
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017 3655

HyPaFilter+: Enhanced Hybrid Packet Filtering
Using Hardware Assisted Classification

and Header Space Analysis
Andreas Fiessler, Claas Lorenz, Sven Hager, Björn Scheuermann, and Andrew W. Moore, Member, IEEE

Abstract— Firewalls, key components for secured network
infrastructures, are faced with two different kinds of challenges:
first, they must be fast enough to classify network packets at line
speed, and second, their packet processing capabilities should be
versatile in order to support complex filtering policies. Unfortu-
nately, most existing classification systems do not qualify equally
well for both requirements: systems built on special-purpose
hardware are fast, but limited in their filtering functionality.
In contrast, software filters provide powerful matching semantics,
but struggle to meet line speed. This motivates the combination
of parallel, yet complexity-limited specialized circuitry with a
slower, but versatile software firewall. The key challenge in such
a design arises from the dependencies between classification
rules due to their relative priorities within the rule set: complex
rules requiring software-based processing may be interleaved at
arbitrary positions between those where hardware processing
is feasible. Therefore, we discuss approaches for partitioning
and transforming rule sets for hybrid packet processing. As a
result, we propose HyPaFilter+, a hybrid classification system
consisting of an FPGA-based hardware matcher and a Linux
netfilter firewall, which provides a simple, yet effective
hardware/software packet shunting algorithm. Our evaluation
shows up to 30-fold throughput gains over software packet
processing.

Index Terms— Packet classification, FPGA hardware
accelerator, firewall, header space analysis.

I. INTRODUCTION

SOFTWARE firewalls like netfilter/iptables [1],
pf [2], or ipfw [3] are widely used in practice, both

in stand-alone applications and as the basis for profes-
sional security appliances [4]. Their main advantages are
flexibility and powerful filtering options, as well as their
easy setup and handling, since they can be used on top of
common operating systems with low-cost, commercial off-
the-shelf (COTS) hardware. These CPU-based architectures,

Manuscript received August 29, 2016; revised March 24, 2017 and
July 30, 2017; accepted September 3, 2017; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor A. Bremler-Barr. Date of publication
September 27, 2017; date of current version December 15, 2017. This work
was supported in part by the German Federal Ministry for Economic Affairs
and Energy, in part by the German Federal Ministry of Education and
Research, and in part by the EU Horizon 2020 SSICLOPS Project under
Grant 644866. (Corresponding author: Andreas Fiessler.)

A. Fiessler and C. Lorenz are with genua GmbH, 85551 Kirchheim,
Germany (e-mail: andreas_fiessler@genua.de; claas_lorenz@genua.de).

S. Hager and B. Scheuermann are with the Department of Computer
Engineering, Humboldt University of Berlin, 12489 Berlin, Germany (e-mail:
hagersve@informatik.hu-berlin.de; scheuermann@informatik.hu-berlin.de).

A. W. Moore is with the Computer Laboratory, University of Cambridge,
Cambridge CB3 0FD, U.K. (e-mail: andrew.moore@cl.cam.ac.uk)

Digital Object Identifier 10.1109/TNET.2017.2749699

however, hardly meet the line rate packet processing require-
ments for high link speeds such as 40 Gbit/s and beyond,
which leave only small processing time frames of 8 ns or less
for each packet in the worst case [5]. In contrast, packet
classification systems based on special purpose hardware, such
as network processors (NPUs) [6], [7], field-programmable
gate arrays (FPGAs) [5], [8]–[10], graphics processing
units (GPUs) [11], or application-specific integrated cir-
cuits (ASICs) [12] provide an abundant amount of parallelism
which can be used to process many network packets at
once. Furthermore, the matching process for every single
packet is often parallelized, leading to throughput rates of
up to 640 Gbit/s [12].

However, dedicated hardware is significantly more con-
strained with respect to the expressiveness of the supported
rule set semantics: while the functionality of software-based
classification systems ranges from stateful connection tracking
over probabilistic matching to deep packet inspection [1]–[3],
specialized hardware engines are often restricted to simple
stateless packet classification with no or only limited con-
nection tracking capabilities [5], [9]–[12]. Moreover, while
software firewalls can utilize large amounts of memory for
storing policies and connection states, hardware firewalls have
to operate within fixed boundaries.

In order to combine the advantages of massively par-
allel matching hardware and the powerful inspection
capabilities of software-based packet filters, we propose
HyPaFilter+, a hybrid packet classification concept. The
HyPaFilter+ approach aims to reach the packet rate and
processing latency of a dedicated hardware firewall for com-
mon, easy to classify traffic, while providing the flexibility
and functionality of a software firewall for packets that require
complex processing. The hardware part of the hybrid system
processes all traffic first and is able to shunt packets, i.e., hand
them over to the software when necessary. To this end,
HyPaFilter+ partitions a user-defined packet processing policy
into a part consisting of simple rules, manageable by spe-
cialized matching hardware, and a part consisting of complex
rules, which requires handling in software. We found that a
key challenge in such a hybrid design, regardless of its con-
crete implementation, is the proper handling of dependencies
between different rules in the specified policy: if the hardware
detects a rule match of an incoming packet in the simple part of
the policy, it must ensure that the packet does not match a more
highly prioritized rule installed in the software filter before

1063-6692 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3656 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

the action specified by the hardware-detected rule is applied.
However, it is desirable to avoid a full-fledged software packet
classification whenever possible in order to achieve the full
hardware speedup for a large number of packets. To over-
come this challenge, the HyPaFilter+ approach determines for
which packets a hardware-only classification is safely possible.
Furthermore, even if software processing for a packet is
required, the matching information from the hardware can be
reused in order to narrow down the set of rules the software
filter has to match against this packet. We also address policy
updates, as both the simple and complex part of a policy can
change at arbitrary positions after an initial system setup.

The achievable performance of HyPaFilter+ depends on
both the structure of the implemented policy and the network
traffic characteristics. However, previous examination of real-
world traffic in [13] showed that the fraction of traffic which
can be analyzed by simple packet filter rules is large enough to
expect a significant performance gain in practical applications.
Our evaluation results indicate that the HyPaFilter+ system,
which we prototyped using a NetFPGA SUME board [14] and
a Linux host system, can increase the maximum achievable
classification throughput over a software-only approach by a
factor of up to 30. This holds even for policies with many
and widely spread complex rules. In summary, the main
contributions of this work are:

• We present a hybrid packet classification concept which
combines the benefits of dedicated matching hardware
with powerful matching semantics typically found in
software-only approaches.

• We describe an effective dispatch technique based on
formal rule set analysis that enables hardware-only
processing for large traffic fractions. That way, we sig-
nificantly reduce the number of expensive FPGA-to-host
communications.

• To mitigate the processing costs for packets that must
be shunted to the host, we leverage a hardware-assisted
binary search in order to narrow down the number of
rules which have to be checked in software.

HyPaFilter+ extends our previously described HyPaFilter
architecture [15] by adding a packet dispatch algorithm which
uses a form of Header Space Analysis [16] on the rule set to
reduce expensive FPGA-to-host communication.

The remainder of this paper is structured as follows:
in Section II, we discuss related work. Next, we briefly
introduce the packet classification problem in Section III.
Section IV describes the hardware matching circuitry,
Section V shows how to optimize the internal shunting
decision, and Section VI illustrates approaches to optimize
the software packet matching process for shunted packets.
Section VII describes the overall architecture of the
HyPaFilter+ system. Finally, we present our evaluation results
in Section VIII and conclude this paper in Section IX.

II. RELATED WORK

Network packet classification has been of major interest
to the research community due to its importance for packet-
switched networks [17], [18]. Most scientific work in this area
focuses on the geometric variant of the packet classification

problem, which considers a limited number of packet header
fields and does not take other criteria into account, such as
packet payloads or connection states. These works can be
roughly split into the following categories: classification algo-
rithms, hardware architectures, and rule set transformations.

Classification algorithms traverse an algorithm-specific data
structure in order to find the most highly prioritized rule
that matches on all relevant header fields of an incoming
packet. Such approaches exist in many different flavors,
such as decision tree algorithms [19], [20], bit vector
searches [21], [22], or techniques based on hash maps [23].
In comparison to a straightforward linear search through
the rule set, these advanced classification algorithms provide
significantly faster classification performances [17]. Despite
this fact, many practically used packet classification systems,
such as netfilter [1] and pf [2], implement a linear search
in order to discriminate network packets and thus generally
suffer from low classification performance [24]. However,
these systems also provide powerful rule set semantics which
are more expressive than plain stateless header field inspection.

