
2686 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Milking the Cache Cow With Fairness in Mind
Liang Wang, Gareth Tyson, Jussi Kangasharju, and Jon Crowcroft, Fellow, IEEE, ACM

Abstract— Information-centric networking (ICN) is a popu-
lar research topic. At its heart is the concept of in-network
caching. Various algorithms have been proposed for optimizing
ICN caching, many of which rely on collaborative principles,
i.e. multiple caches interacting to decide what to store. Past
work has assumed altruistic nodes that will sacrifice their own
performance for the global optimum. We argue that this assump-
tion is insufficient and oversimplifies the reality. We address
this problem by modeling the in-network caching problem as a
Nash bargaining game. We develop optimal and heuristic caching
solutions that consider both performance and fairness. We argue
that only algorithms that are fair to all parties involved in caching
will encourage engagement and cooperation. Through extensive
simulations, we show our heuristic solution, FairCache, ensures
that all collaborative caches achieve performance gains without
undermining the performance of others.

Index Terms— Information-centric networking, resources allo-
cation, game theory, algorithm design, modeling, optimisation.

I. INTRODUCTION

INFORMATION-CENTRIC Networking (ICN) [1] has been
proposed to exploit the observation that much of today’s

Internet traffic is content distribution. ICN replaces the existing
location-based Internet model with a content request/response
model. One feature this enables is the capacity to cache
content within the network. Whereas initial ICN caching
approaches used traditional algorithms (e.g. Least Recently
Used), there has been a number of novel proposals that attempt
to specifically target ICN environments. These algorithms
exploit things like inter-AS cooperation, request prediction
and a priori topology maps to optimise performance [2]–[4].
A key outcome of this work has been the observation that
collaborative caching usually outperforms locally optimised
algorithms [4]–[7]. This is primarily caused by the nature
of ubiquitous ICN caching, where nearby caches will often
wastefully store the same objects [6]. To address this, a simple
collaborative algorithm might involve two nodes strategically
caching distinct objects [3], [8], [9].

Cache collaboration is therefore likely to play a role in
any future ICN deployments [10]. In tandem, another trend
we are witnessing is the fragmentation of cache ownership in

Manuscript received October 11, 2016; revised February 3, 2017 and
March 22, 2017; accepted April 27, 2017; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor A. X. Liu. Date of publication June 9,
2017; date of current version October 13, 2017. (Corresponding Author:
Liang Wang.)

L. Wang and J. Crowcroft are with University of Cambridge,
Cambridge CB2 1TN, U.K. (e-mail: liang.wang@cl.cam.ac.uk).

G. Tyson is with the Queen Mary University of London, London E1 4NS,
U.K.

J. Kangasharju is with the University of Helsinki, 00100 Helsinki, Finland
Digital Object Identifier 10.1109/TNET.2017.2707131

the Internet. This involves large operators deploying separate
cache infrastructures. Some of these exclusively host their own
content (e.g. Google, Netflix), whilst other aggregate content
from multiple content sources (e.g. Akamai, ChinaCache).
Increasingly, we also see individual content producers placing
their content across multiple third party caching infrastruc-
tures. For example, Twitter spreads content across three
separate content delivery networks, whilst MultiCDN offers
aggregation services to allow any website to achieve this
easily. This trend adds an extra layer of complexity, as it
means that (even on an intra-domain level) we are beginning
to see multiple competing stakeholders operating caches that
potentially serve the same content. This trend will likely be
accelerated by the growth of network function virtualisation,
which will allow anybody to “spin up” caches within a
network (we already see the availability of virtual cache
services, e.g. Fortinet Virtual Cache). Hence, ensuring the
cache collaboration can also work in this setting will become
increasingly important.

A more extreme example of this fragmentation is within
the expanding number of wireless community mesh networks,
e.g. Guifi [11]; these are deployed by groups of individuals
who each contributes wireless routers (e.g. mounted on their
property). In a community network, every router/cache is
operated by a separate individual.

Consequently, we predict that future ICNs will use caches
that are provisioned not just by network operators, but also
various distinct stakeholders at strategic locations. These
observations, however, have the potential to undermine the key
tenets of caching in ICNs: What if caches operated by separate
entities pursue policies that do not include collaboration,
the storage of competitor’s content or the serving of specific
users? This is currently the situation online today, and it
is unlikely to change with the advent of ICN. Despite this,
most ICN collaborative algorithm assumes altruistic nodes that
simply strive to reach a global optimum [3], [4], [6], [7],
[9], [12]–[14]. Whereas this might be acceptable in scenarios
where a single organisation operates all caches, it ceases to be
suitable in scenarios where caches are owned and operated by
multiple parties.

The reasons why a non-collaborative policy may be imple-
mented are diverse. However, in this paper, we explore the
topic from a utilitarian perspective. Intuitively, caches would
wish to engage in a collaborative algorithm if they attain
greater utility than if they were not to engage. This obser-
vation mandates some concept of fairness, where benefits are
spread fairly across caches, and individuals are not expected
to sacrifice personal performance by collaborating. Imagine,
for instance, the above community network example; an

1063-6692 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

WANG et al.: MILKING THE CACHE COW WITH FAIRNESS IN MIND 2687

TABLE I

TABLE OF MAIN NOTATION USED IN THE PAPER

individual who sees his/her own performance consistently
detrimented because of collaboration would (rationally) cease.
We therefore argue that collaboration should be based on
fairness, which may or may not reduce global performance.
While a global optimum sounds attractive, we argue it is
more important, from a practical perspective, that every node
is better off by collaborating together than working alone.
In this paper, we design a collaborative caching algorithm
that embraces both high performance and fairness. Our focus
is not to build a protocol that forces nodes to collabo-
rate, or provides protection against malicious behaviour but,
rather, to design underlying algorithms that can fairly share
cache space across trusted collaborators. We first formulate
the fair in-network caching problem as a Nash bargaining
game (§III) before describing optimal algorithms for allo-
cating objects to caches (§IV). We then propose a heuris-
tic collaborative caching algorithm (§V) with fairness at its
core: FairCache. Through extensive simulations, we show that
FairCache achieves in excess of 90% accuracy compared to
the optimal solution, at a fraction of the overheads (§VII).
Importantly, we show that, when using FairCache, all nodes
improve their performance via cooperation. It can be deployed
across small subsets of collaborating caches or, alternatively,
globally without change to design. We conclude by extracting
key lessons learnt (§X).

II. MOTIVATION AND SYSTEM MODEL

To underpin our design, we begin with a motivational
example before outlining our system model. For convenience,
Table I contains the notations used throughout the paper.

A. Motivational Example

We use the simple toy caching system described in Figure 1
as a motivating example. Imagine two routers with a cache
capacity of one object. They each serve a nearby set of users

Fig. 1. A mini caching system with two caches and six objects. Three
strategies (Greedy, Global and Fair) are presented.

and, consequently, it is desirable that they collaborate to decide
which objects should be cached (e.g. to avoid storing the
same object). To decide which object to store, the caches
locally inspect the request rates they receive, depicted in
Figure 1 (as a Demand Matrix). Intuitively, each cache would
wish to selfishly optimise some concept of individual “utility”.
For simplicity, we measure their utility as the number of cache
hits they get. We also allow nodes to redirect requests to
the other cache; if a hit is attained there, a utility of 0.5 is
given to the node performing the redirect (factored down due
to the extra delay, overhead etc.). We consider three caching
strategies:

Case 1: Greedy Strategy, where each cache locally and
selfishly optimises its performance. As our comparison base-
line, Greedy strategy is a perfect LFU that keeps track
of all the objects. Cache 1 chooses to hold A since it is
the most popular content of demand 90, which leads to
U1 = 90 + 31

2 = 105.5. Similarly, Cache 2 caches B
which leads to U2 = 83 + 5

2 = 85.5. Therefore, we have
the aggregated utility UTotal = U1 + U2 = 105.5 +
85.5 = 191.

Case 2: Global Strategy, where each cache tries to maximise
the aggregated utility UTotal of the whole system. By caching
C and D on Cache 1 and 2 respectively, UTotal reaches its
theoretical maximum, namely UTotal = 126 + 85 = 211.
However, if we examine the individual performance and
compare them to the Greedy Strategy, we notice that the
increase in utility for Cache 1 results in a utility decrease for
Cache 2.

Case 3: Fair Strategy, where caches attempt to collaborate
fairly, in a way that does not reduce utility for any party.
Cache 1 stores E and Cache 2 stores F . Although this does not
achieve the global optimum (i.e. the aggregated utility UTotal

drops from 211 to 208.5), it ensures that both caches improve
their respective performance whilst also improving upon the
local Greedy Strategy. This solution is Pareto efficient, and
ensures both parties are incentivised.

The above reveals a stark mismatch. Attaining a global opti-
mum often disadvantages some parties [15]. Thus, nodes that
are unfairly exploited by other caches’ redirects (at the cost of
their own performance) are unlikely to continue collaboration:
Caching should balance the need for high performance against
the need for fair usage across caches.

2688 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

B. System Model

We model the network as a graph, G = (V, E), where V is
the set of nodes and E is the set of edges. V could consist of all
caches in a network or, alternatively, a subset of collaborating
partners. These could be owned by one or more separate
organisations. We follow an NDN [16] model, whereby hosts
generate requests that get deterministically routed to sources
that reply with content objects. Each node in the network,
vi ∈ V , is equipped with cache of size Ci. We denote O
as the global set of content objects. For each ok ∈ O,
we associate two parameters: sk, which is the object size
and wi,k , which is its aggregated demand (requests per second)
observed from all the clients connected to vi. We focus on
a subcategory of caching: collaborative algorithms. Because
of resource constraints, we assume that nodes are limited
in the number of nearby nodes they can cooperate with.
We use ri to represent vi’s search radius measured in hops.
ri defines a neighbourhood for each vi, which we denote as
Ni = {vj |l∗i,j ≤ ri, ∀vj ∈ V, vi �= vj}, where l∗i,j measures
the length of the shortest path between vi and vj .

