
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020 1199

Blind GB-PANDAS: A Blind Throughput-Optimal
Load Balancing Algorithm for Affinity Scheduling

Ali Yekkehkhany and Rakesh Nagi

Abstract— Dynamic affinity load balancing of multi-type tasks
on multi-skilled servers, when the service rate of each task type
on each of the servers is known and can possibly be different from
each other, is an open problem for over three decades. The goal is
to do task assignment on servers in a real time manner so that the
system becomes stable, which means that the queue lengths do
not diverge to infinity in steady state (throughput optimality), and
the mean task completion time is minimized (delay optimality).
The fluid model planning, Max-Weight, and c-μ-rule algorithms
have theoretical guarantees on optimality in some aspects for
the affinity problem, but they consider a complicated queueing
structure and either require the task arrival rates, the service
rates of tasks on servers, or both. In many cases that are
discussed in the introduction section, both task arrival rates
and service rates of different task types on different servers
are unknown. In this work, the Blind GB-PANDAS algorithm
is proposed which is completely blind to task arrival rates and
service rates. Blind GB-PANDAS uses an exploration-exploitation
approach for load balancing. We prove that Blind GB-PANDAS is
throughput optimal under arbitrary and unknown distributions
for service times of different task types on different servers and
unknown task arrival rates. Blind GB-PANDAS desires to route
an incoming task to the server with the minimum weighted-
workload, but since the service rates are unknown, such routing
of incoming tasks is not guaranteed which makes the throughput
optimality analysis more complicated than the case where service
rates are known. Our extensive experimental results reveal that
Blind GB-PANDAS significantly outperforms existing methods in
terms of mean task completion time at high loads.

Index Terms— Affinity scheduling, exploration-exploitation,
near-data scheduling, data locality, data center, big data.

I. INTRODUCTION

AFFINITY load balancing refers to allocation of comput-
ing tasks on computing nodes in an efficient way to min-

imize a cost function, for example the mean task completion
time [1]. Due to the fact that different task types can have
different processing (service) rates on different computing
nodes (servers), a dilemma between throughput and delay
optimality emerges which makes the optimal affinity load
balancing an open problem for more than three decades if
the task arrival rates are unknown. If the task arrival rates
and the service rates of different task types on different

Manuscript received December 22, 2018; revised July 17, 2019 and
November 6, 2019; accepted February 27, 2020; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor A. Eryilmaz. Date of publication
March 19, 2020; date of current version June 18, 2020. (Corresponding
author: Ali Yekkehkhany.)

Ali Yekkehkhany is with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana–Champaign, Champaign,
IL 61801-3028 USA (e-mail: yekkehk2@illinois.edu).

Rakesh Nagi is with the Department of Industrial and Enterprise Sys-
tems Engineering, University of Illinois at Urbana–Champaign, Champaign,
IL 61801-3028 USA.

Digital Object Identifier 10.1109/TNET.2020.2978195

servers are known, the fluid model planning algorithm by
Harrison [2] and Harrison and Lopez [3], and Bell et al. [4], [5]
is a delay optimal load balancing algorithm that solves a
linear programming optimization problem to determine task
assignment on servers. The same number of queues as the
number of task types is needed for the fluid model planning
algorithm, so the queueing structure is fixed to the number
of task types and does not capture the complexity of the
system model, which is how heterogeneous the service rates
of task types on different servers are. As an example given
in [6] and [7], for data centers with a rack structure that use
Hadoop for map-reduce data placement with three replicas
of data chunks on the M severs, the fluid model planning
algorithm requires

�
M
3

�
queues, while Xie et al. [6] propose

a delay optimal algorithm that uses 3M queues. As another
extreme example, if the service rates of NT number of task
types on all servers are the same, the fluid model planning
algorithm still considers NT number of queues, while the First-
Come-First-Served (FCFS) algorithm uses a single queue and
is both throughput and delay optimal. It is true that in the last
example all task types can be considered the same type, but
this is just an example to enlighten the reasoning behind the
queueing structure for GB-PANDAS (Generalized Balanced
Priority Algorithm for Near Data Scheduling) presented in
Section II-A.

In the absence of knowledge on task arrival rates, Max-
Weight [8] and c-μ-rule [9] algorithms can stabilize the
system by just knowing the service rates of task types on
different servers. None of these two algorithms are delay
optimal though. The c-μ-rule is actually cost optimum, where
it assumes convex delay costs associated to each task type, and
minimizes the total cost incurred to the system. Since the cost
functions have to be strictly convex, so cannot be linear, c-μ-
rule does not minimize the mean task completion time. Since
these two algorithms do not use the task arrival rates and still
stabilize the system, they are robust to any changes in task
arrival rate as long as it is in the capacity region of the system.
Both Max-Weight and c-μ-rule algorithms have the same
issue as the fluid model planning algorithm on considering
one queue per task type which can make the system model
complicated as discussed in [6]. Note that Wang et al. [10]
and Xie et al. [6] study the load balancing problem for special
cases of two and three levels of data locality, respectively.
In the former, delay optimality is analyzed for a special
traffic scenario and in the latter delay optimality is analyzed
for a general traffic scenario and in both cases there is no
issue on the number of queues, but as mentioned, these two
algorithms are for special cases of two and three levels of data
locality. Hence, a unified algorithm that captures the trade-
off between the complexity of the queueing structure and the
complexity of the system model is missed in the literature.
Yekkehkhany et al. [11] implicitly mention this trade-off in

U.S. Government work not protected by U.S. copyright.

https://orcid.org/0000-0001-9130-9668
https://orcid.org/0000-0003-4022-6277

1200 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Fig. 1. Affinity scheduling setup with multi-type tasks and multi-skilled servers.

data center applications, but the generalization is not crystal
clear and needs more thinking for the affinity setup, which
is summarized in this work as a complementary note on the
Balanced-PANDAS algorithm.

The affinity scheduling problem appears in different appli-
cations from data centers and modern processing networks
that consist of heterogeneous servers, where data-intensive
analytics like MapReduce, Hadoop, and Dryad are performed,
to supermarket models, or even patient assignment to surgeons
in big and busy hospitals and many more. Lack of dependable
estimates of system parameters, including task arrival rates
and specially service rates of task types on different servers,
is a major challenge in constructing an optimal load balancing
algorithm for such networks [12]. All the algorithms men-
tioned above at least require the knowledge of service rates
of task types on different servers. In the absence of prior
knowledge on service rates, such algorithms can be fragile
and perform poorly, resulting in huge waste of resources.
To address this issue, we propose a robust policy called Blind
GB-PANDAS that is totally blind to all system parameters, but
is robust to task arrival rate changes, learns the service rates of
task types on different servers, so it is robust to any service rate
parameter changes as well. It is natural that due to traffic load
changes in data centers, the service rate of tasks on remote
servers change over time. In such cases, Blind GB-PANDAS
is capable of updating system parameters and taking action
correspondingly. Blind GB-PANDAS uses an exploration-
exploitation approach to make the system stable without any
knowledge about the task arrival rates and the processing rates.
More specifically, it uses an exploration-exploitation method,
where in the exploration phase it takes action in a way to
make the system parameter estimations more accurate, and
in the exploitation phase it uses the estimated parameters
to do an optimal load balancing based on the estimates.
Note that only the processing rates of task types on different
servers are the parameters that are estimated, and the task
arrival rates are not estimated. The reason is that task arrival
rates change frequently, so there is not a point on estimating
them, whereas the service rates do not change rapidly. Since
Blind GB-PANDAS uses an estimate of the processing rates,
an incoming task is not necessarily routed to the server with
the minimum weighted-workload in the exploitation phase,
which increases complexity in the throughput optimality proof
of Blind GB-PANDAS using the Lyaponuv-based method.

The throughput optimality result is proved under arbitrary and
unknown service time distributions with bounded means and
bounded supports that do not necessarily require the memory-
less property.

As discussed in Section II-A, the queueing structure used
for Blind GB-PANDAS shows the trade-off between the
heterogeneity of the underlying system model for process-
ing rates and the complexity of the Blind GB-PANDAS
queueing structure. Blind GB-PANDAS can also use a one
queue per server queueing structure, where the workload on
servers is of interest instead of the queue lengths, but for an
easier explanation of the Blind GB-PANDAS algorithm we
use multiple symbolic sub-queues for each server. The Blind
GB-PANDAS algorithm is compared to FCFS, Max-Weight,
and c-μ-rule algorithms in terms of average task comple-
tion time through simulations, where the same exploration-
exploitation approach as Blind GB-PANDAS is used for
Max-Weight and c-μ-rule. Our extensive simulations show that
the Blind GB-PANDAS algorithm outperforms the three other
algorithms at high loads by a reasonably large difference.

The rest of the paper is structured as follows. Section II
describes the system model, GB-PANDAS, and the queue-
ing structure of GB-PANDAS, in addition to deriving the
capacity region of the system. Section III presents the Blind
GB-PANDAS algorithm and queueing dynamics for this algo-
rithm. Section IV starts with some preliminary results and
lemmas and ends up with the throughput optimality proof for
Blind GB-PANDAS. Section V evaluates the performance of
Blind GB-PANDAS versus Max-Weight, c-μ-rule, and FCFS
algorithms in terms of mean task completion time. Section VI
discusses the related works, and finally Section VII concludes
the paper with a discussion on opportunities for future work.

II. SYSTEM MODEL

Consider M unit-rate multi-skilled servers and NT number
of task types as depicted in Figure 1. The set of servers
and task types are denoted by M = {1, 2, · · · , M} and
L = {1, 2, · · · , NT }, respectively. Each task can be processed
by any of the M servers, but with possibly different rates.
The service times are assumed to be non-preemptive and
discrete valued with an unknown distribution. Non-preemptive
service means that the central load balancing algorithm cannot
interrupt an in-service task, i.e. no other task is scheduled to

YEKKEHKHANY AND NAGI: BLIND GB-PANDAS: BLIND THROUGHPUT-OPTIMAL LOAD BALANCING ALGORITHM 1201

a server until the server completely processes the task that
is currently receiving service. The extension of the analysis
for continuous service time, using approximation methods of
continuous distributions with discrete ones, is an interesting
future work. In this discrete time model, time is indexed by
t ∈ N. In the following, service time distributions and task
arrivals are discussed, which are both unknown to the central
scheduler.

