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Randomized View Reconciliation in Permissionless
Distributed Systems
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Abstract— In a sybil attack, an adversary creates many fake
identities/nodes and have them join the system. Computational
puzzles have long been investigated as a possible sybil defense:
nodes that fail to solve the puzzle in time will no longer
be accepted by other nodes. However, a malicious node can
behave in such a way that it is accepted by some honest
nodes but not other honest nodes. This results in different
honest nodes having different views on which set of nodes
constitute the system. Such view divergence, unfortunately, breaks
the overarching assumption required by many existing security
protocols. Partly spurred by the growing popularity of Bitcoin,
researchers have recently formalized the above view divergence
problem and proposed interesting solutions (which we call
view reconciliation protocols). All existing view reconciliation
protocols so far have a similar Θ(N ) time complexity, with
N being the number of honest nodes in the system. As this
paper’s main contribution, we propose a novel view reconciliation
protocol whose time complexity is only Θ(ln N/ln ln N). To
achieve such an exponential improvement, we aggressively exploit
randomization. The hidden constant factor in the asymptotic
complexity of our protocol, however, is considerably larger than
in previous protocols. Concrete numerical comparisons show
that our protocol is more suitable for large-scale systems, while
existing protocols are better for smaller-scale systems.

Index Terms— Network security, protocols, peer-to-peer-
computing.

I. INTRODUCTION

SYBIL attack and computational puzzles. The sybil
attack [2] problem has attracted tremendous amount atten-

tion from researchers over the past two decades. In a sybil
attack, the adversary creates a large number of fake identi-
ties/nodes and have them join a system. The adversary can
then leverage them to effectively launch various follow-up
attacks. Sybil attacks exploit the fact that modern distributed
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systems are typically permissionless and cannot rely on public
key infrastructures, in the sense that they allow nodes to join
the system without for example, going through an identity
check based on credit card numbers to get permission to join.

Computational puzzles [3], [4] have long been investigated
as an approach to defend against sybil attacks. With compu-
tational puzzles, every node is asked to complete some non-
trivial computational task simultaneously. If a node fails to
complete such a task within some specific time constraint, then
the node’s identity will no longer be accepted by other nodes.
If the attacker has limited computational power per time unit
(e.g. only 10%) as compared to the aggregate computational
power per time unit of all the N honest nodes, then the
number of malicious nodes it can sustain in a sybil attack
will also be limited (e.g., at most 0.1N malicious nodes). The
developments of Bitcoin [5] in recent years have spurred much
renewed interest in this well-known approach.
View divergence. Using computational puzzles, by itself, is
yet not sufficient to offer a security basis for many per-
missionless distributed systems, for the following reason. In
permissionless distributed systems, there is often no trusted
central authority. Thus each honest node u will need to
determine itself whether another node v should be accepted
as part of the system. A malicious node v may then cooperate
with u for the verification of its solution to the computational
puzzle, but not with another honest node w. This results in
different honest nodes having different views on which set of
nodes should form the system. A further complication is that
v (which is malicious) will also have its own view, and v can
include many other sybil nodes in its view. At this point, we
end up dealing with a (potentially infinite) set of nodes each
with their own view about the membership of the system. An
example scenario is given in Figure 1.

Such view divergence, unfortunately, breaks the basis of
many security protocols in distributed systems: For example
byzantine consensus protocols (e.g., [6]–[12]) and secure
multi-party computation protocols (e.g., [13]–[15]) typically
assume an agreed-upon set of nodes running the protocol. As
another example, protocols for building dynamic and robust
overlay networks [16], [17] typically have a bootstrapping
stage during which they also assume an agreed-upon set of
nodes running the protocol.
State-of-the-art protocols. Partly spurred by the growing
popularity of Bitcoin [5], researchers have recently formal-
ized [18], [19] the above view divergence problem, and
proposed interesting solutions. Specifically, in CRYPTO 2015,
Andrychowicz and Dziembowski [18] proposed a protocol
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Fig. 1. An example of how using computational puzzle leads to view divergence. Consider two honest nodes A and B, and one malicious node C. Each
node obtains a solution by solving a computational puzzle (Figure 1a). The puzzle solution is then sent to other nodes (Figure 1b). However, a malicious
node C may instead decide to send its solution to A but not to B (Figure 1b). This results in honest nodes A and B having different views on which set of
nodes should form the system (Figure 1c). Furthermore, the malicious node C will also have its own view, which it may construct arbitrarily (Figure 1c).

enabling the honest nodes to agree on a final view which
is guaranteed to contain all N honest nodes and no more
than a certain threshold number (f · N ) of malicious nodes.
Katz et al. [19] proposed another protocol offering similar
functionalities. For convenience, we refer to all such protocols
as view reconciliation protocols – namely protocols that enable
all the nodes, starting from divergent views, to obtain the same
final reconciled view. While the existing view reconciliation
protocols are quite different from each other in terms of
algorithmic techniques, all of them [18], [19] require Θ(N)
rounds of execution time. Here each round needs to be long
enough to accommodate message propagation delay in the
network as well as some amount of local processing.
Our central result. As our main contribution, this paper
proposes and analyzes a novel randomized view reconciliation
protocol, called RandomizedViewReconciliation or RVR. We
prove that RVR only takes Θ( ln N

ln ln N ) rounds to terminate.1

Relatively speaking, our protocol is an exponential improve-
ment over the state-of-the-art Θ(N) protocols [18], [19].

The hidden constant factor in the asymptotic complexity of
RVR, however, is considerably larger than in previous proto-
cols. In our concrete numerical comparisons, RVR outperforms
other protocols [18], [19] in large-scale systems (e.g., with
10k nodes), and the advantage of RVR increases with the
system size. On the other hand, some existing protocol [19],
despite its linear round complexity, requires fewer number of
rounds than RVR in smaller-scale systems. As one example of
large-scale permissionless system, currently Bitcoin already
has about 10k daily-active full nodes [20]–[22]. As another
reference point, Algorand [23] is a recently proposed Proof-
of-Stake cryptocurrency from MIT. It has been successfully
commercialized [24] and attracted $4 million dollars of initial
funding [25]. In its experiments, Algorand has considered 5k
to 50k users. Finally, we note that for permissionless systems
relying on computational puzzles, having too small a scale
(e.g., a few hundred nodes) is inherently undesirable, since it
substantially reduces the malicious computation power needed
for an external attacker to break the system.

1If the error probability δ (see definition later) is not viewed as a constant,
then this will be Θ( ln N

ln ln N
ln 1

δ
).

Our RVR protocol currently assumes that the adversary’s
computational power is no more than the aggregate computa-
tional power of fN honest node, with f being any constant
smaller than 1

3 . In comparison, [19] can tolerate all f < 1,
while [18] can even tolerate f > 1 (though in most cases,
to provide useful functionality later on, f needs to be below
1 anyway). Hence our protocol imposes a stronger restriction
on the adversary’s power than the existing protocols. It is our
future work to investigate how to generalize to f ≥ 1

3 .
On the other hand, despite requiring f to be smaller than 1

3 ,
we believe that RVR still constitutes an interesting and novel
design choice in the solution space. For example, one potential
application of RVR is for bootstrapping a robust overlay or
for bootstrapping a genesis block in cryptocurrency protocols
(see Section II). Cryptocurrency protocols often already have
some restrictions on f . For example for its implementation,
Algorand [23] assumes that the fraction of honest users is 80%
(see Figure 3 of [23]), which corresponds to f = 1

4 by our
definition of f . Hence if used in Algorand, the assumption
needed by RVR is already satisfied. As another example,
the Elastico cryptocurrency protocol [26] uses f = 1

3 as its
parameter.2 This is close to our requirement of f being any
constant smaller than 1

3 .
Finally, our RVR protocol has similar communication com-

plexity as previous protocols per round: Each honest node in
our protocol sends on expectation Θ(N ln N) bits per round,3

as compared to Θ(N) in previous protocols [18], [19]. But the
total number of bits sent by each honest node in our protocol
(i.e., Θ(N ln2 N

ln lnN )) is much smaller than in previous protocols
(i.e., at least Θ(N2)).
Our approach. A key commonality among the existing view
reconciliation protocols [18], [19] is that they are all determin-
istic (excluding invocations to crypto primitives). To decrease
the time complexity, we aggressively exploit randomization
and to allow a positive and tunable error probability δ. On
the surface, having a positive error probability seems to be
rather unacceptable for a security protocol. But even basic
crypto primitives (such as public key crypto used in [18],

2The Elastico paper [26] states that f = 1
4

, but their definition of f is
different from ours — when translated to our definition, their f is actually 1

3
.