A collaborative caching algorithm can be decomposed into
“caching decisions” and “retrieval decisions”. These two parts
solve “what to cache” and “where to fetch”. The latter
is necessary to allow nodes to redirect requests to other
caches (opposed to forwarding it along the default route to
the original source). This means that caches that do not
locally store an object retain the flexibility to exploit objects
stored elsewhere (i.e. collaboration). To model such a caching
strategy, we use two vector decision variables: x and y.
xi,k ∈ {0, 1} denotes whether vi caches ok, and yi,j,k ∈
{0, 1}, ∀i �= j denotes whether vi retrieves the object ok

from vj . Formally, we say:
Definition 1: A caching strategy for a network G is a tuple

of functions (x,y) where x : V ×O → {0, 1} and y : V ×V ×
O → {0, 1}. The family of all such tuples is denoted as Ψ,
which represents the whole space of all caching strategies.

Definition 2: A caching strategy for a node vi is defined as
(xi,yi), where xi : {vi} × O → {0, 1} and yi : {vi} × V ×
O → {0, 1} are the partial functions of x and y with domains
restricted to {vi} × O and {vi} × V × O respectively.

Note that × above represents the Cartesian product.
We strive for a caching strategy that is (i) Pareto efficient;
(ii) has well-defined fairness achieved amongst the nodes; and
(iii) attains high performance. From a utilitarian perspective,
this combination of attributes will lead to stable cooperation.

III. FUNDAMENTALS OF BARGAINING GAMES

A bargaining game is a model for analysing how par-
ties collaborate to obtain certain utility values. We model
collaborative caching as a bargaining game, in which we
aim to achieve both high performance (utility) and fairness.
Ideally, a solution is considered fair if it satisfies certain
axioms [17], [18]: (i) Pareto optimality; (ii) Scale invari-
ance; (iii) Symmetry; (iv) Independence of the irrelevant
alternatives; (v) Monotonicity. Nash proved that there is one
unique solution which satisfies axiom (i)-(iv), termed the Nash
Bargaining Solution (NBS) [17]. The NBS can be extended to

multiple players. On the other hand, the Kalai-Smorodinsky
Solution (KS) [18] satisfies axiom (i)-(iii)and (v). These two
solutions lead to two fairness metrics. Compared to NBS, KS
often does not have a closed-form expression. Hence, we focus
on NBS.

A. Game Definitions

In game theory, each node attempts to optimise its personal
“utility”. In caching, utility for a node, Ui, can be measured
by the delay to respond to a client. Each cache aims to
serve its clients with the lowest possible delay. Consequently,
serving a request from the local cache produces the greatest
utility, but redirecting a request to another nearby neigh-
bour also increases it (rather than forwarding to the original
source). As such, a selfish cache strives to maximise its utility
through a combination of local caching and redirects to nearby
neighbours.1 Of course, if utility can be maximised solely
through local caching then a node will cease to collabo-
rate. NBS is an axiomatic solution for solving the following
problem:

max
∏

vi∈V

(Ui − u0
i) (1)

Eq. (1) is called the Nash product. As mentioned, Ui is
node i’s utility. u0

i is the initial disagreement value of i.
The disagreement value is defined as the worst utility payoff
a node would accept for collaboration. In practice, a node
sets its disagreement value to the maximum value achieved
by optimising locally as a standalone cache, e.g. using Least
Recent Used. In the following, we give the formal definition
of our in-network caching game and its solution.

Definition 3: An in-network caching game is a
tuple (Ω,u0), where Ω ⊂ R

|V | contains all the utility
values obtainable via collaboration, and u0 ⊂ R

|V |

contains all the disagreement values leading to a negotiation
breakdown.

Let Ωe ⊂ Ω be the Pareto frontier of set Ω, i.e. the potential
Pareto efficient solutions. We assume that Ωe is also a concave
function with a closed compact convex domain. A game is
considered fair iff its outcome is fair. Therefore, we have:

Definition 4: A fair caching game is a game (Ω,u0) with
a Nash bargaining solution, i.e. a function f : Ωe → Ψ such
that f(Ω,u0) = (x,y) uniquely maximises

∏
vi∈V (Ui−u0

i).
By taking the logarithm of the objective function (1),

we have ln(max
∏

vi∈V (Ui − u0
i)) = max ln(

∏
vi∈V (Ui −

u0
i)). By taking the negation, NBS can be obtained equiva-

lently by:

max
∑

vi∈V

ln(Ui − u0
i) =⇒ min

∑

vi∈V

− ln(Ui − u0
i). (2)

B. Fairness Definitions

We argue that collaboration should follow the intuitive
concept of fairness, such that all caches receive fair utility
improvements through collaboration. This is critical to ensure
that node owners do not feel exploited and do not disengage

1Here, we assume that each individual node selfishly optimises. However,
our model can also support collective self interest amongst multiple nodes,
e.g. if several caches are owned by a single organisation.

WANG et al.: MILKING THE CACHE COW WITH FAIRNESS IN MIND 2689

from the collaboration. Being Pareto efficient, alone, does not
achieve this. To attain fairness, it is necessary to formalise
the concept. Three well-defined fairness metrics are often
referred to in the literature [19]–[21], i.e. Egalitarian (EF),
Max-min (MF) and Proportional (PF) fairness. EF pursues an
equal amount of improvement on every node, which usually
creates Pareto inefficiency (and is thus seldom used in prac-
tice). Both MF and PF have axiomatic foundations and are
widely used, e.g. in traffic engineering. MF is a generalisation
of KS, while PF is a generalisation of NBS. Thus, we only
focus on PF:

Definition 5: Proportional Fairness (PF): A caching strat-
egy (x∗,y∗) is PF iff ∀ (x,y) �= (x∗,y∗) ⇒
∑

vi∈V
Ui−U∗

i

U∗
i −u0

i
< 0.

A cache allocation is considered PF if the re-allocation of
any object would decrease the proportional utility gain (from
collaboration) of a node by less than the respective aggre-
gated increase for others. For example, imagine an object is
re-allocated from Cache 1 to Cache 2. It would not be fair if
this re-allocation reduces Cache 1’s utility by 20%, so that
Cache 2 could increase its utility by just 3%. However,
it would be considered fair if Cache 2 could increase its
utility by 60%. Importantly, to be considered PF (and to
incentivise uptake), it is necessary for all caches to improve
their performance over local optimisation (e.g. Least Recently
Used). Otherwise collaboration would immediately breakdown
in favour of local algorithms. If this were to occur, each node
would simply select its own preferred algorithm (e.g. LRU).
However, in our caching games, PF is guaranteed by NBS
(the proof is trivial and available in [22]). It is also trivial to
show whenever a Pareto efficient solution achieves EF, it also
achieves MF, i.e. a fair solution achieves all three fairness
metrics in NBS given it is EF. We later show that being
collaborative brings benefits to almost all nodes, indicating
that the number of (rational) nodes who would revert to a
local algorithm are very limited.

IV. SOLVING A FAIR IN-NETWORK CACHING GAME

We next devise both centralised and decentralised optimal
solutions for achieving fair caching. We later use these to eval-
uate our heuristic solution, FairCache. We avoid presenting all
the standard mathematical details but rather focus on the key
mechanisms (remaining are available in [22]).

A. Defining a Utility Function

We assume that a cache’s utility is generated from serving
its users’ demand with low delay. For edge nodes, this demand
comes directly from clients, whereas for core nodes this comes
from their downstream customers. In either case, utility could
be improved by a router using its local cache, or by redirecting
a request to a nearby collaborative cache. Both improve delay
compared to following the deterministic route to the origin.
More precisely, vi’s utility is defined as:

Ui =
∑

ok∈O

skwi,kxi,k +
∑

ok∈O

∑

vj∈Ni

skwi,k

l∗i,j + 1
yi,j,k (3)

Both terms show that the utility is a non-decreasing function
of demand and content size. The second term shows that the

utility of retrieving remote content decreases as the distance
increases. It indicates that a node prefers fetching from the
closest source to reduce latency and traffic footprint. Although
this affine utility function is used throughout the paper, any
other metric (e.g. bandwidth) or affine function can be used
to model the utility without change to our model.

B. Centralised Solution

We begin by outlining the optimal solution, which can
be computed centrally (e.g. on a controller). Without loss
of generality, we assume unit object size sk = 1,2 also let
li,j � l∗i,j +1 for simplicity of expression. Plugging in Eq. (3)
and Eq. (2), we define the optimisation problem as:

min
∑

vi∈V

− ln(
∑

ok∈O

wi,kxi,k +
∑

ok∈O

∑

vj∈Ni

wi,k

li,j
yi,j,k − u0

i).

(4)

Subject to
∑

ok∈O

xi,k ≤ Ci, ∀vi ∈ V (5)

∑

vj∈Ni

yi,j,k ≤ 1, ∀vi ∈ V, ∀ok ∈ O (6)

yi,j,k ≤ xj,k, ∀vi, vj ∈ V, ok ∈ O (7)

xi,k ∈ {0, 1}, ∀vi ∈ V, ok ∈ O (8)

yi,j,k ∈ {0, 1}, ∀vi, vj ∈ V, ok ∈ O (9)

Constraint (5) means the content stored at a node cannot
exceed its cache capacity. Constraint (6) simplifies the data
scheduling and avoids requesting redundant content by con-
straining a node to retrieve a maximum of one complete object
in a cache period. Constraint (7) says vi can retrieve ok from
vj only if vj has cached it; it also says vi cannot get more
than vj can offer. Constraints (8) and (9) impose the domain
of decision variables.