Service Time Distribution: The service time offered by
server m ∈ M to task type i ∈ L is a discrete-type random
variable with cumulative distribution function (CDF) Fi,m

with mean 1
μi,m

or correspondingly with rate μi,m > 0.
The service time distribution does not require the memory-
less property. We further assume that the support of the
service time is bounded, which is a realistic assumption and
reduces the unnecessary complexity of the proofs specially
in Lemma 4. The extension of the analysis for service times
with unbounded supports is an interesting future work. Note
that the completion time for a task is the waiting time for that
task until it is scheduled to a server plus the service time of
the task on the server. Waiting time depends on the servers’
status, the queue lengths or more specifically other tasks that
are in the system or may arrive later, and the load balancing
algorithm that is used, while service time has the mentioned
distribution.

Task Arrival: The number of incoming tasks of type i ∈
L at the beginning of time slot t is a random variable on
non-negative integer numbers that is denoted by Ai(t), which
are temporarily identically distributed and independent from
each other. Denote the arrival rate of task type i by λi, i.e.
E[Ai(t)] = λi. In the stability proof of Blind GB-PANDAS we
need λi to be strictly positive, so without loss of generality we
exclude task types with zero arrival rate from L. Furthermore,
we assume that the number of each incoming task type at a
time slot is bounded by constant CA and is zero with positive
probability, i.e. P (Ai(t) < CA) = 1 and P (Ai(t) = 0) > 0
for any i ∈ L. The set of arrival rates for all task types is
denoted by vector λ = (λi : i ∈ L).

Affinity scheduling problem refers to load balancing for
such a system described above. The fluid model planning
algorithm [3], MaxWeight [8], and cμ-rule [9] are the baseline
algorithms for affinity scheduling. All these algorithms in
addition to GB-PANDAS use the rate of service times instead
of the CDF functions. Hence, the system model can be
summarized as an NT ×M matrix, where element (i, m) is the
processing rate of task type i on server m, μi,m, as follows:

Bμ =

⎡⎢⎢⎣
μ1,1 μ1,2 μ1,3 . . . μ1,M

μ2,1 μ2,2 μ2,3 . . . μ2,M

...
...

...
. . .

...
μNT ,1 μNT ,2 μNT ,3 . . . μNT ,M

⎤⎥⎥⎦
NT ,M

. (1)

If both the set of arrival rates λ = (λi : i ∈ L) and the
service rate matrix Bμ are known, the fluid model planning
algorithm [3] derives the delay optimal load balancing by
solving a linear programming. However, if the arrival rates of
task types are not known, the delay optimal algorithm becomes
an open problem which has not been solved for more than
three decades. Max-Weight [8] and cμ-rule [9] can be used
for different objectives when we do not know the arrival rates,
but none have delay optimality. In this work, we are assuming
that we lack knowledge of not only the arrival rates λ, but
also the service rate matrix Bμ. We take an exploration and

Fig. 2. The queueing structure for the GB-PANDAS algorithm.

exploitation approach to make our estimation of the underlying
model, which is the service rate matrix, more accurate, and to
keep the system stable.

A. Queueing Structure for GB-PANDAS

Every algorithm has its own specific queueing structure.
For example, there is only a single central queue for the
First-Come-First-Served (FCFS) algorithm, but there are NT

number of queues when using fluid model planning, Max-
Weight, or cμ-rule. In the following, we present the queueing
structure used for GB-PANDAS that captures the trade-off
between the complexity of the system model and the com-
plexity of the queueing structure very well. What we mean
by the complexity of the system model is the heterogeneity of
the service rate matrix, e.g. if all the elements of this matrix
are the same number, the system is less complex than the
case where each element of the matrix is different from other
elements of the matrix.

The heterogeneity of the system from the perspective of
server m is captured in the mth column of the service rate
matrix. Consider the mth column of the matrix has Nm

distinct values, where Nm can be any number from 1 to
NT . It is obvious that any of the task types with the same
service (processing) rate on server m look the same from the
perspective of this server. Denote the Nm distinct values of
the mth column of Bμ by {α1

m, α2
m, · · · , αNm

m } and without
loss of generality assume that α1

m > α2
m > · · · > αNm

m .
We call all the task types with a processing rate of αn

m on
the mth server, the n-local tasks to that server, and denote
them by Ln

m = {i ∈ L : μi,m = αn
m}. For ease of

notation, we use both μi,m and αn
m throughout the paper

interchangeably; however, they are in fact capturing the same
phenomenon, but with different interpretations. Note that the
n-local tasks to server m can be called (n, m)-local tasks in
order to place more emphasis on the pair n and m, so the
n-local tasks to server m are not necessarily the same as the
n-local tasks to server m′. We allocate Nm queues for server
m, where the nth queue of server m holds all task types that
are routed to this server and are n-local to it. As depicted
in Figure 2, different servers can have different numbers of
queues since the heterogeneity of the system model can be
different from the perspective of different servers. We may
interchangeably use queue or sub-queue to refer to the nth

queue (sub-queue) of the mth server. The Nm sub-queues of
the mth server are denoted by Q1

m, Q2
m, · · · , QNm

m and the
queue lengths of these sub-queues, defined as the number
of tasks in these sub-queues, at time slot t are denoted by
Q1

m(t), Q2
m(t), · · · , QNm

m (t).
In the next subsection, the GB-PANDAS algorithm is

proposed when the service rate matrix Bμ is known.

1202 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Balanced-PANDAS for a data center with three levels of
data locality is proposed by [6], and here we are proposing
the Generalized Balanced-PANDAS algorithm from another
perspective which is of its own interest.

B. GB-PANDAS Algorithm With Known Service Rate Matrix
Bμ

Before getting into the GB-PANDAS algorithm, we need to
define the workload on server m.

Definition 1: The average time needed for server m to
process all tasks queued in its Nm sub-queues at time slot
t is defined as the workload on the server:

Wm(t) =
Q1

m(t)
α1

m

+
Q2

m(t)
α2

m

+ · · · + QNm

m (t)
αNm

m

. (2)

A load balancing algorithm consists of two parts, routing
and scheduling. The routing policy determines the queue at
which an incoming task is stored until it is assigned to a
server for service. When a server becomes idle, the schedul-
ing policy determines the next task that receives service on
the idle server. The routing and scheduling policies of the
GB-PANDAS algorithm are as follows:

GB-PANDAS Routing Policy: An incoming task of type i is
routed to the corresponding sub-queue of the server with the
minimum weighted workload, where ties are broken arbitrarily
to the favor of the fastest server. The server m∗ with the
minimum weighted workload is defined as

m∗ = arg min
m∈M

Wm(t)
μi,m

.

The corresponding sub-queue of server m∗ for a task of type
i is n if μi,m = αn

m.
GB-PANDAS Scheduling Policy: An idle server m at time

slot t is scheduled to process a task of sub-queue Q1
m if

there is any. If Q1
m(t) = 0, a task of sub-queue Q2

m is
scheduled to the server, and so on. It is a common assumption
that servers do not have the option of processing the tasks
queued in front of other servers, so a server remains idle if
all its sub-queues are empty. Note that the routing policy is
doing a sort of weighted water-filling for workloads, so the
probability that a server becomes idle goes to zero as the load
increases at heavy traffic regime. Remember that the tasks in
sub-queue Q1

m are the fastest types of tasks for server m,
the tasks in sub-queue Q2

m are the second fastest, and so on.
Using this priority scheduling, the faster tasks in the Nm sub-
queues of server m are processed first. Given the minimum
weighted workload routing policy, the priority scheduling is
optimal as it minimizes the mean task completion time of
all tasks in the Nm sub-queues of server m. In the following,
Max-Weight and cμ-rule algorithms are discussed for the sake
of completeness.

Remark: Prioritized scheduling has no effect in the
throughput-optimality proof of the GB-PANDAS algorithm
and a work conservative scheduling of a server to its sub-
queues suffices for the purpose of system’s stability. As a
result, the GB-PANDAS policy can be implemented by consid-
ering a single queue per server at the expense of losing priority
scheduling. In a single queue per server structure, instead of
maintaining a server’s sub-queue lengths, the workload of the
server defined in (2) is maintained. At the arrival of an n-local
task to server m, the server’s workload is increased by 1

αn
m

,

instead of increasing the corresponding sub-queue’s length by
one, and the workload is decreased at the departure of a task
by its corresponding load.

C. Max-Weight and c-μ-Rule Algorithms With Known
Service Rate Matrix Bμ

The queueing structure used for Max-Weight and c-μ-
rule is as depicted in Figure 1, where there is a sepa-
rate queue for each type of task. Denote the NT queues
by Q1, Q2, · · · , QNT , and their corresponding queue lengths
at time slot t by Q1(t), Q2(t), · · · , QNT (t). Note that the
GB-PANDAS algorithm requires M × NT number of queues
in the worst case scenario, but it can use the symmetry of
specific real-world structures to decrease the number of queues
dramatically. As an example, for servers with rack structures,
where Hadoop is used for map-reduce data placement with
three replicas of data chunks on severs, Max-Weight and
c-μ-rule require

�
M
3

�
= O(M3) number of queues, while

GB-PANDAS requires 3M queues. A task is routed to a server
at the time of its arrival under the GB-PANDAS algorithm,
while a task waits in its queue under both Max-Weight and c-
μ-rule algorithms, waiting to be scheduled for service, which
is discussed below.

Max-Weight Scheduling Policy: An idle server m at time slot
t is scheduled to process a task of type j from Qj , if there is
any, such that

j ∈ argmax
i∈L

{μi,m · Qi(t)}.

The Max-Weight algorithm is throughput-optimal, but it is not
heavy-traffic or delay optimal [8].

C-μ-Rule Scheduling Policy: Consider that queue Qi incurs
a cost of Ci

�
Qi(t)

�
at time slot t, where Ci(.) is increasing

and strictly convex. The c-μ-rule algorithm maximizes the rate
of decrease of the instantaneous cost at all time slots by the
following scheduling policy. An idle server m at time slot t
is scheduled to process a task of type j from Qj , if there is
any, such that

j ∈ arg max
i∈L

μi,m · C′

i

�
Qi(t)

��
,

where C′(.) is the first derivative of the cost function. The
c-μ-rule algorithm minimizes both instantaneous and cumula-
tive queueing costs, asymptotically. The mean task completion
time corresponds to linear cost functions for all task types,
so c-μ-rule cannot minimize the mean task completion time,
and as the result, is not heavy-traffic optimal.

