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Abstract— Wireless sensor networks (WSNs) have been the
popular targets for cyberattacks these days. One type of net-
work topology for WSNs, the scale-free topology, can effectively
withstand random attacks in which the nodes in the topology
are randomly selected as targets. However, it is fragile to
malicious attacks in which the nodes with high node degrees are
selected as targets. Thus, how to improve the robustness of the
scale-free topology against malicious attacks becomes a critical
issue. To tackle this problem, this paper proposes a Robustness
Optimization scheme with multi-population Co-evolution for
scale-free wireless sensor networKS (ROCKS) to improve the
robustness of the scale-free topology. We build initial scale-free
topologies according to the characteristics of WSNs in the
real-world environment. Then, we apply our ROCKS with
novel crossover operator and mutation operator to optimize the
robustness of the scale-free topologies constructed for WSNs. For
a scale-free WSNs topology, our proposed algorithm keeps the
initial degree of each node unchanged such that the optimized
topology remains scale-free. Based on a well-known metric for the
robustness against malicious attacks, our experiment results show
that ROCKS roughly doubles the robustness of initial scale-free
WSNs, and outperforms two existing algorithms by about 16%
when the network size is large.

Index Terms— Wireless sensor networks, robustness, scale-free
topology, multi-population co-evolution.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) [1]–[3] have
become a hot research field with a broad range of appli-

cations. Typically, WSNs deploy a large number of network
nodes within a certain area, and these nodes communicate with
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each other to monitor or control environmental parameters
such as temperature, lighting, etc. Due to the prevalence
of cyber-attacks, how to improve the robustness of WSNs
becomes an essential issue in recent years [4].

Network topology abstracts how nodes are connected in
a network. It is the foundation for communication activities
happening inside the network. Complex network theory [5]
studies the network topologies of an important class of net-
works called Complex Networks in which the topological
feature is neither purely regular (e.g., in a lattice graph [6])
nor purely random (e.g., in a random graph [7]). Actually,
many kinds of real-world networks such as the Internet, social
networks, brain networks, etc. are all complex networks.

There are two classic models in complex network theory,
one is small world topology and the other is scale-free topol-
ogy. The small world model has two notable features [8], [9],
which are small average path length and high clustering
coefficient [10]. It is generally used in modeling heteroge-
neous network topologies in WSNs [11]. On the other hand,
scale-free model is characterized by the power-law distribution
of node degrees, and mainly used in modeling homogeneous
network topologies [12], [13]. Since the scale-free model has
a power-law distribution of node degrees, it is robust against
random attacks, but vulnerable to malicious attacks [14].
Therefore, researchers have been focusing on how to enhance
scale-free topologies to withstand malicious attacks.

Some proposed approaches try to enhance the robustness
of networks with Genetic Algorithm(GA) [15]. Due to single
population of candidate solutions, it brings a typical limitation
called premature convergence [16], in which the evolution falls
into a local optimum too early, resulting in a solution far from
the global optimum. Besides, it is known that multi-population
genetic algorithm can effectively overcome this limitation
by using multiple populations to evolve together. Different
probability of crossover operator and mutation operator are
assigned to each population of multiple-population. Individ-
uals with high fitness values can be introduced into other
different populations through migration operator, which can
effectively prevent falling into a local optimum. Therefore,
in this paper, we propose to use multi-population co-evolution
to enhance the robustness of scale-free topologies. To validate
this idea, we give a concrete scheme called Robustness Opti-
mization with multi-population Co-evolution for scale-free
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wireless sensor networKS (ROCKS). ROCKS introduces novel
crossover and mutation operators to rewire the edges in net-
work topologies to enhance the robustness against malicious
attacks.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 gives an overview of ROCKS.
Section 4 details the crossover operator and mutation operator
in ROCKS by giving their algorithms. Section 5 presents
simulation results on ROCKS and compare it with two existing
algorithms. Finally, Section 6 concludes this paper.

II. RELATED WORK

The scale-free network has the typical characteristics that
most nodes (ordinary nodes) have a small node degree,
while very few nodes (hub nodes) have very large node
degrees [12], [13]. This characteristic makes scale-free net-
works robust against random attacks (mostly occurring on
ordinary nodes), but fragile under malicious attacks (occurring
on hub nodes). This paper focuses on how to improve the
robustness of scale-free wireless sensor networks against mali-
cious attacks. Although increasing the number of links among
the nodes could enhance the robustness of scale-free networks,
it will destroy the scale-free characteristic of the network.
Besides, Increasing the number of links also increases the
energy consumption of the network. Therefore, we explore an
effective way to improve the robustness of scale-free WSNs
against malicious attacks, during which the initial degree of
each node keeps unchanged such that the optimized topology
remains scale-free [17].

Due to low node power and energy saving consideration,
some researchers are working to reduce energy consumption
and energy efficiency [18], [19]. WSNs has the following two
constraints: (1) the communication range of its nodes cannot
be arbitrarily long and (2) its node degrees cannot be arbi-
trarily large. Because of these two constraints, the traditional
method for constructing scale-free topologies, the Barabási
Albert model (BA model) [20], cannot be directly applied.
So, we apply the following method, which adapts the BA
model, to construct scale-free topologies for WSNs.

We add edges between nodes sequentially during the process
of constructing WSNs topology after judging whether they are
within the communication range. Here ‘sequentially’ means
that a pair of nodes cannot generate a new edge at the same
time. The local world of the newly joined node is composed of
the all the nodes within its communication range. If a node has
been connected with the newly joined node or it has reached
the maximum degree, it will be removed from the local world
of the newly joined node. Furthermore, the newly joined node
chooses neighbors to establish a connection by roulette method
according to the degree of nodes. And the newly joined node
prefers to connect with higher degree node in its local world.

In recent years, some researchers try to use the GA to
solve the problems encountered in the deployment of wireless
sensor networks. Shukla et al. [21] presented a GA-based
routing scheme, which established a trade-off between energy
efficiency and energy balancing. Elhoseny et al. [22] proposed
a self-clustering method for the heterogeneous networks using

GA that optimizes the network lifetime. Peiravi et al. [23]
gave a new GA-based clustering algorithm to simultaneously
optimize network lifetime and delay. Zhou and Liu [24] pro-
posed a new memetic algorithm to enhance the robustness of
scale-free network against malicious attacks, during which the
initial degree of each node kept unchanged. Especially, it is
a type of significant enhancing method combine both global
and local searching. But it does not consider the limitation of
communication range for WSNs nodes. In this paper, by using
the evolutionary optimization of GA, we try to explore the best
topology scheme for scale-free WSNs, during which the initial
degree of each node kept unchanged.

