the 1st task. For example, |ABA| means
that task τB reads from task τA (pattern AB) and that task τA

reads from task τB (pattern BA).
For each task τ = �tr, c, MR, mW �, the parameters MR,

mW are given by the described communication structure,
while the WCET c chosen with some arbitrary value to fit
within a communication period Ttt. The first task parameter tr
is the result of the performed optimisation method, to find the
maximum jitter or the configuration for the minimum message
lifespan (max or sum). The bus configuration b(τ) is also an
output of the performed optimisation method.

1) Complexity of the Analysis Method: The OMAX/OSUM
searches in general are quite computationally costly with
larger systems. For example, the number of different possible
bus configurations grows exponentially with the number of
message slots. Also the search of task offsets can grow
exponentially with the number of tasks.

To cope with that potentially huge search space, we have
implemented a numerical search method that uses effective
simplifications. Together with an automatic adjustment of
the search step size of task offsets, we include systematic
placements based on the patterns given in Figure 2.a-d to find
the extreme cases for single message lifespans.

Another optimisation splits the task set into
task-communication groups. A task communication group
is the transitive closure of all tasks communicating with

1792 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

TABLE II

OMAX OPTIMISATION OF MESSAGE LIFESPAN (VALUES IN MS)

other tasks. By splitting the task set this way, the search for
the OMAX/OSUM optimisation can be done separately for
each task communication group. While the size of each task
communication group still poses an exponential search space,
the number of task communication groups now is only a
linear search space complexity.

B. Experimental Results for OMAX

The results of the OMAX optimisation with the maximum
message lifespan are given in Table II. The table has two parts:
the top part “Smin” describes the results for the search of
the bus configuration with the minimised maximum message
lifespan, and the bottom part “Smax” describes the results
for the search of the bus configuration with the maximised
maximum message lifespan.

The columns “max lifespan” show the optimisation results
for the maximum message lifespan. The columns “sum lifes-
pan” show what results the OMAX optimisations provided
as a side-effect for the sum of all message lifespans, without
optimising for it. The columns “ls: Tmin” and “ls: Tmax”
show the minimum and maximum observed lifespans among
the different task start configurations.

Column “ls: jitter” calculates the lifespan jitter: “ls: Tmax”
− “ls: Tmin”. The column “ls: jitter rel” shows the relative
lifespan jitter: “ls: Tmax” / “ls: Tmin” as percentage. In the
OMAX optimisation, the information for “sum lifespan” is
given, to be compared with the corresponding results of the
OSUM optimsation. Comparing the top part of Table II with
the bottom part, we see that the bus configuration in most
cases has a significant influence on the possible minimisation
of the maximum message lifespan. The only tasksets where
the slot configurations did not show an influence were ’|AB|’
and ’|ABA|CDC|’.

As an example, let us look at the results for taskset |ABA|
in Table II. For example, we see that the maximum lifespan
of the messages of taskset |ABA| varies between 1.80 and
8.98 due to changing the task offsets. The upper value is
by a factor of 4.99 higher than the lower maximum lifespan.
However, the table also shows that the slot configuration also
has a significant influence on the bus timing, as it shows that
the minimum observable maximum message lifespan varies
between 1.80 and 3.50. Thus, the bus configuration has in
this example an influence of a factor of 3.8/1.8 = 2.1.

Figure 4 shows the analysis result for the OMAX optimisa-
tion for the taskset ‘|ABA|’. Figure 4.a and Figure 4.b show
the results for the bus configuration with the minimum lifespan
(Smin), and Figure 4.c and Figure 4.d show it for the max-
imum lifespan configuration (Smax). Looking at Figure 4.a
and Figure 4.b we see that maximum message lifespan of
message mAB varies between 1.8ms and 8.98ms due to the
difference in the task offsets. First of all, this shows that the
optimisation of the task offsets by using the synchronous TT
interface has a significant influence on the message lifespan.
We have to note that in Figure 4.a the message lifespan of
message mAB is not the minimum possible, as the result
in this figure is the minimisation of the maximum message
lifespan of message mAB and message mBA. Nevertheless,
task τA reads immediately after the message mAB has been
sent in slot 1, just from task τB writing the message and
finally sending the message, an additional delay of 0.8ms
happen. We observe the found start times tr(τA) = 2.00 and
tr(τB) = 1.80. However, in Figure 4.b we have an overall
maximum message lifespan for message mBA of 8.98ms. The
figure also illustrates why this message lifespan is so long.
We observe that this case is produced by the task start times
tr(τA) = 2.01 and tr(τB) = 0.99. So task τA starts execution