The above optimisation problem is a typical Integer Pro-
gramming program which is NP-Complete. By applying
Linear Programming relaxation, we relax constraints (8)
and (9) by letting xi,k ∈ [0, 1] and yi,j,k ∈ [0, 1]. We later
round up/down xi,k and yi,j,k to construct caching strategies.
Such relaxation renders a suboptimal solution hence is consid-
ered as the lower bound of the actual performance. Regarding
Eq. (4), since all the affine functions are log-concave, their
composite with logarithmic functions preserves concavity.
Thus, the problem (4) becomes a convex optimisation problem
defined over a set of compact and convex constraints, which
leads to the unique Pareto efficient solution, which is followed
by the existence of the equilibrium in NBS by definition [17].
The centralised solution can be derived by applying standard
convex optimisation techniques (see [22]). The solver needs
the demand matrix of each cache, cache size, content object
set, whole network topology etc. as inputs. The whole equation
system has 3|O| · |V |2+2|O| · |V |+ |V | variables and the same

2In practice, object size could either be varied per-object or, alternatively,
objects can be separated into smaller fixed size units

2690 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

number of equations. Thus, the computation of solving such
a large system is non-trivial.

C. Distributed Solution

The optimal centralised solution has obvious drawbacks in
its actual use: (i) it suffers from high computation complexity;
(ii) it creates a single point of failure; and (iii) it is not adaptive
under network dynamics. Hence, we next translate it into a
distributed solution using decomposition techniques.

To solve an equation system, each node can be viewed
as a subsystem. If they simply optimise locally, all the cal-
culations in each subsystem are independent from those in
others. However, due to collaboration, there are variables and
constraints, which are referred to as complicating variables
and constraints [23]. These make calculations interdependent
and couple a subsystem with others. In problem (4), the only
complicating constraint is (7).

To decompose Eq. (4), we apply Lagrangian dual relax-
ation. Lagrangian dual relaxation provides a non-trivial lower-
bound of a primal. The difference between the dual and
the primal is called the duality gap, which can be zero if
certain conditions are met as we show below. The Lagrangian
L(·) : R

2|O||V |2 → R associated with objective (4) is defined
as follows:

L(x,y, λ)

=
∑

vi∈V

[− ln(Ui − u0
i) +

∑

vj∈Ni

∑

ok∈O

λi,j,k(yi,j,k − xj,k)].

(10)

λ 	 0 is the dual variable associated with constraint (7)
of objective function (4). Then the Lagrangian dual function
d(·) : R

|O||V |2 → R is as follows:

d(λ) = inf
x∈X,y∈Y

L(x,y, λ). (11)

Given λ, let x∗ and y∗ be the unique minimizers for the
Lagrangian (10) over all x and y. Then the dual function (11)
can be rewritten as d(λ) = L(x∗,y∗, λ). By maximising the
dual function, we can reduce the duality gap. The Lagrangian
dual problem of the primal (4) is defined as:

max
λ∈R|O||V |2

d(λ) = L(x∗,y∗, λ). (12)

The constraints for the dual are the same as those of the primal
except constraint (7) which has already been included in the
dual objective function (12). Because (4) is convex and all the
constraints (5)(6)(8) and (9) are affine, Slater’s condition holds
given a solution exists, and the duality gap is zero. Thus, when
the dual (12) reaches its maximum, the primal also reaches its
minimum. The optimal solution for primal problem (4) can be
derived from the optimal solution for dual problem (12).

After decomposition, each node vi now only needs to
optimise its utility locally for a given λ by calculating:

minLi (x,y, λ) = − ln(Ui − u0
i)

+
∑

vj∈Ni

∑

ok∈O

λi,j,k(yi,j,k − xj,k).

We use the standard projected subgradient method [23] to
derive the algorithm. Let h(λ) and ∂d(λ) denote the sub-
gradient and subdifferential of dual function d(·) at point λ
respectively. Then for every hi,j,k ∈ h(λ) we have:

hi,j,k = y∗
i,j,k − x∗

j,k =⇒ h(λ) ∈ ∂d(λ).

Gradient h � h(λ) points to the direction where d(·)
increases fastest. In each iteration, node vi solves the local
subsystem (13) to update the dual variable λ. t represents the
tth iteration. ξt is the step-size in the tth iteration which can
be determined by several standard methods [23]. The projected
subgradient method projects λ on its constraint (i.e. λ 	 0)
in each iteration, and we use (·)+ as a shorthand for the
Euclidean projection. Eventually λ(t) → λ∗ when t → ∞.
The primal solution can be constructed from the optimum λ∗.
Combining the above, we refer to Eq. (13) as the distributed
optimal algorithm:

⎧
⎪⎨

⎪⎩

x(t)
i ,y(t)

i = argminx,y Li (x,y, λ(t))
h(t) = −(x(t)

i − y(t)
i)

λ(t+1) = (λ(t) + ξt

∑
vj∈Ni∪{vi} hj)+

(13)

Theorem 1: Optimal algorithm converges to its optimum as
the sequence {λ(1), λ(2) ... λ(t)} converges, if a diminishing
step size is used such that limt→∞ ξt = 0 and

∑∞
t=1 ξt = ∞.

The above theorem guarantees convergence [22]. λi,j,k can
be viewed as the “shadow price” of transferring ok from vj

to vi, which is a “cost” for vi but an “income” for vj . Given an
ideal network, the distributed optimal algorithm will converge
faster than the centralised one due to its parallel computations.
It is worth emphasising that although the optimal algorithm
above distributes the calculations over nodes, the overall
computations are not reduced. At the same time, the com-
munication cost increases due to exchanging “shadow price”
information. However, the overall communication complexity
remains the same as that of the centralised solution as we will
later show in Section VI.

V. FAIRCACHE: A LOW-COMPLEXITY HEURISTIC DESIGN

The distributed algorithm, although optimal, comes with
high overheads. To mitigate this, we propose FairCache,
a heuristic algorithm which does not require global knowledge
regarding the content and network topology. We emphasise
that FairCache is a decentralised algorithm for fairly sharing
cache capacity across multiple trusted stakeholders. It is
not intended to be a protocol, by which malicious behav-
iour (e.g. falsifying content demand) can be prevented. Hence,
we assume trusted parties who faithfully execute the algorithm,
much like is assumed within existing Internet routing schemes.

A. Overview of Heuristics

To understand the rationality behind our heuristic, we first
give a verbal explanation on the mechanisms of the optimal
algorithm expressed in Eq. (13). Recall λ represents the
shadow price of transmitting an object between two nodes.
Each node hence maintains a list of prices for any given object
from any given node. In each iteration of the optimisation,

WANG et al.: MILKING THE CACHE COW WITH FAIRNESS IN MIND 2691

a node tries to minimise its total cost using λ(t). During the
optimisation, the node adjusts its local caching strategy (via
xi and yi) and price list on other nodes (via λ and h).
Namely, a node may decide to cache an object if it brings
significant improvement, or stop retrieving an object from
another node due to high cost. Meanwhile the node adjusts
the price on how to charge its neighbours by offering help.
Then the node collects the price adjustments from all others in
the network and updates its own list. The procedure continues
until the performance converges based on certain well-defined
criteria (as described next). Future updates are periodically
shared to address changes in content popularity. As, generally,
popularity changes are relatively slow to occur (hours, rather
than minutes), this does not create considerable overheads.
The mechanisms above indicate that we can approximate the
optimal algorithm in the following ways:

(i) Cut out unpopular content: This approximation takes
advantage of the highly skewed content popularity distrib-
ution. It is well-known that the popularity distribution has
a long and heavy tail and most content fall into the tail.
Removing the tail can significantly reduce the size of the
exchanged messages. Meanwhile, the results will not be sig-
nificantly influenced because of their marginal contribution to
the overall utility (whilst also reducing signalling overheads
dramatically). Thus, requests for unpopular content will be
forwarded towards the origin (as with vanilla NDN [16]).

(ii) Cut out distant nodes: This approximation takes advan-
tage of topological locality. Since the utility of retrieving
distant content is a decreasing function of the hop count
between two nodes, the value quickly diminishes as path
length increases. It is more likely to find the requested content
in nearby nodes due to content spatial locality [24], [25];
removing remote nodes should not have significant impact on
the result.

(iii) Reverse direction: This approximation takes advan-
tage of the behaviours of gradient methods. In the optimal
algorithm, the neighbourhood (r) gradually shrinks from the
network diameter to its optimum (as a result of minimising the
cost function). However, most elements in yi are already set
to zero by the gradient method in the beginning phase of the
optimisation. Exchanging messages between nodes that are not
going to collaborate is a waste of resources. By growing the
neighbourhood set outwardly, instead of shrinking it, we can
avoid unnecessary message exchange.

B. FairCache Algorithm

We embed the above heuristics in our algorithm, FairCache,
presented in Algorithm 1. It takes several inputs. w is the
local demand matrix. r is for tracking the current number of
hops that defines a node’s neighbourhood radius. θ′ is used
for recording the utility improvement by increasing the radius
from r to r+1, while θ is the threshold below which FairCache
should stop growing the neighbourhood size. λ is the list
for tracking the shadow prices; this needs to be exchanged
amongst nodes (via price adjustment h) in a neighbourhood.
Algorithm 2 shows how heuristic (i) is implemented to derive
a reduced content set.