Besides, some researchers became interested in how to
effectively optimize the robustness of the scale-free network.
Based on percolation theory, Schneider et al. [25] proposed
a new metric of robustness. They considered the largest
connected subgraph [26] when one repeatedly removes the
highest-degree nodes in the network to weight the net-
work robustness. Buesser et al. [27] used probabilistic swap-
ping strategy to deal with the multimodal phenomenon and
enhances the robustness of scale-free network topology, named
Simulated Annealing algorithm. This algorithm also can be
used in the robustness of scale-free WSNs. But its efficiency
is greatly decreased because of redundant swapping edges.
Through determining the edges which need to be compared by
twice selections, Louzada et al. [28] gave a Smart Rewiring
method. But it does not consider the limitation of communi-
cation range for WSNs nodes, thus, it is not aimed for WSNs.

By using the new metric of robustness mentioned above,
Herrmann et al. [29] proposed a new algorithm named Hill
Climbing, which makes the network topology resemble a
stable onion-like structure through swapping edges. But it
has multimodal phenomenon which may cause the algorithm
jumping into a local optimum. Herrmann et al. also have
found that onion-like structure is more stable and robust
against malicious attacks. Thus, in previous work, we make
the evolution of individual topology towards the onion-like
structure in mutation operator to improve the robustness of
topologies against malicious attacks [30]. Basically, the con-
nections among nodes in onion-like structure exhibit the
following characteristics:

• Nodes with similar node degrees connect to each other.
• Node degrees gradually decrease from inner nodes to

outer nodes.
• The majorities of the nodes have small degrees and are

located in the outer layers of the onion-like structure.

III. OVERVIEW OF ROCKS

GA is a type of optimization algorithms that imitate the
behavior of natural selection in the biological world. It is
an iterative process of evolution involving a large number
of generations. A GA typically consists of the following
components:

• A population of individuals: each individual is a solu-
tion to the optimization problem; usually encoded as
a 0-1 string.
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• A fitness function: it typically calculates the metric for
optimization on each individual; used to rank individuals
for selection purpose.

• Crossover operator: in this operator, a pair of parents is
selected to breed children in the next generation. This
operator is typically designed to enable the children to
inherit the strengths from their parents and also exhibit
diversity.

• Mutation operator: in this operator, a child in the new
generation is typically changed in certain stochastic way
to increase the diversity of the new generation.

Crossover operators in GA is used to increase the genetic
diversity of the population by selecting different individuals as
parent samples to generate new offsprings. Mutation operator
is used to generate children with high fitness function values
directly. With the widespread application of conventional GA,
many defects are exposed. One of the fatal issues is the
premature convergence mentioned in the previous section.

To address the premature convergence issue, the multi-
population genetic algorithm in ROCKS brings the following
improvements:

The framework of the GA which only uses single population
to evolve is broken by using several populations to search
the optimal solution. For different populations, we adopt
different crossover probability Pcro and mutation probabil-
ity Pmut. Although the ranges of crossover probability and
mutation probability are suggested to set as Pcro(0.7-0.9) and
Pmut(0.001-0.05) respectively, their ranges are wide enough
to allow plenty of probability values being experimented. The
optimization results will differ greatly with different Pcro’s
and Pmut’s. Given the global search and local search at the
same time, we conduct experiments with various Pcro’s and
Pmut’s to pick the best values of them to prevent different
populations from falling into the local optimum.

Each population is independent and communicates with
each other through migration operator. migration operator will
move the optimal individual that appeared on each population
during evolution to other populations in each generation,
which achieves the gene exchange among populations.

The best individual that appears in each generation of
evolution is selected to compose the migration population.
We do not have the operation of crossover and mutation in
migration population, which ensures the best individual of
each population will not be destroyed. The migration popu-
lation is the foundation of migrant operator, which increases
the genetic diversity, and guarantees the fitness function to
search for the optimal solution in a wide range.

For given scale-free topologies for WSNs, we optimize their
robustness using ROCKS. Firstly, we convert the adjacency
matrix of topology to a binary-coded chromosome. To further
illustrate this operator, a topology with five nodes is converted
to a chromosome in Fig. 1. The topology consists of node i,
node j, node k, node l and node m, and the adjacency matrix is
a binary matrix. It is feasible to convert the adjacency matrix
into a chromosome directly. However, the storage space is
wasted and the operating complexity is increased in the GA
when dealing with a huge network. The adjacency matrix is
a symmetric matrix, and its upper triangular matrix is able

Fig. 1. The adjacency matrix is converted to a chromosome.

to completely represent the connections between nodes in
the network. We convert the upper triangular matrix to a
chromosome as shown in Fig. 1. It can shorten the length
of the chromosome and improve the efficiency of the GA.

Each individual will be evaluated in each generation of the
GA. We get the fitness value of individuals by calculating the
fitness function. Individuals of each population will be sorted
by the fitness value. Individuals with high fitness values are
more likely to be selected to enter the next generation. The
fitness function directly influences the evolution direction of
the GA. Thus, it is very important to construct an appropriate
fitness function for the ROCKS proposed in this paper.

In order to measure the robustness of the scale-free network
against malicious attacks, we use the attack strategy called
High Degree Adaptive (HDA) [31]. In HDA, all nodes in the
network are sorted according to their node degrees. In each
round of attack, the node with the highest degree and the edges
connected to this node are removed.

To evaluate the network robustness under the HDA attack,
Schneider et al. [25] proposed a metric called R, which
considers the maximal connected subgraph after each round
of attack. Specifically, R is defined in Eq. (1) below:

R =
1

N + 1

N∑

n=0

MCS(n)
N

(1)

Wherein, N represents the total number of nodes in the
network; n represents the nth round of attack; MCS(n)
represents the number of nodes in the largest connected sub-
graph after the nth round of attack; the summation considers
N round of attacks until all nodes are removed; and the
normalization factor 1/(N + 1) ensures that the networks with
different sizes and edge densities can be compared. Note that
the value of R lies in the range (0, 0.5] [29].