3If the error probability δ (see definition later) is not viewed as a constant,
then this will be Θ(N ln N

δ
).
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[19]) have a positive probability of error: For example, the
adversary might correctly guess the private key. This means
that strictly speaking, even those previous protocols [18], [19]
have positive error probability. The crux in our approach
thus is to ensure that i) our error probability δ is tunable,
and ii) δ decreases exponentially with the overhead of the
protocol (as in the case of crypto primitives). Specifically in
our RVR protocol, if δ were not viewed as a constant, then as
δ approached zero, the time complexity of our RVR protocol
would be Θ( ln N

ln ln N ln 1
δ ) rounds. Thus increasing the number

of rounds decreases δ exponentially.
Allowing randomization opens up a lot of possibilities for

better performance. For example, we will use computational
puzzles to elect leaders, probabilistically. This differs from
[18], [19] where the puzzles are used solely to challenge
the computational power of the nodes. Our protocol will
also rely on randomized gossiping and randomized sampling
to achieve its end goal. While these techniques are largely
commonly-used tricks in randomized algorithms, we show that
combining these commonly-used techniques gives us a new
view reconciliation protocol in the solution space.
Roadmap. Section II discusses related work, while Section III
formalizes the view divergence problem. Section IV gives an
overview of our RVR protocol, and Section V through VII
elaborate on the key subroutines in RVR. Finally, Section VIII
puts everything together and Section IX provides some numer-
ical examples.

II. RELATED WORK

View reconciliation protocols. Computational puzzles [3], [4]
have been investigated extensively for defending against sybil
attacks in various contexts (e.g., [5], [27]–[29]). This work
focuses on the view divergence problem that stems from the
use of computational puzzles. Section I has already discussed
the key differences between our RVR protocol and the two
existing view reconciliation protocols [18], [19]. In addition,
none of [18], [19] use randomization or the leader-based
paradigm as we do, and none use any components similar
to our three key subroutines.
Byzantine consensus protocols. Byzantine consensus proto-
cols (e.g., [6]–[12]) are different but quite related to view
reconciliation protocols. Both kinds enable the honest nodes
to agree on something. But byzantine consensus protocols
typically have the implicit assumption that the protocols are
run over some given set of nodes. For example, a protocol
typically assumes that there are (1 + f)N nodes running the
protocol, where the identities of these (1 + f)N nodes are
agreed upon by every node prior to the protocol. In our context,
we do not have any given and agreed-upon set of nodes. In
fact, establishing some agreed-upon set of (1 + f)N nodes
is precisely the goal of the view reconciliation problem itself.
It is worth noting that [6] explicitly deals with sybil attacks.
But the work still assumes an agreed-upon set of nodes, and
explicitly leaves the implementation of such an assumption to
future work.

While byzantine consensus protocols cannot solve the view
divergence problem, one can nevertheless build upon ideas
from them. For example, the two existing view reconciliation

protocols [18], [19] both build upon ideas from [9]. Our RVR
protocol also builds upon a well-known leader-based para-
digm [7], [12] widely used in byzantine consensus protocols.
While this general paradigm has been well-known for decades,
we implement such a paradigm under a setting where there is
no agreed-upon set of nodes to start with.
Bitcoin. While Bitcoin [5] is an excellent example of per-
missionless large-scale distributed system, Bitcoin itself does
not solve the view divergence problem. In fact, the recently
discovered network-level eclipse attack [30] on Bitcoin is
one ultimate consequence of view divergence. Using a view
reconciliation protocol to bootstrap, and then dynamically
maintaining a robust overlay [16], [17] will offer a provable
defense against such eclipse attacks in Bitcoin.

Recently, researchers have used the Bitcoin protocol (or its
variants) as a building block to solve other problems in the
permissionless settings, such as for achieving consensus and
electing a committee (e.g., [31]). Solving these problems in
the permissionless settings, in turn, would enable one to solve
the view divergence problem. However, such an approach
necessarily inherits all the assumptions needed by the Bitcoin
protocol. In particular, the Bitcoin protocol assumes the exis-
tence of a genesis block, which is unpredictable, agreed upon
by all honest nodes, and released to all nodes simultaneously.
As a direct contrast, our RVR protocol, as well as the previous
view reconciliation protocols [18], [19], avoids such a critical
assumption, by solving the view divergence problem directly
rather than indirectly via Bitcoin.
Follow-up work. As an update, after the conference ver-
sion [1] of this work had been published, and while this
manuscript was under review for this journal, Aggarwal et
al. [32] did some follow-up work to RVR. They sketched out
an improved protocol that further reduces the time complexity
to O(1) rounds. But they did not provide full protocol details,
formal proofs, or concrete numerical results. Their protocol
also leverages randomization and builds upon some of the
techniques in RVR. To achieve O(1) complexity, they first
elect a small committee, then reconcile the views of the
committee members, and finally have other nodes adopt the
view of the committee.

III. PROBLEM FORMULATION

Since the view divergence problem has already been pre-
vious formulated in [18], [19], this section will follow the
existing formulation in [18], to the extent possible. The key
notations used in this paper are summarized in Table I.
System model and attack model. The system has N honest
nodes that always follows the protocol. The honest nodes do
not know N , and the lack of such knowledge will be one
technical difficulty that we overcome. Each honest node holds
a (locally and randomly generated) public/private key pair, and
the public key is the unique identity of the node. To simplify
discussion, we will often simply use “node” to refer the public
key of that node. Whenever a node sends a message, it includes
its public key (as the sender’s “identity”) and then append
a digital signature. Each node also has an IP address and a
port number. Each honest node has one unit of computational
power.
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TABLE I

KEY NOTATIONS

The adversary can have an unlimited number of malicious
nodes, public/private key pairs, IP addresses and port numbers.
Malicious nodes are byzantine and colluding. Independent
of the number of malicious nodes, the adversary has total
fN units of computational power, for some constant f . The
adversary may spoof the IP addresses of the honest nodes, and
can inject arbitrary messages into the network. It also sees all
messages in the network. But the adversary cannot corrupt or
remove a message from the network. The adversary cannot
break crypto primitives such as digital signatures.

To allow a direct comparison, we follow [18], [19] and
assume that the honest nodes are synchronized. Time is
divided into rounds, where each round is sufficiently long
for every honest node to do some local processing and for
all messages sent at the beginning of the round to reach the
corresponding receivers by the end of that round. Our protocol
actually works even if the honest nodes are “out-of-sync” with
each other when starting the protocol (see Section IV).
Hash functions and security parameter. We will use hash
functions for various purposes in our protocol. When proving
the formal guarantees, we follow [18] and model all our
hash functions as random oracles [33]. The outputs of the
hash functions will be viewed as integers in the range of
[0, max_hash]. We use m to denote the number of hash
operations that one unit of computational power can perform
in one round. For simplicity, all asymptotic complexities in
this paper treat the length of security keys, hashes, nonces,
and so on, as O(1).4

View reconciliation. In the view reconciliation problem, each
node u has an initial view init_viewu, which is a set
of nodes (i.e., the public keys of the nodes). The initial
views are established using computational puzzles, via some
existing approach (which we will review later). For all hon-
est node u, init_viewu contains all the N honest nodes
(since each honest node can properly solve one puzzle). Let
union_honest_init_view be the union of the initial views
of all the honest nodes. Then union_honest_init_view

4If needed, one could use a security parameter λ, in which case the
asymptotic time complexity of RVR and the previous protocols [18], [19]
will not be affected, while the communication complexities in all cases will
increase by a factor of Θ(λ).

contains at most fN malicious nodes. This constraints come
from the adversary being able to solve only fN puzzles. Note
that each puzzle solution corresponds to a single malicious
node v, since the puzzle is tied to the public key of v. For
malicious node v and honest nodes u and w, the adversary
can cause v to be included only in init_viewu and not in
init_vieww, thus causing view divergence.

The goal of view reconciliation is to give each honest node
u a final view final_viewu such that i) the final views of
all honest nodes are identical, and ii) the final view contains
all the N honest nodes and at most fN malicious nodes.
One may observe that the set union_honest_init_view
already satisfies these properties. But it is difficult to determine
union_honest_init_view, since we do not know which
nodes are honest.
Establishing the initial views. The initial views on the
nodes can be established using similar approaches in existing
works [6], [18], [19]. This is not our contribution, not part of
the view reconciliation problem, and not part of RVR. Hence,
we only provide a concise review below.

First, there needs to be some mechanism for the nodes to
initially learn about each other. This is addressed in [18],
[19] by assuming the existence of some (insecure) public
channel. Every node may post messages to the public channel.
A message posted by an honest node will be received by all
honest nodes, while a message posted by a malicious node may
reach any subset (as chosen by the adversary) of the honest
nodes. This public channel can be implemented by flooding.