Algorithm 1 Fair In-Network Caching (FairCache) on vi

1: Input:
2: Demand matrix w
3: Dual variables λ
4: Search radius r = 0
5: Improvement threshold θ, θ′ (θ = 10−2; θ < θ′)
6: Output:
7: Caching decision xi

8: Collaboration decision yi

9: while θ′ ≥ θ and r < network diameter do
10: r = r + 1; t = 0;
11: while t < tstop do
12: xi, yi = argminx,y Li(x,y, λ)
13: h = yi − xi; trim h for ∀vj ∈ N+

i

14: h = h +
∑

∀vj∈Ni
hj

15: λ = (λ + ξh)+
16: t = t + 1
17: end while
18: Update θ′ with current improvement
19: end while

Algorithm 2 Construct Reduced Content Set O′
i on vi

1: Input:
2: Demand matrix w
3: Complete content set O
4: Output:
5: Reduced content set O′

i

6: Sort O in decreasing order based on w;
7: set O′

i = ∅;
8: for each o ∈ O do
9: if size (O′

i) + size (o) ≤ vi’s cache capacity
10: then add o to O′

i

11: else break
12: end for each

To apply the approximations, for node vi, instead of making
a complete price list, λ, containing all the content and
nodes in the network, node vi makes a partial λ which
only includes: (i) the most popular content that can be fit
into its local cache (i.e. heuristic (i)); and (ii) the nodes
in the neighbourhood defined by r (i.e. heuristic (ii)). It is
possible that vi observes other content in the hj , collected
from neighbours while r grows (i.e. heuristic (iii)), then vi

dynamically adds those content into its own λ. vi can also
remove items from λ if they are too expensive to retrieve.
After local optimisation in each iteration, the price adjustment
h will be trimmed before exchange by removing information
that is not included in λ; and removing the unchanged items,
i.e. the zero values. Essentially, vi only exchanges the trimmed
h within its neighbourhood and λ only contains the aggregated
popular content in the neighbourhood. Algorithm 3 and 4
detail the logic in lines 13–14 in Algorithm 1 whenever send-
ing and receiving price updates in each iteration. Obviously,
these approximations render incomplete information (due to
removing unpopular content and distant nodes). To handle

2692 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Algorithm 3 On Sending the Price Update hi on vi

1: Input:
2: Neighbourhood N+

i

3: Caching strategy xi, yi

4: set hi = yi − xi;
5: for each vj ∈ N+

i do
6: construct h′

i from hi based on (O′
i ∪ O′

j);
7: send h′

i to vj ;
8: end for each

Algorithm 4 On Receiving All the h′
j on vi

1: Input:
2: Neighbourhood Ni

3: Caching strategy xi, yi

4: set hi = yi − xi;
5: for each vj ∈ Ni do
6: receive h′

j from vj ;
7: set hi = hi + h′

j ;
8: end for each

the missing λi,j,k in the local optimisation, we let missing
λi,j,k = ∞ (i �= j), which indicates that the algorithm should
neither exchange unpopular content nor exchange content with
distant nodes.

Looking more closely, FairCache consists of two loops.
The outer loop (lines 9–19) increases the search radius r
by one hop in each iteration. The outer loop stops when
the current improvement, θ′, drops below the threshold θ
(i.e. θ′ < θ) due to enlarging the neighbourhood. The inner
loop (lines 11–17) finishes the local optimisation —- this is the
calculation in Eq. (13) for the given neighbourhood defined by
the current radius r. The communication overhead come from
the operation in line 14 which collects the price adjustments hj

from the neighbourhood Ni. Line 15 adjusts the local shadow
price list and updates the λ by removing or adding items.

VI. FAIRCACHE COMPLEXITY ANALYSIS

A. Overview

The distributed solution requires exchange of control mes-
sages between nodes, whilst the centralised solution requires
the distribution of the derived solution to all nodes (once it
has been centrally computed). The optimal solution comprises
of |O| matrices of size |V |2. The aggregation of each row i
(in all matrices) represents one specific optimal strategy for
the corresponding node vi in the system. To transmit these
rows to the nodes, the aggregated communication complexity
is Θ(|O| · |V |2). This is the same for the distributed solution,
as this performs the same computation (shared across multiple
nodes). The rest of this section will delineate the complexity of
FairCache. Table II presents an overview of the computational,
communication, and space complexity of all three solutions.

B. FairCache Heuristic Complexity

FairCache’s computation, communication, and space com-
plexities all correlate with the size of the content set and the

TABLE II

THE OVERALL AND (WORST) INDIVIDUAL COMPLEXITY OF THE
THREE SOLUTIONS. THE COMMUNICATION COMPLEXITY OF

THE CENTRALISED SOLUTION DOES NOT OCCUR DURING

THE COMPUTATION BUT COMES AFTERWARDS WHEN

DISTRIBUTING THE SOLUTION TO ALL NODES. THE
DISTRIBUTED SOLUTION DOES NOT REDUCE ANY

COMPLEXITY OF THE CENTRALISED SOLUTION

BUT, INSTEAD, SHARES IT ACROSS MULTIPLE
NODES. FAIRCACHE SIGNIFICANTLY

REDUCES ALL THREE COMPLEXITIES

BY APPLYING ITS HEURISTICS

neighbourhood set. Herein we evaluate the complexity savings
of FairCache’s three heuristics.

Heuristic (i) is used to reduce the content set size
(|O′| from |O|). The level of reduction depends on both
the popularity distribution of content and the percentage of
requests we want to capture in the request streams. It is
well documented that content popularity follows a Zipf-like
distribution [26], [27]. If we assume a Zipf distribution with
α = 1.0, for a content set of 106 equal sized objects, we are
able to cover 72.8% of the requests by caching only 2% of |O|.
In other words, |O′| = 0.02 · |O| indicates a 98% reduction.
Even if we only cache 1000 objects (i.e. 0.1% of |O|), we can
still capture 52% of requests, whilst leading to a significant
reduction in |O′|, i.e. up to 99.9%.

Heuristic (ii) is used to reduce the size of collaboration
neighbourhood, which is |V | for the distributed solution.
By investigating the FairCache algorithm, we can see that
the communication complexity is due to exchanging h in
order to update the local shadow price λ, cf. the last equation
in Eq.(13) and its corresponding line 14 in Algorithm 1.
The overhead therefore consists of two parts. The first part
is induced by replying the queries on h from the nodes
having vi in their neighbourhood, namely N+

i . The second
part is induced by collecting h from the nodes in vi’s own
neighbourhood, namely Ni. Given that the communication
complexity is measured by the number of exchanged mes-
sages, the complexity φi of node vi can be calculated as

φi = c · |O′| · (|N+
i | + |Ni|) (14)

Scalar c in Eq. (14) represents a constant factor for com-
munication complexity, and can be understood as message
size or other protocol-dependent factors. Now we show how
to calculate the overall complexity Φ at system level from φi

in the following.
Given any vj ∈ Ni, a neighbourhood relation can be written

as a tuple (vi, vj). Calculating
∑

vi∈V |Ni| is equivalent to
counting how many tuples there are in the whole system.
Obviously, vi ∈ Nj ⇐⇒ vj ∈ N+

i , ∀vi, vj ∈ V , in other
words, as long as there is a tuple (vi, vj) for Ni, there must
be a tuple (vj , vi) for some N+

j , and vice versa. Hence we can
show

∑
vi∈V |Ni| =

∑
vi∈V |N+

i |. Because one tuple (vi, vj)

WANG et al.: MILKING THE CACHE COW WITH FAIRNESS IN MIND 2693

represents one message exchange from vi to vj , by using
double counting technique, it is obvious that each message will
be counted twice in the calculation if we try to aggregate all φi:
i.e. (vi, vj) is in both vi’s Ni and vj ’s N+

j . Therefore, overall
complexity Φ can be calculated as half of the aggregated φi

of all vi in V as below.

Φ =
1
2

∑

vi∈V

φi =
c

2
· |O′| · (

∑

vi∈V

|N+
i | +

∑

vi∈V

|Ni|) (15)

= c · |O′| ·
∑

vi∈V

|Ni| (16)

The intuitive explanation of eliminating N+
i in calculating Φ

is that we only need to count the aggregated messages sent
out from a node (i.e. the size of a node’s own neighbourhood)
since for each message there is always a correspondence in
the network to receive it. Clearly, if we denote the average
neighbourhood size as |N |, then the system level communi-
cation complexity of FairCache is Φ = Θ(|O′| · |V | · |N |) as
below.

Φ = c · |O′| ·
∑

vi∈V

|Ni| = c · |O′| ·
∑

vi∈V

|N | (17)

= Θ(|O′| · |V | · |N |) (18)

Similarly in the distributed solution Eq.(13), since each node
has the whole network of size |V | as its neighbourhood and
uses the complete content set O in the optimisation. Then its
complexity can be calculated as Φ = Θ(|O|·|V |2) by plugging
the term |N | = |V | and |O′| = |O| into Eq.(18). As we can
see, the derived complexity is exactly the same as that of the
centralised solution.

Heuristic (iii) is used to minimise the size of the neighbour-
hood by increasing, rather than decreasing, the neighbourhood
size. As we can see from the analysis above, the complexity
of FairCache is proportional to its average neighbourhood
size |N |. Reducing its size is therefore beneficial. The authors
in [24] have proposed a neighbourhood model to calculate |N |
in its closed form on any general network topologies. With its
most general form, the overall complexity of the network of
average r-hop neighbourhood can be calculated as

Φ = |O| · |V | · n1 ·
(
1 +

[
n2

n1

]
+

[
n2

n1

]2

+ · · · +
[
n2

n1

]r−1)

= Θ
(
|O| · |V | ·

[
n2

n1

]r)
∀n1, n2 ∈ N, n2 > n1

where n1 and n2 denote the average number of one-hop and
two-hop neighbourhoods, and r represents the search radius.
If we assume n2 > n1 (which holds for all scale-free net-
works), the complexity of FairCache will grow exponentially
if the search radius r increases.3 Hence, by ensuring a small r,
Heuristic (iii) dramatically improves scalability. Importantly,
it has been shown that r is very small in most network
optimisation problems [24] (confirmed in Section VII).

Besides the memory for storing the actual content objects,
extra space is needed to store the input parameters of the

3Note that most natural graphs like Internet, ISP networks, and social
networks are all scale-free [28]

optimisation problem (i.e. w and λ). The space complexity
specifically refers to such extra space. Obviously, the space
complexity is also decided by the size of content set and the
size of neighbourhood. Hence FairCache on each node needs
Θ(|O′||N |) memory space to keep track of the information
needed for optimisation. If we assume the average object size
is 800 KB (much smaller than the average Youtube video size:
8 MB [26]) and each node has 8 GB memory installed, each
node needs to maintain roughly 104 objects. If we allocate
64-bit space to store the information for each object, given a
neighbourhood of 10 nodes, even in the worst case wherein
all these content sets are disjoint, each node only needs
approximately 800 KB extra memory. However, spatial locality
is very common [24] in content networks, which means there
is a significant overlap regarding the stored content among
nearby routers. If we assume that only 10% of objects are
overlapping, the 800 KB can be further reduced to 651 KB
(by summing up a geometric sequence to calculate). In the
end, the extra memory overhead (i.e. the ratio between the
memory space for parameters and memory space for objects)
is less than 0.01%.