It is obvious that the higher the value of R is, the higher
the robustness of scale-free WSNs topology. Thus, we employ
metric R as the fitness function f(G) in ROCKS to measure
the robustness of WSNs topologies, which will guide all the
populations evolving to resist malicious attacks.

IV. ROCKS

A. Initialization Operation

Individual diversity at the initialization operation is the
basis of genetic diversity in evolutionary processe of ROCKS.
If the difference among individuals is little, the advantage
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Fig. 2. Initial topology and how to select edges for swapping. (a) Initial topology. (b) Select edges for swapping.

Fig. 3. Three edge-swapping methods. (a) Method1. (b) Method2. (c) Method3.

of crossover operator will disappear soon. And the evolution
of species will depend on the mutation operator only. Since
the probability of mutation operator is small, the evolution of
species will be close to a single state soon, which causes the
termination of evolution. In order to ensure that the individuals
among population have a big difference in the initial time,
we design the following initialization operation.

For an original topology of scale-free WSNs, the location of
every node is stationary. We make the following transformation
under the premise that the degree distribution does not change.
Firstly, we assign a random probability between [0,1] as Pinit

for each individual of each population. Pinit controls the
frequency of edge-swapping on the original topology. Then
for the selected edges, we select one of the following three
swapping methods in Fig. 3. Thus, each individual transformed
from the original topology is completely random and has a
large difference from others.

Fig. 2(a) is an original scale-free WSNs topology, and
we will do the initialization algorithm on it to generate a
new topology which is different from the original topol-
ogy but has the same degree distribution. Firstly, a random
number between [0,1] is generated as the edge-swapping
frequency Pinit. Then each edge of the topology is traversed
one by one. For each edge, Pinit is compared with a random

probability rv between [0,1]. If rv is more than Pinit, we will
proceed to the next edge. If rv is less than Pinit, we will
do the edge-swapping operation. As shown in Fig. 2(b),
We have selected edge e12 between node 1 and node 2 for
edge swapping operation. Then we traverse each edge of the
topology that is not adjacent to e12, and look for the object
of edge-swapping operation for e12. For e34 in Fig. 2(b),
both node 3 and note 4 are in the communication radius
of node 2, but they are not in the communication radius of
node 1. Thus, e34 is discarded. In the process of traversal,
we find a suitable edge e56, whose node 5 and node 6 are
in the intersection of node 1’s and node 2’s communication
ranges. Finally, we determine e12 and e56 for edge-swapping
operation. As shown in Fig. 3, (a), (b) and (c) correspond to
three candidate operations respectively. We randomly select
one of them to conduct edge-swapping. Fig. 3(c) means there
is no operation on the two selected edges. If a matching
object for e12 cannot be found after traversing all the edges of
topology, the edge-swapping operation for e12 will be aborted,
and we will traverse the remaining edges.

B. Crossover Operator

The optimization ability of genetic algorithm comes from
population genetic diversity. Crossover operator is used to
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Fig. 4. The process of crossover operator. (a) Step1. (b) Step2. (c) Step3. (d) Step4. (e) Step5. (f) Step6. (g) Step7. (h) Step8.

increase the genetic diversity of the population by selecting
different individuals as parent samples to generate new off-
springs. It has no fixed evolution direction in the ROCKS. Par-
ent topologies generate new children topologies by crossover
operator, which obtains a larger solution space. Thus, the fit-
ness function will search the best solution in a larger space.
Generally, crossover operator retains part of father and mother
genes, and eventually generates new children topologies. The
crossover operator in this paper keeps the initial degree of
each node unchanged, which means that we will preserve the
degree distribution of parent topologies.

Taking into account the communication range in WSNs,
we design the crossover operator as follows.

Suppose Gf and Gm are the father’s topology and mother’s
topology, respectively. And Gs and Gd are the son’s topology
and daughter’s topology, respectively. Firstly, the parents are
chosen by the probability Pcro of crossover operator in a
population. Then Gs inherits its father’s topology Gf and Gd

inherits its mother’s topology Gm. Obtain the following sets
of edges:

EG
f = {eij |eij ∈ Gf} (2)

EG
m = {eij |eij ∈ Gm} (3)

Ef = EG
f − (EG

f ∩ EG
m) (4)

Em = EG
m − (EG

m ∩ EG
f ) (5)

where, EG
f is the set of the father’s edges, and EG

m is the
set of mother’s edges. Ef and Em are the sets of father’s
exclusive edges and mother’s exclusive edges respectively.
Here ‘exclusive’ means an edge only exists in one par-
ent’s set but not the other. That is, Ef is totally different
from Em. Because the location of each node is stationary,
if one edge exists in Ef , we also can build it in Gd. Finally,
the son’s topology disconnects the existing edges to build
every mother’s exclusive edges Em, during which the initial
degree of each node is kept unchanged. And the construction

process of daughter’s topology is similar to above operation.
Fig. 4 illustrates the process of crossover operator.

Fig. 4(a) and Fig. 4(e) represent the connections between
nodes in the father’s topology Gf and mother’s topology Gm.
It can be seen that the father has an exclusive edge e12 between
node 1 with node 2 in Fig. 4(a), and mother has an exclusive
edge e34 between node 3 with node 4 in Fig. 4(e). According
to the criteria in crossover operator, we build the mother’s
exclusive edge e34 in the son’s topology (Fig. 4(d)), and the
father’s exclusive edge e12 in daughter’s topology (Fig. 4(h)).

Here is the detailed description about how father’s topology
(Fig. 4(a)) generates his son’s topology (Fig. 4(d)). In order to
generate a new edge e34 in Fig. 4(a), we select the candidate
nodes which have no edge with the node 3 in the neighbors
of the node 4. Then we calculate the distance of the candidate
nodes to the node 3. Finally, we sort the distances to generate
a candidate list in ascending order. As shown in Fig. 4(b),
the node 7 that is the neighbor of the node 4 and has no
edge with the node 3, is the nearest node to node 3. Node 3
searches each of its neighbor nodes in Fig. 4(c) until finds a
node which is in the communication range of the node 7 and
has no edge with the node 7. As shown in Fig. 4(c), the node 3
chooses its neighbor node 8, and we disconnect the edges e47

and e38 in Fig. 4(d). After that, we generate the edges e34 and
e78. Finally, we successfully generate a new edge e34 in son’s
topology (Fig. 4(d)). The degree of node 3 and node 4 both
equal to 3 before crossover operator, and after the operator
they still keep unchanged. Therefore, it is consistent with the
criterion that keeps the initial degree of each node unchanged.
The process that the mother generates its daughters topology is
similar to the above operations as shown in Fig. 4(e-g). Finally,
we can see the father’s exclusive edge e12 in the daughter’s
topology in Fig. 4(h).