Now if every node posts to the public channel its pub-
lic key, IP address/port, together with a digital signature,
then every node u will learn about all the honest nodes,
together with some arbitrary number of malicious nodes. Let
this set be pre_init_viewu. Next every u in the system
will simultaneously send a random challenge to all nodes
in pre_init_viewu A receiving node v will combine all
the challenges it receives (e.g., using a Merkle tree) into a
single challenge. Node v will then solve a computation puzzle
instantiated by the challenge, and then send back the puzzle
solution (as well as the Merkle proofs) to each node u from
which v received a challenge. Once u verifies the solution and
the proof, u will include v in init_viewu. For simplicity, we
will assume that an honest node v can always successfully
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Algorithm 1 RandomizedViewReconcile or RVR in short
input: f , δ, offset, u, init_viewu, m; output: final_viewu;

1: viewu = init_viewu;
2: repeat 6 ln 2

δ times do
3: leader = ProbLeaderElect(f, offset, u, init_viewu, m);
4: scoreu[·] = TwoStageSample(f, δ, offset, u, init_viewu, viewu);
5: foreach v do
6: if scoreu[v] ≥ 0.50 then add v to proposalu;
7: if scoreu[v] ≥ 0.75 then add v to overu;
8: if scoreu[v] ≤ 0.25 then add v to underu;
9: proposal = CoordinatedGossip(f, δ, offset, u, viewu, init_viewu, leader, proposalu);

10: viewu = overu ∪ (proposal \ underu);
11: offset = 2; //offset is 2 once gossiping is done
12: end
13: final_viewu = viewu;
14: return final_viewu;

solve the puzzle, while the adversary can solve total no more
than fN puzzles here.

IV. OUR PROTOCOL: RANDOMIZED VIEW

RECONCILIATION

This section provides an overview of our novel
RandomizedViewReconcile (or RVR in short) protocol.
Messages with signatures. In RVR, each node u maintains
a view (viewu) that can change over time. Initially, viewu =
init_viewu, and at the end of the protocol, final_viewu

will be set to viewu. Throughout the protocol, u only sends
messages to and receives messages from node in its initial
view init_viewu. A message always contains the sender,
the receiver, a sequence number, and a digital signature, to
enable authentication as well as to prevent replay attacks. A
node u will discard all message received from nodes not in
init_viewu, and also all messages whose sequence numbers
are not expected. RVR has a certain number of iterations (see
Algorithm 1), and the iteration number is also included in
a message. In a particular iteration, a node will only use
messages with the corresponding iteration number. To be
concise, we will not explicitly mention these mechanisms in
the pseudo-code or in the discussion.
Non-simultaneous start. Different honest nodes do not have
to start running RVR at the same time. When we say that all
honest nodes starts executing a certain protocol within offset
rounds of each other, we mean that the time between the first
honest node starting and the last honest node starting is at most
(offset−1) rounds. Hence offset = 1 means simultaneous
start. The value of offset will be fed into our protocol as a
parameter.

Allowing offset ≥ 2 enables our protocol to work even if
the nodes are not perfectly in sync. Furthermore, even if all
the nodes start simultaneously, due to the lack of knowledge of
N , the nodes may get out-of-sync in the CoordinatedGossip
subroutine. Hence we will need to allow offset in all other
parts of our protocol anyway.

Overview of design. RVR has a certain number of iterations
(see Algorithm 1). At a high level, we build upon a well-
known leader-based paradigm [7], [12] (see Section II for
discussion on related work): In each iteration some leader
proposes a certain view to all the nodes. The protocol ensures
that if the leader is honest, then all nodes will properly
adopt the proposal. This adopted proposal (i.e., view) will
already contain N honest nodes and at most fN malicious
nodes, which means that it has all the desired properties. The
protocol further ensures that in later iterations, even if the
leader is malicious, the previously adopted proposal will not be
disrupted — namely, the (bad) proposal made by a malicious
leader will not be adopted (see proof of Theorem 8).
Three key subroutines. Our overarching approach in RVR
to achieving small time complexity is to aggressively rely
on randomization, and then carefully ensure that the error δ
resulted from randomization can be decreased exponentially.
Specifically, RVR uses three key subroutines, all of which
are randomized. The first ProbLeaderElect subroutine aims to
elect an honest leader in the system. Doing so perfectly will be
challenging — we have unlimited number of malicious nodes
in the system. But fortunately, the leader election here does not
need to be always correct. Hence we elect the leader by simply
having the nodes solve computational puzzles. Whoever solves
the puzzle will become the leader. It is certainly possible
to have multiple nodes solving the puzzles at roughly the
same time, which would result in multiple leaders. This gets
further complicated when the nodes do not start executing
ProbLeaderElect simultaneously. Section V will show that
with a proper puzzle difficulty, we can nevertheless ensure
a positive constant probability of having a unique and honest
leader.

The CoordinatedGossip subroutine allows the elected leader
to disseminate its proposal to all honest nodes, via randomized
gossiping. A difficulty here is that because the honest nodes
do not know N , they may disagree on how many rounds they
should gossip for. As a result, they may get out-of-sync with
each other when they finish CoordinatedGossip. Making them
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Algorithm 2 ProbLeaderElect

input: f , offset, u, init_viewu, m; output: leader;

1: generate fresh challengeu and send 〈u, challengeu〉 to all nodes in init_viewu;
2: spend offset rounds receiving messages in the form of 〈w, challengew〉;
3: form a Merkle tree with all the challengew’s received as leaves, and let rootu be the root of the Merkle tree;
4: spend 6 · offset rounds trying to find x such that hash(x,u,rootu)

max_hash ≤ 1
6m(1+f)|init_viewu|·offset ;

5: if such x were found, send 〈x, u, rootu, off_path_hashes〉 to all nodes in init_viewu;
6: spend offset rounds receiving messages in the form of 〈y, w, rootw, off_path_hashes〉;
7: leader = null;
8: foreach 〈y, w, rootw, off_path_hashes〉 received do
9: if off_path_hashes validates properly and hash(y,w,rootw)

max_hash ≤ 1
6m|init_viewu|·offset then leader = w;

10: return leader;

fully synchronous would require solving the classic byzantine
firing squad problem [34]. Unfortunately, byzantine firing
squad protocols typically assume that the protocols are run
over some given set of nodes (which we do not have until after
view reconciliation is complete). To overcome this difficulty,
we will design a simple mechanism so that the nodes will
return from CoordinatedGossip within 2 rounds (instead of 1
round, which would imply perfect synchrony) of each other.

Finally, in the leader-based paradigm, when the leader forms
its proposal and when a node decides whether to adopt the
leader’s proposal, they need to collect the current views of
all the honest nodes. Naturally in our setting, a node u
will conceptually collect the views of all those nodes in
init_viewu. Doing so directly entails large communication
complexity, hence we instead randomly sample some of the
nodes for their views. A tricky part is that the malicious
nodes either may request for too many samples (hence blow-
ing up communication complexity) or may push samples
aggressively to other nodes (hence causing their views to
be over-represented). We will use two-stage sampling in our
TwoStageSample subroutine to overcome this issue.
Provable guarantees. Algorithm 1 gives the pseudo-code for
the RVR. We defer a more detailed discussion of the pseudo-
code and the formal analysis to Section VIII, after we elaborate
the three key subroutines in Section V through VII.

V. PROBABILISTIC LEADER ELECTION

Conceptual design. Recall that RVR allows a δ probability
of error. We say that ProbLeaderElect succeeds if it elects
a unique leader and the elected leader is an honest node.
As long as ProbLeaderElect succeeds with some constant
probability (e.g., 0.16 as in our proof later), repeating it for
O(ln 1

δ ) times can already guarantee at least one success with
1 − δ probability. By our design of RVR, we only need one
successful iteration anyway, to achieve our final goal.

This leads to the following design: We will exploit the limit
on the adversary’s computation power. We let all the nodes in
the system solve computational puzzles. Whoever solves the
puzzle will claim itself as the leader, by directly notifying
all other nodes. ProbLeaderElect fails if i) a malicious node
solves the puzzle, or ii) none of the honest nodes solve the
puzzle, or iii) more than one honest nodes solve the puzzle. By

choosing a proper puzzle difficulty, we will be able to properly
bound the probability of these three events away from 1.
Details of the design. Algorithm 2 gives the pseudo-code
for ProbLeaderElect. To instantiate the computational puzzles,
each node w generates a fresh random nonce as challengew

at Line 1 and sends to every node in vieww. Each node u
will collect challenges from all nodes in init_viewu, and
then construct a standard Merkle tree with root rootu. Next u
will spend 6 ·offset rounds (at Line 4) trying to find a solu-
tion x such that hash(x,u,rootu)

max_hash ≤ 1
6m(1+f)|init_viewu|·offset .