Specialized hardware architectures used for packet clas-
sification typically employ large amounts of parallelism in
order to achieve high throughput rates. The most common
hardware architecture used for packet classification is Ternary
Content Addressable Memory (TCAM), which matches the
entire rule set in parallel against incoming packet headers [25]
and can thus process every incoming packet in a small,
fixed number of clock cycles. On the downside, TCAMs are
expensive, power-intensive, and cannot natively represent rules
with range or negation tests [10]. Other widely used imple-
mentation platforms for packet classification are FPGAs [5],
[8]–[10], NPUs [6], [7], and GPUs [11], which typically also
employ a full parallel match [10] or implement a parallelizable
classification algorithm [5]–[9], [11]. Although significantly
faster than software-based systems, these approaches only
support limited, stateless matching semantics. In contrast,
the HyPaFilter+ design combines the flexibility of existing
software engines with the processing speed of dedicated
hardware.

Rule set transformation techniques are orthogonal to the
employed classification algorithm/architecture. The goal is
to transform an initial rule set R into an equivalent rule
set R′ that can be traversed faster for incoming network
packets. Existing approaches for rule set transformation are
rule set minimization [26] or the encoding of decision tree
data structures into the rule set [24]. HyPaFilter [15] and
HyPaFilter+ utilize the latter transformation variant to install
complex rules in the software filter that can reuse the hardware
classification result to accelerate the software matching.

The possibility of hybrid packet filters for FPGA/net-
filter and NPU/netfilter combinations has been previ-
ously addressed in [13] and [27], respectively. However, these
works do not answer the following key questions: (1) How
should a packet processing policy be deployed in a hybrid
system in order to achieve high classification performance?
(2) How does the hybrid system implement rule set updates?
The HyPaFilter and HyPaFilter+ approaches answer these
questions by providing rule set partitioning schemes which

FIESSLER et al.: HYPAFILTER+: ENHANCED HYBRID PACKET FILTERING 3657

install simple rules on the FPGA. Complex rules are installed
in the software filter on the host system. The complex rules
are structured in a way that partial matching information,
which has been previously computed by the FPGA, can be
reused in the software filter. Moreover, HyPaFilter+ extends
HyPaFilter by statically analyzing the rules installed on the
FPGA to minimize the number of packets that must be
processed in software.

In [19] and [21], geometric rule set representations are used
as the foundation of fast search data structures for packet
classification. The authors of [16] propose a methodology
to quickly identify network malfunctions, such as forwarding
loops, which is also based on the geometric model. The static
rule set analysis performed by HyPaFilter+ is inspired by the
geometric representation used in these works, but applied in a
different way: by analyzing geometric rule interdependencies,
we significantly narrow down the number of packets which
must be shunted at runtime.

III. PROBLEM STATEMENT

In this section, we first introduce the packet classification
problem, which serves as the vantage point for the extended
packet classification problem, which we define subsequently.

A. Packet Classification Problem

The packet classification problem, as it is most often seen
in the literature [10], [19], [22], [23], can be formally defined
as follows: let H = (H1 ∈ D1, . . . , HK ∈ DK) be a tuple
of header values and R = 〈R1, . . . , RN 〉 be an ordered list
of rules Ri, which is called the rule set. Here, Dj is called
the domain of the jth header field, and U = D1 × . . . ×DK

is the set of all possible packet headers. For the remainder
of this paper, we assume that each Dj is a range of non-
negative integers, in order to cover common header fields
like IP addresses, ports, or protocol numbers. Every rule
Ri consists of K checks Cj

i : Dj → {true, false} with
Ri = C1

i ∧ . . . ∧ CK
i . Ri is said to match the header tuple

H (which we denote by Ri(H)) if Cj
i (Hj) yields true for all

j ∈ {1, . . . , K}. The goal of the packet classification problem
is to find the smallest index i∗ such that rule Ri∗ matches H.
This index can subsequently be used in order to look up
and execute an action for the corresponding matching rule,
such as DROP or ACCEPT. Here, the checks Cj

i are assumed
to be equality, range, or subnet tests, which are the most
common types of tests used in rule sets [21], [24]. Every check
Cj

i can be represented as an interval test Hj ∈
[
Xj

i , Y j
i

]
,

with Xj
i ≤ Y j

i and Xj
i , Y j

i ∈ Dj . Accordingly, every rule
Ri has a geometric representation G(Ri) ⊆ U , which is
the K-dimensional hypercube

[
X1

i , Y 1
i

] × . . . × [
XK

i , Y K
i

]
.

We say that two rules Ri and Rk (i 	= k) conflict iff there is
a header tuple H that matches both rules, i.e., iff ∃H ∈ U :
Ri(H) ∧Rk(H), or equivalently, G(Ri) ∩G(Rk) 	= ∅.

B. Extended Packet Classification Problem

Practical packet filter implementations, such as
netfilter [1], pf [2], and ipfw [3], support advanced

Listing 1. Example rule set R in iptables syntax.

matching criteria in order to increase the expressiveness of an
implemented filtering policy. Examples for such sophisticated
checks are connection tracking, rate limiting, unicast
reverse path forwarding (URPF) verification, probability-
based matching, or deep packet inspection. When used in
conjunction with the previously defined basic checks, these
tests can greatly foster both the filtering granularity and
effectiveness of the used packet filtering policy. In such a
system, a rule Ri can be modelled as Ri = C1

i ∧. . .∧CK
i ∧Ki,

where Ki is a rule-specific combination of advanced matching
criteria. Thus, each rule Ri consists of simple checks Cj

i ,
as defined in Section III-A, and a (potentially empty)
collection of arbitrarily shaped advanced checks Ki. For
each rule Ri we define the geometric reduction R−

i , which
projects Ri to its simple checks Cj

i and removes the advanced
part Ki. We call a rule Ri a simple rule iff Ri = R−

i , i.e., if
it does not define advanced checks, otherwise we call Ri a
complex rule. For a given rule set R, we denote the sublist
of simple rules by RS , and the sublist of complex rules by
RC . Also, for every simple rule Ri ∈ R, let RS(i) be the
index of rule Ri in RS .

Listing 1 shows an example rule set R = 〈R1, R2,
R3, R4, R5, R6〉 that consists of the simple sublist RS =
〈R1, R2, R4, R6〉 and the complex sublist RC = 〈R3, R5〉.
Each rule specifies simple checks on source or destination
addresses, the transport layer protocol, or the destination
port (indicated through the flags -s, -d, -p, or --dport,
respectively). Rules R3 and R5 are complex, as they define
string matches on the packets’ payload. It can be seen that the
simple rules R4 and R6 are located at the indices 3 and 4 in
RS , hence RS(4) = 3 and RS(6) = 4.

IV. HARDWARE FILTER

In order to support good classification performance, short
rule set update latencies, and expressive rule set semantics,
the HyPaFilter+ system relies on a hybrid matching algorithm
that first processes every incoming packet on the FPGA. After
the packet is matched, the FPGA circuitry decides whether the
packet requires further, potentially more complex processing
in the host-based netfilter system.

The classification system implemented on the FPGA solves
the packet classification problem on the simple rule set RS ,
as introduced in Section III-A. It therefore implements every
simple rule Ri ∈ R. In order to achieve high matching
performance on the FPGA with a low, deterministic processing

3658 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 1. Translating simple rules of Listing 1 into match units.

Fig. 2. Parallel match of packet header data against RS .

latency per packet, we decided to use a rule-set-specific par-
allel matching engine, which is generated by translating every
simple rule Ri ∈ RS at setup time into a specialized match
unit MRS(i) specified in VHDL, similar to the technique
proposed in [10]. Recall that RS(i) is the index of rule Ri

within the sublist RS . This process is illustrated in Figure 1.
Since each rule in RS is a conjunction of simple checks,
such as subnet tests or port range tests, the match units are
composed of a small number of basic comparator circuits. For
example, a rule which matches TCP packets if the source IP
address is in the subnet 203.0.0.0/8 with destination port 80
is translated into three specific comparator circuits: the first
one compares the packet’s transport protocol field against the
TCP transport protocol number 6, while the second and third
comparators compare the first octet of the packet’s source IP
address against 203 and the packet’s destination port against
80, respectively. Finally, the results of these comparators are
ANDed to determine whether the rule matches.