KIRNER AND PUSCHNER: QUANTITATIVE ANALYSIS OF INTERFACES TO TT COMMUNICATION BUSES 1793

Fig. 4. OMAX optimisation of message lifespan (Taskset ’|ABA|’).

at time 2.01ms and writes its output message mAB at time
4.01ms (tr(τA) + c(τA)), which misses τA’s communication
slot starting at time 4.00ms. Thus the message only gets
communicated in the next round, finishing its communication
at time 9.00ms. Task τB has a relative start tr(τB) = 0.99,
thus its execution start at time 2 · 4ms+0.99ms = 8.99ms is
just too early to get the message, so we have to consider τB’s
execution in the next communication round, i.e., 3 · 4ms +
0.99ms = 12.99ms. The resulting lifespan of message mAB

is 12.99ms−4.01ms = 8.98ms. Compare this with the lowest
maximum lifespan given in Figure 4.a, which has the task start
times tr(τA) = 2.00 and tr(τB) = 1.80. In this case mAB

still has the maximum lifespan, but now the lifespan l(mAB) is
only 1.80ms. Note that in Figure 4.a one might still be able to
reduce the lifespan l(mAB) further. The given analysis shows
the minimum of the maximum lifespan of all messages in the
system. When comparing Figure 4.a and Figure 4.c we see that
the maximised bus configuration Figure 4.c allows for a less
optimal maximum message lifespan with the bus configuration
b(τA) = 0 of b(τB) = 3. This difference can be explained by
the fact that in Figure 4.a between the end of b(τB) = 2ms and
the begin of b(τA) = 4ms the execution time c(τA) = 2ms
was fitting exactly in. However, in Figure 4.c between the end
of b(τA) = 1ms and the begin of b(τB) = 3ms the execution
time c(τB) = 2.5ms does not fit in.

As another example of the OMAX optimisation, Figure 5
shows the results for the taskset ‘|ABA|CDC|EFE|’. This

example shows in Figure 5.a and Figure 5.b as well that the
task start times have a significant influence, namely between
2.76ms to 14.98ms. However, this examples also shows with
Figure 5.a and Figure 5.c that the bus configuration also has a
significant influence, namely between 2.76ms to 6.41ms for
the minimum of the maximal message lifespans.

C. Experimental Results for OSUM

Table III shows the results for OSUM optimisation. For
the OSUM optimisation, the bus configuration (b(τ) for all
τ∈T) also shows a difference, given in the top part the
results for the bus configuration with the minimum lifespan
sum, and the bottom part the results for the bus configu-
ration with the maximum lifespan sum. For example, for
taskset ‘|ABA|CDC|EFE|’ the jitter of the lifespan sum for
Smin is 54.00ms−12.00ms = 42.00ms, and for Smax it
is 75.00ms−33.00ms = 42.00ms. While the jitter of the
lifespan sum here is the same, the Tmin shows a significant
change: for Smin it is 12.00ms, and for Smax it is 33.00ms.
This shows that the slot optimisation has a significant influence
on the minimum achievable message lifespan sum. Overall,
for all task sets except ‘|AB|’ that has a single message,
Table III shows a significant improvement of the lifespan sum
if one optimises the bus configuration in parallel with the task
schedules.

Figure 6 shows the analysis result for the OSUM optimisa-
tion for the taskset ‘|ABA|’. Figure 6.a and Figure 6.b focus

1794 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

Fig. 5. OMAX optimisation of message lifespan (Taskset ’|ABA|CDC|EFE|’).

on the bus configuration with the minimum lifespan, Figure 6.c
and Figure 6.d consider the maximum lifespan configuration.
With the OSUM optimisation, the bus configuration influences
the message lifespan sum. For the minimum bus configuration
in Figure 6.a and Figure 6.b b(τA) = 0 and b(τB) = 1, for
the maximum bus configuration in Figure 6.c and Figure 6.d
b(τA) = 0 and b(τB) = 3.