Besides, when the father’s topology generates his son’s
topology, if the node 3 cannot find an eligible node to match
the node 7 which is the candidate neighbor of the node 4,
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Fig. 5. Candidates for the topology connection. (a) Select edges eij and ekl. (b) Candidate1. (c) Candidate2.

the node 4 will sequentially choose another candidate node
in the candidate list. And the node 3 will search all of its
neighbors for each candidate node until it finds an eligible
node to match the candidate node. If the node 3 still cannot
find an eligible node after traversing the candidate list of the
node 4, we give up generating this edge.

C. Mutation Operator

The mutation operator in ROCKS not only increases the
diversity of a new generation but also produces individuals
with high fitness values. We choose the individual by the
mutation probability Pmut. The goal of mutation operator is
to increase the robustness of the selected individual through
exchanging edges, during which the initial degree of each node
is unchanged. Metric R is used to measure the robustness of
topology. We search for optimal solution within the local area
by the mutation operator.

Herrmann et al. [29] have found that onion-like structure
is stable and robust against malicious attacks. The nodes with
similar degrees connect to each other in onion-like structure.
If a node with a large degree failed, another node with a large
degree will replace its function. Therefore, we can minimize
the adverse effects of failure nodes as much as possible, and
the network topology will remain robust. In order to make the
evolution of individual topology toward the onion-like struc-
ture, we generate a new edge between two nodes that have a
similar degree, during which the initial degree of each node
is unchanged. We select two edges in the individual topology
and judge the four end nodes of these two edges whether they
are in the communication range of each other to guarantee that
we can generate a new edge among these four nodes.

For the edges eij and ekl selected in Fig. 5(a), we propose
a criterion to sort degree and swap edges as follows Eq. (6).

d1 − d2 + d3 − d4

|di − dj |+ |dk − dl| < Pswap (6)

Wherein, di, dj , dk, dl are the degree of node i, node j,
node k and node l respectively. We sort them in descending
order, and name them as d1, d2, d3, d4. Pswap controls reduc-
tion ratio of degree difference. If the formula on the left is less
than Pswap, we will swap edges according to d1, d2, d3, d4.
There are two candidate strategies in Fig. 5(b) and Fig. 5(c).

Based on the criteria mentioned above, the nodes that have
similar degrees will connect with each other, thus enabling
the evolution of individual topology towards the onion-like
structure. Besides, the swapping threshold Pswap is defined in
[0, 1), and it cannot be 1 because the two edges will not be
swapped in that case. We control the efficiency of mutation
operator by adjusting the value of Pswap. The appropriate
swapping threshold Pswap can effectively avoid inefficient
swapping edges operation.

D. Migration Operator

The migration operator in ROCKS is designed to overcome
premature convergence. Individuals with high fitness values
can be introduced into other populations through migration
operator, which can effectively prevent falling into a local
optimum. We assign different mutation operator and crossover
operator probabilities for different populations, and the suit-
able individuals are selected in different populations in every
generation. Thus, genetic communication can be carried out
between different populations to prevent trapping into local
optima.

The migration operation is divided into three steps. Firstly,
we select the individual with the highest fitness value in
each population. This optimal individual will be temporarily
stored in an elite population. Secondly, the worst individual in
each population is selected. Finally, each optimal individual
stored in the elite population will be used to replace a worst
individual in a different population.

Fig. 6 depicts a complete process of migration operation.
Each population has ten individuals. And each column repre-
sents an individual, and its length indicates the value of the
individual fitness function. The longer the column is, the larger
the value of individual fitness function will be. We identify
the best individual of each population and mark it by bright
color in Fig. 6(a). The selected individuals make up the elite
population in Fig. 6(b). Then as shown in Fig. 6(b), the worst
individual in each population is identified and marked by red.
Finally, in Fig. 6(c), the current optimal individual of popula-
tion 1 is used to replace the worst individual of population 2.
The current optimal individual of population 2 is used to
replace the worst individual of population 3. And the current
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Fig. 6. Migration operator. (a) Select the optimal individual. (b) Identify the
worst individual. (c) Replacement.

optimal individual of population 3 is used to replace the worst
individual of population 1.

E. Algorithm Design

In this subsection, we detail the algorithms for the four
operations described in the previous subsections.

1) Initialization Algorithm: Algorithm 1 describes the
detailed process of initialization operation. The variables used
in the algorithm are as follows.

• G0: Original topology of a scale-free WSNs.
• Mpop: Size of population.
• Nind: Number of individuals.
• Ginit: The initialization matrix of the ROCKS.
• Giniti

j : The element of ith row and jth column of matrix
Ginit.

• E0: The sets of all edges in the initial network.
• En: The sets of all edges in the current network.
• rv: A random variable that uniformly distributed in [0,1].
• ComRangab: The intersection communication rang of

node a and node b.
• eNei

ab : The neighbor of eab.

Algorithm 1 ROCKS Initialization
Input: G0, Mpop, Nind.
Output: Ginit

1: for i = 1 : Mpop do
2: for j = 1 : Nind do
3: Giniti

j ← G0

4: En ← E0

5: Pinit = rand(0, 1)
6: for all eab ∈ En do
7: En = En − {eab}
8: rv ← rand(0, 1)
9: if rv < Pinit then

10: Search in En until find an edge ecd that:
11: ecd ∈ ComRangab and ecd /∈ eNei

ab

12: candidate ← A random number in [1, 2, 3];
13: if (candidate == 1) then
14: Remove {eab, ecd} from Giniti

j

15: Add {eac, ebd} to Giniti

j

16: else
17: if (candidate == 2) then
18: Remove {eab, ecd} from Giniti

j A
19: Add {ead, ebc} to Giniti

j

20: else
21: No operation
22: end if
23: end if
24: En = En − {ecd}
25: if The edge does not exist then
26: Continue
27: end if
28: end if
29: end for
30: end for
31: end for

• Pinit: The edge-swapping frequency.
• eab: The edge selected currently.
• ecd: The edge-swapping object of eab.