C. Complexity Summary

Table II summarises our previous analysis of the complexity
of the three different solutions. We wish to highlight the
following key points:

• The computation and space complexity of the centralised
and distributed solutions are identical. It is always Φ =
Θ(|O| · |V |2). However, because the distributed solution
is able to share the complexity across each node in the
network, in practice, it leads to a more scalable design
and avoids the single point of failure.

• FairCache is able to reduce all complexities by limit-
ing the sizes of the content set and its collaborative
neighbourhood. The complexity of FairCache is only
a small fraction of the distributed solution, more pre-
cisely |O′|

|O| · |N |
|V | . We have shown |O| � |O′|, also in

reality |V | � |N | (as showed in [24]). We also confirm
this experimentally in Section VII), hence the improve-
ment is significant and improvements should grow as the
network size increases.

• FairCache on each node needs Θ(|O′||N |) memory space
to keep track of the information needed for optimisa-
tion (i.e. w and λ). In practice this introduces only
negligible overhead. As the average object size is bigger,
the overhead becomes even smaller.

VII. FAIRCACHE EVALUATION

A. Methodology

To evaluate FairCache, we perform extensive simula-
tions using the publicly available LiteLab platform [29].
We use several topologies. First, we use real topologies
collected by the Rocketfuel project [28]; namely, two ISP
router-level topologies: Sprint (604 nodes, 2,279 edges) and
AT&T (631 nodes, 2,078 edges). This embodies the use case
where an individual network has allowed the deployment of

2694 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

Fig. 2. Compared to the optimal algorithm, FairCache is more scalable on both real and synthetic networks. FairCache has a faster convergence rate and
generates less traffic overhead than the optimal. Meanwhile FairCache achieves high accuracy. (a) Convergence on ISP networks. (b) Convergence on synthetic
networks. (c) Reduction of traffic overhead. (d) The accuracy of FairCache.

caches in their network by multiple parties (e.g. via network
function virtualisation). Second, we use traces from Guifi [11].
Guifi is the largest open wireless community mesh network
in the world. It allows any user to purchase equipment
and become part of the network. We use its core network
topology in the Catalunya region (735 nodes, 1,059 edges).
Third, we use the CAIDA ITDK trace [30] which takes
a snapshots of the Internet AS topology every 24 hours.
We use the 7/01/2017 trace (25,107 nodes, 49,458 edges).
This captures the situation where each AS operates its
own caches, but chooses to collaborate with neighbouring
ASes. Fourth, to allow us to vary key graph parameters,
we also generate synthetic networks based on two models: the
Barabási-Albert (BA) model and the Erdős-Rényi (ER) model.
Four parameter sets are used for these synthetic networks:
{BA1 : m = 2}, {BA2 : m = 4}, {ER1 : p = 1.1·log(n)/n}
and {ER2 : p = 1.5 · log(n)/n}. If there are multiple
components in a synthetic network, we only use the largest
one. log(n)/n in the setting guarantees there is only one single
giant component in the network with high probability [31].
We have also analysed many recent AS-level topologies using
the CAIDA ITDK traces [30]. Since most AS networks have an
average degree of 4, we use BA2 configuration to reflect this
fact. Therefore, we note that our synthetic networks represent
both a per-router and per-AS topologies. For each topology we
attach a single client to each edge router (i.e. with degree of 1).
For example, this results in 161 clients in Sprint; 207 clients
in AT&T; and 200 in Guifi. We then randomly select between
10 and 20 distinct routers to attach a source to. Each router
is then allocated a given cache capacity, which we vary; the
default is 4 GB, which is < 0.1% of the corpus. We select a
low value to be representative of feasible cache capacity in a
wide area network with a large corpus.

Using the above topologies, clients generate requests at each
simulation tick, which are then routed through the network to
either a content source or an intermediate cache based on the
strategy employed. We base our content set on the Youtube
trace from [26]. This contains 1,687,506 objects (average size
is 8.0 MB and aggregated size is 12.87 TB). We use the view
count information to fit a Zipf (α) distribution (α = 0.9537) to
model the overall content popularity. To explore the impact of
different request patterns, we also perform sensitivity analysis
on α. Throughout this section, we use our distributed optimal

algorithm (i.e. Eq. (13)) as an optimal benchmark to compare
FairCache against. Each result is averaged over 50 runs;
errorbars are not plotted if they are sufficiently small (< 5%).

B. Scalability
We start by exploring scalability, measured by FairCache’s

convergence rate, i.e. how many rounds of message exchange
it takes the algorithm to bootstrap. This happens once at
initiation: future dynamics are addressed using periodic low
cost updates that are algorithmically trivial. Figure 2a com-
pares the convergence rates of the optimal (the upper figure)
and FairCache (the lower figure) on the various topologies.
The optimal needs significantly longer time to bootstrap than
FairCache. Unsurprisingly, larger cache sizes also lead to a
longer convergence time, as more state must be exchanged.
To investigate how network size impacts the convergence rate,
we use synthetic topologies with 4 GB caches. The lines
in Figure 2b are clearly divided into two groups: the upper one
is the optimal (with hollow markers) and the lower one is Fair-
Cache (with filled markers). The convergence rate degrades
as the network size grows. Importantly, though, the increase
in convergence time only grows sub-linearly, stabilising at
networks of size 1k; we experimented with topologies of up
to 9k nodes to find consistent results.

We also measure FairCache’s scalability by its traffic over-
heads. Clearly, it is undesirable to generate large amounts of
control messages to bootstrap. In this experiment, we mea-
sure the aggregated size of control messages for both the
distributed optimal and FairCache as CO and CF respectively.
We then calculate the traffic reduction as CO−CF

CO
. Figure 2c

presents a box plot of the results for both BA1 (upper
boxes) and ER1 (lower boxes) topologies. It shows that
FairCache is able to achieve over 80% traffic reductions, even
on small networks of 100 nodes. As the network size increases,
the benefit of using FairCache becomes more obvious. In a
network of 900 nodes, FairCache attains 95% reductions.
This equates to significant traffic volumes; in one iteration,
a 500 node network with 103 objects can save 887 MB of
control traffic via FairCache (leaving only 66.8 MB). With
FairCache, on average, each cache only introduces 136 KB
traffic overhead in an iteration. We can therefore combine the
above message overhead and convergence measurements to
calculate the convergence time. If we configure the rate of

WANG et al.: MILKING THE CACHE COW WITH FAIRNESS IN MIND 2695

Fig. 3. FairCache achieves fairness by trading off some efficiency. However, a large cache size can effectively reduce PoF. In reality, FairCache is able to
achieve very similar performance as Global, and is superior to Greedy in all cases. (a) PoF on synthetic networks. (b) PoF on ISP networks. (c) Byte hit rate,
4GB cache. (d) Footprint reduction, 4GB cache.

control messages to 100 KB/s, FairCache takes 11 minutes
to bootstrap. This is just 4.6% of the time taken by the
distributed optimal algorithm. Given a saturated 54 Mbit link,
the FairCache control messages would therefore consume
just 1.4% of bandwidth. Importantly, this is only a bootstrap
process; changes in request patterns are addressed with low
cost updates within each node’s neighbourhood. Even in
highly dynamic situations where demands are volatile, we can
let nodes exchange demand information in the background
while running FairCache. Once the new demand matrix is
constructed, FairCache simply re-calculates the new solution.
Recall our setting in Section VI where each node needs to
maintain 651 KB demand information. To guarantee FairCache
continuously runs, a total of 651 × 10 KB needs to be
exchanged among 10 nodes within 11 minutes, these updates
constitute under 10 KB/s. These values can be configured to
reflect the operating environment (we anticipate that in many
cases operators would transfer state at much higher rates).
Overall, we believe these overheads are more than acceptable
for the overall performance gains (§VII-E).

C. Accuracy

FairCache significantly reduces the convergence time and
messaging overhead of fairly allocating caching responsibili-
ties. These improvements potentially come at the cost of accu-
racy (i.e. lower utility than optimal solution). We next inspect
the accuracy sacrifice required to obtain these improvements.

To measure the accuracy of FairCache, we compare it
against the optimal algorithm using multiple topologies of
different sizes. We first run the optimal algorithm and measure
the utility Ui for every node i. Similarly, we run FairCache
and measure the utility U ′

i . We then calculate the accuracy of
FairCache as its ratio to the optimal for every node, i.e. U ′

i

Ui
.

Figure 2d plots the per node CDF of this ratio. We can see
that FairCache achieves very high accuracy. For large networks
like Guifi, all the nodes achieve an accuracy of over 92%.
For medium size networks like Sprint, all the nodes have at
least 97% accuracy and about 50% of the nodes reach 100%
accuracy. Besides Figure 2d, we also measure the aggregated
accuracy using

�
i U ′

i�
i Ui

. We find it is always above 95% for
medium-sized networks, whilst it decreases slightly for larger
networks (i.e. 3% drop from Sprint to Guifi). Even for the
very large CAIDA topology (over 25k nodes), the average

TABLE III

KEY METRICS FOR INCREASING NETWORK SIZES (295 - 25k NODES).
NETWORKS ARE REAL ISP TOPOLOGIES TAKEN FROM

ROCKETFUEL AND CAIDA AS-LEVEL TRACE

accuracy is still ≈ 95% with fewer than 6% nodes that have
an accuracy drop of 10% ∼ 20%. These findings are consistent
across the other topologies. To validate that these benefits
continue to be enjoyed by large topologies, we also repeated
the experiments presented in Figure 2b on topologies ranging
from 1k–9k nodes. Again, we find high levels of accuracy,
stabilising at 95%.

The results confirm the rationale behind the FairCache
heuristics. The approximation introduces almost negligible
degradation in the accuracy. The main reason is that the
highly skewed content popularity means that the bulk of
caching decisions are limited to the most popular objects. This
means that FairCache can attain high accuracy without sharing
information about all objects (unlike the optimal). Further,
by localising interactions to nearby nodes, FairCache can
scale-up without being overly affected by increasing network
sizes.