As the match units are arranged in parallel, incoming
network packets can be matched against the entire simple rule
set RS in a single clock cycle, which yields a result bit vector
Vres of size |RS |. Here, the entry at position RS(i) of the
result vector Vres, which we denote by Vres [RS(i)], stores a 1
if rule Ri matches the current packet, and a 0 otherwise. As we
are interested in the most highly prioritized matching rule,
we employ a priority encoder to determine the index of the
first enabled bit in Vres, which we will refer to as match_index.
The hardware matching process is sketched in Figure 2.

We opted to use the above described rule-set-specialized
matching circuitry in our FPGA-based prototype system due to
its small hardware resource footprint. In comparison to generic
hardware matching techniques with comparable throughput,
such as StrideBV [28] or TCAMs [25], tailormade matching
circuitry is significantly smaller and dissipates less power
when implemented on an FPGA [29], [30]. During our exper-
iments, the design toolchain was not able to generate a native

TCAM implementation on the FPGA for capacities as low
as 100 IPv6-capable rules without timing errors, while the
tailormade matcher could support several thousands of rules.
Nevertheless, we point out that it is of course possible to step
away from an FPGA implementation platform and instead use
a different hardware matcher for simple rules, e. g., on the
basis of a high-density ASIC-based TCAM.

V. PACKET SHUNTING

Up to this point, the packet classification problem is
solved for the simple rule set RS solely in hardware, as the
match_index can be used in order to quickly look up the
action ARS ,P that must be applied for the current packet P .
If the installed rule set R does not specify any rules with
complex checks, i.e., if RC = ∅ and thus RS = R, then the
classification is complete at this point and ARS ,P is applied
to the current packet. However, if RC 	= ∅, then additional
processing may be required on the host system. Accordingly,
some packets must be shunted from the FPGA device to
the software filter to compute the correct classification result.
However, as software-based classification of shunted packets
is expensive (in comparison to FPGA-only packet processing),
the number of shunted packets should be as small as possible.
Furthermore, the shunting decision itself should be computed
at line speed in order not to bottleneck the packet pipeline.
Thus, in this section, we present two line-speed shunting
techniques: index-based shunting and selective shunting.

A. Index-Based Shunting

The index-based shunting technique, which was originally
introduced in our previous work [15], partitions the simple
rule set RS into an unambiguous rule set prefix and an
ambiguous rule set suffix. When the FPGA detects that an
incoming packet P matches a rule in the unambiguous part,
it is processed entirely in hardware. Otherwise, P is shunted
to the host system for further processing. Here, a simple rule
Ri ∈ R is called ambiguous if there exists a complex rule
Rj ∈ R with j < i, otherwise Ri is called an unambiguous
rule. Thus, a packet P is shunted to the software classification
system whenever a complex rule in RC installed on the host
system could match the current packet P with a higher rule
priority than the matching rule inRS . In the following, we will
denote the smallest index of a rule in R with complex checks
by the term shunt_index.

In the example shown in Figure 1, the unambiguous prefix
consists of the rules R1 and R2. In contrast, the ambiguous
suffix contains the rules R4 and R6, as the complex rule R3

is more highly prioritized and could potentially conflict with
R4 or R6, respectively. For instance, consider the case that the
hardware matching circuit for the rule set sketched in Figure 1
computes that match_index is 3 for an incoming packet P
(that is, the packet matches the simple rule R4). In this case,
our hardware classification might be incorrect, as the complex
rule R3 could also match on the packet P . Thus, whenever
match_index ≥ shunt_index, index-based shunting sends the
classified packet to the host for further processing.

This technique computes the correct classification result in
every case, since packets that might match a complex rule

FIESSLER et al.: HYPAFILTER+: ENHANCED HYBRID PACKET FILTERING 3659

are always shunted to the host system. Also, changes in the
complex part of the rule set only require to update the register
on the FPGA that holds the shunt_index. A major drawback
of this technique comes into effect if complex rules appear
with a high priority, which forces the shunting of all packets
that match only lower prioritized rules.

B. Selective Shunting

Index-based shunting, as introduced in the previous section,
can lead to situations where packets are shunted to the host
system although they cannot match more highly prioritized
complex rules. For example, a TCP packet that matches on
rule R4 in Listing 1 cannot match the complex rule R3, since
R3 and R4 are mutually exclusive. Nevertheless, using index-
based shunting, the packet would still be shunted to the host
because R3 is more highly prioritized than R4. This, in turn,
leads to a higher workload on the software classifier and can
eventually result in throughput penalties.

In this section we introduce selective shunting, a method-
ology to optimize the shunting decisions taken on the FPGA
based on a formal header space analysis (HSA). The selec-
tive shunting technique leverages the geometric representa-
tions (i.e., the header spaces) of rules to narrow down the
number of packets that must be shunted to the host. To this
end, we compute a shunting vector VRS that stores a single
shunt bit for every simple rule Rj in RS . In the following,
we denote the jth bit in VRS by VRS [j]. Also, we denote
the set of complex rules in R that are more highly prioritized
than Rj by Γj . A set shunt bit VRS [j] indicates that there
exists at least one possible packet header that matches both
the simple rule Rj and at least one complex rule in Γj . Hence,
Rj conflicts with at least one rule in Γj . Using the geometric
representations of rules, the layout of VRS can be expressed by

VRS [j] =

⎧
⎨
⎩

1 if
⋃

R∈Γj

(G(R−) ∩G(Rj)) 	= ∅

0 otherwise.
(1)

After the shunting vector VRS has been computed in a
preprocessing step, it is stored on the FPGA. Each time a
packet is classified by the FPGA matching circuitry, we use
the determined match_index in order to look up the shunt
bit VRS [match_index]. This is in contrast to index-based
shunting, where we compared match_index with shunt_index.
Only if the shunt bit is set, the packet is sent to the
host for further classification, because the matching simple
rule could be overruled by a more highly prioritized com-
plex rule. Otherwise, it can be safely treated entirely in
hardware.

We use Figure 3 to visualize the difference between index-
based and selective shunting in a two-dimensional header
space example. With index-based shunting, all packets are
shunted due to the complex rule R1 with the highest priority.
In contrast, with selective shunting only those packets are
shunted that match the simple rule R5 on the FPGA, since
R5 is the only simple rule whose geometric shape intersects
with those of the complex rules R1 or R3.

Fig. 3. Example sketch for different rules in a reduced two-dimensional
header space.

Algorithm 1 Compute the Shunt Vector From the Rule Set R
1: function SELECTIVE_SHUNTING_ANALYSIS(Rule set R)
2: VRS ← [] // Initialize VRS with an empty vector
3: for i ∈ {1, . . . , |R|} do
4: if IS_SIMPLE_RULE(R[i]) then
5: bit← 0
6: for j ∈ {1, . . . , i − 1} do
7: if R[j]− 	=R[j] then // check if R[j] is complex
8: if G(R[j]−) ∩R[i] 	= ∅ then
9: bit← 1

10: VRS ← VRS + [bit] // Append bit to VRS

11: return VRS

The procedure SELECTIVE_SHUNTING_ANALYSIS (SSA)
for the computation of VRS is shown in Algorithm 1. It can be
seen that SSA appends one bit to the shunting vector VRS for
every simple rule in the input rule set R. For each simple rule,
the bit is computed by testing whether the intersection of the
geometric representation of the simple rule with the geometric
representation of any more highly prioritized complex rule
in R is empty. Hence, the runtime complexity of SSA is
in O (|R|2).

For the example rule set R in Listing 1, the shunting
vector VRS would be computed as follows:

VRS =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦

(for simple rule R1)
(for simple rule R2)
(for simple rule R4)
(for simple rule R6)

(2)

The rules R1 and R2, which are both simple rules, are the
first and second rule in R. Hence, they cannot conflict with
any more highly prioritized complex rules, and therefore, their
corresponding shunt bits are zero. Since rule R4 does not
conflict with the complex rule R3 due to the different transport
layer protocol check, R4’s shunt bit is also set to zero. Finally,
R6’s shunt bit is set to one, because it conflicts with the more
highly prioritized complex rule R5. The resulting shunting
vector [0,0,0,1] leads to fewer packet shunts than index-
based shunting, since packets that first match rule R4 can be
processed entirely in hardware.

We now prove both the correctness and the HSA-
ideality of shunting vectors computed by the SSA
procedure.

Definition 1 (False Negative): A shunt bit b = VRS [RS(i)]
that corresponds to the simple rule Ri in R is false negative
if b = 0 and if there exists a more highly prioritized complex
rule Rj (j < i) in R that conflicts with R.

3660 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 4. Different strategies to implement the complex rule set RA in the software filter. (a) Full set strategy. (b) Cut set strategy. (c) Interval strategy.