This algorithm works as follows. For the original topology,
a random probability between [0,1] is generated for every
initial topology, which is the Pinit (Lines 3 - 5). We tra-
verse each edge of the initial topology (Line 6). A random
number rv is generated to compare with the edge-swapping
frequency Pinit (Line 8). If rv is less than Pinit, we enter the
edge-swapping operation. Firstly, we find a target edge that
can be swapped with the edge selected currently in set En.
The target edge should satisfy the conditions in line 10. Then
the edge-swapping scheme is selected in random (Line 13).
Line 12 to line 22 is the specific of edge-swapping operation.
If the target cannot be found, the edge-swapping operation for
the current edge will be aborted (Line 24 - 26). Finally, each
individual of each initial population is assigned a different
topology from the original topology, but has the same degree
distribution with the original topology.

2) Crossover Algorithm: Algorithm 2 describes the detailed
process of crossover operator, which is an extremely important
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Algorithm 2 Crossover Operator

Input: Gi, Nind, Pcro.
Output: Gcroi

1: inum← 0
2: Gcroi ← Gi

3: for j = 1 : Nind do
4: rv ← rand(0, 1)
5: if rv < Pcro then
6: reginum ← j
7: inum + +
8: end if
9: if (inum == 2) then

10: Gf ← Gi
reg1

11: Gm ← Gi
reg2

12: Ef = EG
f − (EG

f ∩ EG
m)

13: Em = EG
m − (EG

m ∩ EG
f )

14: Gs ← Gf

15: Gd ← Gm

16: /*Build every exclusive edge of father’s topology in
daughter’s topology*/

17: for all eij ∈ Ef do
18: Ef = Ef − {eij}
19: for all node k ∈ Lcand do
20: Select in Lstj until find node l that:
21: node l ∈ ComRangk and elk /∈ Ef

22: if node l exists then
23: Remove {eik, ejl} from Gd

24: Add {eij , ekl} to Gd

25: Break
26: end if
27: end for
28: if node l does not exist then
29: Continue
30: end if
31: end for
32: /*Build every exclusive edge of mother’s topology in

son’s topology as above*/
33: Gi

reg1
← Gs

34: Gi
creg2

← Gd

35: inum← 0
36: end if
37: end for

part of ROCKS. The variables used in the algorithm are as
follows.

• Gi: The set of individuals in the ith population.
• Pcro: The probability of crossover operator.
• Gcroi : The ith population after the crossover operator.
• reg: The index of individual that participates in crossover

operator.
• reginum: The inumth element in register reg.
• Gi

reg1
: Topology of the reg1th individual of the ith

population.
• Gf : The father’s topology in crossover operator.
• Gm: The mother’s topology in crossover operator.
• Gs: The son’s topology in crossover operator.

• Gd: The daughter’s topology in crossover operator.
• EG

f : The sets of edges in the father’s topology.
• EG

m: The sets of edges in the mother’s topology.
• Ef : The sets of father’s exclusive edges.
• Em: The sets of mother’s exclusive edges.
• eik: The edge selected currently.
• ejl: The edge-swapping object of eik.
• Lsti: The list of neighbors connected to node i.
• Lstj: The list of neighbors connected to node j.
• ComRangk: The communication rang of node k
• Lcand: The list of candidate node that ascending sort the

distances of node in Lsti to node j.

Every individual of the input population will be traversed
(Line 3). A random number rv between [0,1] is generated
to compare with the probability of crossover operator Pcro

(Line 4). If rv is less than Pcro, the current individual will
be selected as one of the parent topology (Lines 5 - 6).
After we have a couple of individuals, the crossover opera-
tor is beginning (Line 8). One of the couples becomes the
father’s topology Gf , and the other becomes the mother’s
topology Gm (Lines 9 - 10). Then we get the set of father’s
exclusive edges Ef and the set of mother’s exclusive edges
Em (Lines 11 - 12). The son’s topology inherits its father’s
topology, and the daughter’s topology inherits its mother’s
topology (Lines 13 - 14). Then we build every exclusive
edge of father’s in daughter’s topology (lines 15 - 30), which
has been described in detail in Section 4.2. This process
continues until every father’s exclusive edge has been rebuilt
in daughter’s topology. The method of generating the son’s
topology is similar to the above operations. Finally, the son
replaces its father’s position and the daughter replaces its
mother’s position in the population (Lines 32 - 33).

3) Mutation Algorithm: Algorithm 3 describes the detailed
process of mutation operator. The variables used in the algo-
rithm are as follows.

• Pmut: The probability of mutation operator.
• Pselect: The frequency of select edges.
• Pswap: The threshold of swapping edges.
• Gmuti : The ith population after the mutation operator.
• Ptemp: The temporary ratio value of degree change.
• Gmuti

j : The topology of the jth individual of the ith
population in mutation operator.

• Gmut: The target topology of crossover operator.
• EG

mut: The sets of edges in the current topology.
• eij : The edge selected currently.
• ekl: The edge-swapping object of eik.
• ComRangij : The intersection communication rang of

node i and node j.
• eNei

ij : The neighbor of eij .
• index: Records the original index of end nodes in

selected edges.
• R1: Robustness of the target topology before operation.
• R2: Robustness of the target topology after operation.