D. Capacity Region of Affinity Scheduling Setup

We propose a decomposition of the arrival rate vector
λ = (λi : i ∈ L) as follows. For any task type i ∈ L, λi is
decomposed into (λi,m, m ∈ M), where λi,m is assumed to
be the arrival rate of type i tasks for server m. Hence, λi =�M

m=1 λi,m. By using the fluid model planning algorithm,
the affinity queueing system can be stabilized under a given
arrival rate vector λ as long as the necessary condition of total
1-local, 2-local, …, and Nm-local load on server m being
strictly less than one for any server m is satisfied:

i∈L

λi,m

μi,m
< 1, ∀m ∈ M. (3)

YEKKEHKHANY AND NAGI: BLIND GB-PANDAS: BLIND THROUGHPUT-OPTIMAL LOAD BALANCING ALGORITHM 1203

Hence, the capacity region of the affinity problem is the set
of all arrival rate vectors λ that has a decomposition (λi,m,
i ∈ L, m ∈ M) satisfying (3):

Λ =

λ = (λi : i ∈ L)

�� ∃λi,m ≥ 0, ∀i ∈ L, ∀m ∈ M, s.t.

λi =
M

m=1

λi,m, ∀i ∈ L,

i∈L

λi,m

μi,m
< 1, ∀m ∈ M�

. (4)

The linear programming optimization associated with Equa-
tion (4) can be solved to find the capacity region Λ of the
system. The GB-PANDAS algorithm stabilizes the system for
any arrival rate vector inside the capacity region by knowing
the service rate matrix. It is proved in Section IV that the
Blind GB-PANDAS algorithm is throughput-optimal without
the knowledge of the service rate matrix, Bμ.

III. THE BLIND GB-PANDAS ALGORITHM

The GB-PANDAS and Max-Weight algorithms need to
know the precise value of the service rate matrix, but this
requirement is not realistic for real applications. Furthermore,
the service rate matrix can change over time, which confuses
the load balancing algorithm if it uses a fixed given service
rate matrix. In the Blind version of GB-PANDAS, the service
rate matrix is initiated randomly and is updated as the sys-
tem is running. More specifically, an exploration-exploitation
framework is combined with GB-PANDAS. In the exploration
phase, the routing and scheduling are performed so as to allow
room for making the estimations of the system parameters
more precise, and in the exploitation phase the routing and
scheduling are done based on the available estimation of the
service rate matrix so as to stabilize the system. Here we
assume that Nm is known as well as the locality level of a task
on servers that can be inferred from prior knowledge on the
structure of the system. This is not a necessary assumption for
throughput-optimality proof, but it makes the intuition behind
Blind GB-PANDAS more clear. As mentioned before, a single
queue per server can be used when using Blind GB-PANDAS,
in which case, there is no need to know Nm as well as the
ordering of service rates offered by servers for different task
types.

We first propose the updating method used for the service
rate matrix before getting into the routing and scheduling
policies of the Blind GB-PANDAS algorithm. The estimated
service rate matrix at time slot t is denoted as

�Bμ(t)=

⎡⎢⎢⎣
�μ1,1(t) �μ1,2(t) �μ1,3(t) . . . �μ1,M (t)�μ2,1(t) �μ2,2(t) �μ2,3(t) . . . �μ2,M (t)

...
...

...
. . .

...�μNT ,1(t) �μNT ,2(t) �μNT ,3(t) . . . �μNT ,M (t)

⎤⎥⎥⎦ .

(5)

Note that �α1
m(t), �α2

m(t), · · · , �αNm

m (t), ∀m ∈ M which are
the estimates of α1

m(t), α2
m(t), · · · , αNm

m (t), ∀m ∈ M at
time slot t are nothing but the distinct values of the elements
of the service rate matrix. More specifically, those are the�αn

m, ∀m ∈ M, ∀n ∈ {1, 2, · · · , Nm} that are getting
updated and then mapped into their corresponding elements
in the service rate matrix to form �Bμ in (5) as mentioned in
Section II-A. Consider a random initialization of �αn

m(0) > 0,
∀m ∈ M, ∀n ∈ {1, 2, · · · , Nm} at time slot t = 0. If server
m has processed �n− 1 tasks that are n-local to this server by
time t1, the estimate of αn

m at this time slot is �αn
m(t1), and a

new observation of service time for n-local task to server m is
made at time slot t2 > t1 as T n

m(t2), we have �αn
m(t) = �αn

m(t1)
for t1 ≤ t < t2 and the update of this parameter at time slot
t2 is

�αn
m(t2) =

�n − 1�n · �αn
m(t1) +

1�n · T n
m(t2)

. (6)

Note that �αn
m is the service rate, not the service time mean,

that is why 1
T n

m(t2)
is used above in the update of the service

rate. In the following, the routing and scheduling policies of
Blind GB-PANDAS are presented, where the exploration rate
is chosen in such a way that infinitely many n-local tasks are
scheduled for service on server m for any m ∈ M and any
n ∈ {1, 2, · · · , Nm} so that by using the strong law of large
numbers, the parameter estimations in (6) converge to their
real values almost surely.

Blind GB-PANDAS Routing Policy: The estimated workload
on server m at time slot t is defined based on parameter
estimations in (6) as

�Wm(t) =
Q1

m(t)�α1
m(t)

+
Q2

m(t)�α2
m(t)

+ · · · + QNm

m (t)�αNm

m (t)
. (7)

The routing of an incoming task is based on the following
exploitation policy with probability pe = max(1−p(t), 0), and
is based on the exploration policy otherwise, where p(t) → 0
as t → ∞ and

�∞
t=0 p(t) = ∞, e.g. the exploitation

probability can be chosen as pe = 1 − 1
tc for 0 < c ≤ 1.

• Exploitation Phase: An incoming task of type i is routed
to the corresponding sub-queue of the server with the
minimum estimated weighted workload, where ties are
broken arbitrarily. The server �m∗ with the minimum
weighted workload for task of type i is defined as

�m∗ = argmin
m∈M

�Wm(t)�μi,m(t)
.

The corresponding sub-queue of server �m∗ for a task of
type i is n if �μi,�m∗ = �αn

�m∗ .
• Exploration Phase: An incoming task of type i is routed

to the corresponding sub-queue of a server chosen uni-
formly at random among {1, 2, · · · , M}.

Blind GB-PANDAS Scheduling Policy: The scheduling of an
idle server is based on the following exploitation policy
with probability pe, and is based on the exploration policy
otherwise.

• Exploitation Phase: Priority scheduling is performed for
an idle server as discussed in Section II-B. We emphasize
that given the routing policy, priority scheduling is the
optimal scheduling policy in terms of minimizing the
average completion time of tasks.

• Exploration Phase: An idle server is scheduled to one of
its non-empty sub-queues uniformly at random, and stays
idle if all its sub-queues are empty.

Since the arrival rate of any task type is strictly positive,
infinitely many of each task type arrives to system, and given
the fact that the probability of exploration in both routing and
scheduling policies decays such that

�∞
t=0 p(t) = ∞, using

the second Borel-Cantelli lemma (zero-one law), it is obvious
that n-local tasks to server m are scheduled to this server for
infinitely many times for any locality level and any server,
so �Bμ(t)→Bμ as t→∞ using the updates in (6).

1204 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

A. Queue Dynamics Under the Blind GB-PANDAS Algorithm

Denote the queue length vector at time slot t by Q(t) =�
Q1

1(t), Q2
1(t), · · · , QN1

1 (t), · · · , QNM

M (t)
�
. Let the number of

incoming tasks of type i that are routed to their corresponding
sub-queue of server m at the beginning of time slot t be
denoted as Ai,m(t). Then, by denoting the number of incoming
n-local tasks to server m that are routed to Qn

m at the
beginning of time slot t by An

m(t), we have:

An
m(t) =

i∈Ln

m

Ai,m(t), ∀m ∈ M, 1 ≤ n ≤ Nm. (8)

Denote the set of working status of servers by vector f(t) =�
f1(t), f2(t), · · · , fM (t)

�
, where

fm(t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if server m is idle,
1, if server m processes a 1-local task from Q1

m,
2, if server m processes a 2-local task from Q2

m,
...
Nm, if server m processes an Nm-local task

from QNm

m .

If server m finishes processing a task at the end of time slot
t − 1, i.e. fm(t−) = −1, a scheduling decision is taken for
time t based on Q(t) and f (t). Denote the scheduling decision
for server m at time slot t by ηm(t) that is defined as follows.
For all busy servers, ηm(t) = fm(t), and when fm(t−) = −1,
i.e. server m is idle, ηm(t) is determined by the scheduler
according to the Blind GB-PANDAS algorithm. Let η(t) =�
η1(t), η2(t), · · · , ηM (t)

�
.

Let Sn
m(t) denote the n-local service provided by server m,

where such a service has the rate of αn
m if ηm(t) = n for

1 ≤ n ≤ Nm, and the rate is zero otherwise. Then, the queue
dynamics for any m ∈ M is as follows:

Qn
m(t + 1) = Qn

m(t)+An
m(t)−Sn

m(t), for 1≤n≤Nm−1,

QNm

m (t + 1) = QNm

m (t) + ANm

m (t) − SNm

m (t) + Um(t), (9)

where Um(t) = max

0, SNm

m (t)−ANm

m (t)−QNm

m (t)
�

is the
unused service offered by server m at time slot t.

Note that

Q(t), t ≥ 0

�
does not necessarily form a

Markov chain, i.e. Q(t + 1)|Q(t) 	⊥ Q(t − 1), since nothing
can be said about locality of an in-service task at a server by
just knowing the queue lengths. Even

(Q(t), η(t)) , t ≥ 0

�
is not a Markov chain since the service time distributions do
not necessarily have the memory-less property. In order to use
Foster-Lyapunov theorem for proving the positive recurrence
of a Markov chain, we need to consider another measurement
of the status of servers as follows.