Definition 2 (Correctness): The shunting vector VRS for
the rule set R is correct if it does not contain false negative
shunt bits.

Theorem 1: The application of the SSA always results in
correct shunting vectors.

Proof Sketch: Theorem 1 follows directly from
Algorithm 1: for every bit b = VRS [RS(i)] that corresponds
to the simple rule Ri, every more highly prioritized complex
rule Rj (j < i) in R is checked whether it conflicts with Ri.
If such a complex rule exists, b is set to 1 and thus cannot be
false negative.

Definition 3 (False Positive): A shunt bit b = VRS [RS(i)]
that corresponds to the simple rule Ri ∈ R is false positive
if b = 1 and if there does not exist a more highly prioritized
complex rule Rj (j < i) in R that conflicts with Ri.

Definition 4 (HSA-Ideal Shunting Vector): An HSA-ideal
shunting vector VRS for the rule set R is correct and does
not contain any false positive shunt bits.

Theorem 2: For any rule set R, the application of SSA
always computes an HSA-ideal shunting vector.

Proof Sketch: Let VRS be the SSA-computed shunting
vector for a given rule set R. The correctness of VRS follows
from Theorem 1. Assume that VRS contains a false positive
shunt bit b = VRS [RS(i)] for the simple rule Ri. Since b was
set to 1 by the SSA procedure, there must exist an index j
with j < i, such that the rule Rj is complex and conflicts with
Ri. This contradicts the assumption that b is false positive.

We call a simple rule Ri ∈ R a shunting rule if the
employed shunting technique (i.e., index-based or selective
shunting) decides that a packet with match_index = RS(i)
must be shunted to the host for further processing. If this is
not the case, we call Ri a non-shunting rule. Intuitively, it is
desirable that many simple rules in R are non-shunting rules,
as this will allow hardware-only processing if these rules are
the highest prioritized matching ones.

In comparison to index-based shunting, selective shunting
requires higher preprocessing times in case of a rule set update
in order to compute the shunt vector. However, this effort is

rewarded by much fewer packets having to be shunted to the
host at runtime. This, in turn, leads to significantly higher
packet processing rates, as we will show in our evaluation.

We point out that it is possible to even further reduce the
number of shunted packets by installing the geometric reduc-
tion R−

i of every complex rule Ri in the hardware matcher. In
this case, the size of the hardware-computed result vector Vres

increases from |RS | to |R|, as the hardware matcher also
generates one result bit for the geometric reduction of every
complex rule. Consequently, a packet P only has to be shunted
if the most significant set bit Vres[i∗] corresponds to a complex
rule Ri∗ ∈ R. This approach requires modifications of our rule
set-tailored matching circuitry in case of a rule set update,
which is very time-consuming. In contrast, a software rule
set update could be carried out in less than two seconds
in most cases. Hence, we opted for the proposed shunting
strategies.

VI. SOFTWARE FILTER

As described in Sections IV and V, the task of the software
filter running on the host computer (netfilter in our
example) is to classify every shunted packet which cannot be
handled exclusively in hardware. However, simply installing
only the complex rule set RC in the software filter is not
sufficient, since shunted packets P could still also match
simple rules in RS . This is the case when P is not matched
by any complex rule with a higher priority than the first
matching simple rule. As a consequence, the software filter
must be able to reproduce the hardware classification result
iff the most highly prioritized matching rule is in RS and
not in RC . To cope with both shunting methods, we define
the decision function fdec to decide whether a packet needs
to be shunted for this section. In the case of index-based
shunting, this function is a comparison of match_index ≥
shunt_index. With selective shunting, it is instead checked
whether VRS [match_index] = 1. In this section, we present
three different strategies how the rule set in the software filter
can be organized to achieve this goal.

FIESSLER et al.: HYPAFILTER+: ENHANCED HYBRID PACKET FILTERING 3661

A. Full Set Strategy
The most straightforward way to setup the software filter,

which we call the full set strategy, is to simply install the
entire rule set R. That way, forwarded packets will always
traverse rules in the correct order until the first matching rule
is found, as sketched in Figure 4a for the example rule set
from Figure 1. This approach allows for quick rule updates,
since only one rule in the rule set installed in the software
filter has to be changed in addition to a possible update of
the shunting policies on the FPGA. This strategy is simple,
but has a major disadvantage: the software filter may process
a large number of rules for every shunted packet, including
simple rules. It thus repeats significant work already done in
hardware. This can be particularly expensive as, in contrast
with the full-parallel match in the hardware filter, the rules
are commonly processed linearly in software packet filters.

B. Cut Set Strategy

The amount of redundant work that is done in software for
shunted packets can be reduced with a slight modification. Let
β be an index such that a shunted packet can never match a
rule Ri ∈ R with i < β. In the case of index-based shunting,
β is equal to shunt_index. For selective shunting, β is the
index of the most highly prioritized simple rule Rβ ∈ R
with VRS [RS(β)] = 1. We already know that no simple rule
with an index less than β can match a packet that has been
forwarded to the software filter—otherwise the packet would
have been processed solely on the FPGA. For example, with
index-based shunting, consider the rule set from Figure 1 and
a packet P with match_index = 3. As match_index is equal
to shunt_index (which is also 3 in the example), P will be
forwarded to the software filter, which will superfluously once
again test rules R1 and R2 against P . In order to avoid this
potential extra work on the host system, the cut set strategy
installs only those rules in RC and in {Rj|Rj ∈ RS ∧j ≥ β}
in the software filter, as sketched in Figure 4b.

With the same HSA calculations that we used in selective
shunting, this rule set can be further reduced, since the analysis
exactly determines which rules of RS the packet could match.
Therefore, it is only necessary to install all rules in RC

and in {Rj|Rj ∈ RS ∧ VRS [j] = 1} in the software filter.
We will call this improved variant HSA cut set strategy.
This reduction produces correct results, regardless of whether
index-based or selective shunting is used in the hardware
matching unit.

In comparison to the full set strategy, both variants of the
cut set strategy have higher rule update costs, as a potentially
larger number of rules must be inserted or removed from the
software filter in case of an update. Furthermore, the HSA cut
set variant requires the computation of the shunting vector VRS

in order to select those rules that must be installed in the
software filter. However, our evaluation shows that the update
effort clearly pays off in terms of classification performance,
as fewer rules must be traversed by shunted packets.

C. Interval Strategy

The strategies described so far implement rule sets in the
software filter that are agnostic to the partial classification

Fig. 5. Intervals in the rule set R.

result tuple <match_index, ARS ,P > previously computed on
the FPGA for every shunted packet P . This results in wasted
effort on the software side and inflates the software-side
rule set—also in case of the cut set strategy. To avoid the
recomputation effort, the interval strategy relies on metadata
handed over from the FPGA to the matching software when
a packet is shunted, i.e., the match index and action tuple
<match_index, ARS ,P >. Simply put, the goal of the interval
strategy is that shunted packets should only be tested against
a fraction of the complex rules RC and none of the rules in
RS in software again.

The idea behind the interval strategy is that groups of
consecutive simple rules Gk = {Ri, . . . , Ri+α} in R can be
mapped to intervals Ik = [RS(i),RS(i + α)]. For instance,
the simple rules from the example rule set in Figure 5 form
three groups G1 = {R1, R2}, G2 = {R4}, and G3 = {R6},
with the corresponding intervals I1 = [1, 2], I2 = [3, 3],
and I3 = [4, 4]. Each interval represents a range of match
indices, which may be computed by the FPGA for an incoming
packet P . If P is shunted to the host, then the match_index
computed on the FPGA falls into exactly one of these intervals.
The interval strategy exploits this fact by precomputing the
chain of complex rules Ck for every interval Ik that could
contain a more highly prioritized matching rule for a packet
P whose hardware-computed match_index falls into interval
Ik (i.e., P matches a simple rule in group Gk). In the example
shown in Figure 5, C1 is empty, since there are no complex
rules in R that are more highly prioritized than the simple
rules R1 and R2. In contrast, C2 = {R3}, as the complex rule
R3 is more highly prioritized than the simple rule R4 and thus
could match on packets that have been assigned to R4 by the
FPGA. Similarly, C3 is set to {R3, R5}, as R3 and R5 are
more highly prioritized than the simple rule R6.

Now, whenever a packet P is shunted to the host, the FPGA
driver fetches the <match_index, ARS ,P > tuple from the
hardware. Then, the FPGA driver code on the host determines
the index k of the interval Ik that contains the match_index.
Before the actual netfilter packet classification starts,
the index k, as well as the hardware action code ARS ,P , are
written to the most significant 28 and least significant 4 bits of
the netfilter mark field, which is a 32 bit metadata field
attached to the packet P . With netfilter supporting tests
on the mark field, we can use this information to achieve
two goals: first, we want to limit the set of complex rules
that must be tested in netfilter to only those that are
more highly prioritized than the first matching simple rule.