Every individual of the input population is traversed
(Line 2). A random number rv between [0,1] is generated
to compare with the probability of mutation operator Pmut

(Line 3-4). If rv is less than Pmut, the current individual
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Algorithm 3 Mutation Operator

Input: Gi, Nind, Pmut, Pselect, Pswap.
Output: Gmuti

1: Gmuti ← Gi

2: for j = 1 : Nind do
3: rv ← rand(0, 1)
4: if rv < Pmut then
5: for all eij ∈ EG

mut do
6: EG

mut = EG
mut − {eij}

7: rv2← rand(0, 1)
8: if rv2 < Pselect then
9: Search in EG

mut until find an edge ekl that:
10: ekl ∈ ComRangij and ekl /∈ eNei

ij

11: Ptemp = d1−d2+d3−d4
|di−dj|+|dk−dl|

12: if Ptemp < Pswap then
13: Gmut ← Gmuti

j

14: R1← CalculateRobust(Gmuti

j )
15: if (index(1) + index(2) = 5) then
16: Remove {eij , ekl} from Gmut

17: Add {eil, ejk} to Gmut

18: else
19: Remove {eij , ekl} from Gmut

20: Add {eik, ejl} to Gmut

21: end if
22: R2← CalculateRoust(Gmut)
23: if R2 > R1 then
24: Gmuti

j ← Gmut

25: end if
26: EG

mut = EG
mut − {ekl}

27: if the edge does not cexist then
28: Continue
29: end if
30: end if
31: end if
32: end for
33: end if
34: end for

will be chosen to participate mutation operator. Then every
edge of the selected individual will be traversed (Line 5).
In order to control the frequency of individual’s mutation
operations, we generate another random number rv2 between
[0,1] to compare with the frequency of mutation operator
Pselect (Line 7-8). If rv2 is less than Pselect, we find the target
edge for the current edge (Line 9-10). We sort the degrees
of node i, node j, node k and node l in descending order,
and name them as d1, d2,d3, d4. Then we get the temporary
ratio value Ptemp of degree change, and compare it with
the a threshold of swapping edges Pswap (Lines 11). Only
when Ptemp is less than Pswap, we execute the edge-swapping
operation. In this situation, the scheme of the operation is
determined (Lines 13 - 21). The robustness of topology
before and after the edge-swapping operation are calculated
by CalculateRoust (Lines 14, 22). After the edge-swapping
operation, if the metric R opposed to before does not increase,
the edge-swapping operation will be canceled (Lines 23 - 25).

Algorithm 4 ROCKS
Input: G0, Mpop, Nind, MaxGen,

Pcro, Pmut, Pselect, Pswap.
Output: GR

1: Gp ← Initialization(G0, Mpop, Nind)
2: P cro ← Pcro + (ConCro − Pcro) ∗ rand(Mpop, 1)
3: Pmut ← Pmut + (ConMut− Pmut) ∗ rand(Mpop, 1)
4: genSafe← 1
5: for i = 1 : Mpop do
6: ObjV i = ObjectFunction(Gpi)
7: end for
8: while (genSafe < MaxGen) do
9: for i = 1 : Mpop do

10: G∗ ← Gpi

11: G∗ = Cros_OP (G∗, Nind, P
cro
i )

12: G∗ = Mut_OP (G∗, Nind, P
mut
i , Pselect, Pswap)

13: ObjV Sel = ObjectFunction(G∗);
14: [Gpi , ObjV i] = ReiCh(Gpi , ObjV i, G∗, ObjV Sel)
15: maxObjV (genSafe, i) = max(ObjV i)
16: end for
17: for i = 1 : Mpop do
18: [MaxSubscript] = MaxPo(Gpi , ObjV i)
19: nexti = i + 1
20: if nexti > Mpop then
21: nexti = mod(nexti, Mpop)
22: end if
23: [MinSubscript] = MinPo(Gpnexti , ObjV nexti)
24: G

pnexti

MinSubscript ← Gpi

MaxSubscript

25: ObjV nexti

MinSubscript ← ObjV i
MaxSubscript

26: end for
27: EliteIndul(MaxObjV, MaxChromG, Gp, ObjV )
28: genSafe = genSafe + 1
29: end while
30: GR ←MaxChromG

Besides, if the target edge for the current edge cannot be found,
the operation of the current edge also will be canceled. This
process continues until every edge of the selected individual
has been visited.

4) ROCKS: Algorithm 4 describes the detailed process of
ROCKS. The variables used in the algorithm are as follows.

• GR: The individual topology that has the current best
robustness in ROCKS.

• Gp: The sets of all current populations, and each row
represents a population.

• P cro: The sets of crossover operator probabilities of all
populations.

• P cro
i : The crossover operator probabilities of ith popula-

tion.
• Pmut: The sets of mutation operator probabilities of all

populations.
• Pmut

i : The mutation operator probabilities of ith
population.

• ConCro: The benchmark of P cro.
• ConMut: The benchmark of Pmut.
• genSafe: The current generation.
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• Gpi : The ith population of ROCKS.
• Gpnexti : The nextith population of ROCKS.
• G∗: The current population.
• ObjV : The sets of fitness values for all populations.
• ObjV i: The sets of fitness values for ith population.
• ObjV Sel: The sets of fitness values of current operating

population.
• MaxSubscript: The index of the best individual in the

current population.
• MinSubscript: The index of the worst individual in the

current population.
• Gpi

MaxSubscript: The best individual topology in ith pop-
ulation.

• G
pnexti

MinSubscript: The worst individual topology in nextith
population.

• ObjV i
MaxSubscript: The fitness value of the best individ-

ual in ith population.
• ObjV nexti

MinSubscript : The fitness value of the worst indi-
vidual in nextith population.

• MaxObjV : The fitness values of the best individual in
ROCKS.

• MaxChromG: The best individual topology that appears
in ROCKS.

This algorithm works as follows. By using the initialization
function (Algorithm 1), ROCKS assigns different topologies
to each individual of each population based on the original
scale-free WSNs topology (Line 1). In order to assign a
pair of different crossover operator and mutation operator
probabilities for different populations, a sliding variable is
added to Pcro and Pmut (Lines 2 - 3). Before the optimization
starts, the initial fitness values of each population are calcu-
lated (Lines 5 - 7). Then the ROCKS begins. The crossover
operator (Algorithm 2) and mutation operator (Algorithm 3)
are performed on each population in turn (Lines 9 - 12),
and we get the fitness values ObjV Sel of current population
(Line 13) by ObjectFunction. For the genSafeth generation
of ith population, we put it in the (genSafe−1)th generation.
And according to their fitness values, the best individuals are
selected as the genSafeth population by the function ReiCh
(Line 14), which guarantees that the outstanding individuals
of two generations can be retained. The best individual for
each population of each generation is stored in maxObjV
(Line 15). When all the populations have performed the
above operations in one generation, the migration operation
begins.