• Let Ψm(t) denote the number of time slots at the begin-
ning of time slot t that server m has been allocated on
the current in-service task on server m. This parameter
is set to zero when server m finishes processing a task.
Let Ψ(t) =

�
Ψ1(t), Ψ2(t), · · · , ΨM (t)

�
.

Lemma 1:

Z(t) =

�
Q(t), η(t),Ψ(t)

�
, t ≥ 0

�
forms an

irreducible and aperiodic Markov chain. The state space of
this Markov chain is S =

��
m∈M N

Nm� × ��
m∈M{1, 2,

· · · , Nm}�× N
M .

IV. THROUGHPUT OPTIMALITY OF THE BLIND

GB-PANDAS ALGORITHM

Section IV-A provides preliminaries on the workload
dynamic of servers, the ideal workload on servers, some
lemmas, and an extended version of the Foster-Lyapunov.
The throughput-optimality theorem of the Blind GB-PANDAS
algorithm and its proof are presented in Section IV-B, where
the proof is followed by using Lemmas 2, 3, 4, 5, and 6.

A. Preliminary Materials and Lemmas

The workload on server m evolves as follows:

Wm(t + 1)

=
Q1

m(t + 1)
α1

m

+
Q2

m(t + 1)
α2

m

+ · · · + QNm

m (t + 1)
αNm

m

(a)
=

Q1
m(t) + A1

m(t) − S1
m(t)

α1
m

+
Q2

m(t) + A2
m(t) − S2

m(t)
α2

m

+ · · · + QNm

m (t) + ANm

m (t) − SNm

m (t) + Um(t)
αNm

m

= Wm(t) +
�

A1
m(t)
α1

m

+
A2

m(t)
α2

m

+ · · · + ANm

m (t)
αNm

m

�
−
�

S1
m(t)
α1

m

+
S2

m(t)
α2

m

+ · · · + SNm

m (t)
αNm

m

�
+

Um(t)
αNm

m

(b)
= Wm(t) + Am(t) − Sm(t) + �Um(t),

where (a) is true by using the queue dynamics in (9) and
(b) follows from defining the pseudo task arrival, service, and
unused services of server m as

Am(t) =
A1

m(t)
α1

m

+
A2

m(t)
α2

m

+ · · · + ANm

m (t)
αNm

m

, ∀m ∈ M,

Sm(t) =
S1

m(t)
α1

m

+
S2

m(t)
α2

m

+ · · · + SNm

m (t)
αNm

m

, ∀m ∈ M,

�Um(t) =
Um(t)
αNm

m

, ∀m ∈ M. (10)

By defining the pseudo task arrival, service, and unused service
processes as A(t) =

�
A1(t), A2(t), · · · , AM (t)

�
, S(t) =�

S1(t), S2(t), · · · , SM (t)
�
, and �U(t) =

��U1(t), �U2(t), · · · ,�UM (t)
�
, respectively, the vector of servers’ workloads defined

by W = (W1, W2, · · · , WM) evolves as

W (t + 1) = W (t) + A(t) − S(t) + �U(t). (11)

Lemma 2: For any arrival rate vector inside the capacity
region, λ ∈ Λ, there exists a load decomposition {λi,m} and
δ > 0 such that

i∈L

λi,m

μi,m
<

1
1 + δ

, ∀m ∈ M. (12)

The fluid model planning algorithm solves a linear program-
ming to find the load decomposition {λi,m} that is used in its
load balancing on the M servers. In other words, this load
decomposition is a possibility of task assignment on servers
to stabilize the system.
Lemma 2 is used in the proof of Lemma 5.

YEKKEHKHANY AND NAGI: BLIND GB-PANDAS: BLIND THROUGHPUT-OPTIMAL LOAD BALANCING ALGORITHM 1205

Definition 2: The ideal workload on server m correspond-
ing to the load decomposition {λi,m} of Lemma 2 is defined
as

wm =

i∈L

λi,m

μi,m
, ∀m ∈ M. (13)

Let w = (w1, w2, · · · , wM). The vector of servers’ ideal
workload is used as an intermediary term in Lemmas 4 and
5 which are later used for throughput optimality proof of the
Blind GB-PANDAS algorithm.

Lemma 3:

〈W (t), �U (t)〉 = 0, ∀t.

The following lemma states that the sum over a time period
of the inner product of the workload and the pseudo arrival rate
is dominated on an expectation sense by the inner product of
the workload and the ideal workload plus constants depending
on the initial state of the system.

Lemma 4: Under the exploration-exploitation routing pol-
icy of the Blind GB-PANDAS algorithm, for any arrival rate
vector inside the capacity region, λ ∈ Λ, and the correspond-
ing ideal workload vector w defined in (13), and for any
arbitrary small θ0 > 0, there exists T0 > t0 such that for
any t0 ≥ 0 and T > T0:

E

� t0+T−1
t=T0

�
〈W (t), A(t)〉 − 〈W (t), w〉

����Z(t0)
�

≤ θ0 T ‖Q(t0)‖1 + c0,

where the constants θ0, c0 > 0 are independent of Z(t0).
We emphasize that θ0 in Lemma 4 can be made arbitrarily

small, as can be seen in the proof, which is used in the through-
put optimality proof of Blind GB-PANDAS, Theorem 1.
Throughout this paper, ‖.‖ and ‖.‖1 are the L2-norm and L1-
norm, respectively.

The following lemma is the counterpart of Lemma 4 for the
pseudo service process.

Lemma 5: Under the exploration-exploitation scheduling
policy of the Blind GB-PANDAS algorithm, for any arrival
rate vector inside the capacity region, λ ∈ Λ, and the
corresponding ideal workload vector w in (13), there exists
T1 > 0 such that for any T > T1, we have:

E

�
t0+T−1

t=t0

�
〈W (t), w〉 − 〈W (t), S(t)〉

����Z(t0)

�
≤ −θ1 T ‖Q(t0)‖1 + c1, ∀t0 ≥ 0, (14)

where the constants θ1, c1 > 0 are independent of Z(t0).
Lemma 6: Under the exploration-exploitation load balanc-

ing of the Blind GB-PANDAS algorithm, for any arrival rate
vector inside the capacity region, λ ∈ Λ, and for any θ2 > 0,
there exists T2 > 0 such that for any T > T2 and for any
t0 ≥ 0, we have:

E

�
‖Ψ(t0 + T)‖1 − ‖Ψ(t0)‖1

���Z(t0)
�
≤ −θ2‖Ψ(t0)‖1+MT.

Theorem 3.3.8 in [13], an extended version of the Foster-
Lyapunov theorem: Consider an irreducible Markov chain
{Z(t)}, where t ∈ N, with a state space S. If there exists
a function V : S → R+, a positive integer T ≥ 1, and a finite
set P ⊆ S satisfying the following condition:

E
�
V (Z(t0 + T))−V (Z(t0))

��Z(t0) = z
�

≤ −θI{z∈Pc} + CI{z∈P}, (15)

for some θ > 0 and C < ∞, then the irreducible Markov
chain {Z(t)} is positive recurrent.

B. Throughput Optimality Theorem and Proof

Theorem 1: The Blind GB-PANDAS algorithm is
throughput-optimal for a system with affinity setup discussed
in Section II, with general service time distributions with
finite means and supports, without prior knowledge on the
service rate matrix Bμ and the arrival rate vector λ.

Proof: We use the Foster-Lyapunov theorem for proving
that the irreducible and aperiodic Markov chain

Z(t) =�

Q(t), η(t),Ψ(t)
�
, t ≥ 0

�
(Lemma 1) is positive recurrent

under the Blind GB-PANDAS algorithm, as far as the arrival
rate vector is inside the capacity region, λ ∈ Λ. This means
that as time goes to infinity, the distribution of Z(t) converges
to its stationary distribution, which implies that the system is
stable and Blind GB-PANDAS is throughput-optimal. To this
end, we choose the following Lyapunov function V : S → R+

and use Lemmas 2, 3, 4, 5, and 6 to derive its drift afterward:

V (Z(t)) = ‖W (t)‖2 + ‖Ψ(t)‖1. (16)

By choosing θ0 in Lemma 4 less than θ1 in Lemma 5, θ0 < θ1,
we get T0 from Lemma 4, which is used in the drift of the
Lyapunov function in Lemma 7.

Lemma 7: For any t0 ≤ T0 < T , specifically T0 from
Lemma 4 that is dictated by choosing θ0 < θ1, we have the
following for the drift of the Lyapunov function in (16), where
T0 is used in the first summation after the inequality:

E

�
V (Z(t0 + T)) − V (Z(t0))

���Z(t0)
�

≤ 2E

�
t0+T−1

t=T0

�
〈W (t), A(t)〉 − 〈W (t), w〉

����Z(t0)

�

+2E

�
t0+T−1

t=t0

�
〈W (t), w〉 − 〈W (t), S(t)〉

����Z(t0)

�
+E

�
‖Ψ(t0 + T)‖1 − ‖Ψ(t)‖1

���Z(t0)
�

+c2‖Q(t0)‖1 + c3. (17)

By choosing T > max{T0, T1, T2,
θ2+c2

2(θ1−θ0)
}, where θ2 > 0 is

the one in Lemma 6, and substituting the terms on the right-
hand side of the Lyapunov function drift (17) in Lemma 7
from the corresponding inequalities in Lemmas 4, 5, and 6,
we have:

E

�
V (Z(t0 + T)) − V (Z(t0))

���Z(t0)
�

≤ −θ2

�
‖Q(t0)‖1 + ‖Ψ(t0)‖1

�
+ c, ∀t0,

where c = 2c0 + 2c1 + c3 + MT .
Let P =

Z =

�
Q, η,Ψ

� ∈ S : ‖Q‖1 + ‖Ψ‖1 ≤ c̄+c
θ2

�
for

any positive constant c̄ > 0, where P is a finite set of the state
space S. By this choice of P for the Lyapunov function V (.)
defined in (16), all the conditions of the Foster-Lyapunov the-
orem are satisfied, which completes the throughput optimality
proof for the Blind GB-PANDAS algorithm.