(We will explain this threshold later.) If u finds such x, it
will notify every node w in init_viewu, while including a
standard Merkle proof showing that challengew has been
included in the Merkle tree, if any. Node w will validate (at
Line 9) that the solution x is for a sufficiently hard puzzle,
by checking that hash(x,u,rootu)

max_hash ≤ 1
6m|init_vieww |·offset . The

threshold 1
6m|init_vieww |·offset here is such that regardless

of the values of |init_viewu| and |init_vieww|, a puzzle
solution obtained at Line 4 on an honest node u can always
be validated at Line 9 on an honest node w. Furthermore,
the threshold 1

6m|init_vieww|·offset is such that on expectation
in the system, there will roughly be one honest node finding
a puzzle solution. However, this threshold may allow the
malicious nodes to solve a somewhat easier puzzle, which will
be addressed when we prove the guarantees of the subroutine.
Provable guarantees. Theorem 1 proves the complexity
and success probability of ProbLeaderElect. Our proof will
properly take care of the fact that the malicious nodes may
i) solve easier puzzles, and ii) have more time to solve the
puzzles compared to the honest nodes.

Theorem 1: Assume that m ≥ 1, N ≥ 1000, and f < 1
3 . If

all honest nodes start running ProbLeaderElect within offset
rounds of each other, then:

• Each honest node returns after exactly 8 ·offset rounds,
while sending Θ(N ln N) bits in each round.

• With probability at least 0.16, ProbLeaderElect returns
the same leader on all honest nodes and the leader
returned is an honest node.

Proof: We only prove the second claim since the first
claim is trivial. First consider all the honest nodes. Let h
denote the total number of hash operations performed at Line 4
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Algorithm 3 CoordinatedGossip

input: f , δ, offset, u, init_viewu, leader, proposalu; output: proposal;

1: if u �= leader then proposal = null else proposal = proposalu (attached with a signature from u);
2: count = 0;
3: repeat 3 ln |init_viewu|

2 ln ln |init_viewu| + offset rounds do
4: // each iteration here takes one round
5: if proposal �= null and |proposal| ≤ (1 + f)|init_viewu| then
6: send proposal (together with the attached signature) to 8 ln |init_viewu|

δ uniformly random nodes chosen from
init_viewu;

7: for each message msg received do
8: if msg = msg_fin then increment count
9: else if msg has leader’s signature attached then proposal = msg;

10: if count > f
1+f · |init_viewu| then break;

11: end
12: send msg_fin to all nodes in init_viewu;
13: wait until msg_fin is received (including msg_fin received at Line 7) from at least |init_viewu|

1+f nodes;
14: return proposal;

across all N honest nodes. Hence we have h = 6mN ·offset.
The threshold at Line 4 may range from 1

6mN(1+f)2·offset
to 1

6mN(1+f)·offset on different u’s. Let p be the probability
of a hash operation done by any honest node finding a
solution x at Line 4. We thus have 1

6mN(1+f)2·offset ≤ p ≤
1

6mN(1+f)·offset . Note that a solution x found by an honest
node at Line 4 is guaranteed to pass the checking at Line 9
on every honest node w, since the threshold at Line 9 is

1
6m|init_vieww|·offset ≥ 1

6mN(1+f)·offset .
Next consider the malicious nodes. Let h′ denote the total

number of hash operations done by the fN malicious nodes,
in their attempts to find a solution to the puzzle. A malicious
node will have at most 8 · offset rounds to solve the
puzzle.5 Thus h′ ≤ 8fmN · offset. For a puzzle solution
y from some malicious node w to be validated properly by
honest node u at Line 9 of u’s execution, we need to have
hash(y,u,rootw)

max_hash ≤ 1
6m|init_viewu|·offset . Hence hash(y,u,rootw)

max_hash

needs to be no larger than 1
6mN ·offset , in order for y to be

possibly validated on any honest node. Let p′ be the probability
of a hash operation done by any malicious node finding a
solution y such that hash(y,rootw)

max_hash ≤ 1
6mN ·offset . We have

p′ ≤ 1
6mN ·offset .

Let E1 denote the event that ProbLeaderElect returns the
same leader on all honest nodes with leader being an
honest node, and let E2 denote the event that exactly one
hash operation done by some honest node finds a solution
at Line 4 and no other hash operations (done by honest or
malicious nodes) find a solution. Based on the ranges of p and

p′, we have: Pr[E1] ≥ Pr[E2] ≥ h ×
(

1
6mN(1+f)2·offset

)1

×
(
1 − 1

6mN(1+f)·offset
)h−1

× (
1 − 1

6mN ·offset
)h′

.

Plugging in h and h′, and with some manipulation,
one can eventually show that for m ≥ 1, N ≥ 1000,

5The malicious node may successfully obtain challenges from all the honest
nodes at the very beginning, spend 8 · offset rounds, and then finally send
the puzzle solution right before the honest nodes stops receiving solutions.

and f < 1
3 , the above probability is at least:

1
(1+f)2 · 0.36

1
1+f · 0.36

4f
3 > 0.16.

VI. COORDINATED GOSSIPING

Conceptual design. CoordinatedGossip aims to disseminate a
message (i.e., proposalleader) from the leader to all honest
nodes, after ProbLeaderElect has been invoked and succeeded.
If ProbLeaderElect did not succeed, we will not care about the
correctness of CoordinatedGossip (though we still care about
its performance overhead).

The basic idea in CoordinatedGossip is simple and
well-known: leader will first generate a signature on
proposalleader. Next in each round, each node u will relay
proposalleader, together with the signature, to O(log N

δ )
nodes in u’s current view. Before relaying, a node needs
to check proposal’s size to avoid sending too many bits
when the leader is malicious. A receiving node will ver-
ify leader’s signature before accepting it. We will prove
that 3 ln N

2 ln ln N rounds is sufficient for all honest nodes to
receive proposalleader with probability close to 1. During
such gossiping process, each node only sends O(N ln N

δ )
bits per round. In comparison, directly having leader send
proposalleader to all nodes in its view would require leader
to send Ω(N2) bits. Gossiping has also been widely used for
reducing the communication overhead in related contexts, for
example, in distributed consensus protocols (e.g., [35]–[38]).
Our approach here is similar, except that we are applying gos-
siping in a view reconciliation protocol under a permissionless
setting.

The only difficulty in CoordinatedGossip is that the nodes
do not know N , and hence do not know for how many rounds
they should gossip. Each node u does have init_viewu, and
can use |init_viewu| in place of N for calculating 3 ln N

2 ln ln N .
However, |init_viewu| is different on different u’s. This
means that two nodes u and w may spend different number
of rounds in running CoordinatedGossip. A further problem
is that CoordinatedGossip will be invoked multiple times in
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RVR, making u and w more and more out-of-sync each time
the subroutine is invoked. Making all the nodes return from
CoordinatedGossip simultaneously would correspond to the
classic byzantine firing squad problem [34]. Unfortunately,
same as typical byzantine consensus protocols, byzantine firing
squad protocols [34] also have the implicit assumption that the
protocols are run over some given set of nodes.

In CoordinatedGossip, we do not make all the honest
nodes return in the same round. Rather, we ensure that there
exists some r, such that each honest node either returns in
round r or in round r + 1. Achieving this will be much
easier than solving the byzantine firing squad problem under
our setting. Furthermore, our guarantee continues to hold
even if the nodes do not start executing CoordinatedGossip
simultaneously. This ensures that the “out-of-sync” will not
accumulate over multiple invocations of the subroutine.
Details of the design. Algorithm 3 gives the pseudo-code
for CoordinatedGossip. Our central goal here is to ensure
that all honest nodes return within two rounds of each other.
To achieve this, when a node u has finished its gossip-
ing, it will send out a special msg_fin message to all
nodes in init_viewu. Node u will then wait until it has
received msg_fin from |init_viewu|

1+f nodes in init_viewu (at
Line 13), before u finally returns from the subroutine. Note
that |init_viewu|

1+f ≤ N and init_viewu always contains N
honest nodes. Hence as long as all N honest nodes send out
msg_fin, u is guaranteed to eventually receive msg_fin from
a sufficient number of nodes and return.