All populations will be traversed (Line 17). We find out the
index MaxSubscript of the individual with the best fitness
value in ith population by the function MaxPo (Line 18),
and the index MinSubscript of the individual with the worst
fitness value in (i + 1)th population by the function MinPo
(Line 19 - 23). Then we use the MaxSubscriptth individual
topology of ith population to replace the MinSubscriptth
individual topology of (i + 1)th population (Line 24 - 25).
After migration operation, the best individual that appear in the
current populations is searched by the function EliteIndul.
MaxObjV and MaxChromG preserves its fitness values and
topology (Line 27). This process continues until the number of
generations genSafe reaches MaxGen. Finally, the topology

Fig. 7. The effect of parameter Pswap on the performance of ROCKS.

of the best individual that appear in the last generations
MaxChromG is assigned to GR (Line 30).

V. SIMULATION RESULTS

We simulate ROCKS in MATLAB. The nodes are deployed
randomly in a disk area with a diameter equal to 500m.
Considering that each node must have sufficient neighbors in
the initial topology, the communication range is set to 200m,
and each node has 2 edges. We set the number of populations
Mpop as 10, and the number of individuals in a population
Nind as 20. These two parameters are determined to be optimal
for ROCKS by a large number of experiments.

A. The Threshold of Swapping Pswap in
Different Edge Densities

The threshold of swapping edges Pswap is determined by
experiment. The parameters of experiment are set as follows:
N = 100 and MaxGen = 200, and the edge density M is
[2, 3, 4, 5]. The value of Pswap slides from 0.1 to 1 and the
interval is 0.1. Each round of experiments uses the same initial
topology, and all results correspond to the average of k(k >
10) independent runs. Finally, we get the trend of R/R(init)
with the change of Pswap value.

In Fig. 7, the x-axis represents the value of Pswap, and the
y-axis represents the ratio of the optimized R with the initial
R. With the increase of Pswap value, the effect of ROCKS
optimization increases slowly, the optimal value is obtained
at Pswap = 0.9 in different value of M . When the value of
Pswap = 1, the optimization effect declines. Thus, we use
Pswap = 0.9 in the next experiment.

B. Comparison Between Conventional GA and ROCKS

In this section, we make a comparison of the ROCKS and
conventional GA. In order to observe a comprehensive effect
under the same condition, the evolution of 10 independent
populations in conventional GA is compared with ROCKS.
The parameters of the experiment are set as follows: N = 100,
Nind = 20, MaxGen = 200. Besides, the probabilities
of crossover operator and mutation operator in each single
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Fig. 8. The comparison between conventional GA and ROCKS. (a) Conventional GA. (b) ROCKS.

Fig. 9. Comparison between before and after ROCKS. (a) 100 nodes, before optimized, R = 0.1686. (b) 100 nodes, after optimized, R = 0.2537.

population are equal to those in multi-population. The initial
topology of each population is identical in the two experi-
ments. Fig. 8(a) shows the trend of the best individual fitness
values of each generation in the evolution of 10 indepen-
dent populations. And Fig. 8(b) shows the trend of the best
individual fitness values of each generation in the evolution
of ROCKS.

It can be seen from the experiments that the ROCKS
achieves a great improvement in optimization compared with
the conventional GA. As shown in Fig. 8(a), the evolution of
each population is independent in the conventional GA. And
the optimization effect of each population is affected by the
values of crossover operator and mutation operator probabili-
ties. The optimization results are very different, and the final
optimal value also cannot reach a high level in the conven-
tional GA. ROCKS (as shown in Fig. 8(b)) uses co-evolution
and migration operations among populations. The excellent
individuals are introduced to the other populations in every
generation, which avoids falling into local optimum caused
by an inappropriate pair of crossover and mutation operator
probabilities. The above experiments show that through using
the co-evolution of the ROCKS, premature convergence can be
avoided effectively, and a better optimization result can be got.

Fig. 8(b) also illustrates that the metric R increases with the
number of generations of ROCKS. At the beginning, the metric
R of the initial topology is low, and the value of R increases
obviously from 1st to 70th generation. After 70th generation,
the optimization result increases slowly due to the value of R
has increased to a high level.

C. Comparison Between Before and After ROCKS

In order to compare the network topology changes before
and after the experiment, we designed the experiment in this
section. The parameters of the experiment are set as follows:
N = 100, Nind = 20, MaxGen = 200.

As shown in Fig. 9, the total number of nodes in scale-free
WSNs topology is 100. The initial topology is shown
in Fig. 9 (a). The size of the node represents its degree, and
the greater diameter of the node means that it has the greater
degree. The metric R is 0.1686 before optimization, and the
metric R increases to 0.2537 after optimization. We can see
that the nodes which have similar degrees connect with each
other in Fig. 9(b). Finally, our proposed algorithm makes the
network topology close to the onion-like structure.



QIU et al.: ROBUSTNESS OPTIMIZATION SCHEME WITH MULTI-POPULATION CO-EVOLUTION FOR SCALE-FREE WSNs 1039

Fig. 10. The comparison between difference operations of ROCKS.

D. Comparison Among Difference Operations of ROCKS

we designed the experiment in this section to observe the
effect of different operations in optimizing the robustness of
network topology. The parameters of the experiment are set
as follows: Nind = 20, MaxGen = 200, and total number of
nodes N is [100, 150, 200, 250, 300].

Fig. 10 shows the comparison between difference operations
of ROCKS. The blue line represents the initial network. The
green line represents using crossover operator only. And the
orange line represents using crossover operator and mutation
operator. The purple line represents ROCKS, which include
migration operator. As the number of nodes increases, the opti-
mization effect shows a downward trend. Besides, all operators
improve the optimization effect. Especially, when all operators
are grouped together in ROCKS, the best optimization can be
obtained.

E. Comparison on the Network Connectivity
Before and After ROCKS

In order to observe the attack effect intuitively, the number
of nodes in the maximally connected subgraph after removing
the attacked node is used to measure the status of network
connectivity. As shown in Fig. 11, the green line represents
the initial topology, and the orange line represents the topology
optimized by ROCKS. Besides, the blue line represents a fully
connected network, in which all the nodes are connected to
each other.

Random attack refers to that we select randomly nodes and
remove all the edges with them. In order to observe the effect
of random attack visually, we only attack a node each time
until all the nodes have been attacked. The attack strategy is
attacking a node randomly every second.