D. Price of Fairness

FairCache aims to realise fair collaboration amongst nodes,
which could cause a degradation in aggregated global utility.
We use the Price of Fairness (PoF) to measure the loss
in utility. The PoF is calculated as the ratio between the
aggregated utility loss of all nodes using FairCache and the
global optimal that does not consider fairness [15]. A higher
PoF value indicates a larger utility sacrifice.

Figure 3a and 3b plot the PoF results of using both real and
synthetic networks with three cache sizes. Both figures convey
the same information, which is that the PoF increases as
network size increases. We experiment with both realistic and
synthetic networks of up to 9k nodes (Table III summarises
the results), to find that the PoF stabilises after reaching a

2696 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

size of ≈3k nodes with a maximum PoF of 24% (and a
maximum of 20% in the real topologies, e.g. Guifi). This is
not negligible, but is likely not significant enough to dissuade
caches that are interested in fairness from using FairCache.
Interestingly, our results also show that increasing the cache
size is an effective way to ameliorate the loss in efficiency.
In Figure 3a, a 4 GB cache significantly improves the PoF.
Using a 2 GB cache, the PoF increases by 11% when the
network size increases from 100 to 900, whereas the PoF only
increases by 3% if a 4 GB cache is used. Figure 3b shows
similar properties with, for example, a 57% improvement in
PoF when increasing the cache size from 2 GB cache to 4 GB
in Guifi.

Overall, we believe that an average PoF of < 8% is a cost
worth paying for those concerned by a need for fairness. More-
over, FairCache exhibits good scalability regarding both accu-
racy and PoF, as the results in Table III show. The accuracy
only slightly degrades (1.5%) from 1000 nodes to 9000 nodes,
and is always above 94.7%. The accuracy stabilises after
2000 nodes. Similarly, PoF stabilises after reaching around
3000 nodes. For the 2GB cache configuration, PoF is capped
by 24.3%; 4GB by 15.6%; 8GB by 11.4% (not included
in Table III due to space limit). The scalability of FairCache
can be explained as follows: only small neighbourhoods play
an important role in deciding a node’s overall performance.
As the size of the neighbourhood is relatively unaffected by
the network size, this property always exists.

E. Caching Performance

The previous section has shown that utility is reduced by
considering fairness. Next, we explore performance from the
perspective of traditional metrics: byte hit rate and footprint
reduction. Hit rate is a conventional metric to measure sav-
ing on inter-domain traffic, whilst footprint reduction is the
reduction on the product of traffic volume and distance.

We compare FairCache against two other strategies:
(i) Greedy, which computes the local optimal for each cache
without collaboration; and (ii) Global, which maximises the
aggregated utility. Figure 3c and 3d plot the results on the
real networks using 4 GB caches. Naturally, Figure 3c shows
that Global achieves the best hit rates due the fact that it opti-
mises the overall network. That said, FairCache only performs
slightly worse, with a 5%–10% performance degradation.
Compared to Greedy, FairCache is consistently superior with
at least a 28% improvement. This shows that, regardless of
fairness, FairCache can offer significant performance improve-
ments over local algorithms (note that Greedy is the theoretical
upper bound of algorithms such as Least Recently Used).
When inspecting the traffic footprint reduction, performance
is even higher. FairCache is superior in all networks. Although
the reasons are intuitive for Greedy, which sees nodes locally
optimising, it is more surprising in Global. The reason is
that FairCache only requests from nearby caches (limited
by r). In contrast, Global uses any node in the network. This
increases hit rates, but results in more traffic.

To have a closer look how utility is spread across caches,
we select the AT&T network and study the utility distribution

Fig. 4. Comparison of strategies on AT&T, 4 GB cache size. (a) Cumulative
distribution of utilities. (b) Betw. centrality vs. utility.

in the network (i.e. how are traffic savings distributed across
caches). Figure 4a plots the CDF of normalised utility values
across each node (normalised by the top value per simulation).
By comparing Greedy and FairCache, we see that every node
is better off through collaboration using FairCache (note this
is also the case across all other topologies and cache sizes).
On the other hand, the Global strategy intersects with both
Greedy and FairCache, i.e. some caches in Global get lower
utility than Greedy. The area between the lines indicates the
percentage of caches that are worse off due to global optimisa-
tion. The Global strategy leads to 13% of nodes getting worse
off compared to Greedy, and 20% compared to FairCache.
With Global, these nodes should rationally cease to cooperate.
Again, regarding the aggregated utility, Global is only about
5% better than FairCache. Moreover, the CDF curve of Global
is more stretched than that of FairCache, which indicates there
are much larger variations in nodes’ utilities when using the
Global strategy, i.e. benefits are not evenly distributed.

Figure 4b shows the log-log plot of nodes’ normalised
utility as a function of betweenness centrality [6], [13]. Nodes
with a high betweenness are core routers, whilst those with
low betweenness are usually found at the edge. Interestingly,
when nodes use the Global strategy, a node’s utility strongly
correlates with its position in the network: core nodes gain
the highest utility. This is because the Global optimal tends
to place all the popular (i.e. high value) content at the core
to reduce duplicates — a theoretically attractive, but practi-
cally infeasible approach. In contrast, FairCache significantly
weakens this correlation. This is beneficial as it means that
utility is also increased at the edge caches. As well as
improving fairness, it also reduces load in the backbone and
provides consumers with lower delay access to object. This
also contributes to FairCache’s high traffic reductions, as hits
are pushed closer to clients.

F. Sensitivity Analysis of Spatial/Content Locality

FairCache’s heuristics take advantage of highly skewed
spatial and content popularity localities. A natural question
is how these localities impact the algorithm. To explore this,
we perform sensitivity analysis across these two parameters
to measure the robustness of our heuristics. Here, we solely
present the Guifi topology due to space constraints. The
reason we select Guifi is that the dataset contains geographic
coordinates of each node, allowing much more fine grained

WANG et al.: MILKING THE CACHE COW WITH FAIRNESS IN MIND 2697

Fig. 5. Experiments on the Guifi network, 4 GB cache size. We vary both content popularity skewness α and spatial locality factor β from 0.1 to 1.
We observe a gradual and slow improvement in caching performance as spatial locality factor increases. Both spatial locality and content popularity skewness
have significant impacts on the accuracy and the traffic reduction. (a) Byte hit rate vs. spatial locality. (b) FP reduction vs. spatial locality. (c) Accuracy vs.
popularity skew. (d) Msg reduction vs. popularity skew.

analysis of spatial locality. We have confirmed that the results
are representative of the other topologies.

We use a Hawkes process-based algorithm [24], [25] to
generate a user request trace. The algorithm is controlled
by two parameters: a content popularity skewness α and
a spatial locality factor β. α controls the overall content
popularity which follows Zipf (α). The spatial locality factor,
β = 0, means the request pattern reduces to an Independent
Reference Model; whilst β = 1 indicates very high spatial
localisation (i.e. requests for an object often occur in the same
locale).

First, we inspect their impact on the caching performance
metrics. Figure 5 presents the results by varying both α and
β in (0, 1]. From Figure 5a and 5b, we observe a shallow
improvement on byte hit rate and footprint reduction as β
increases. Specifically, they increase by only 6% and 8%
respectively when increasing β from 0.1 to 1. This suggests
that spatial locality is not a critical requirement for FairCache.

On the other hand, the popularity skew, α, has a more
significant impact on the accuracy and message reduction
of FairCache. Figure 5c shows that the average accuracy
of FairCache improves from 85% to 97% by increasing α
from 0.2 to 1. The speed of degradation of accuracy by
decreasing α also slows down at certain point (α = 0.4).
The reason is because the general popularity distribution gets
closer to a uniform distribution (due to a small α). Thus,
items are randomly requested, which means that each object
has a similar utility when being cached. Interestingly, this
means the overall utility of a cache will not vary much,
though the solution can be quite different from the optimal
one.

Last, we inspect the messaging overhead of running
FairCache, presented as the reduction in comparison to the
distributed optimal solution again. In Figure 5d, we see that
both α and β have a notable impact. Higher α and β both
result in lower overheads (i.e. higher reductions). The reason
is that a smaller α value leads to a more uniform popularity
distribution, which makes the demand matrices deviate more
from each other, which further leads to larger exchanged
messages for λ values. The smaller β values have almost the
same effect on demand matrices as that of α. However, we also
notice that β has more significant impacts when α is small.

Fig. 6. The distribution of neighbourhood size (in terms of r) after FairCache
converges. (a) uses seven ISP topologies; there is a relatively strong negative
correlation between nodes’ average degree and their average neighbourhood
size. (b) uses Guifi topology with three cache configurations; the numbers
in the grid show the percentage of the nodes and percentage of the control
messages (in red).

G. Neighbourhood Size Distribution

As previously stated in § VI, maintaining some neigh-
bourhoods is critical for ensuring scalability. This is because
(i) it dictates the communication overhead; and (ii) it justifies
the effectiveness of the heuristic (iii). In this section,
we present our empirical study on the neighbourhood size.
We launch a number of experiments using the default setup,
whilst varying the topology (as this is what dictates the
neighbourhood size). We measure the neighbourhood sizes
after FairCache converges (represented by the search radius r).

Figure 6a plots the average search radius, r, as a function
of the average degree of the topology. We use seven r1-level
ISP topologies (i.e. ISP router-level topology with one-hop
clients included), with a 2GB cache size. As the average degree
increases, r decreases, thereby reducing network overhead.
This is because network density increases, it becomes less
necessary to create multi-hop neighbourhoods. Most important
is the fact that even with a low degree, the search radius is
very small on all topologies (around 2 hops).