Let r be the round during which u returns. Consider any
other honest node v. We want v to return no later than round
r + 1. To achieve this, we let v break from the gossiping
process and move on (at Line 10), as long as v has received
msg_fin from more than f

1+f · |init_viewv| nodes in its
view. We will be able to prove later that at least one node
out of all these f

1+f · |init_viewv| nodes must be honest.
Hence, the malicious nodes by themselves will not be able
to trick v into breaking prematurely. At the same time, note
that u’s returning in round r (at Line 13) implies that u has
received msg_fin from |init_viewu|

1+f nodes. We will be able

to prove later that, out of these |init_viewu|
1+f nodes, at least

(1−f)N nodes are honest. Hence v will also receive msg_fin
from at least (1 − f)N nodes in its view in round r. Since
(1 − f)N > fN ≥ f

1+f · |viewv| for all constants f < 1
3 ,

these msg_fin messages will be sufficient for v to break from
the gossiping process (at Line 10). We will later prove that v
will then return in the next round.
Provable guarantees. The following theorem presents the
complexity of CoordinatedGossip, and further proves that
i) all honest nodes will return within two rounds of each
other from CoordinatedGossip, and ii) there will be a suf-
ficient number of rounds during which all honest nodes are
gossiping.

Theorem 2: Assume f < 1
3 . If all honest nodes start

executing CoordinatedGossip within offset rounds of each
other, then:

1) Each honest node sends Θ(N ln N
δ ) bits in each round

of the execution;

2) Each honest node spends at most 3 ln((1+f)N)
2 ln ln((1+f)N) + (2 ·

offset) + 1 rounds before returning from the subrou-
tine;

3) All honest nodes will return within 2 round of each
other;

4) There are at least 3 ln N
2 ln ln N rounds during which all honest

nodes are executing the loop at Line 3.

Proof:

1) Obvious from the pseudo-code.
2) Every honest node u will eventually reach Line 12

and send msg_fin to all nodes, no later than
3 ln((1+f)N)

2 ln ln((1+f)N) + offset + 1 rounds after u starts exe-
cuting CoordinatedGossip. For any other given honest
node v, u will send its msg_fin message no later than
3 ln((1+f)N)

2 ln ln((1+f)N) + (2 · offset) + 1 rounds after v starts
executing CoordinatedGossip. There will be total N
such u’s. Receiving finished messages from all of them
will enable v to return.

3) Let round r be the first round during which one or more
honest nodes return. Let u be one such honest node,
where init_viewu contains N honest nodes and aN
malicious nodes, for some a where 0 ≤ a ≤ f . Consider
any other honest node v. We claim that if v does not
return in round r, then it must return in round r + 1.
To see why, note that u must have received msg_fin
(at Line 13) from |init_viewu|

1+f = 1+a
1+f N nodes by round

r. At least 1+a
1+f N − aN such messages must be from

honest nodes. For all f < 1
3 , we have 1+a

1+f N − aN =
1−af
1+f N ≥ (1 − f)N > fN ≥ |viewv| f

1+f . This means
that v must satisfy the condition at Line 10 by round r,
and thus break from the loop. Once v breaks, in round
r + 1, it will send out msg_fin. In fact, such argument
applies to all honest nodes, and they will all have sent
out msg_fin by round r + 1. All these N ≥ |viewv|

1+f
msg_fin messages will be received by v and enable v
to return in round r + 1.

4) For all honest node u, we have N ≤ |init_viewu| ≤
(1 + f)N , and hence the number of iterations in the
loop at Line 3 will be from 3 ln N

2 ln lnN + offset to
3 ln((1+f)N)

2 ln ln((1+f)N) + offset. Since all honest nodes starts
executing CoordinatedGossip within offset rounds of
each other, there will be at least 3 ln N

2 ln ln N rounds during
which all honest nodes are executing the loop, unless the
condition at Line 10 is satisfied during these rounds. To
prove that the condition is not satisfied, we need to show
that those msg_fin messages from the malicious nodes
will never be sufficient to satisfy the condition. Consider
any honest node u where init_viewu contains N
honest nodes and aN malicious nodes, for some a where
0 ≤ a ≤ f . For the condition at Line 10, it is easy to
verify that f

1+f · |init_viewu| = f
1+f · (1 + a)N ≥

aN . This means that the condition for u will never be
satisfied by those msg_fin messages from those aN
malicious nodes.



HOU et al.: RANDOMIZED VIEW RECONCILIATION IN PERMISSIONLESS DISTRIBUTED SYSTEMS 1933

The next theorem proves the success probability of
CoordinatedGossip:

Theorem 3: Assume that N ≥ 1000, δ ≤ 0.1, and f <
1
3 . If i) all honest nodes start executing CoordinatedGossip
within offset rounds of each other, ii) all honest nodes
invoke CoordinatedGossip using the same leader parameter,
iii) leader is an honest node, and iv) |proposalleader| ≤
(1 + f)N , then with probability at least 1 − 1

4000 , all honest
nodes return proposalleader.

Proof: First, because of the signature verification at
Line 9, only the leader’s proposal will ever be adopted at
Line 9. Furthermore, because |proposalleader| ≤ (1+f)N ≤
(1 + f)|init_viewu|, a node that has adopted the leader’s
proposal will always send the proposal in Line 6. In any
given round, we call an honest node as a black node if it
has adopted the leader’s proposal at Line 9. Otherwise the
honest node is a white node. A malicious node is neither black
nor white. Theorem 2 has proved that there are at least 3 ln N

2 ln lnN
rounds during which all honest nodes are executing the loop
at Line 3. For convenience, in this proof, number these rounds
as round 1 through 3 lnN

2 ln ln N . For any given round r between
1 and 3 ln N

2 ln ln N , define br to be the number of black nodes at
the end of that round. We will separately prove the following
two key equations:

Pr[b ln N
ln ln N

≥ 0.2N ] ≥ 1 − 1
8000

(1)

Pr[b 3 ln N
2 ln ln N

= N | b ln N
ln ln N

≥ 0.2N ] ≥ 1 − 1
8000

(2)

Combining these two via a union bound will directly lead to
the theorem.

We first prove Equation 2, which is easier. Since b ln N
ln ln N

≥
0.2N , starting from the beginning of round ln N

ln lnN +1, in each
round we have at least 0.2N black nodes. We call a black
node’s sending view′ at Line 6 as a push. Each black node
u does 8 ln |init_viewu|

δ ≥ 8 ln N
δ pushes per round. Hence

from round ln N
ln ln N to round 3 ln N

2 ln ln N , there will be at least total

0.2N · 8 ln N
δ · ln N

2 ln ln N = 0.8 · N ln N · ln N
δ

ln ln N > 3.6N ln N
pushes (since N ≥ 1000 and δ ≤ 0.1). There are at most 0.8N
white nodes at the end of round ln N

ln ln N . For any such white
node v and any given push, v is chosen as the target of the push
with probability at least 1

(1+f)N > 2
3N . Hence the probability

that v is never chosen as the target of any of the 3.6N ln N
pushes is at most (1− 2

3N )3.6N lnN = ((1 − 2
3N )

3N
2 )2.4 ln N <

e−2.4 ln N = 1
N2.4 . Taking a union bound across all 0.8N

possible v’s, we know that with probability at least 1 − 0.8
N1.4 ,

all white nodes have been chosen as the target of some push
at least once by the end of round 3 ln N

2 ln ln N . Hence:

Pr[b 3 ln N
2 ln ln N

= N | b ln N
ln ln N

≥ 0.2N ]

≥ 1 − 0.8
N1.4

> 1 − 1
8000

(since N ≥ 1000)

We next move on to Equation 1. We will later prove the
following key equation for all r:

Pr[br+1 ≥ min(0.2N, br ln
N

δ
)] ≥ 1 − δ1.125

N1.125
(3)

It is easy to prove Equation 1 via Equation 3. Consider rounds
1 through ln N

ln ln N . With probability at least 1− δ1.125

N1.125 × ln N
ln ln N ,

we have br+1 ≥ min(0.2N, br ln N
δ ) for all 1 ≤ r ≤ ln N

ln lnN .
Since (ln N

δ )
ln N

ln ln N > 0.2N , this will immediately imply
b ln N

ln ln N
≥ 0.2N . Hence we have:

Pr[b ln N
ln ln N

≥ 0.2N ]

≥ 1 − δ1.125

N1.125
× ln N

ln lnN

> 1 − 1
8000

(since N ≥ 1000 and δ ≤ 0.1)

Now the only missing part is the proof for Equation 3. If
br ≥ 0.2N , then br+1 must be at least 0.2N and Equation 3
holds trivially. Now consider the case where br < 0.2N . At the
beginning of round r+1, there are total br black nodes, doing
total at least 8br ln N

δ pushes in round r + 1. Order all these
pushes into an arbitrary sequence, and it will be convenient to
imagine that these pushes are done one by one sequentially.
For each push, we say it is effective if the target of the push
is a white node at the time of the push. Before the number of
black nodes reaches min(0.2N, br ln N

δ ), the probability of a
push being effective is at least N−0.2N

(1+f)N ≥ 0.8
1+f > 0.8

1.5 > 0.5.