Note that the priority scheduling in the exploitation phase
of the Blind GB-PANDAS algorithm is not used for the
throughput optimality proof since the expected workload of
a server is decreased in the same rate no matter what locality
level is receiving service from the server. As long as an idle

1206 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Fig. 3. The affinity structure used for simulation with three types of tasks
and three multi-skilled servers.

server gives service to one of the tasks in its sub-queues
continuously, the system is stable. Given the routing policy,
the priority scheduling is used in the exploitation phase to
minimize the mean task completion time.

V. SIMULATION RESULTS

In this section, the simulated performance of the Blind
GB-PANDAS algorithm is compared with FCFS, Max-Weight,
and c-μ-rule algorithms. FCFS does not use system para-
meters for load balancing, but Max-Weight and c-μ-rule
use the same exploration-exploitation approach as Blind
GB-PANDAS. Convex cost functions Ci(Qi) = Q1.01

i for
i ∈ {1, 2, 3} are used for the c-μ-rule algorithm. Since the
objective is to minimize the mean task completion time,
the convexity of the cost functions are chosen in a way to
be close to a line for small values of Qi. Three types of tasks
and a computing cluster of three servers are considered with
processing rates depicted in Figure 3, which are not known
from the perspective of the load balancing algorithms. The
task arrivals are Poisson processes with the unknown rates
determined in Figure 3 and the processing times are log-
normal that are heavy-tailed and do not have the memory-less
property. Note that this affinity structure does not have the rack
structure mentioned in [6] since from the processing rates of
task type 2 on the three servers, servers 1 and 2 are in the
same rack as server 3, but from the processing rates of task
type 3 on the three servers, the second server is in the same
rack as the third server, but not the first server. Hence, this
affinity setup is more complicated than the one with a rack
structure.

Inspired by the fluid model planning algorithm, the follow-
ing linear programming optimization should be solved to find
the capacity region of the simulated system.

maximize
λi,m

λ =
3

i=1

3
m=1

λi,m

subject to: λ1,1+2λ2,1+4λ3,1<1, λ1,1+λ1,2+λ1,3 =0.4λ,

λ1,2+2λ2,2+2λ3,2<1, λ2,1+λ2,2+λ2,3 =0.2λ,

λ1,3+λ2,3+λ3,3 <1, λ3,1+λ3,2+λ3,3=0.4λ,

λi,m ≥ 0, ∀i, m ∈ {1, 2, 3}.

Fig. 4. Capacity region comparison of the Blind GB-PANDAS, Max-Weight,
c-µ-rule, and FCFS algorithms.

Fig. 5. Heavy-traffic performance comparison.

The capacity region in terms of λ is found to be λ ∈
[0, 2.5). Figure 4 compares the throughput performance of
the four algorithms, where the mean task completion time
versus the total task arrival rate, λ =

�3
i=1 λi, is plotted. The

Blind GB-PANDAS, Max-Weight, and c-μ-rule algorithms are
throughput-optimal by stabilizing the system for λ < 2.5.
Taking a closer look at the performance of these algorithms
at high loads, Blind GB-PANDAS has a much lower mean
task completion time compared to Max-Weight and c-μ-rule
algorithms as depicted in Figure 5.

VI. RELATED WORK

In addition to the fluid model planning, Max-Weight, and
c-μ-rule algorithms for the affinity scheduling problem that are
discussed in Section I and Section II-C, there is a huge body
of work on heuristic algorithms that are used for scheduling
for data centers with multiple levels of data locality,
e.g. [14]–[16], and look at the references in [11]. Although
some of these heuristic algorithms are being used in real
applications, simple facts about their optimality are not inves-
tigated. Recent works including the priority algorithm [17],
Join-the-Shortest-Queue-Max-Weight (JSQ-MW) [10] and
Weighted-Workload algorithm [6] study the capacity region
and throughput optimality for a system with two and three
levels of data locality. Some robust policies are studied
in [18]–[22].

A related direction of work on scheduling for data centers
with multi-level data locality, which is a direct application
of affinity scheduling, is to efficiently do data replication
on servers in MapReduce framework to increase availabil-
ity. Increasing the availability is translated to increasing

YEKKEHKHANY AND NAGI: BLIND GB-PANDAS: BLIND THROUGHPUT-OPTIMAL LOAD BALANCING ALGORITHM 1207

service rates in the context of this article which enlarges
the capacity region and reduces the mean task completion
time. For more information on data replication algorithms
refer to Google File System [23], Hadoop Distributed File
System [14], Scarlett [24], and Dare [25]. Data replication
algorithms are complementary and orthogonal to throughput
and delay optimality that is studied in this article.

Fairness is an issue in most scheduling problems which
conflicts with delay optimality. A delay optimal load balancing
algorithm can cooperate with fair scheduling strategies though
by compromising on delay optimality to partly achieve fair-
ness. Refer to Delay Scheduling [16], Quibcy [15], and the
references therein for more details.

VII. CONCLUSION AND FUTURE WORK

The Blind GB-PANDAS algorithm is proposed for the
affinity load balancing problem where no knowledge of the
task arrival rates and the service rate matrix is available.
An exploration-exploitation approach is proposed for load bal-
ancing which consists of exploration and exploitation phases.
The system is proven to be stable under Blind GB-PANDAS
and is shown empirically through simulations to have a
better delay performance than Max-Weight, c-μ-rule, and
FCFS algorithms. Investigating the subspace of the capacity
region in which GB-PANDAS is delay optimal is a promising
direction for future work. Note that both GB-PANDAS and
Max-Weight algorithms have high routing and scheduling
computation complexity which can be alleviated using power-
of-d-choices [26] or join-idle-queue [27] algorithms which
are interesting directions to study as well. Another interesting
future work is to consider a case where there are precedence
relations between several tasks of a job, i.e. a departing task
may join another queue.

APPENDIX

A. Proof of Lemma 1

Consider Z(0) =

0(
�

m∈M Nm)×1,
�

m∈M Nm, 0M×1

�
as the initial state of the Markov chain Z(t).
Irreducible: Since Fi,m is increasing for any task-server pair,
we can find an integer τ > 0 such that Fi,m(τ) > 0 for any
1 ≤ i ≤ Nm and m ∈ M. Furthermore, probability of zero
task arrival is positive in each time slot. Hence, for any state
Z = (Q, η,Ψ), there is a positive probability that each task
receives service in τ time slots and no new task arrives at
the system in τ

�
m∈M

�Nm

n=1 Qn
m time slots. Accordingly,

the initial state of the Markov chain is reachable from any
states of the system. Conversely, using the same approach,
it is easy to see that any states of the system is reachable
from the initial state, Z(0). Consequently, the Markov chain
Z(t) is irreducible.

Aperiodic: Since Markov chain Z(t) is irreducible, in order
to show that it is also aperiodic, it suffices to show that there is
a positive probability for transition from a state to itself. Due
to the fact that there is a positive probability that zero task
arrives to the system, the Markov chain stays at the initial state
with a positive probability. Hence, the Markov chain Z(t) is
aperiodic.

B. Proof of Lemma 2

The capacity region Λ is an open set, so for any λ ∈ Λ, there
exists δ > 0 such that (1 + δ)λ = λ′ ∈ Λ. On that account,

(4) follows by
�

i∈L
λ′

i,m

μi,m
=

�
i∈L

(1+δ)λi,m

μi,m
< 1, ∀m ∈ M,

which completes the proof:
i∈L

λi,m

μi,m
<

1
1+δ

, ∀m ∈ M.

C. Proof of Lemma 3

〈W (t), �U(t)〉=

m∈M

�
Q1

m(t)
α1

m

+
Q2

m(t)
α2

m

+· · ·+ QN
m(t)

αNm

m

�
Um(t)
αNm

m

.

If the unused service for server m is zero, Um(t) = 0,
the corresponding term for server m is zero in the above
summation. Alternatively, the unused service of server m is
positive if and only if all Nm sub-queues of the server are
empty, which again makes the corresponding term for server
m in the above summation equal to zero.

D. Proof of Lemma 4

By the choice of exploration rate for Blind GB-PANDAS,
which is independent of the system state, and the fact that
exploration exists in both routing and scheduling, any task that
is n-local to server m is scheduled on this server for infinitely
many times in the interval [t0,∞) only due to exploration,
regardless of the initial system state. Processing time of an
n-local task on server m has a finite mean. Hence, due to
strong law of large numbers, using the update rule (6) for the
elements of the service rate matrix, we have:

∀ 0 < � <
1
2
× min

min

n�=n′,m

��αn
m − αn′

m

��, min
m,n

αn
m, 0.5

�
and ∀δ′ > 0, ∃T ′

0 > t0, such that for any Z(t0)

P

����αn
m(t) − αn

m

��<�, 1−�<
αn

m�αn
m(t)

<1+�

����Z(t0)
�

>1 − δ′,

∀t > T ′
0, ∀m ∈ M, ∀n ∈ {1, 2, · · · , Nm}. (18)

By the above choice of �, for t > T ′
0, the different locality

levels are distinct from each other with at least 1 − δ′
probability. Let E be the event that

���αn
m(t) − αn

m

�� < � and
1 − � <

αn
m

�αn
m(t) < 1 + � for t ≥ T ′

0.