3662 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 6. Proposed structure of a HyPaFilter+ system. The host can be any
COTS system capable of carrying the FPGA NIC.

Second, we want to apply the hardware-computed action
ARS ,P in netfilter without the need to re-traverse any
simple rule in software if there is no match in RC .

To this end, the rules that are installed in netfilter for
the interval strategy are generated as follows: the netfilter
rule set starts with a sequence of rules which implement a
binary search over the interval index k encoded in the most
significant 28 bits of the mark field. This is done in order to
quickly locate the chain of relevant complex rules Ck during
the matching process, as sketched in Figure 4c. The generated
rule set also contains each chain Ci as a linear list, which
contains the complex rules that are mapped to interval Ii.
Finally, the last rule in every chain Ci ends with a jump to
a small set of fallback rules (one for each possible action),
which use the least significant four bits of the mark field in
order to apply the action ARS ,P to the shunted packet P if
no complex rule matches.

In comparison to the full set and cut set strategies, the inter-
val strategy requires more complex preprocessing in case of a
rule update, as the intervals for the complex rules have to
be re-computed and communicated to the hardware driver.
Furthermore, the netfilter binary search tree encoded in
the filter rules must be re-generated. However, this strategy
provides the best classification performance in software, as the
number of traversed rules for each shunted packet P can
be orders of magnitude smaller than in the full set and cut
set strategies, as indicated by our evaluation. Furthermore,
this approach does not require a change of the netfilter
source code in order to use the hardware-computed match-
ing information. Instead, we completely rely on existing
netfilter match functionality to accelerate the software
matching process.

VII. SYSTEM ARCHITECTURE

Our prototype system for the HyPaFilter+ system consists
of two functional units. One part is a standard host sys-
tem, used to run the software firewall and the toolchain for
managing the system. This can even be an already existing
firewall appliance which needs to be upgraded in terms of
performance. This system is extended by the second part, a
general purpose FPGA addon card, as shown in Figure 6.
These units must provide a sufficient communication path

Fig. 7. Flow of packets through the HyPaFilter+ system.

for transferring data and settings between them. The utilized
plug-in card is a suitable FPGA platform that can provide
the required interfaces to both communicate with external
Ethernet networks as well as acting as a regular network
interface card in regard to the host system. It provides multiple
network ports and can be plugged into a COTS system via
PCI Express (PCIe). The card acts as the primary network
interface connected to both the internal (e.g., LAN) and the
external network (e.g., Internet). The hardware-based filtering
is handled on the FPGA.

The host system carries the FPGA NIC and communicates
with it via PCIe. The host runs the operating system where the
back-end firewall netfilter with iptables is installed.
It also supplies the tools to configure the FPGA, and provides
a user interface for administrating HyPaFilter+.

The host and the FPGA card are connected through several
communication channels. For quick and simple configuration
settings, the host system is able to set and read predefined
32 bit registers on the FPGA via PCIe. Network traffic between
FPGA and host is handled via direct memory access (DMA).
On the host side, a driver provides the functionality and
interfaces so that the operating system can access the FPGA
like a regular NIC. This is important since we do not want to
rely on non-standard customizations to netfilter or other
core components for HyPaFilter+ to work. By using a pro-
gramming interface, the configuration of the FPGA can be
updated. We used the Xilinx Vivado software toolchain to
generate the FPGA configuration based on a given rule set.

A. System Operation

Incoming packets received from any connected network are
first matched against the rules implemented on the FPGA.
Based on the result and its validity with respect to the
rule dependencies, packets are either dropped, forwarded
directly (without interaction of the host system), or shunted
to the host for further processing. Whenever a packet is
shunted, the matching information—match_index and hard-
ware action—is added to the packet in a driver-readable meta
data field, which is needed for the interval strategy. For
outgoing packets from the host system, the FPGA NIC acts
like a standard NIC. Such packets, e.g., packets shunted and
processed by the software firewall or packets generated by the
host itself, are therefore sent out through the corresponding
network interface without further analysis. The packet flow is
sketched in Figure 7.

FIESSLER et al.: HYPAFILTER+: ENHANCED HYBRID PACKET FILTERING 3663

Fig. 8. HyPaFilter+ workflow with the management tool.

Note that in some rare cases, shunting can lead to packet
re-ordering, if the rule set is configured to shunt only a part
of the flow’s packets, e.g., distinguished by additional header
fields. Re-ordering is allowed for IP packets, but should be
avoided due to, e.g., negative effects on the performance of
TCP. However, rule constructions where this can occur are
rather theoretical. Packets classified with rule sets that only
test for fields examinable by the hardware matcher are either
completely shunted or processed in hardware. In fact, in all
real rule sets we analyzed during our evaluation, no packet
re-ordering takes place.

The hybrid operation of HyPaFilter+ can bridge the delay
that may occur when the hardware filter core needs to be
updated. For this purpose, packets matching rules affected
by the update are shunted until the change in the hardware
becomes active. This allows to use hardware filters where
updates are costly in terms of time.

The administrator needs to be able to manage the system
without the need to understand the underlying complexity.
In our implementation, we created a Python command line
interface management tool. The general workflow for using
HyPaFilter+ is shown in Figure 8.

B. Packet Data Path

The data flow through the FPGA can be shown in two
layers. The underlying structure for general networking and
communication tasks is based on the NetFPGA SUME pipe-
line [31]. The actual core which is responsible for filter-
ing is embedded into this pipeline and connected via the
AXI4 stream protocol. Internally, the HyPaFilter+ core uses
a data bus width of 512 bits and runs at 180 MHz. Hence,
the theoretically achievable throughput of 92.16 Gbit/s is
enough to fully saturate all four 10 Gbit/s Ethernet ports. The
NetFPGA SUME currently uses a bus width of 256 bits which
is converted before and after the hardware core.

Packets coming into the hardware core are first distrib-
uted (cloned) into a classification path and a data path, with the
latter being a simple FIFO queue of 64 kB. In the classification
path, the Header Parser extracts relevant information from
incoming packets. For a versatile operation, the header parser
must take care of the data alignment due to VLAN tag-
stacks or various variable-length headers. Therefore, it is
implemented as a multi-stage non-blocking pipeline archi-
tecture. The preprocessed data is forwarded to the filtering

module, which is generated by the management toolchain.
After the classification, the decision is forwarded to the Output
Processing, where the determined action is executed: DROP
(read from FIFO and discard), FORWARD, or SHUNT by
adapting the output port field in the packet’s metadata.

As described in Section IV, the matching logic is able to
classify packets in constant time. Since the hardware filtering
logic contains no components that could cause a data-pipeline
stall, it is clear that the HyPaFilter+ hardware core is never
the limiting factor for raw data throughput in this setup. The
hardware filter core is able to extract and classify incoming
packets against a variety of parameters like IP addresses,
protocol fields, MAC addresses, and port fields.

Previous work has shown that the resource utilization of
typical rule sets on FPGAs can be significantly reduced by
including the actual rule set in the logic optimization process,
rather than using a generalized filtering logic [10], [30].
As firewall rule sets in general are not static, an FPGA’s
reconfigurability allows us to exploit this potential in practical
applications. The HyPaFilter+ prototype combines such a
rule set tailored hardware filter with a generic software filter
residing on the host. However, HyPaFilter+ does not strictly
rely on this type of specialized hardware filter. It could also
utilize other hardware matchers (e.g., a TCAM), as long as
the the required matching information can be extracted from
the result and used for selective shunting of packets.

VIII. EVALUATION

The main goal of the HyPaFilter+ architecture is to increase
the achievable throughput of software packet classification
systems that support complex rules. Therefore, we investigate
in our evaluation the extent to which the classification perfor-
mance of a representative software filter can be improved when
used with HyPaFilter+, and how the performance varies with
rule set size and structure. Furthermore, we evaluate in detail
the impact of the two presented shunting techniques on the
number of packets that must be processed on the host system.
Also, we analyze the performance of the different strategies to
organize the rules in the software filter in terms of number of
traversed rules and rule set update time. Finally, we measure
the additional packet processing latency induced by the FPGA.