Having br ln N
δ effective pushes is sufficient for the number

of black nodes (and hence br+1) to reach min(0.2N, br ln N
δ ).

Let random variable x denote the number of pushes needed
(starting from the beginning of the above sequence) for the
number of black nodes to reach min(0.2N, br ln N

δ ). If the
number of black nodes never reaches this quantity after all
the pushes in the sequence, x is defined to be ∞.

In the next, we will reason about x via a simple coupling
argument. Consider a separate experiment where we flip a fair
coin for 8br ln N

δ times. Let random variable y denote the
number of flips done, in order to encounter the first br ln N

δ
heads. (We define y = ∞ if we do not encounter so many
heads even after all the flips.) We can easily couple x and y
in such a way that for all a, we have Pr[x ≤ a] ≥ Pr[y ≤ a].
Putting everything so far together, we have:

Pr[br+1 ≥ min(0.2N, br ln
N

δ
)] = Pr[x ≤ 8br ln

N

δ
]

≥ Pr[y ≤ 8br ln
N

δ
]

Now define random variable z to be the total number of
heads observed when flipping a fair coin for 8br ln N

δ times.
We draw a trivial connection between y and z, and then invoke
a standard Chernoff bound on z:

Pr[y > 8br ln
N

δ
] = Pr[z < br ln

N

δ
]

= Pr[z < (1 − 0.75)(4br ln
N

δ
)]

≤ exp(−1
2
(0.75)2(4br ln

N

δ
)) =

δ1.125

N1.125

Hence we have Pr[br+1 ≥ min(0.3N, br ln N
δ )] ≥ Pr[y ≤

8br ln N
δ ] ≥ 1 − δ1.125

N1.125 .

VII. TWO-STAGE SAMPLING

Conceptual design. Consider any given honest
node u. For each node v, define fracu[v] =
|{w |w∈init_viewu and v∈vieww}|

|init_viewu| — namely, fracu[v] is
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Algorithm 4 TwoStageSample()
input: f , δ, offset, u, init_viewu, viewu; output: scoreu[·];

1: generate fresh nonceu and send 〈u, hash(nonceu)〉 to all nodes in init_viewu;
2: spend offset rounds receiving messages in the form of 〈w, hash(noncew)〉;
3: send 〈u, nonceu〉 to all nodes in init_viewu;
4: spend offset rounds receiving messages in the form of 〈w, noncew〉;
5: validate each noncew received if noncew matches the previously received hash;
6: for each validated noncew do
7: if

(
hash(u,nonceu,w,noncew)

max_hash ≤ 1+f
|init_viewu|(

30
1−3f )2 ln 3(1+f)|init_viewu|

δ

)
and (|viewu| ≤ (1 + f)|init_viewu|) then

8: send 〈u, viewu〉 to w ;
9: spend offset round receiving messages in the form of 〈w, vieww〉;

10: validate each vieww received if noncew was validated and if hash(w,noncew,u,nonceu)
max_hash ≤ 1

|init_viewu| (
30

1−3f )2 ln 3|init_viewu|
δ ;

11: for each v do
12: votesu[v] = |{w | v ∈ vieww and vieww was validated}|;
13: scoreu[v] = votesu[v]/(( 30

1−3f )2 ln 3|init_viewu|
δ );

14: return scoreu[·];

the fraction of the nodes in init_viewu that have v in their
current views. Our TwoStageSample() subroutine enables
u to estimate fracu[v] for all node v. We only obtain an
estimate since otherwise u will need to retrieve O(N) views
where each view is of O(N) size, which would result in
Ω(N2) communication complexity. Later we will prove
that obtaining a (good enough) estimate is nevertheless still
sufficient for everything to work.

The simplest way to estimate fracu[v] is perhaps for u
to choose t random nodes from init_viewu. For each w
chosen, node u will then pull from w, by requesting w to
send vieww (which is considered one sample) to u. Node u
can then estimate fracu[v] (for all v), based on the vieww’s
received. While such a way of estimating does work, all the
malicious nodes may pull from w and cause w to send Ω(N2)
bits, breaking the desirable guarantee on communication com-
plexity. Instead of u pulling from w, an alternative approach
is for w to choose t random nodes from init_vieww. For
each u chosen, w will push to u, by sending vieww to u
(without u requesting for it). This gives w control over the
communication complexity incurred. But now a malicious
node w will aggressively push vieww to all nodes, causing
vieww to be over-represented.

Our TwoStageSample() overcomes the above problem via
two stages. The first stage is the same as the push-based design
above, where w pushes vieww to t other nodes. In the second
stage, each receiving node u will decide whether to validate
and use the received vieww, and use it for the estimation later.
Node u validates vieww if it feels that w should indeed have
pushed vieww to u. Two things are still needed to enable such
design. First, w and u need to determine, in a consistent way,
whether vieww should be a sampled (i.e., pushed) to u. We
achieve this by letting w and u generate a shared random
number. Second, the probability of vieww being a sample
for u depends on N . Neither w nor u knows N , and they
can only use |init_viewu| and |init_vieww| in place of
N . But |init_viewu| and |init_vieww| may be different.

To resolve this issue, w will need to slightly over-push, by
using a somewhat larger probability.
Details of the design. Algorithm 4 gives the pseudo-code
for TwoStageSample(). For Line 1 to Line 5, each node
u sends a fresh nonce nonceu to all other nodes. To pre-
vent a malicious node from carefully constructing its nonce
after seeing other nodes’ nonces first, the protocol requires
each node to publish a commitment of its nonce first.
Next, any given ordered pair w → u corresponds to two
nonces, noncew and nonceu. Node w will push to u iff i)
w knows both nonces, and ii) u,hash(nonceu,w,noncew)

max_hash ≤
1+f

|init_viewu|(
30

1−3f )2 ln 3(1+f)|init_viewu|
δ . Similarly, node v

validates w’s push iff i) u knows both nonces, and
hash(noncew,w,nonceu,u)

max_hash ≤ 1
|init_viewu| (

30
1−3f )2 ln 3|init_viewu|

δ .
The two conditions on w and u controls how many sam-
ples are taken. Furthermore, they are designed in such a
way that w always tries to over-push: Namely, the condi-
tion on w is always no harder to satisfy that the condition
on u.
Provable guarantees. The following theorem summarizes the
complexity of TwoStageSampling():

Theorem 4: Assume f < 1
3 . If all honest nodes start

executing TwoStageSampling() within offset rounds of each
other, then each honest node returns after exactly 3 · offset
rounds, while sending on expectation Θ(N ln N

δ ) bits per
round.

Proof: The time complexity is obvious. For the com-
munication complexity, note that for sending the nonce
and the hashes of the nonce, it takes O(N) bits per
round. For sending the samples at Line 8, each sam-
ple (i.e., viewu) has size of O(N) bits if they are sent.
On expectation, each honest node sends |init_viewu| ·

1+f
|init_viewu|(

30
1−3f )2 ln 3(1+f)|init_viewu|

δ = O(ln N
δ ) samples.

Hence the total expected number of bits is O(N ln N
δ ).

The next theorem proves that for any pair w → u, u
controls the probability of vieww being sampled. In particular,
malicious nodes cannot force a higher probability on u.
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Theorem 5: Assume f < 1
3 . Consider any given

node w and any given honest node u. Define pu =
1

|init_viewu| (
30

1−3f )2 ln 3|init_viewu|
δ . Define p(w → u) to be

the probability that vieww is received and then validated by
u at Line 10. If all honest nodes start TwoStageSampling()
within offset rounds of each other, then p(w → u) = pu for
honest w and p(w → u) ≤ pu for malicious w.

Proof: First, a nonce sent by an honest
node will always be validated by all other honest
nodes. Let event E1 denote hash(noncew,w,nonceu,u)

max_hash ≤
1+f

|init_vieww| (
30

1−3f )2 ln 3(1+f)|init_vieww|
δ , which corresponds

to Line 8 in w’s invocation of the subroutine.
Let event E2 denote hash(noncew,w,nonceu,u)

max_hash ≤
1

|init_viewu| (
30

1−3f )2 ln 3|init_viewu|
δ , which corresponds

to Line 10 in u’s invocation of the subroutine.
Since 1

|init_viewu| ≤ 1+f
|init_vieww| and 3|init_viewu|

δ ≤
3(1+f)|init_vieww|

δ always hold, we know that if E2 happens,
E1 must happen.