For an incoming task of type i ∈ L at time slot t, define
the exact (but not known) and estimated minimum weighted
workloads as

W
∗
i (t) = min

m∈M
Wm(t)
μi,m

, �W ∗
i (t) = min

m∈M

�Wm(t)�μi,m(t)
, (19)

where Wm(t) and �Wm(t) are defined in (2) and (7), respec-
tively. Wm(t) and �Wm(t) are related to each other as follows:

�Wm(t) =
Q1

m(t)�α1
m(t)

+
Q2

m(t)�α2
m(t)

+ · · · + QNm

m (t)�αNm

m (t)

=
α1

m�α1
m(t)

· Q1
m(t)
α1

m

+ · · · + αNm

m�αNm

m (t)
· QNm

m (t)
αNm

m

,

hence, using (18), for any t > T ′
0 and any m ∈ M, we have

P

�
(1 − �)Wm(t) < �Wm(t) < (1+�)Wm(t)

����Z(t0), E
�

= 1,

(20)

1208 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

and using (19) and (20), we have

P

�
Wm(t)
μi,m

≥W
∗
i (t) >

1
(1 + �)2

�W ∗
i (t)

����Z(t0), E
�

= 1. (21)

Using the conditional independence of �W (t) and A(t) from
Z(t0) given Z(t), for any T > T ′

0−t0, we have the following
for T ′

0 ≤ t ≤ t0 + T − 1:

E
�〈W (t), A(t)〉|Z(t0)

�
(a)
= E

m∈M

Wm(t)
�A1

m(t)
α1

m

+
A2

m(t)
α2

m

+ · · · + ANm

m (t)
αNm

m

�
����Z(t0)

!
(b)
= E

m

Wm(t)
�

1
α1

m

i∈L1

m

Ai,m(t) +
1

α2
m

i∈L2

m

Ai,m(t)

+ · · · + 1
αNm

m

i∈LNm

m

Ai,m(t)
�����Z(t0)

!
(c)
= E

i∈L

m∈M

�
Wm(t)
μi,m

Ai,m(t)
�����Z(t0)

!
(d)

≤ E

i∈L

m∈M

�
1

(1 − �)2
·
�Wm(t)�μi,m

Ai,m(t)
�����Z(t0), E

!
+δ′· E

i∈L

m∈M

�
Q1

m(t) + · · · + QNm

m (t)
min
i,m

{μi,m}·min
i
{μi,m} Ai,m(t)

�
����Z(t0), Ec

!
(e)
< E

E

i∈L

�
pe · 1

(1 − �)2
· �W ∗

i (t)Ai(t) +
1 − pe

(1 − �)2

×

m

�Nm

n=1 Qn
m(t0) +NT (T − t0)CA

min
i,m

{�μi,m(t)} · min
i
{�μi,m(t)} ·CA

�����Z(t)
!

����Z(t0), E
!

+δ′· E

i∈L

�
m

�Nm

n=1 Qn
m(t0) + NT (T − t0)CA

mini,m{μi,m} · mini{μi,m} ·CA

�
����Z(t0), Ec

!
(f)
<

1
(1 −�)2

i∈L

E

 �W ∗
i(t)

����Z(t0), E
!
λi +

�
1

tδ′′ + δ′
�

c′′0

‖Q(t0)‖1+c′0, (22)

where (a) and (b) are simply followed by the definitions of
pseudo task arrival process in (10) and An

m(t) in (8), respec-
tively. The order of summations is changed in (c). By the law
of total probability, (18), and (20), (d) is true, and (e) follows
by the routing policy of Blind GB-PANDAS, where an incom-
ing task at the beginning of time slot t is routed to the corre-
sponding sub-queue of the server with the minimum estimated
weighted workload with probability pe = max(1−p(t), 0) and
is routed to the corresponding sub-queue of a server chosen
uniformly at random with probability 1−pe. Also note that the
number of arriving tasks at a time slot is assumed to be upper
bounded by CA. The last step, (f), is true by using (18), upper

bounding the exploration probability 1− pe by 1
tδ′′ given that

δ′′ > 0 is a constant, and doing simple calculations, where c′′0
and c′0 are constants independent of Z(t0). Note that minimum
value of the estimated service rates, mini,m{�μi,m(t)}, is lower
bounded for any t ≥ t0 by a constant which is the minimum
of the initialization of service rates and the inverse of the
maximum support of CDF functions Fi,m. We also have

E
�〈W (t), w〉|Z(t0)

�
= E

�
m∈M

Wm(t)wm

����Z(t0)

�
(a)
= E

�
m∈M

�
Wm(t)

i∈L

λi,m

μi,m

�����Z(t0)

�
(b)
= E

�
i∈L

m∈M

Wm(t)
μi,m

λi,m

����Z(t0)

�
(c)

≥

i∈L

m∈M

1− δ′

(1+�)2
E

 �W ∗
i(t)

����Z(t0),E
!
λi,m

=
1− δ′

(1+�)2

i∈L

E

 �W ∗
i(t)
����Z(t0),E

!
λi, (23)

where (a) is true by the definition of the ideal workload on
a server in (13), note that the ideal workload is not state
dependent but Wm(t) is, the order of summations is changed
in (b), and (c) is followed by the law of total probability,
ignoring the second term, and Equation (21).

Putting (22) and (23) together, for T > T0 > T ′
0, we have

E

� t0+T−1
t=T0

�
〈W (t), A(t)〉 − 〈W (t), w〉

����Z(t0)
�

<

t0+T−1
t=T0

"�
1

(1 − �)2
− 1 − δ′

(1 + �)2

�
i∈L

E

 �W ∗
i (t)

����Z(t0), E
!
λi

+
�

1
tδ′′ + δ′

�
c′′0‖Q(t0)‖1 + c′0

#
(a)
<

16
9

(4� + δ′) ·
"

t0+T−1
t=T0

i∈L

E

 �W ∗
i (t)

����Z(t0), E
!
λi

#

+T

�
1

T δ′′
0

+ δ′
�

c′′0‖Q(t0)‖1 + Tc′0

(b)
<

16
9

(4� + δ′) TNT max
i

{λi}

×
"

E

m

�Nm

n=1 Q1
m(t0)+NT (T − t0)CA

mini,m{�μi,m(t)} · mini{�μi,m(t)}
����Z(t0), E

!#

+T

�
1

T δ′′
0

+ δ′
�

c′′0‖Q(t0)‖1 + Tc′0

(c)
<

�
� + δ′ +

1
T δ′′

0

�
Tc1‖Q(t0)‖1+c0=θ0 T ‖Q(t0)‖1 + c0,

where (a) follows by upper bounding 1− �, 1
(1−�)2(1+�)2 , and

1
tδ′′ by 1, 16

9 , and 1
T δ′′
0

, respectively, and (b) is true by the
fact that the number of arriving tasks is bounded by CA,
the number of task types is NT , and the maximum arrival rate
of task types, maxi{λi}, is bounded by the number of servers.
Inequality (c) is true by doing simple calculations and using

YEKKEHKHANY AND NAGI: BLIND GB-PANDAS: BLIND THROUGHPUT-OPTIMAL LOAD BALANCING ALGORITHM 1209

the fact that mini,m{�μi,m(t)} is lower bounded by a constant
for any t ≥ t0 as discussed in (f) of (22).

Remark: θ0 can be made arbitrary small by choosing � and
δ′ small and T0 large enough.

E. Proof of Lemma 5

The proof is similar to the proof of lemma 4 in [11] and
is presented for the sake of completeness. By the assumption
on boundedness of arrival and service processes, there exists a
constant CA such that for any t0, t, and T with t0 ≤ t ≤ t0+T ,
we have the following for all m ∈ M:

Wm(t0) − T

minn{αn
m} ≤ Wm(t) ≤ Wm(t0) +

TCA

minn{αn
m} .

(24)

On the other hand, by Lemma 2, the ideal workload on a
server defined in (13) can be bounded as follows:

wm ≤ 1
1 + δ

, ∀m ∈ M. (25)

Hence,

E

�
t0+T−1

t=t0

�
〈W (t), w〉

����Z(t0)

�

= E

�
t0+T−1

t=t0

"
M

m=1

Wm(t)wm

#����Z(t0)

�
(a)

≤ T

M
m=1

�
Wm(t0)wm +

MT 2CA

minn{αn
m}

�
(b)

≤ T

1 + δ

m

Wm(t0) +
MT 2CA

minm,n{αn
m} , (26)

where (a) is true by bringing the inner summation on m out
of the expectation and using the boundedness property of the
workload in Equation (24), and (b) is true by Equation (25).

Before investigating the second term on the left-hand side

of Equation (14), E

� �t0+T−1
t=t0

�
〈W (t), S(t)〉

� ���Z(t0)
�
,

we propose the following lemma which will be used in lower
bounding this second term.

Lemma 8: For any server m ∈ M and any t0, we have the
following:

lim
T→∞

E

 �t0+T−1
t=t0

�
S1

m(t)
α1

m
+ S2

m(t)
α2

m
+ · · ·+ SNm

m (t)

αNm
m

�����Z(t0)
!

T
=1.

We then have the following:

E

�
t0+T−1

t=t0

�
〈W (t), S(t)〉

����Z(t0)

�

= E

�
t0+T−1

t=t0

M
m=1

"
Wm(t)

�
S1

m(t)
α1

m

+
S2

m(t)
α2

m

+ · · ·+ SNm

m (t)
αNm

m

�#����Z(t0)

�
(a)

≥
M

m=1

"
Wm(t0)E

�
t0+T−1

t=t0

�
S1

m(t)
α1

m

+
S2

m(t)
α2

m

+

· · · + SNm

m (t)
αNm

m

�����Z(t0)

�#

−
M

m=1

"
T

minn{αn
m}E

 t0+T−1
t=t0

�
S1

m(t)
α1

m

+
S2

m(t)
α2

m

+ · · · + SNm

m (t)
αNm

m

�����Z(t0)
!#

, (27)

where (a) follows by bringing the inner summation on m out
of the expectation and using the boundedness property of the
workload in Equation (24).

Using Lemma 8, for any 0 < �0 < δ
1+δ , there exists T1

such that for any T ≥ T1, we have the following for any
server m ∈ M:

1 − �0

≤
E

 �t0+T−1
t=t0

�
S1

m(t)
α1

m
+ S2

m(t)
α2

m
+ · · · + SNm

m (t)

αNm
m

�����Z(t0)
!

T
≤ 1 + �0.

Then continuing on Equation (27), we have the following:

E

�
t0+T−1

t=t0

�
〈W (t), S(t)〉

����Z(t0)

�

≥ T (1 − �0)
M

m=1

Wm(t0) − MT 2(1 + �0)
minm,n{αn

m} . (28)

Then Lemma 5 is concluded as follows by using
equations (26) and (28) and picking c1 = MT 2

minm,n{αn
m} (CA +

1 + �0) and θ1 = 1
maxm,n{αn

m}
�

δ
1+δ − �0

�
, where by our

choice of �0 we have θ1 > 0:

E

�
t0+T−1

t=t0

�
〈W (t), w〉 − 〈W (t), S(t)〉

����Z(t0)

�

≤ −T

�
δ

1+δ
− �0

� M
m=1

Wm(t0)+
MT 2

minm,n{αn
m} (CA+1+�0)

(a)

≤ − T

maxm,n{αn
m}

�
δ

1 + δ
− �0

� M
m=1

�
Q1

m(t0) + Q2
m(t0)

+ · · · + QNm

m (t0)
�

+ c1

≤ −θ1 T ‖Q(t0)‖1 + c1, ∀T ≥ T0,

where (a) is true as Wm(t0) ≥ Q1
m(t0)+Q2

m(t0)+···+QNm

m (t0)
maxm,n{αn

m} .