A. Measurement Setup

Our measurement setup consists of two dedicated machines,
each of which contains an Intel E3-1270 CPU, 16 GB RAM,
a dual-port 10 Gbit/s NIC and runs CentOS 6.6. One machine
was configured to send small packets as fast as possible (the
sender), while the other machine was used as a packet sink (the
receiver). Here, all sent packets carry five arbitrarily chosen
bytes as payload. Using small packets causes a much higher
workload on the classification engine, as more packet headers
need to be analyzed in the same time frame compared to
using large packets at the same data rate. For our evaluation,
we set up a typical bridging firewall scenario as shown
in Figure 9. The sender and receiver hosts are connected to the
HyPaFilter+ system via optical fibre. We counted the number
of packets received by the MAC-Core MAC0 on the NetFPGA
and those arriving on the network interface of the receiver.

3664 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 9. Evaluation setup showing the relevant components. Traffic is
generated on the sender and directed through the bridging HyPaFilter+
firewall.

Fig. 10. Impact of shunting packets without firewalling.

The HyPaFilter+ system consists of the following relevant
components: Intel Xeon E3-1230 based host, 16 GB RAM,
NetFPGA SUME PCIe card, Debian 8.3, netfilter frame-
work and iptables v1.4.21, Xilinx Vivado 2014.4, and the
HyPaFilter+ management tools. The hardware filter core is
integrated into a data pipeline based on the reference NIC
project of the NetFPGA SUME release 1.0.0.

B. Impact of Packet Shunting

In our first experiment, we measured the impact of shunting
packets to the software. As processing packets directly in
hardware without any software interaction provides the lowest
latency and highest packet rate, we expect to achieve the best
packet rate if no packets are shunted at all. If the fraction of
packets that are shunted to the host increases, a drop in the
obtained packet rate is to be expected. For this test, the FPGA
NIC was configured to forward a certain number of the packets
directly to the target, while the other packets were shunted to
the host. To exclude additional processing overhead on the host
system, all shunted packets were directly software-bridged to
the outgoing interface without software firewall interaction.

We compared the number of ingress packets on the FPGA
to the number of packets received at the receiver. Each data
point shows the average packet rate of ten test runs, each
lasting for 20 seconds. The standard deviation is too small
to be visible. The average number of ingress packets arriving
at the HyPaFilter+ network interface in each test run before
any classification is 30 million packets in 20 s. Figure 10
shows the results of this experiment. When all packets are
forwarded by the FPGA, the test setup is capable of operating
at line speed. With more packets being shunted to the software,

the performance drops continuously. When all packets are
shunted, the NetFPGA SUME basically acts as a simple
NIC. In this case, only 5.59% of the packets can be handled
by the evaluated system. This demonstrates that in a hybrid
system like the proposed one, FPGA-to-host communication is
expensive and should be avoided in order to reach line speed
performance. In comparison, the detection and output queue
assignment of a shunted packet extends the processing pipeline
by just one clock cycle, which has no measurable effect on
the throughput or packet rate.

C. Test Rule Sets

To evaluate the classification performance of the
HyPaFilter+ system under repeatable conditions, we
used several different rule sets, synthetic as well as real-world
ones. All rules had been given the action ACCEPT, so the
number of dropped packets can be regarded as the packet loss
solely due to the architecture. As we only evaluate stateless
classification performance, no state handling is performed
and the network protocol of a packet has no influence on the
processing speed. For reasons of simplicity, all rules were
considered as UDP rules. The initial case implements all
rules as simple rules on the hardware. The number of rules
that could be matched within a single clock cycle on the
FPGA was 1 100.

We generated 10 different synthetic UDP rule sets of 1 100
rules each with ClassBench [32], which are publicly available
at [33]. Also, we were granted access to three confidential
real-world rule sets by one customer of the genua company.
These rule sets were transformed to be used in our setup,
which means that we only used the parameters important
for measuring the classification performance. Due to the size
limitation, only the first 1 100 rules of each set were used in
our first experiments. In Section VIII-I, we add more pipeline
stages and use approximately the original rule set size.

For each test, the rule set was translated by the HyPaFilter+
management tool, integrated in our hardware firewalling mod-
ule, embedded in the NetFPGA SUME pipeline and afterwards
synthesized and implemented into an FPGA configuration
bitfile. The resource utilization of the Virtex 7 690T FPGA
is similar for all test rule sets at about 9% of the available
flip-flops (FF) and 15% of the look-up tables (LUT). The
HyPaFilter+ core uses less than 1% FFs and about 2% LUTs.

To measure the impact of changes or occurrences of com-
plex rules to the rule set, we modified the rule set during
the test as follows: at k positions (k ∈ {1, 5, 10, 15, . . . , 50})
equally distributed over the rule set, the simple rules at
these positions were augmented with a string matching and
probabilistic matching part to enforce shunting:

-m string --algo bm ! --string BAD -m \
statistic --mode random --probability 0.99

This is intended to show the possibility for demanding worst-
case complex rules. To evaluate the effect of the properties
of these complex rules, we repeated the performance tests
with “best-case complex rules” that had no complex opera-
tion (i.e., they artificially enforced shunting without additional

FIESSLER et al.: HYPAFILTER+: ENHANCED HYBRID PACKET FILTERING 3665

Fig. 11. Number of shunting rules, index-based (IB) vs. selective (sel.)
shunting.

processing steps in software). We found an negligible average
performance increase of 0.036 pp (σ = 0.15). Therefore,
the nature of the complex rules is not important for our
evaluation.

For all rule sets, we used ClassBench’s trace_generator to
generate a trace of 100 000 packet headers that were uniformly
distributed over the corresponding rule set. These rule sets and
corresponding traces were used in the following experiments.

D. Shunting Technique Effectiveness

In this section, we evaluate the effectiveness of the two
shunting techniques introduced in Section V in terms of the
number of shunting rules and the number of actually shunted
packets. Recall that a packet P is shunted to the software
filter if the most highly prioritized matching simple rule is a
shunting rule. Hence, if all simple rules in R are shunting
rules, every incoming packet will be processed in software.
Likewise, if there are no shunting rules in R, the entire
traffic can be processed solely in hardware at line speed.
We measured these two quantities by performing the following
experiment for every synthetic and real rule set:

1) Load the initial simple rule set.
2) Add complex part to k (k ∈ {1, 5, 10, . . . , 50}) rules at

equally-spaced positions from the initial rule set.
3) Match the corresponding trace file using index-based and

selective shunting against the installed rule set.
4) Count the numbers of shunting rules and shunted packets.

The numbers of shunting rules and shunted packets are
shown in Figures 11 and 12, respectively. It can be seen
that the index-based shunting technique results in shunting
of a relatively large number of packets—all packets with
match_index greater than or equal to the lowest modified
rule index. Selective shunting reduces the number of shunting
rules significantly. Of course, the actual number of selectively
shunted packets depends on the rule set characteristics, i.e., the
number of simple rules that conflict with more highly pri-
oritized complex rules. Figure 11 reveals that ClassBench-
generated rule sets are nearly independent regarding header
space, leading to an almost equal number of shunting rules
compared to the number of complex rules. Hence, selective
shunting performs particularly well.

However, the real rule sets are more diverse with regard
to their intention and have more header space variation.

Fig. 12. Number of shunted packets, index-based (IB) vs. selective (sel.)
shunting. (a) Synthetic ClassBench rule sets (averaged, with std. dev.).
(b) Real rule sets.

Depending on which rules are altered and extended by a
complex part in the test, this can result in fewer shunting
rules, even when more complex rules are used. Nevertheless,
also in the case of real-world rule sets, the number of non-
shunting rules in case of selective shunting is still at least one
order of magnitude greater than in the case of index-based
shunting, as shown in Figure 11. With index-based shunting,
the number of shunting rules is identical for all rule sets, which
is why only one line is shown. Since the packets generated
by ClassBench’s trace generator activate the rules with an
approximately uniform distribution, the number of shunted
packets shows a distribution that is similar to the number of
shunting rules, as confirmed by Figure 12. The figure indicates
that selective shunting significantly reduces the number of
software-processed packets and is therefore superior to index-
based with regard to the overall system performance.