As shown in Fig. 11(a) and Fig. 11(b), After one random
attack, the number of nodes in the maximal connected sub-
graph of fully connected network only reduces one. It can
be seen that the two lines are basically consistent. After
the optimization, the robustness of network against random
attack is consistent with the initial topology, which means
the characteristic of topology against random attack is not
destroyed.

Fig. 11. Comparison on the network connectivity before and after ROCKS.
(a) 100 nodes under random attacks. (b) 200 nodes under random attacks.
(c) 100 nodes under malicious attacks. (d) 200 nodes under malicious attacks.

Malicious attack of network refers to attack the important
nodes, which leads to the collapse of entire network within
short time. Unlike the random attack, malicious attack is a
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purposeful attack. We calculate the degrees of each node in
the experiment. The bigger the degree of a node, which means
that it connects with more nodes, the more important it is in
the network. In order to simulate malicious attack, the node
with the biggest degree is the first target to be attacked. The
attack strategy is attacking a node purposefully every second.
The initial topology and the optimized topology are compared
under the same conditions against malicious attack, and the
number of nodes in maximal connected subgraph after each
malicious attack are recorded.

As shown in Fig. 11(c) and Fig. 11(d), the orange line
is closer to the blue line, which means that the topology
after optimized by ROCKS is closer to the fully connected
network ubder against malicious attack. For malicious attacks,
the optimized network is more robust than initial network.
Thus, ROCKS can significantly enhance the robustness of
network against malicious attack.

F. Comparison Between ROCKS and Other Algorithms in
Different Edge Densities

In this subsection, we compare the ROCKS with the
Hill Climbing algorithm [29] and the Simulated Annealing
algorithm [27] for robust optimization under different edge
densities. The parameters of the experiment are set as follows:
N = 100, Mpop = 10, Nind = 20, MaxGen = 200, and the
edge density M is [1, 2, 3, 4, 5]. The edge density M represents
the number of edges connected to each node in the original
topology. The same comparison tests are in the same condition,
which means that the initial topology is the same. All results
correspond to the average of k (k > 10) independent runs.

In the simulation of Hill climbing, each edge of topology is
traversed. For every selected edge, the rest edges are traversed
until find an edge in its communication range. The metric
R of the new combinations in the two reconnected edges
will be calculated. Select the combination in which metric
R is increased to reconnect the two edges. If metric R do
not increase, the two edges will not be swapped. The above
operation will continue until all edges are traversed.In the
simulation of Simulated Annealing, each edge of topology
is traversed. For every selected edge, an edge in its com-
munication range will be found in the reset edges. For the
two selected edges, the metric R of the candidate edge-swap
operation will be calculated. If metric R increases, we accept
candidate edge-swap operation. If metric R is decreased, can-
didate edge-swap operation will be accepted in a determined
probability T , which is called simulation temperature and is
set as 0.001. If the decrease in metric R is accepted, the value
of probability T will be halved.

It can be seen from Fig. 12 that with the increase of the
edge density of the scale-free WSNs, all the three algorithms
improve the metric R over the initial network topology signifi-
cantly, which means the ability of the network topology against
malicious attacks increases gradually. With the increase of net-
work edges density, both the three algorithms present a similar
trends. The optimization compared with the initial topology is
not obvious when the edge density is too large or too small.
A appropriate edge density can make the optimization effects

Fig. 12. Comparison between ROCKS and other algorithms in different edge
densities.

of the three algorithms more easy to observe. Besides, for
different edges densities of scale-free WSNs topology, ROCKS
always has a better optimization results compared with the
traditional optimization algorithms.

G. Comparison Between ROCKS and Other Algorithms in
Different Network Sizes

Based on the original scale-free WSNs topology, we com-
pare our algorithm with two existing algorithms, namely Hill
Climbing algorithm and Simulated Annealing algorithm.

The working principles of Hill Climbing and Simulated
Annealing are briefed as follows: Hill Climbing belongs to
local search algorithms. The Hill Climbing algorithm only
compares with the previous optimization state and the next
optimization state. When it is better than the previous state
and the next state, it considers the current state as the optimal
solution. Although the efficiency of Hill Climbing is relatively
high, the quality of the optimal solution is relatively poor.
Simulated Annealing introduces random factors to its search
process. Simulated Annealing accepts a solution that is worse
than the current solution with a certain probability, so it is
possible to jump out of this local optimal solution and reach
a global optimal solution.

Both of these algorithms keep the initial degree of every
node unchanged in experiment. Fig. 13 shows that the
optimization results of Hill Climbing algorithm, Simulated
Annealing algorithm and our proposed algorithm in different
sizes of scale-free WSNs topology. The size of scale-free
topologies is set as 100, 150, 200, 250, 300 nodes, respectively.
The results are the average of k (k > 10) independent experi-
ments and each scale-free WSNs topology remains connected
after optimization.

As can be seen in Fig. 13, all the three algorithms improve
the robustness of the initial topology significantly. The per-
formance of the Simulated Annealing algorithm is better
than the Hill Climbing algorithm. All the three algorithms
present a downward trend with the increase of network sizes.
ROCKS always has the best performance results in robustness
optimization than the other two algorithms in WSNs.
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Fig. 13. Comparison between ROCKS and other algorithms in different
network sizes.

VI. CONCLUSION

Due to the characteristics of WSNs, such as limited com-
munication range and limited node degree, the traditional
BA model in wired network is no longer suitable. We first
gave an adapted method from the BA model to construct
scale-free topologies for WSNs. Then, we proposed a scheme
called ROCKS to optimize the robustness of the constructed
scale-free topologies. In this ROCKS, we designed two novel
operators, namely crossover operator and mutation operator.
Under the evolution of these two operators, the initial degree
of each node is unchanged, thus the scale-free property is
preserved. Finally, we simulate our algorithm and two existing
algorithms on their performances in improving the robustness
of scale-free WSNs topologies under different edge densi-
ties and network sizes. The experiment results show that
our algorithm can significantly improve the robustness of
scale-free WSNs against malicious attacks. With the network
size increasing, the values of R in two existing algorithms drop
quickly, but ROCKS still maintains the values of R at a high
level.

ROCKS is designed for enhancing the robustness of WSNs
in a centralized system, which needs the information of the
entire scale-free network topology.We will further focus on
WSNs in a distributed system, and explore the application of
multi-population co-evolution algorithm in it.
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