As another example of the OSUM optimisation, Figure 7
shows the results for the taskset ‘|ABA|CDC|EFE|’.
Figure 7.a and Figure 7.c show that the bus configuration has

a significant influence on the possible minimisation of the mes-
sage lifespan sum. The change factor is 33.00ms/12.00ms =
2.75. While the change due to the tasks offsets (Tmin, Tmax)
is important to optimise, nevertheless, also the bus configura-
tion has an important contribution to the minimum achievable
lifespan sum.

D. Discussion

The experimental results for both OMAX and OSUM
optimisation have shown that the consideration of how to

KIRNER AND PUSCHNER: QUANTITATIVE ANALYSIS OF INTERFACES TO TT COMMUNICATION BUSES 1795

Fig. 6. OSUM optimisation of message lifespan (Taskset ’|ABA|’).
TABLE III

OSUM OPTIMISATION OF MESSAGE LIFESPAN (VALUES IN MS)

interface with TT systems does have a significant influence on
the message lifespan (and as such on the latency of real-time
control). The results have shown that the jitter of the message

lifespan for asynchronous TT interfaces can come close to the
limit of 2·Ttt as described in [1]. With the taskset ‘|AB|’
it basically reached that limit. To avoid this high message

1796 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 4, AUGUST 2021

Fig. 7. SUM optimisation of message lifespan (Taskset ’|ABA|CDC|EFE|’).

lifespan jitter, one should consider the extra effort required
to build a synchronous TT interface with the tasks start times
aligned to the communication schedule.

As described before, the OMAX optimisation to reduce
the maximum message lifespan is most suitable for hard
real-time systems. However, the OSUM optimisation to reduce
the message lifespan sum of all messages together comes
fairly close to the OMAX optimisation in terms of minimising

also the maximum message lifespan, but brings in significant
further reductions of message lifespans, making the real-time
control system in overall more agile.

With respect to bus configuration (b(τ) for all τ∈T) it
has been shown with the given tasksets that the bus con-
figuration has a significant influence on the Tmin as well
as the Tmax values of the OMAX as well as the OSUM
optimisation.

KIRNER AND PUSCHNER: QUANTITATIVE ANALYSIS OF INTERFACES TO TT COMMUNICATION BUSES 1797

VI. SUMMARY AND CONCLUSION

This article focuses on the timing behaviour of
time-triggered (TT) communication by either using
asynchronous or synchronous TT interfaces. To do so,
we have developed a timing model for the TT communication,
which allows to calculate the time from writing a message
till the time of reading a message, which we call message
lifespan. For real-time systems we want the message lifespans
to be low and predictable. To get a predictable message
lifespan we require the message lifespan jitter to be low.

We have implemented that timing model in a tool that allows
to search for TT configuration parameters (relative task start
times and assignment of communication slots) that yield the
maximum and minimum of the message lifespan. We have
done this optimisation for both, the maximum lifespan of any
message in the system and for the sum of the lifespans of all
messages in the system. The tool also allows to plot example
schedules to visually explain the calculated message lifespans.

This timing model can be used for asynchronous TT
interfaces to obtain a precise bound of the possible message
lifespan (latency) and lifespan jitter. In addition, the timing
model can be used to configure synchronous TT systems to
obtain a minimal message lifespan with the jitter limited to
that of clock synchronisation. One important insight from
the analysis is that the bus configuration (slot assignment)
also has an important contribution to the minimisation of
the bus timing. While in industry the pragmatic approach for
the synchronous TT interface is to make a bus configuration
at the beginning and then only optimise the task offsets, our
results show that a joint optimisation of bus configuration
and task offsets could bring a significant improvement of the
message lifespan, in some cases more than a factor of 2.

REFERENCES

[1] P. Puschner and R. Kirner, “Asynchronous vs. synchronous inter-
facing to time-triggered communication systems,” J. Syst. Archit.,
vol. 103, Feb. 2020, Art. no. 101690. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1383762119304977

[2] H. Kopetz and G. Grunsteidl, “TTP—A time-triggered protocol for
fault-tolerant real-time systems,” in Proc. 23rd Int. Symp. Fault-Tolerant
Comput. (FTCS), 1993, pp. 524–533.

[3] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc. IEEE,
vol. 91, no. 1, pp. 112–126, Jan. 2003.

[4] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-
triggered Ethernet (TTE) design,” in Proc. 8th IEEE Int. Symp. Object-
Oriented Real-Time Distrib. Comput. (ISORC), 2005, pp. 22–33.