E. Software Strategy Comparison

Although the use of shunting strategies, especially of selec-
tive shunting, can significantly reduce the workload on the
host system, every shunted packet must still be processed in
software. As software classification is expensive in comparison
to hardware-only processing, we presented different rule set
organization strategies in Section VI that accelerate the rule
set traversal in software. In this section, we evaluate these
strategies in terms of the number of rules that must be
traversed to classify all shunted packets. Since the rules are
mostly traversed linearly in software, this provides a direct
indication of the amount of additional work performed on the
host system. Here, the examined packets are identical to the
shunted packets in Section VIII-D using index-based shunting,
so the software workload is identical in all test runs. For every
shunted packet (for a specific number of complex rules and the

3666 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 13. Number of traversed software rules for shunted packets using
different strategies. Real rule set 2 omitted as results are similar to rule set 1.
(a) Synthetic ClassBench rule sets (averaged, with std. dev.). (b) Real rule
set 1. (c) Real rule set 3.

selected strategy), we determined the number of rules (the rule
path length) traverses in software until it was fully classified.
The sums of these path lengths are shown in Figure 13.

The average results for the ten synthetic ClassBench rule
sets are shown in Figure 13a, including their respective
standard deviations. As mentioned in Section VI, maintaining
the complete rule set in the software filter—as it is the case
for the full set strategy—leads to a high redundancy. This
is reflected in the figure, as the full set strategy leads to the
highest number of traversed rules. The cut set strategy reduces
this redundancy, but its benefits are limited to cases where
complex rules do not appear with a high priority—otherwise,
it performs close to the full set strategy. Further reducing the
cut set with HSA, as explained in Section VI, can significantly
reduce the number of traversed rules, especially when testing
with mainly independent rules, as it is the case for synthetic
ClassBench rule sets. Here, this strategy can even perform
better than the interval strategy for up to five complex rules.

Still, of all strategies, the interval strategy generally provides
the fastest software matching by using the hardware matching
information to traverse a binary search tree. With real rule sets
and more overlap in the header space of the rules, the differ-
ences become clearer as it can be seen in Figures 13b and 13c.
The results clearly demonstrate that the additional processing
efforts for the interval or HSA cut set strategies are worthwhile
by resulting in significantly lower workload in the software
classification engine.

Fig. 14. Speedup of HyPaFilter+ compared to software-only with index-
based (IB) and selective (sel.) shunting. (a) Synthetic ClassBench rule
sets (averaged, with std. dev.). (b) Real rule sets (averaged over 10 runs,
with std. dev.).

F. Throughput Measurements

Up to this point, we evaluated the different shunting tech-
niques and approaches to software rule set organization in
isolation. In this experiment, we put the pieces together and
performed throughput measurements using both index-based
shunting and selective shunting on our hardware platform.
We used the interval strategy to organize the rules in the soft-
ware filter, as this strategy proved to be the most efficient one
with respect to classification performance. The measurement
method is identical to the packet loss test in Section VIII-B.
We compared the packet throughput rate of HyPaFilter and
HyPaFilter+ against a reference measurement of the equiva-
lent software firewalling setup, using netfilter and the
NetFPGA running as a simple NIC. The procedure for
(k ∈ {1, 5, 10, 15, . . . , 50}) is described in the following and
was repeated for all test rule sets.

1) Implement the initial test rule set onto the FPGA and set
shunting vector to match everything in hardware.

2) Execute test run k = 0 without any update.
3) Modify k rules at equally-spaced positions from the initial

rule set and add the complex part.
4) Update the software filter using the interval strategy.
5) Calculate and set shunting registers on the FPGA.
6) Execute the test run.
7) Re-initialize and repeat from step 3.

Figure 14a shows that the index-based shunting of
HyPaFilter—while still faster than software-only—achieves its
best results as expected when only few complex rules are used.
This is mainly due to the fact that with equally-spaced complex
rules, an increased number of complex rules results in such
rules appearing at higher priorities in the rule set. Therefore,
a large amount of traffic is shunted. On the contrary, since

FIESSLER et al.: HYPAFILTER+: ENHANCED HYBRID PACKET FILTERING 3667

only few packets need to be shunted, the selective shunting of
HyPaFilter+ is able to maintain a constant 30-fold packet-rate
increase compared to software-only processing.

The results in Figure 14b confirm that these numbers are
still valid for real rule sets. As explained in Section VIII-D,
in comparison to synthetic rule sets, the real rules have more
diverse characteristics. This causes the greater variation and
non-monotonic behaviour during this test.

G. Network Latency

While the packet classification rate is the most interesting
parameter to measure for evaluation, the additional latency
that is added by security appliances can be a major issue for
certain applications, such as data centers. Our network latency
measurement splits into two parts: the additional delay of the
HyPaFilter+ hardware core in the NetFPGA SUME pipeline
and the actual delay that can be seen on network packets. The
internal additional delay in the FPGA is 24 clock cycles. With
a clock rate of 180 MHz, the core therefore adds an additional
delay of 133 ns compared to the NetFPGA SUME in NIC
operation. In order to check for the overall network latency
imposed by the HyPaFilter+ system, the round-trip time (RTT)
was measured with ping, sending 50 packets per test. While
a direct connection between sender and receiver (without
the NetFPGA SUME) shows a one-way latency of 51 μs
(σ = 3.2 μs), with the HyPaFilter+ system present and
forwarded packets only we saw a tolerable increase to 52 μs
(σ = 5.4 μs). For packets shunted through software
without any firewall interaction it further increased to 73 μs
(σ = 3.5 μs). The highest average delay of 96 μs (σ = 7 μs)
occurred with shunted packets and an active synthetic software
rule set of 1 100 rules loaded into netfilter.

H. Rule Set Update Delay

Another interesting parameter is the time required to
update the rule set using the different strategies. We there-
fore measured the time for modifying rules and updating
the shunt_index or shunting vector registers in the FPGA.
Taking into account the increasing calculation effort with an
increasing number of inserted rules, the delays for the insertion
were determined for consecutive rule insertions. The software
strategy updates were first tested with the inexpensive index-
based shunting method in order to better distinguish between
the delay for the strategies and the calculation of the shunting
vector for selective shunting. The following tests have been
conducted, taking the time for all steps:

a) for the full set strategy: update a single rule with
iptables and set shunt_index,

b) for the cut set strategy: truncate the rule set, insert
and load this set with iptables-restore, set
shunt_index,

c) for the HSA cut set strategy: calculate the shunting vector
and create the corresponding rule set, insert and load this
set with iptables-restore, set the shunting vector
registers on the FPGA,

d) for the interval strategy with index-based shunting:
calculate intervals, insert the chained rule set with

Fig. 15. Rule set update latency for consecutive insertion using different
software strategies and index-based (IB) or selective (Sel.) shunting (averaged,
with std. dev.).

Fig. 16. Worst-case scenario speedup using index-based (IB) and
selective (sel.) shunting.

iptables-restore, update the driver and set
shunt_index,

e) for the interval strategy with selective shunting analy-
sis: calculate intervals, insert the chained rule set with
iptables-restore, update the driver, calculate the
shunting vector and set the shunting vector registers.

Figure 15 shows the result of this test, as an average of all
13 test rule sets used in the evaluation. Setting one register on
the FPGA from the host alone takes 1 μs. Figure 15 confirms
that even the demanding updates of the interval strategy with
selective shunting could be carried out with a tolerable delay.

Updating the logic optimized rule set on the FPGA was only
necessary once for every test rule set. The bitfile generation
took about 45 minutes on the HyPaFilter+ evaluation host.
The FPGA configuration with the Xilinx configuration tool
xmd (via USB-based JTAG) finished in 17.38 s.

I. Scalability

The HyPaFilter+ approach can also be used for larger
rule sets than shown so far. The (interchangeable) hardware
matching unit can be configured in a pipelined layout which
we successfully tested with five stages of 1000 rules each. This
increases the latency by 13 clock cycles (72.2 ns at a clock rate
of 180 MHz) per stage, without affecting the throughput.

To evaluate the behaviour of the system if a greater number
of rules is placed into the FPGA and a greater share of the
hardware rules is adapted to complex processing, we repeated
our former tests with 5000 rules and up to 1000 complex
rules. In this case, the number of shunting rules is, on average,
68.6% greater than the number of complex rules. As with this

3668 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

setup a larger fraction of the rules are changed to complex
rules, the system’s performance will approach the software-
only firewall level, as shown in Figure 16. At 1000 complex
out of a total of 5000 rules, the speedup vs. software still
reaches 19.7x on average.

Regarding update latency, the critical step is the calculation
of the HSA vector, which has a complexity of O (|R|2). In the
worst case, this operation took up to 18.3 s in this evaluation.
All other update operations (i.e., registers) scale with O(|R|).