If w is honest, then u will receive and validate vieww

if and only if E2 happens. We thus have p(w, u) =
Pr[E2] = 1

|init_viewu| (
30

1−3f )2 ln 3|init_viewu|
δ . If w is mali-

cious, for u to receive and validate vieww, E2 is a necessary
(but not sufficient) condition. Hence p(w, u) ≤ Pr[E2] =

1
|init_viewu| (

30
1−3f )2 ln 3|init_viewu|

δ .
The next theorem proves that the estimates (scoreu[·])

returned by TwoStageSampling() satisfy some critical prop-
erties.

Theorem 6: Assume f < 1
3 . For any hon-

est or malicious node v, define count[v] =
|{u|v ∈ init_viewu and u is honest}|. If for all honest
nodes u, |viewu| ≤ (1 + f)N and they all start executing
TwoStageSampling() within offset rounds of each other,
then with probability at least 1 − 16δ3

81 , none of the following
(bad) events will happen:

1) There exists some node v and some honest node u such
that count[v] = N and scoreu[v] ≤ 0.75.

2) There exists some node v and some honest node u such
that count[v] = 0 and scoreu[v] ≥ 0.25.

3) There exists some node v, some honest nodes u and w,
such that scoreu[v] ≥ 0.5 and scorew[v] ≤ 0.25.

4) There exists some node v, some honest nodes u and w,
such that scoreu[v] ≤ 0.5 and scorew[v] ≥ 0.75.

Proof: Define su = ( 30
1−3f )2 ln 3|init_viewu|

δ and sw =
( 30
1−3f )2 ln 3|init_vieww |

δ . Let au ·N and aw ·N be the number
of malicious nodes in init_viewu and init_vieww, respec-
tively. Here au and aw are both (unknown) values between 0
and f . Since for all honest nodes u, |viewu| ≤ (1 + f)N ≤
(1 + f)|init_viewu|, the second condition of Line 8 will
always be satisfied.

1) Consider any given node v where count[v] = N and
any given honest node u. By Theorem 5, each of the N
honest nodes in init_viewu will be sampled by u with
probability su

|init_viewu| , while each of the auN malicious
nodes will be sampled by u with probability at most

su

|init_viewu| . We thus have E[votesu[v]] ≥ su

|init_viewu| ·

count[v] = su

|init_viewu|N ≥ 1
1+f · su. Hence:

Pr[scoreu[v] ≤ 0.75]

≤ Pr[scoreu[v] · su ≤ (1 − 1 − 3f

4
) · ( 1

1 + f
· su)]

= Pr[votesu[v] ≤ (1 − 1 − 3f

4
) · ( 1

1 + f
· su)]

≤ exp(−(
1 − 3f

4
)2 · ( 1

1 + f
· su) · 1

2
)

< exp(−3 ln
3N

δ
) =

δ3

27N3

One the steps above invoked a Chernoff bound on
votesu[v], which is the sum of independent Poisson
trials. Finally, there are at most (1 + f)N2 ≤ 4

3N2

combinations of different v and u. Taking a union bound
shows that the first bad event in the theorem happens
with probability at most 4δ3

81 .
2) Consider any given node v where count[v] = 0 and

any given honest node u. By Theorem 5, we have
E[votesu[v]] ≤ su

|init_viewu| · count[v] + su

|init_viewu| ·
auN = su

|init_viewu| ·
au

1+au
· |init_viewu| ≤ f

1+f · su.
Hence:

Pr[scoreu[v] ≥ 0.25]

≤ Pr[scoreu[v] · su ≥ (1 +
1 − 3f

4f
) · ( f

1 + f
· su)]

= Pr[votesu[v] ≥ (1 +
1 − 3f

4f
) · ( f

1 + f
· su)]

≤ exp(−(
1 − 3f

4f
)2 · ( f

1 + f
· su) · 1

3
)

< exp(−3 ln
3N

δ
) =

δ3

27N3

One the steps above invoked a Chernoff bound on
votesu[v]. Finally, there are at most (1+f)N2 ≤ 4

3N2

combinations of different v and u. Taking a union bound
shows that the second bad event in the theorem happens
with probability at most 4δ3

81 .
3) Consider any given node v and any given honest nodes u

and w. We consider two separate regions for count[v].
First, for count[v] ≤ 3N−fN

8 , by Theorem 5, we have
E[votesu[v]] ≤ su

|init_viewu| · count[v] + su

|init_viewu| ·
auN ≤ (3−f

8 + au) suN
|init_viewu| =

3−f
8 +au

1+au
· su ≤ 3+7f

8+8f ·
su. Hence:

Pr[scoreu[v] ≥ 0.5]

≤ Pr[scoreu[v] · su ≥ (1 +
1 − 3f

3 + 7f
) · (3 + 7f

8 + 8f
· su)]

= Pr[votesu[v] ≥ (1 +
1 − 3f

3 + 7f
) · (3 + 7f

8 + 8f
· su)]

≤ exp(−(
1 − 3f

3 + 7f
)2 · (3 + 7f

8 + 8f
· su) · 1

3
)

< exp(−3 ln
3N

δ
) =

δ3

27N3

One the steps above invoked a Chernoff bound on
countu[v]. The second case is for count[v] > 3N−fN

8 .



1936 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

By Theorem 5, we have E[votesw[v]] ≥ sw

|init_vieww| ·
count[v] > sw

|init_vieww|
3N−fN

8 ≥ 3−f
8+8f · su. Hence:

Pr[scorew[v] ≤ 0.25]

≤ Pr[scorew[v] · sw ≤ (1 − 1 − 3f

3 − f
) · ( 3 − f

8 + 8f
· sw)]

= Pr[votesw[v] ≤ (1 − 1 − 3f

3 − f
) · ( 3 − f

8 + 8f
· sw)]

≤ exp(−(
1 − 3f

3 − f
)2 · ( 3 − f

8 + 8f
· sw) · 1

2
)

< exp(−3 ln
3N

δ
) =

δ3

27N3

One the steps above invoked a Chernoff bound on
votesw[v]. Finally, there are at most (1+f)N3 ≤ 4

3N3

combinations of different v, u, and w. Taking a union
bound shows that the third bad event in the theorem
happens with probability at most 4δ3

81 .
4) Consider any given node v and any given honest nodes u

and w. We consider two separate regions for count[v].
First, for count[v] ≤ 5N+fN

8 , by Theorem 5, we have
E[votesw[v]] ≤ sw

|init_vieww| · count[v] + sw

|init_vieww| ·
awN ≤ (5+f

8 +aw) swN
|init_vieww| =

5+f
8 +aw

1+aw
·sw ≤ 5+9f

8+8f ·
sw. Hence:

Pr[scorew[v] ≥ 0.75]

≤ Pr[scorew[v] · sw ≥ (1 +
1 − 3f

5 + 9f
)(

5 + 9f

8 + 8f
· sw)]

= Pr[votesw[v] ≥ (1 +
1 − 3f

5 + 9f
)(

5 + 9f

8 + 8f
· sw)]

≤ exp(−(
1 − 3f

5 + 9f
)2 · (5 + 9f

8 + 8f
· sw) · 1

3
)

< exp(−3 ln
3N

δ
) =

δ3

27N3

One the steps above invoked a Chernoff bound on
votesw[v]. The second case is for count[v] > 5N+fN

8 .
By Theorem 5, we have E[votesu[v]] ≥ su

|init_viewu| ·
count[v] > 5+f

8
suN

|init_viewu| = 5+f
8+8au

su ≥ 5+f
8+8f su.

Hence:

Pr[scoreu[v] ≤ 0.5]

≤ Pr[scoreu[v] · s ≤ (1 − 1 − 3f

5 + f
)(

5 + f

8 + 8f
· su)]

= Pr[votesu[v] · su ≤ (1 − 1 − 3f

5 + f
)(

5 + f

8 + 8f
· su)]

≤ exp(−(
1 − 3f

5 + f
)2 · ( 5 + f

8 + 8f
· su) · 1

2
)

< exp(−3 ln
3N

δ
) =

δ3

27N3

One the steps above invoked a Chernoff bound on
votesu[v]. Finally, there are at most (1+f)N3 ≤ 4

3N3

combinations of different v, u, and w. Taking a union
bound across all these combinations shows that the
fourth bad event in the theorem happens with probability
at most 4δ3

81 .
Finally, combining the probabilities of the four bad events via
a union bound directly leads to the theorem.