F. Proof of Lemma 6

This proof is the same as the proof of lemma 5 in [11]
and is presented for the sake of completeness. For any server
m ∈ M, let t∗m be the first time slot after or at time slot t0
at which the server is available; that is,

t∗m = min{τ : τ ≥ t0, Ψm(τ) = 0}, (29)

where it is obvious that Ψm(t∗m) = 0. Note that for any t ≥ t0,
we have Ψm(t+1) ≤ Ψm(t)+1, which is true by the definition
of Ψ(t) that is the number of time slots that server m has spent
on the currently in-service task. From time slot t to t+1, if a
new task comes in service, then Ψm(t + 1) = 0 which results

1210 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

in Ψm(t + 1) ≤ Ψm(t) + 1; otherwise, if server m continues
giving service to the same task, then Ψm(t+1) = Ψm(t)+1.
Thus, if t∗m ≤ t0 +T , it is easy to find out that Ψm(t0 +T) ≤
t0 +T − t∗m ≤ T . In the following, we use t∗m to find a bound
on E[Ψm(t0 + T) − Ψm(t0)|Z(t0)]:

E

�
‖Ψ(t0 + T)‖1 − ‖Ψ(t0)‖1

���Z(t0)
�

=
M

m=1

E

 �
Ψm(t0 + T)−Ψm(t0)

�����Z(t0)
!

=
M

m=1

$
E

 �
Ψm(t0 + T)−Ψm(t0)

�����Z(t0), t∗m ≤ t0+T

!
×P

�
t∗m ≤ t0 + T

��Z(t0)
�

+E

 �
Ψm(t0 + T) − Ψm(t0)

�����Z(t0), t∗m > t0 + T

!
×P

�
t∗m > t0 + T

��Z(t0)
�%

(a)

≤
M

m=1

$�
T − Ψm(t0)

�
× P

�
t∗m > t0 + T

��Z(t0)
�

+T × P
�
t∗m > t0 + T

��Z(t0)
�%

= −
M

m=1

�
Ψm(t0) · P

�
t∗m > t0+T

��Z(t0)
��

+ MT, (30)

where (a) is true as given that t∗m ≤ t0 + T we found that
Ψm(t0+T) ≤ T , so Ψm(t0+T)−Ψm(t0) ≤ T−Ψm(t0), and
given that t∗m > t0 +T , it is concluded that server m is giving
service to the same task over the whole interval [t0, t0 + T],
which results in Ψm(t0 + T) − Ψm(t0) = T .

Since the CDF of service time of an n-local task on server
m has finite mean, we have the following:

lim
T→∞

P
�
t∗m ≤ t0 + T

���Z(t0)
�

= 1, ∀m ∈ M,

so for any θ2 ∈ (0, 1) there exists T2 such that for any T ≥ T2,

we have P
�
t∗m ≤ t0 + T

���Z(t0)
�

≥ θ2, for any m ∈ M,
so Equation (30) follows as below which completes the proof:

E

�
‖Ψ(t0 + T)‖1 − ‖Ψ(t0)‖1

���Z(t0)
�

≤ −θ2

M
m=1

Ψm(t0) + MT = −θ2‖Ψ(t0)‖1 + MT. (31)

G. Proof of Lemma 7

E

�
V (Z(t0 + T)) − V (Z(t0))

���Z(t0)
�

= E

�
‖W (t0 + T)‖2 − ‖W (t0)‖2

���Z(t0)
�

+E

�
‖Ψ(t0 + T)‖1 − ‖Ψ(t0)‖1

���Z(t0)
�

(a)
= E

�
t0+T−1

t=t0

�
‖W (t + 1)‖2 − ‖W (t)‖2

����Z(t0)

�
+E

�
‖Ψ(t0 + T)‖1 − ‖Ψ(t)‖1

���Z(t0)
�

(b)
= E

�
t0+T−1

t=t0

�
‖A(t) − S(t) + �U(t)‖2

+2〈W (t), A(t) − S(t)〉 + 2〈W (t), �U (t)〉
����Z(t0)

�
+E

�
‖Ψ(t0 + T)‖1 − ‖Ψ(t)‖1

���Z(t0)
�

(c)

≤ 2E

�
t0+T−1

t=t0

�
〈W (t), A(t) − S(t)〉

����Z(t0)

�
+E

�
‖Ψ(t0 + T)‖1 − ‖Ψ(t)‖1

���Z(t0)
�

+ c′3

(d)
= 2E

�
t0+T−1

t=t0

�
〈W (t), A(t)〉 − 〈W (t), w〉

����Z(t0)

�

+2E

�
t0+T−1

t=t0

�
〈W (t), w〉 − 〈W (t), S(t)〉

����Z(t0)

�
+E

�
‖Ψ(t0 + T)‖1 − ‖Ψ(t)‖1

���Z(t0)
�

+ c′3, (32)

where (a) is true by the telescoping series, (b) follows by
using (11) to substitute W (t + 1), (c) follows by Lemma 3
and the fact that the task arrival is assumed to be bounded and
the service and unused service are also bounded as the number
of servers are finite, so the pseudo arrival, service, and unused
service are also bounded, and therefore there exists a constant
c1 such that ‖A(t) − S(t) + �U(t)‖2 ≤ c′3

T , and (d) follows
by adding and subtracting the intermediary term 〈W (t), w〉.
On the other hand,

2E

�
t0+T−1

t=t0

�
〈W (t), A(t)〉 − 〈W (t), w〉

�����Z(t0)

�

≤ 2E

�
T0−1
t=t0

〈W (t), A(t)〉
����Z(t0)

�

+2E

�
t0+T−1

t=T0

�
〈W (t), A(t)〉 − 〈W (t), w〉

�����Z(t0)

�
(a)

≤ 2E

�
(T0 − t0) · CA

(minm,n{αn
m})2

m∈M

�
Q1

m(t0) + · · · + QNm

m (t0)

+Nm · CA · (T0 − t0)
�����Z(t0)

�

+2E

�
t0+T−1

t=T0

�
〈W (t), A(t)〉 − 〈W (t), w〉

�����Z(t0)

�

≤ 2E

�
t0+T−1

t=T0

�
〈W (t), A(t)〉 − 〈W (t), w〉

�����Z(t0)

�
+c2‖Q(t0)‖1 + c′′3 , (33)

where (a) is true by the fact that at most CA tasks arrive at
system in each time slot, and by using the definition of pseudo
task arrival in (10). Putting (32) and (33) together, Lemma 7
is proved as follows:

E

�
V (Z(t0 + T)) − V (Z(t0))

���Z(t0)
�

≤ 2E

�
t0+T−1

t=T0

�
〈W (t), A(t)〉 − 〈W (t), w〉

�����Z(t0)

�

YEKKEHKHANY AND NAGI: BLIND GB-PANDAS: BLIND THROUGHPUT-OPTIMAL LOAD BALANCING ALGORITHM 1211

+2E

�
t0+T−1

t=t0

�
〈W (t), w〉 − 〈W (t), S(t)〉

����Z(t0)

�
+E

�
‖Ψ(t0 + T)‖1−‖Ψ(t)‖1

���Z(t0)
�

+ c2‖Q(t0)‖1+c3,

where c3 = c′3 + c′′3 .

H. Proof of Lemma 8

The proof is similar to the proof of lemma 6 in [11] and is
presented for the sake of completeness. Let t∗m be the first time
slot after or at time slot t0 at which server m becomes idle,
and so is available to serve another task (t∗m is also defined
in (29)); that is,

t∗m = min{τ : τ ≥ t0, Ψm(τ) = 0}, (34)

where, as a reminder, Ψm(τ) is the number of time slots that
the m-th server has spent on the task that is receiving service
from this server at time slot τ .

Denote the CDF of service time of an n-local task on
server m by Fn

m that has finite mean αn
m < ∞; therefore,

t∗m < ∞. We then have the following by considering the
bounded service:"
E

⎡⎣t∗m+T−1
t=t∗m

�
S1

m(t)
α1

m

+ · · ·+ SNm

m (t)
αNm

m

�����Z(t0)

⎤⎦− t∗m−t0
αNm

m

+
1

α1
m

#&
T

≤
E

 �t0+T−1
t=t0

�
S1

m(t)
α1

m
+ S2

m(t)
α2

m
+ · · · + SNm

m (t)

αNm
m

�����Z(t0)
!

T

≤
"

E

⎡⎣t∗m+T−1
t=t∗m

�
S1

m(t)
α1

m

+ · · · + SNm

m (t)
αNm

m

�����Z(t0)

⎤⎦
+

1
αNm

m

#&
T, (35)

where by boundedness of t∗m, α1
m, and αNm

m , it is obvious that

limT→∞
− t∗m−t0

αNm
m

+ 1
α1

m

T = 0 and limT→∞
1

αNm
m

T = 0. Hence,
by taking the limit of the terms in Equation (35) as T goes to
infinity, we have the following:

lim
T→∞

E

 �t0+T−1
t=t0

�
S1

m(t)
α1

m
+ S2

m(t)
α2

m
+ · · · + SNm

m (t)

αNm
m

�����Z(t0)
!

T
= lim

T→∞

E

 �t∗m+T−1
t=t∗m

�
S1

m(t)
α1

m
+ S2

m(t)
α2

m
+ · · · + SNm

m (t)

αNm
m

�����Z(t0)
!

T
.

(36)

Considering the service process as a renewal process, given
the scheduling decisions at the end of the renewal intervals in
[t∗m, t∗m +T −1], all holding times for server m to give service
to tasks in its sub-queues are independent. We elaborate on this
in the following.