Figure 6b presents results for experiments performed on
the Guifi network. It shows a heatmap, which reveals the
percentage of nodes that have a certain radius (across three
cache sizes). Each point in the grid shows the percentage of
nodes in a simulation that have a certain search radius (lighter
colour means more), as well as the percentage of control

2698 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

messages generated within each neighbourhood (shown in
red). Figure 6b conveys two pieces of important information.
First, most of the nodes end up with a neighbourhood of fewer
than 3 hops. Even for the small 2GB cache sizes, 87% of the
nodes have no more than 2-hop search radius. Second, using
larger cache size makes the distribution even more skewed,
which further leads to even smaller search radius. When we
increase the cache size from 2GB to 8GB, the percentage
of nodes with a 1-hop radius increases from 45% to 86%.
With 8 GB cache, 97% of nodes’ final neighbourhoods are no
more than 2 hops. In addition, we also provide the distribution
of control messages in each r-hop neighbourhood, plotted
in red colour in the same grid. As we can see, the traffic
distribution is even more condensed within a very small
neighbourhood, which indicates most interactions are between
directly connected neighbours. We have confirmed that these
results are mirrored across all other topologies.

VIII. DISCUSSION AND LIMITATIONS

Deployment of FairCache raises a number of interest-
ing questions. A key practical concern is the potential for
parties to participate in FairCache in a malicious manner.
This is a possibility as nodes are expected to report shadow
prices, which they could be manipulated. FairCache is not
intended to force stakeholders to collaborate, or to protect
against cheating; hence, we have assumed that all nodes
adhere to the FairCache algorithm. However, if deployed,
such complexities would need to be addressed. In current
inter-domain network protocols this problem is handled using
out-of-band trust establishment, alongside signing author-
ities to bind autonomous systems to trusted identities
(e.g. RPKI [32]). Equally, we envisage FairCache could rely
on similar principles, in which legally formed (potentially tran-
sitive) collaboration agreements are underpinned by public key
cryptography.

There are also a number of alternative practical concerns.
Of course, highly dynamic content popularity may lead to
volatile state information in caches, which can further increase
the operational cost. We therefore implicitly assumed that the
demand matrix is stationary, whereas in reality the demand
will change over time. Recall that the space complexity
(in Section VI) of storing an individual demand matrix in
FairCache is Θ(|O′||N |), hence the complexity of updating
the whole matrix is bounded by Θ(|O′||N |). Two other facts
further help to reduce this overhead: (i) the spatial locality
we have mentioned; and (ii) the various research [26] that
has reported that such changes are gradual. Hence we can
incrementally update the demand matrix to avoid unneces-
sary traffic. Furthermore, such occasional and incremental
updates do not necessarily need to be synchronised especially
when FairCache is deployed as an ever-running background
process. In theory, the stale information may slow down
the convergence in an iterative optimisation process. Yet,
in practice, less frequent and incremental updates can ame-
liorate such impacts [23]. Moreover, due to the nature of
FairCache, the updates mostly affect the local neighbourhood
and their cascading effects will drastically decrease out of the
neighbourhood.

Although we have focussed on building an efficient algo-
rithm, we also acknowledge that FairCache treats storage
as the key bottleneck. There are also a number of other
constraints that could be included [33]. For instance, hard-
ware bottlenecks can render servers useless even whilst in
possession of content (e.g. CPU, I/O bus, congestion collapse).
Thus, deployment would probably involve the introduction of
such considerations into our model of fairness and utility.
This could, for example, result in caches actively storing
the same object in an attempt to share heavy load. Another
simplifying assumption is the modelling of delay using hop
count (like BGP); whereas this is a useful abstraction, it does
not consider the variability introduced by realtime conges-
tion. We consider this an acceptable sacrifice, as introducing
such realtime considerations would introduce burdensome
overheads. Another point worth highlighting is that we base
caching decisions on per-object popularity counts, therefore
introducing greater memory overheads than algorithms like
Least Recently Used. We emphasise, however, that our heuris-
tic removes all unpopular content, making such counts highly
feasible.

IX. RELATED WORK

There are three key related areas of work: collaborative
caching, content delivery networks (CDNs) and game theo-
retical studies of caching. Collaborative in-network caching
has been proven as an effective methodology to improve
system performance in various contexts [3]–[7], [9], [12], [34],
even though edge caching has also been shown to be effec-
tive [35]. Previously proposed solutions are either limited
by a centralised solver [5], [36] which makes scalability
difficult, or limited by distributed heuristics [3], [4], [6], [7],
[9], [12], [34], which neither guarantees a global optimum
nor Pareto efficiency. FairCache is most related to the latter in
that we do not guarantee a global optimum; however, we build
on their contributions by introducing the concept of fairness
and ensuring Pareto efficiency. Importantly, we also reveal the
need for fairness to encourage engagement by cache operators.
Recently, fair cache sharing also attracts enough attention
in cloud computing and system research, e.g. [37] proposes
FairRide using blocking to achieve isolation-guarantee and
strategy-proofness properties.

The current solution used for Internet-scale content delivery
are CDNs. They hold many similarities to ICNs [35], however,
unlike our proposal, they are not collaborative entities. Typ-
ically, they are operated by distinct companies that deploy
independent infrastructures. Some, like Akamai, sell their
capacity to third party content providers (arguably a form of
collaboration), whilst others build dedicated infrastructures for
their own content (e.g. Google, Facebook, Netflix). Recent
work within the IETF has endeavoured to support inter-
CDN cache sharing [38], however, this only provides protocol
support, rather than algorithms to decide when, where and how
caches should be shared. Hence, our work is orthogonal, and
could be applied to CDNs as a recent proposal in [39].

Game theory is an effective tool to analyse the effects
of individual behaviours in a complex system; e.g. prior
work [40] analyses the fairness achieved in bandwidth allo-

WANG et al.: MILKING THE CACHE COW WITH FAIRNESS IN MIND 2699

cation by coordinated and uncoordinated rate control over
multiple links in peer-to-peer networks. Recent work [2], [36],
[41]–[44] applies game theory to study in-network caching.
In these papers, the caching problem is modelled as non-
cooperative, pure strategic games and the equilibrium is
analysed. Unlike us, this work takes a system-level utilitarian
approach that aims to achieve a global optimum. In contrast,
we focus on attaining fairness amongst nodes. More related
to us is [2], [36], [42], which look at how selfishness drives
nodes to act. These studies show how selfishness impact
the equilibrium and efficiency in cache systems (measured
by the Price of Anarchy). They also show that the global
optimum is seldom achieved due to lack of coordination and
nodes’ inherent selfishness. Again, fairness is overlooked; we
introduce this as an integral requirement of cooperation. To the
best of our knowledge, no prior work has tried to solve the
collaborative caching as a bargaining game and has devised
a low-complexity heuristic to embrace both efficiency and
fairness.

X. CONCLUSION

To date, studies of collaborative caching have focussed
on metrics such as hit rate, assuming that nodes are happy
to contribute to achieving a global optimum. In this paper,
we have argued that practical situations are unlikely to adhere
to this model. Instead, caches operated by separate stakehold-
ers will expect a reasonable level of fairness, where they
are not penalised for cooperating with others. We began by
delineating an optimal solution, which ensures no node attains
lower utility by collaborating. To address its high complexity,
we have also proposed a heuristic algorithm, FairCache, which
we have shown achieves high performance at a fraction of the
cost. Unlike past work, FairCache offers Pareto efficiency and
proportional fairness, ensuring that all nodes are incentivised
to collaborate. As well as helping to promote cooperation,
our results show that proportional fairness plays a key role in
balancing network traffic too. It helps maintain more hits at
the edge, rather than globally optimal solutions that centralise
hits in the core. We are not prescriptive in how FairCache
is deployed and have ensured that it can be used either
globally or amongst a subset of collaborating nodes. Hence,
our key take-home message is that future collaborative caching
designs should cease to assume purely altruistic cooperation
and, instead, be explicitly built around the concept of fairness.

There are several lines of potential future work. First,
we plan to build a wireline protocol to implement FairCache’s
design. The most prominent challenge in this regard is imple-
menting a FairCache protocol that is robust against cheating
nodes. This is a fascinating area of future work; currently,
we assume trusted certified parties that do not lie, however,
we wish to expand this to cover more dynamic arrangements
in which trust can be formed on-the-fly. Note that this would
not necessarily involve significant changes to FairCache —
simply extra functions, e.g. key exchange. Clearly, this should
be underpinned by a hardware implementation for exploring
practical feasibility at line rates. There are various other real-
world concerns that could also be integrated into FairCache
too. For instance, dynamics regarding link availability, con-

gestion and request patterns could be explored. This should
extend to integrating new constraints (e.g. bandwidth, power,
CPU), as well as alternate forms of fairness (e.g. bandwidth
fairness, user-centric fairness). Lastly, we wish to expand
FairCache to consider situations in which caches have exter-
nal influences (e.g. business arrangements) that modify their
behaviours. As of yet, little work has considered exogenous
incentives that drive caching collaboration. We therefore see
this as a fruitful line of study.

REFERENCES

[1] G. Xylomenos et al., “A survey of information-centric networking
research,” IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp. 1024–1049,
2nd Quart., 2014.

[2] V. Pacifici and G. Dán, “Selfish content replication on graphs,” in
Proc. 23rd Int. Teletraffic Congr. (ITC), 2011, pp. 119–126. [Online].
Available: http://dl.acm.org/citation.cfm?id=2043468.2043488

[3] E. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, best-effort
content location in cache networks,” in Proc. INFOCOM, Apr. 2009,
pp. 2631–2635.

[4] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical caching
with dynamic request routing for massive content distribution,” in Proc.
IEEE INFOCOM, Mar. 2012, pp. 2444–2452.

[5] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson,
“Cooperative caching: Using remote client memory to improve file
system performance,” in Proc. 1st USENIX Conf. Oper. Syst. Design
Implement. (OSDI), Berkeley, CA, USA, 1994, Art. no. 19. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267638.1267657

[6] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ‘less
for more’ in information-centric networks,” Comput. Commun.,
vol. 36, no. 7, pp. 758–770, 2013. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S014036641300025X

[7] S. Saha, A. Lukyanenko, and A. Yla-Jaaski, “Cooperative caching
through routing control in information-centric networks,” in Proc. IEEE
INFOCOM, Apr. 2013, pp. 100–104.