IX. CONCLUSION

We introduced HyPaFilter+, a hybrid packet classification
approach, which combines the parallel matching capabilities
of specialized hardware with the extensive matching semantics
of software packet filters. HyPaFilter+ accomplishes this task
by partitioning the implemented packet processing policy into
a simple and a complex part, where the simple part can
be handled directly in hardware and the complex part is
installed in the software filter. Incoming network packets are
first processed in hardware and are shunted to the software
filter only in cases where complex processing is required.
We present a novel strategy how the software-implemented
part of the rule set can be organized in order to reuse matching
information from the hardware. This strategy can be used
on top of netfilter and does not require changes of the
netfilter source code. The actual hardware filter is not
limited to our evaluation example. It can be any suitable archi-
tecture that provides its matching result to the host system,
such as a P4 [34] based hardware switch. We further showed
how to leverage geometric rule representations to significantly
reduce the need for shunting packets to the software. With the
addition of selective shunting, our evaluation demonstrates that
also with real-world rule sets and a large number of complex
rules, software processing can be avoided for major parts of
the traffic. As a result, our HyPaFilter+ prototype based on a
combination of a NetFPGA SUME FPGA and a Linux host
system demonstrates up to 30-fold increases in the achievable
throughput over a software-only approach.

REFERENCES

[1] The Netfilter.Org Project. Accessed: Jun. 10, 2017. [Online]. Available:
https://www.netfilter.org

[2] OpenBSD Packet Filter. Accessed: Jun. 10, 2017. [Online]. Available:
http://www.openbsd.org/faq/pf/

[3] IPFW Firewall. Accessed: Jun. 10, 2017. [Online]. Available: https://
www.freebsd.org/cgi/man.cgi?ipfw

[4] Genugate Firewall. Accessed: Jun. 10, 2017. [Online]. Available: https://
www.genua.de/en/solutions/high-resistance-firewall-genugate.html

[5] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet classifica-
tion on FPGAs,” in Proc. FPGA, Feb. 2009, pp. 219–228.

[6] D. Liu, B. Hua, X. Hu, and X. Tang, “High-performance packet classi-
fication algorithm for many-core and multithreaded network processor,”
in Proc. CASES, Oct. 2006, pp. 334–344.

[7] Y. Qi et al., “Towards high-performance flow-level packet processing on
multi-core network processors,” in Proc. ANCS, Dec. 2007, pp. 17–26.

[8] W. Jiang and V. K. Prasanna, “A FPGA-based parallel architecture for
scalable high-speed packet classification,” in Proc. ASAP, Jul. 2009,
pp. 24–31.

[9] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang, “ParaSplit: A scalable
architecture on FPGA for terabit packet classification,” in Proc. HOTI,
Aug. 2012, pp. 1–8.

[10] S. Hager, F. Winkler, B. Scheuermann, and K. Reinhardt, “MPFC: Mas-
sively parallel firewall circuits,” in Proc. LCN, Sep. 2014, pp. 305–313.

[11] M. Varvello, R. Laufer, F. Zhang, and T. Lakshman, “Multi-layer
packet classification with graphics processing units,” in Proc. CoNEXT,
Dec. 2014, pp. 1–12.

[12] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. SIGCOMM,
Aug. 2013, pp. 99–110.

[13] K. Accardi, T. Bock, F. Hady, and J. Krueger, “Network processor
acceleration for a linux* netfilter firewall,” in Proc. ANCS, Oct. 2005,
pp. 115–123.

[14] N. Zilberman, Y. Audzevich, G. Covington, and A. Moore, “NetFPGA
SUME: Toward 100 Gbps as research commodity,” IEEE Micro, vol. 34,
no. 5, pp. 32–41, Sep. 2014.

[15] A. Fiessler, S. Hager, B. Scheuermann, and A. W. Moore, “HyPaFilter—
A versatile hybrid FPGA packet filter,” in Proc. ANCS, Mar. 2016,
pp. 25–36.

[16] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. NSDI, Apr. 2012, pp. 113–126.

[17] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Netw., vol. 15, no. 2, pp. 24–32, Mar. 2001.

[18] D. E. Taylor, “Survey and taxonomy of packet classification techniques,”
ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, Sep. 2005.

[19] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in Proc. HOTI, Aug. 1999, pp. 1–9.

[20] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classifica-
tion using multidimensional cutting,” in Proc. SIGCOMM, Aug. 2003,
pp. 213–224.

[21] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in
Proc. SIGCOMM, Aug. 1998, pp. 203–214.

[22] F. Baboescu and G. Varghese, “Scalable packet classification,” in
Proc. SIGCOMM, Aug. 2001, pp. 199–210.

[23] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” in Proc. SIGCOMM, Aug. 1999, pp. 135–146.

[24] S. Hager, S. Selent, and B. Scheuermann, “Trees in the list: Accelerating
list-based packet classification through controlled rule set expansion,” in
Proc. CoNEXT, Dec. 2014, pp. 101–108.

[25] D. Qunfeng, S. Banerjee, J. Wang, and D. Agrawal, “Wire speed packet
classification without TCAMs: A few more registers (and a bit of logic)
are enough,” in Proc. SIGMETRICS, Jun. 2007, pp. 253–264.

[26] A. X. Liu, E. Torng, and C. R. Meiners, “Firewall compressor: An algo-
rithm for minimizing firewall policies,” in Proc. INFOCOM, Apr. 2008,
pp. 176–180.

[27] M. Chen et al., “Using NetFPGA to offload linux netfilter firewall,” in
Proc. 2nd North Amer. NetFPGA Develop. Workshop, 2010, pp. 1–7.

[28] T. Ganegedara and V. K. Prasanna, “StrideBV: Single chip 400G+
packet classification,” in Proc. HPSR, Jun. 2012, pp. 1–6.

[29] A. Fiessler, S. Hager, and B. Scheuermann, “Flexible line speed net-
work packet classification using hybrid on-chip matching circuits,” in
Proc. HPSR, Jun. 2017, pp. 1–8.

[30] S. Hager, D. Bendyk, and B. Scheuermann, “Partial reconfiguration
and specialized circuitry for flexible FPGA-based packet processing,”
in Proc. ReConFig, Dec. 2015, pp. 1–6.

[31] J. Lockwood et al., “NetFPGA—An open platform for gigabit-rate net-
work switching and routing,” in Proc. MSWiM, Jun. 2007, pp. 160–161.

[32] D. E. Taylor and J. S. Turner, “ClassBench: A packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511,
Jun. 2007.

[33] S. Hager. Hypafilter Rule Sets. Accessed: Sep. 4, 2017. [Online].
Available: http://hardfire.de/rule-sets

[34] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, Jul. 2014.

Andreas Fiessler received the master’s degree in
electrical engineering and information technology,
Humboldt University of Berlin, Germany, where he
is currently pursuing the Ph.D. degree. He is also a
Security Researcher with genua GmbH, Kirchheim,
Germany. He is involved in the research project
HARDFIRE, which aims at building an FPGA-based
firewall. His research topics focus on firewalling,
hardware security, and reconfigurable logic.

FIESSLER et al.: HYPAFILTER+: ENHANCED HYBRID PACKET FILTERING 3669

Claas Lorenz received the master’s degree in
computer science from the University of Potsdam,
where he is currently pursuing the Ph.D. degree.
He is also a Security Researcher with genua GmbH,
Kirchheim, Germany. Since 2015, he has been a
German Network Security Specialist with genua
GmbH in the SARDINE Project, which is funded by
the German Ministry of Education and Research. His
research interests include firewalling, SDN/NFV, and
formal security verification.

Sven Hager received the M.S. degree in computer
science from Heinrich Heine University Düsseldorf,
Germany, in 2013. He is currently pursuing the
Ph.D. degree with the Computer Engineering Group,
Humboldt University of Berlin, Germany. He is
active in the field of network packet classification.
His research interests include classification algo-
rithms, hardware architectures for packet processing,
and rule set transformations.

Björn Scheuermann He received the degree in
mathematics and computer science and the Ph.D.
degree in 2007. After holding professorships in Düs-
seldorf, Würzburg, and Bonn, he joined Humboldt
University in 2012. He is currently a Full Professor
and the Chair of computer engineering with the
Humboldt University of Berlin, Germany.The focus
of his scientific work is on performance, design, and
security aspects of computer networks, where he is
involved in, for instance, wireless communications,
privacy and anonymity, and hardware design.

Andrew W. Moore (M’02) is currently a Reader
in systems with the Computer Laboratory, Univer-
sity of Cambridge, U.K., where he is also part
of the Systems Research Group working on issues
of network and computer architecture. His research
interests focus upon enabling open-network research
and education using the NetFPGA platform. Other
research pursuits include low power, energy-aware,
networking, and novel network and systems data-
center architectures.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