We define renewal processes, Nn
m(t), n ∈ {1, 2, · · · , Nm},

as follows, where t is an integer valued number:
Let Hn

m(l) be the holding time (service time) of the l-th
task that is n-local to server m after time slot t∗m receiving
service from server m, and call {Hn

m(l), l ≥ 1} the holding

process of n-local task type, n ∈ {1, 2, · · · , Nm}. Then define
Jn

m(l) =
�l

i=1 Hn
m(l) for l ≥ 1, and let Jn

m(0) = 0. In the
renewal process, Jn

m(l) is the l-th jumping time, or the time
at which the l-th occurrence happens, and it has the following
relation with the renewal process, Nn

m(t):

Nn
m(t) =

∞
l=1

I{Jn
m(l)≤t} = sup{l : Jn

m(l) ≤ t}.

Another way to define Nn
m(t) is as shown in the following

algorithm, where by convention, Nn
m(0) = 0.

1: Set τ = t∗m, cntr = 0, Nn
m(t) = 0

2: while cntr < t do
3: if ηm(τ) = n then
4: cntr + +
5: Nn

m(t) + = Sn
m(τ)

6: end if
7: τ + +
8: end while

Another renewal process, Nm(t), is defined as

Nm(t) =
t∗m+t−1
u=t∗m�
I{S1

m(u)=1}+I{S2
m(u)=1} + · · · + I{SNm

m (u)=1}
�
.

Similarly, let Hm(l) be the holding time (service time) of the
l-th task after time slot t∗m receiving service from server m,
and call {Hm(l), l ≥ 1} the holding process. Then define
Jm(l) =

�l
i=1 Hm(l) for l ≥ 1, and let Jm(0) = 0. In the

renewal process, Jm(l) is the l-th jumping time, or the time
at which the l-th occurrence happens, and it has the following
relation with the renewal process, Nm(t):

Nm(t) =
∞

l=1

I{Jm(l)≤t} = sup{l : Jm(l) ≤ t}.

Note that the central scheduler makes scheduling decisions
for server m at time slots {t∗m + Jm(l), l ≥ 1}. We denote

these scheduling decisions by Dm(t∗m) =
�
ηm(t∗m + Jm(l)) :

l ≥ 1
�

. Consider the time interval [t∗m, t∗m + T − 1] when T

goes to infinity. Define ρn
m as the fraction of time that server m

is busy giving service to tasks that are n-local to this server,
in the mentioned interval. Obviously,

�Nm

n=1 ρn
m = 1. Then

Equation (36) is followed by

lim
T→∞

E

 �t∗m+T−1
t=t∗m

�
S1

m(t)
α1

m
+ S2

m(t)
α2

m
+ · · · + SNm

m (t)

αNm
m

�����Z(t0)
!

T

= lim
T→∞

'
E

�
E

� t∗m+T−1
t=t∗m

�
S1

m(t)
α1

m

+
S2

m(t)
α2

m

+

· · · + SNm

m (t)
αNm

m

�����Dm(t∗m), Z(t0)

������Z(t0)

�(&
T

=
Nm
n=1

lim
T→∞

"
E

�
1

αn
m

E

� t∗m+T−1
t=t∗m

�
Sn

m(t)
�

1212 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

����Dm(t∗m), Z(t0)

������Z(t0)

�#&
T

=
Nm
n=1

E

�
1

αn
m

lim
T→∞

E

�
Nn

m

�
ρn

mT
����Dm(t∗m), Z(t0)

�
T

�����Z(t0)

�
.

(37)

Note that given {Dm(t∗m), Z(t0)}, the holding times
{Hn

m(l), l ≥ 1} are independent and identically distributed
with CDF Fn

m. If ρn
m = 0, then we do not have to worry

about those tasks that are n-local to server m since they receive
service from this server for only a finite number of times in
time interval [t∗m, t∗m + T − 1] as T → ∞, so

lim
T→∞

E
�
Nn

m

�
ρn

mT
���Dm(t∗m), Z(t0)

�
T

= 0.

But if ρn
m > 0, we can use the strong law of large numbers

for renewal process Nn
m to conclude the following:

lim
T→∞

E
�
Nn

m

�
ρn

mT
���Dm(t∗m), Z(t0)

�
T

= ρn
m · 1

E[Hn
m(1)]

,

(38)

where the holding time (service time) Hn
m(1) has CDF Fn

m
with expectation 1

αn
m

. Combining equations (37) and (38),
Lemma 8 is concluded as follows:

lim
T→∞

E

 �t∗m+T−1
t=t∗m

�
S1

m(t)
α1

m
+ S2

m(t)
α2

m
+ · · · + SNm

m (t)

αNm
m

�����Z(t0)
!

T

=
Nm
n=1

E

1

αn
m

· ρn
m · αn

m

����Z(t0)
!

=
Nm
n=1

ρn
m = 1. (39)

REFERENCES

[1] D. Padua, Encyclopedia of Parallel Computing. New York, NY, USA:
Springer, 2011.

[2] J. M. Harrison, “Heavy traffic analysis of a system with parallel servers:
Asymptotic optimality of discrete-review policies,” Ann. Appl. Probab.,
vol. 8, no. 3, pp. 822–848, Aug. 1998.

[3] J. M. Harrison and M. J. López, “Heavy traffic resource pooling in
parallel-server systems,” Queueing Systems, vol. 33, no. 4, pp. 339–368,
1999.

[4] S. L. Bell and R. J. Williams, “Dynamic scheduling of a system with
two parallel servers in heavy traffic with resource pooling: Asymptotic
optimality of a threshold policy,” Ann. Appl. Probab., vol. 11, no. 3,
pp. 608–649, Aug. 2001.

[5] S. Bell and R. Williams, “Dynamic scheduling of a parallel server system
in heavy traffic with complete resource pooling: Asymptotic optimality
of a threshold policy,” Electron. J. Probab., vol. 10, pp. 1044–1115,
2005.

[6] Q. Xie, A. Yekkehkhany, and Y. Lu, “Scheduling with multi-level data
locality: Throughput and heavy-traffic optimality,” in Proc. IEEE 35th
Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016,
pp. 1–9.

[7] A. Yekkehkhany, “Near-data scheduling for data centers with multiple
levels of data locality,” M.S. thesis, Dept. Elect. Comput. Eng., Univ.
Illinois Urbana-Champaign, Champaign, IL, USA.

[8] A. L. Stolyar, “Maxweight scheduling in a generalized switch: State
space collapse and workload minimization in heavy traffic,” Ann. Appl.
Probab., vol. 14, no. 1, pp. 1–53, Feb. 2004.

[9] A. Mandelbaum and A. L. Stolyar, “Scheduling flexible servers with
convex delay costs: Heavy-traffic optimality of the generalized cµ-rule,”
Oper. Res., vol. 52, no. 6, pp. 836–855, Dec. 2004.

[10] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Maptask scheduling in
Mapreduce with data locality: Throughput and heavy-traffic optimality,”
IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 190–203, Feb. 2016.

[11] A. Yekkehkhany, A. Hojjati, and M. H. Hajiesmaili, “GB-PANDAS:
Throughput and heavy-traffic optimality analysis for affinity scheduling,”
ACM SIGMETRICS Perform. Eval. Rev., vol. 45, no. 2, pp. 2–14,
Mar. 2018.

[12] R. Pedarsani, J. Walrand, and Y. Zhong, “Robust scheduling for flexible
processing networks,” Adv. Appl. Probab., vol. 49, no. 2, pp. 603–628,
Jun. 2017.

[13] R. Srikant and L. Ying, Communication Networks: An Optimiza-
tion, Control, and Stochastic Networks Perspective. Cambridge, U.K.:
Cambridge Univ. Press, 2013.

[14] T. White, Hadoop: The Definitive Guide. Sunnyvale, CA, USA: Yahoo!
2010.

[15] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing clus-
ters,” in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princ. (SOSP).
New York, NY, USA: ACM, 2009, pp. 261–276.

[16] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. 5th Eur. Conf. Comput. Syst.
New York, NY, USA: ACM, 2010, pp. 265–278.

[17] Q. Xie and Y. Lu, “Priority algorithm for near-data scheduling: Through-
put and heavy-traffic optimality,” in Proc. IEEE Conf. Comput. Com-
mun. (INFOCOM), Apr. 2015, pp. 963–972.

[18] S. H. Lu and P. R. Kumar, “Distributed scheduling based on due dates
and buffer priorities,” IEEE Trans. Autom. Control, vol. 36, no. 12,
pp. 1406–1416, Dec. 1991.

[19] J. G. Dai and G. Weiss, “Stability and instability of fluid models for
reentrant lines,” Math. Oper. Res., vol. 21, no. 1, pp. 115–134, Feb. 1996.

[20] G. Baharian and T. Tezcan, “Stability analysis of parallel server systems
under longest queue first,” Math. Methods Oper. Res., vol. 74, no. 2,
pp. 257–279, Jul. 2011.

[21] A. Dimakis and J. Walrand, “Sufficient conditions for stability of
longest-queue-first scheduling: Second-order properties using fluid lim-
its,” Adv. Appl. Probab., vol. 38, no. 2, pp. 505–521, 2006.

[22] R. Pedarsani and J. Walrand, “Stability of multiclass queueing networks
under longest-queue and longest-dominating-queue scheduling,” J. Appl.
Probab., vol. 53, no. 2, pp. 421–433, Jun. 2016.

[23] G. Sanjay, G. Howard, and L. Shun-Tak, “The Google file system,” in
Proc. 17th ACM Symp. Operating Syst. Princ., 2003, pp. 29–43.

[24] G. Ananthanarayanan et al., “Scarlett: Coping with skewed con-
tent popularity in mapreduce clusters,” in Proc. 6th Conf. Comput.
Syst. (EuroSys). New York, NY, USA: ACM, 2011, pp. 287–300.

[25] C. L. Abad, Y. Lu, and R. H. Campbell, “DARE: Adaptive data
replication for efficient cluster scheduling,” in Proc. IEEE Int. Conf.
Cluster Comput., Sep. 2011, pp. 159–168.

[26] D. Mukherjee, S. C. Borst, J. S. H. van Leeuwaarden, and
P. A. Whiting, “Universality of power-of-d load balancing in
many-server systems,” 2016, arXiv:1612.00723. [Online]. Available:
http://arxiv.org/abs/1612.00723

[27] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg,
“Join-idle-queue: A novel load balancing algorithm for dynamically
scalable Web services,” Perform. Eval., vol. 68, no. 11, pp. 1056–1071,
Nov. 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