[8] W. Wong, L. Wang, and J. Kangasharju, “Neighborhood search and
admission control in cooperative caching networks,” in Proc. IEEE
GLOBECOM, Dec. 2012, pp. 2852–2858.

[9] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proc. 2nd ed. ICN Workshop Inf.
Centric Netw. (ICN), New York, NY, USA, 2012, pp. 55–60. [Online].
Available: http://doi.acm.org/10.1145/2342488.2342501

[10] L. Wang, “Content, topology and cooperation in in-network
caching,” Dept. Comput. Sci., Univ. Helsinki, Helsinki, Finland,
Tech. Rep. A-2015-1, Mar. 2015, pp. 472–484. [Online]. Available:
http://urn.fi/URN:ISBN:978-951-51-0825-8

[11] D. Vega, L. Cerdà-Alabern, L. Navarro, and R. Meseguer, “Topology
patterns of a community network: Guifi.net,” in Proc. IEEE 8th Int.
Conf. Wireless Mobile Comput. Netw. Commun. (WiMob), Oct. 2012,
pp. 612–619.

[12] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, Apr. 2010,
pp. 1–9.

[13] L. Wang, S. Bayhan, and J. Kangasharju, “Effects of cooperation policy
and network topology on performance of in-Network caching,” IEEE
Commun. Lett., vol. 18, no. 4, pp. 680–683, Apr. 2014.

[14] L. Wang, S. Bayhan, and J. Kangasharju, “Optimal chunking and partial
caching in information-centric networks,” Comput. Commun., vol. 61,
pp. 48–57, May 2015.

[15] D. Bertsimas, V. F. Farias, and N. Trichakis, “The price of fairness,”
Oper. Res., vol. 59, no. 1, pp. 17–31, 2011.

[16] V. Jacobson et al., “Networking named content,” in Proc. 5th ACM
Conext, 2009.

[17] J. Nash and F. John, “The bargaining problem,” Economet-
rica, vol. 18, no. 2, pp. 155–162, 1950. [Online]. Available:
http://www.jstor.org/stable/1907266

[18] E. Kalai and M. Smorodinsky, “Other solutions to Nash’s bargaining
problem,” Econometrica, vol. 43, no. 3, pp. 513–518, 1975.
[Online]. Available: http://EconPapers.repec.org/RePEc:ecm:emetrp:
v:43:y:1975:i:3:p:513-18

[19] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, Mar. 1998.

2700 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5, OCTOBER 2017

[20] H. Boche and M. Schubert, “Nash bargaining and proportional fair-
ness for wireless systems,” IEEE/ACM Trans. Netw., vol. 17, no. 5,
pp. 1453–1466, Oct. 2009.

[21] A. Muthoo, Bargaining Theory With Applications. Cambridge, U.K.:
Cambridge Univ. Press, 1999.

[22] L. Wang, G. Tyson, J. Kangasharju, and J. Crowcroft. “FairCache:
Introducing fairness to ICN caching-technical report,” [Online].
Available: https://arxiv.org/abs/1412.0041

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[24] L. Wang et al., “Pro-diluvian: Understanding scoped-flooding for
content discovery in information-centric networking,” in Proc. ICN,
New York, NY, USA, 2015, pp. 9–18. [Online]. Available:
http://doi.acm.org/10.1145/2810156.2810162

[25] A. Dabirmoghaddam, M. M. Barijough, and J. Garcia-Luna-
Aceves, “Understanding optimal caching and opportunistic caching
at ‘the edge’ of information-centric networks,” in Proc. ICN.
New York, NY, USA, 2014, pp. 47–56. [Online]. Available:
http://doi.acm.org/10.1145/2660129.2660143

[26] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
You Tube, everybody tubes: Analyzing the world’s largest user generated
content video system,” in Proc. 7th ACM SIGCOMM Conf. Internet
Meas. (IMC), New York, NY, USA, 2007, pp. 1–14. [Online]. Available:
http://doi.acm.org/10.1145/1298306.1298309

[27] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of YouTube
videos,” in Proc. 16th Int. Workshop Quality Service (IWQoS), Jun. 2008,
pp. 229–238.

[28] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP
topologies with rocketfuel,” in Proc. SIGCOMM, New York,
NY, USA, 2002, pp. 133–145. [Online]. Available: http://
doi.acm.org/10.1145/633025.633039

[29] L. Wang, A. Sathiaseelan, J. Crowcroft, and J. Kangasharju, “LiteLab:
Efficient large-scale network experiments,” in Proc. 13th IEEE Annu.
Consum. Commun. Netw. Conf. (CCNC), Jan. 2016, pp. 60–66.

[30] B. Huffaker, M. Fomenkov, and K. Claffy, “Internet topology data
comparison,” Cooperat. Assoc. Internet Data Anal. (CAIDA), La Jolla,
CA, USA, Tech. Rep., May 2012.

[31] S. Bornholdt and H. G. Schuster, Handbook of Graphs and Networks,
vol. 2. Hoboken, NJ, USA: Wiley, 2003.

[32] M. Wählisch et al., “RiPKI: The tragic story of RPKI deployment
in the Web ecosystem,” in Proc. 14th ACM Workshop Hot Topics
Netw. (HotNets-XIV), New York, NY, USA, 2015, pp. 11-1–11-7.
[Online]. Available: http://doi.acm.org/10.1145/2834050.2834102

[33] D. Perino and M. Varvello, “A reality check for content cen-
tric networking,” in Proc. ACM SIGCOMM Workshop Inf.-Centric
Netw. (ICN), New York, NY, USA, 2011, pp. 44–49. [Online]. Available:
http://doi.acm.org/10.1145/2018584.2018596

[34] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area Web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[35] S. K. Fayazbakhsh et al., “Less pain, most of the gain: Incrementally
deployable ICN,” in Proc. SIGCOMM, New York, NY, USA, 2013,
pp. 147–158.

[36] B.-G. Chun et al., “Selfish caching in distributed systems: A game-
theoretic analysis,” in Proc. 23rd Annu. ACM Symp. Principles Distrib.
Comput. (PODC), New York, NY, USA, 2004, pp. 21–30. [Online].
Available: http://doi.acm.org/10.1145/101>1767.1011771

[37] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica, “FairRide:
Near-optimal, fair cache sharing,” in Proc. 13th Usenix Conf. Netw. Syst.
Design Implement. (NSDI), Berkeley, CA, USA, 2016, pp. 393–406.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2930611.2930637

[38] L. Peterson, B. Davie, and R. van Brandenburg, “Framework for content
distribution network interconnection (CDNI),” Internet Eng. Task Force
(IETF), Fremont, CA, USA, Tech. Rep. rfc7336, Aug. 2014. [Online].
Available: https://tools.ietf.org/html/rfc7336

[39] V. Pacifici and G. Dán, “Distributed algorithms for content allocation
in interconnected content distribution networks,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2015, pp. 2362–2370.

[40] P. Key, L. Massoulié, and D. Towsley, “Path selection and multipath con-
gestion control,” Commun. ACM, vol. 54, no. 1, pp. 109–116, Jan. 2011.
[Online]. Available: http://doi.acm.org/10.1145/1866739.1866762

[41] V. Pacifici and G. Dan, “Content-peering dynamics of autonomous
caches in a content-centric network,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 1079–1087.

[42] N. Laoutaris, O. Telelis, V. Zissimopoulos, and I. Stavrakakis, “Distrib-
uted selfish replication,” IEEE Trans. Parallel Distrib. Syst., vol. 17,
no. 12, pp. 1401–1413, Dec. 2006.

[43] G. Dán, “Cache-to-cache: Could ISPs cooperate to decrease peer-to-peer
content distribution costs?” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 9, pp. 1469–1482, Sep. 2011.

[44] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

Liang Wang received the B.Eng. degree in computer
science and mathematics from Tongji University,
Shanghai, China, in 2003, the M.Sc. and Ph.D.
degrees in computer science from the University of
Helsinki, Finland, in 2011 and 2015, respectively.
He is currently a Research Associate with the Com-
puter Laboratory, University of Cambridge, U.K.
His research interests include system and network
optimization, modeling and analysis of complex net-
works, information-centric networks, and distributed
data processing.

Gareth Tyson received the Ph.D. degree from
Lancaster University, U.K. in 2010. He is currently
a Lecturer with the Queen Mary University of
London. His research centers on system measure-
ments and design, looking at topics ranging from
network operations to social media. He received
the Outstanding Reviewer Award at ICWSM’16.
He serves as a Reviewer and Program Committee
Member for a number of prominent journals, such as
the IEEE/ACM TRANSACTIONS ON NETWORKING,
the IEEE JOURNAL ON SELECTED AREAS IN COM-

MUNICATIONS, the IEEE TRANSACTIONS ON PARALLEL AND DISTRIB-
UTED SYSTEMS, the IEEE TRANSACTIONS ON NETWORK AND SERVICE

MANAGEMENT, ACM, TRANSACTIONS ON MULTIMEDIA, and the IEEE
TRANSACTIONS ON COMPUTERS.

Jussi Kangasharju received the M.Sc. degree from
the Helsinki University of Technology in 1998,
Diplome d’Etudes Approfondies from the Ecole
Superieure des Sciences Informatiques, Sophia
Antipolis, and the Ph.D. degree from the University
of Nice Sophia Antipolis/Institut Eurecom, in 2002.
In 2002, he joined the Darmstadt University of
Technology, as Post-Doctoral Researcher, where he
has been as an Assistant Professor, since 2004. Since
2007, he has been a Professor with the University
of Helsinki.

Jon Crowcroft (SM’95–F’04) received the
B.S. degree in physics from the University of
Cambridge in 1979, and the M.Sc. degree in
computing and Ph.D. degree from University
College London in 1981 and 1993, respectively.
He has been a Professor with the University of
Cambridge since 2001, where has been involved
in Internet support for multimedia communications.
He is a Fellow of the Royal Society, the Association
for Computing Machinery, the British Computer
Society, the IET, and the Royal Academy of
Engineering

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