VIII. PUT EVERYTHING TOGETHER

We are now ready to put everything together and prove the
formal guarantees of RVR (Algorithm 1). All line numbers
in this section refers to Algorithm 1. We first provide some
additional comments on Algorithm 1. On the leader, the
proposalleader contains a node v if the score for v is at least
0.5 (at Line 6). A node u will overrule the leader’s proposal
with respect to v, if u’s score for v is either overwhelming
(at Line 7) or underwhelming (at Line 8). Line 11 sets
offset = 2 since offset must be 2 after the invocation
of CoordinatedGossip. The following theorem proves the
complexity of our protocol:

Theorem 7: Assume that m ≥ 1, N ≥ 1000, δ ≤ 0.1,
and f < 1

3 . If all honest nodes start executing RVR within
offset rounds of each other, then each honest node will return
within Θ( ln N

ln ln N ln 1
δ ) rounds, while sending on expectation

Θ(N ln N
δ ) bits per round.

Proof: The communication complexity of O(N ln N
δ ) bits

per round follows directly from Theorem 1, 2, and 4. For the
total number of rounds, by Theorem 1, 2, and 4, each iteration
in RVR takes at most 8·offset+3·offset+ 3 ln((1+f)N)

2 ln ln((1+f)N) +

2 ·offset+1 = 3 ln((1+f)N)
2 ln ln((1+f)N) +1+13 ·offset rounds. Note

that starting from the second iteration in RVR, offset will
always be 2. Since there are total 6 ln 2

δ iterations, the total
number of rounds needed is at most:

(
3 ln((1 + f)N)

2 ln ln((1 + f)N)
+ 1 + 13 · offset)

+ (
3 ln((1 + f)N)

2 ln ln((1 + f)N)
+ 1 + 13 · 2) × (6 ln

2
δ
− 1)

= (
9 ln((1 + f)N)
ln ln((1 + f)N)

+ 162) · ln 2
δ

+ 13 · offset− 26

= Θ(
ln N

ln lnN
ln

1
δ
) (4)

The next theorem proves that with probability of at least
1 − δ, our protocol achieves the intended goal.

Theorem 8: Assume that m ≥ 1, N ≥ 1000, δ ≤ 0.1, and
f < 1

3 . If all honest nodes start executing RVR within offset
rounds of each other, then with probability at least 1− δ, both
of the following hold:

1) For all honest nodes u, final_viewu is the same.
2) For all honest nodes u, final_viewu contains all the

N honest nodes and at most fN malicious nodes.
Proof: RVR invokes TwoStageSample exactly 6 ln 2

δ
times. Let Er

1 be the event that none of the four bad events
in Theorem 6 happens immediately after Line 4 in the r-
th iteration of RVR. We claim that Pr[∩1≤r≤6 ln 2

δ
Er
1 ] ≥

1 − 0.04δ. In the first iteration immediately before Line 4
we have |viewu| = |init_viewu| ≤ (1 + f)N for all
honest nodes u, which satisfies the condition required to
invoke Theorem 6. Conditioned on Er

1 , immediately before
Line 9 in the r-th iteration of RVR, |proposalu| ≤
(1 + f)N for any honest node u since v ∈ proposalu

implies that count[v] > 0 and thus is must be included
in init_vieww for some honest node w. Recall the
definition of union_honest_init_view from Section III.
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Thus |proposalu| ≤ |union_honest_init_view| ≤ (1 +
f)N . Conditioned on Er

1 , it can be similarly shown that
immediately before Line 10 in the r-th iteration of RVR,
|viewu| ≤ (1 + f)N . The claim then follows trivially via
induction on r by repeatedly invoking Theorem 6. Let E1 =
∩1≤r≤6 ln 2

δ
Er
1 .

Next, we say that an iteration in RVR is good if during that
iteration, i) ProbLeaderElect returns the same leader on all
honest nodes and the leader returned is an honest node, and
ii) CoordinatedGossip returns proposalleader on all honest
nodes. By Theorem 1 and 3 and a union bound, an iteration is
good with probability at least 0.16 − 1

4000 = 0.15975. Hence
with probability at least 1− (1− 0.15975)6ln 2

δ > 1− δ1.03 >
1− 0.94δ, there exists some good iteration. Let such event be
E2. A union bound immediately tells us that with probability
at least 1 − δ, both E1 and E2 occur. It thus suffices to prove
the two claims in the theorem while condition upon that E1

and E2 occur. The following proves them one by one.
First claim. We first prove that at the end of the good iteration,
viewu is the same on all honest nodes u. The good iteration
must have a unique and honest leader. Consider any node v.
We will show that for all honest nodes u, at the end of that iter-
ation, v ∈ viewu iff v ∈ proposalleader. To prove this, note
that if v ∈ proposalleader, then scoreleader[v] ≥ 0.5. By
event E1, scoreu[v] �≤ 0.25 and hence v /∈ underwhelmu. By
Line 10, v will be in viewu. The case for v /∈ proposalleader
is similar. Now because proposalleader is the same on all
honest nodes u, viewu is the same on all honest nodes u.

Next we prove that in any iteration after the good itera-
tion, on all honest nodes u, viewu will no longer change.
Immediately after the good iteration, for all nodes v, we have
either count[v] = N or count[v] = 0. If count[v] = N , then
event E1 ensures that v ∈ overu in all future iterations. If
count[v] = 0, then E1 ensures that v ∈ underu in all future
iterations. Together with the condition at Line 10, we know
that viewu will no longer change in future iterations.

Finally, since at the end of the good iteration, viewu is
the same on all honest nodes u, and since viewu does not
change in all iterations after the good iteration, we know that
final_viewu is the same for all honest nodes u.
Second claim. Consider any given honest node v. We know
that count[v] = N at the beginning of the first iteration.
By the same argument as earlier, v will continue to be in
viewu (and thus v ∈ final_viewu) for all honest node
u in all iterations. Next, union_honest_views contains at
most fN malicious nodes. For all malicious node v /∈
union_honest_views, we know that count[v] = 0 at the
beginning of the first iteration. By the same argument as
earlier, we know that v /∈ viewu (and thus v /∈ final_viewu)
for all honest nodes u in all iterations.

IX. NUMERICAL COMPARISONS

The previous section has formally proved the correctness
and performance of our RVR protocol. In particularly, we
have shown that the time complexity of RVR is Θ( ln N

ln ln N ln 1
δ )

rounds. This section aims to supplement such asymptotic
results with some concrete numerical examples. In particu-
lar, our numerical examples will capture the various hidden

Fig. 2. Number of rounds needed by our RVR protocol and the existing
view reconciliation protocols [18], [19].

constants in the asymptotic terms. Since this paper focuses
on formal and provable guarantees, our goal here is not to do
large-scale real-world deployment/evaluation of RVR, which is
well beyond the scope of this paper. (Similarly, the previous
efforts [18], [19] also focused on formal/provable guarantees,
instead of deployment/evaluation.)

For results on RVR in this section, we compute the number
of rounds needed by RVR by following the exact form of its
time complexity analysis in Equation 4, with offset = 1. For
the view reconciliation protocol from [18] (based on Lemma
2 in [18] and Fig. 4 in [18]), one can verify that their protocol
takes at least (2l + 3) + (l + 1) rounds. Here the value of l,
when translated to our setting, is (f + 1)N . Hence we use
3(f + 1)N + 4 as the total number of rounds needed by that
protocol. Finally, one can verify (based on Figure 1 in [19]
and Theorem 1 in [19]) that the protocol in [19] takes fN +1
rounds.6

Figure 2 compares the number of rounds needed by the three
protocols, under f = 0.3 and N from 1k to 50k. Results under
other f values (e.g., f = 0.1) are qualitatively similar. For
RVR in the figure, we consider three different δ values: 10−2,
10−4, and 10−6. As expected, the number of rounds needed by
the two existing protocols increase linearly with N , while the
number of rounds for RVR increases only logarithmically. (In
the figure, such logarithmic curves appear almost flat.) When
N is large (e.g., above 4k for δ = 10−2, above 7k for δ =
10−4, and above 10k for δ = 10−6), RVR always outperforms
both existing protocols. The benefit of RVR increases with N :
For N = 50k, RVR (even under δ = 10−6) is over 400% faster
than the existing protocols (not shown in the figure). On the
other hand, due to the larger constant factor in RVR, when N
is smaller, the existing protocol in [19] requires fewer number
of rounds than RVR.

X. CONCLUSIONS

This paper proposes a novel randomized RVR protocol
for solving the view divergence problem. Compared with the
state-of-the-art protocols [18], [19] with time complexity of
Θ(N) rounds, our protocol only takes Θ( lnN

ln ln N ln 1
δ ) rounds

to terminate. The hidden constant factor in the asymptotic
complexity of our protocol, however, is considerably larger

6In [19], the number of rounds is shown to be “f + 1”. But their definition
of “f” actually equals fN in this paper’s setting.
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than in previous protocols. Concrete numerical comparisons
show that our protocol is more suitable for large-scale systems,
while existing protocols are better for smaller-scale systems.
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