[5] ISO 17458-1:2013 Road Vehicles—FlexRay Communications System—
Part 1: General Information and Use Case Definition, Standard ISO/TC
22/SC 31, ISO 17458-1 to 17458-5, reviewed and confirmed in 2019,
International Standards Organisation, New York, NY, USA, Feb. 2013.
[Online]. Available: https://www.iso.org/standard/59804.html

[6] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” Proc. IEEE, vol. 91,
no. 1, pp. 84–99, Jan. 2003.

[7] J. Sparsø, E. Kasapaki, and M. Schoeberl, “An area-efficient network
interface for a TDM-based network-on-chip,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE). San Jose, CA, USA: EDA Consortium,
2013, p. 1044.

[8] A. Koubâa, A. Cunha, M. Alves, and E. Tovar, “TDBS: A time division
beacon scheduling mechanism for ZigBee cluster-tree wireless sensor
networks,” Real-Time Syst., vol. 40, no. 3, pp. 321–354, Dec. 2008, doi:
10.1007/s11241-008-9063-4.

[9] A. Ahmad and Z. Hanzalek, “An energy-efficient distributed TDMA
scheduling algorithm for ZigBee-like cluster-tree WSNs,” ACM Trans.
Sensor Netw., vol. 16, no. 1, pp. 1–41, Feb. 2020, doi: 10.1145/3360722.

[10] A. Varga, Recent Advances in Network Simulation (EAI/Springer
Innovations in Communication and Computing (EAISICC)). London,
U.K.: Springer, May 2019, pp. 3–51.

[11] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida, Performance by
Design: Computer Capacity Planning By Example. Upper Saddle River,
NJ, USA: Prentice-Hall, 2004.

[12] H. Kopetz and J. Reisinger, “The non-blocking write protocol NBW:
A solution to a real-time synchronization problem,” in Proc. Real-Time
Syst. Symp., Dec. 1993, pp. 131–137.

[13] P. Puschner and B. Frömel, “Composable component interfaces for
time-triggered systems,” in Proc. 8th Medit. Conf. Embedded Comput.
(MECO), Jun. 2019, pp. 1–4.

[14] P. Pop, P. Eles, and Z. Peng, “Scheduling with optimized communication
for time-triggered embedded systems,” in Proc. 7th Int. Workshop
Hardw./Softw. Codesign (CODES), May 1999, pp. 178–182.

[15] S. S. Craciunas, R. S. Oliver, and V. Ecker, “Optimal static scheduling
of real-time tasks on distributed time-triggered networked systems,” in
Proc. IEEE Emerg. Technol. Factory Autom. (ETFA). Barcelona, Spain:
IEEE Computer Society, Sep. 2014.

[16] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, Time-Triggered Com-
munication. Boca Raton, FL, USA: CRC Press, Aug. 2011.

[17] A. Minaeva, B. Akesson, Z. Hanzálek, and D. Dasari, “Time-
triggered co-scheduling of computation and communication with jitter
requirements,” IEEE Trans. Comput., vol. 67, no. 1, pp. 115–129,
Jan. 2018.

[18] H. Kopetz, “The time-triggered model of computation,” in Proc. 19th
IEEE Real-Time Syst. Symp., Dec. 1998, pp. 168–177.

[19] P. Puschner and R. Kirner, “From time-triggered to time-deterministic
real-time systems,” in Proc. 5th Work. Conf. Distrib. Parallel Embedded
Syst. (IFIP), Braga, Portugal, Oct. 2006, pp. 115–124.

[20] H. Kopetz, Real-Time Systems, 2nd ed. London, U.K.: Springer, 2011.
[21] H. Kopetz and R. Nossal, “Temporal firewalls in large distributed real-

time systems,” in Proc. 6th IEEE Comput. Soc. Workshop Future Trends
Distrib. Comput. Syst., Oct. 1997, pp. 310–315.

[22] I. Ripoll and R. Ballester-Ripoll, “Period selection for minimal hyper-
period in periodic task systems,” IEEE Trans. Comput., vol. 62, no. 9,
pp. 1813–1822, Sep. 2013.

[23] FlexRay Communications System—Protocol Specification, Version 2.0,
2nd ed., FlexRay Consortium, Jun. 2004.

http://dx.doi.org/10.1007/s11241-008-9063-4
http://dx.doi.org/10.1145/3360722

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

