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Topology Preserving Maps—Extracting Layout
Maps of Wireless Sensor Networks

From Virtual Coordinates
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Abstract—A method for obtaining topology-preserving maps
(TPMs) from virtual coordinates (VCs) of wireless sensor net-
works is presented. In a virtual coordinate system (VCS), a node
is identified by a vector containing its distances, in hops, to a small
subset of nodes called anchors. Layout information such as phys-
ical voids, shape, and even relative physical positions of sensor
nodes with respect to - directions are absent in a VCS descrip-
tion. The proposed technique uses Singular Value Decomposition
to isolate dominant radial information and to extract topological
information from the VCS for networks deployed on 2-D/3-D
surfaces and in 3-D volumes. The transformation required for
TPM extraction can be generated using the coordinates of a subset
of nodes, resulting in sensor-network-friendly implementation
alternatives. TPMs of networks representing a variety of topolo-
gies are extracted. Topology preservation error , a metric
that accounts for both the number and degree of node flips, is
defined and used to evaluate 2-D TPMs. The techniques extract
TPMs with less than 2%. Topology coordinates provide
an economical alternative to physical coordinates for many sensor
networking algorithms.

Index Terms—Localization, routing, Singular Value Decom-
position (SVD), topology preserving map (TPM), virtual coordi-
nates (VCs), wireless sensor network (WSN).

I. INTRODUCTION

V IRTUAL coordinates (VCs) provide an economical alter-
native to geographical coordinates for routing and self-

organization of large-scale wireless sensor networks (WSNs).
Geographical coordinate-based protocols such as Geographical
Routing (GR) require physical location of nodes, which may
be obtained by GPS or a localization algorithm. Use of GPS
is infeasible or too costly for many applications, while localiza-
tion using analogmeasurements such as signal strength and time
delay is difficult and prone to errors [19], [25], [26], [30]. Signal
strength is susceptible to noise, fading, and interferences due
to multipath and other devices. Need for accurate power con-
trol and signal strength measurements contribute to increased
hardware complexity as well as cost. Routing is carried out
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using directional information derived from geographic coordi-
nates (GCs), and hence concave physical voids in the network
degrade the performance of GR schemes. Anchor-based virtual
coordinate systems (VCSs) characterize each node by a coordi-
nate vector consisting of the shortest-path hop distances to a set
of anchors [5], [6], [23], [24], [27]. These anchors are a set of or-
dinary sensor nodes with no additional capabilities. Coordinates
can be obtained using a controlled/organized flooding mecha-
nism [20] initiated by the anchors. VCS is a higher-dimensional
abstraction of a partial connectivity map of sensors. It has sev-
eral properties, such as ease of generation and facilitating con-
nectivity-based routing without the need for geographical infor-
mation [5]–[8], [25], that make it attractive for large-scale or re-
source-starved WSNs. The number of anchors becomes the net-
work’s dimensionality in the VC space. As the network’s con-
nectivity information is embedded in VCs, the physical voids
become transparent in the virtual space (VS). However, VCs
lose the directional information related to node positions. The
number of anchors required and their placement for a given net-
work play a crucial role in the performance of VC-based routing.
However, identification of the optimal number of anchors and
proper anchor placement remain major challenges. Underde-
ployment of anchors causes identical node coordinates, while
their overdeployment and improper placement worsen the local
minima problem, causing logical voids [6]
Many disadvantages associated with VCS in comparison to

geographical coordinate systems are due to the lack of informa-
tion about the physical network topology and layout. As each
virtual ordinate propagates radially away from an anchor, the di-
rectional information of a node with respect to the anchor is lost.
Thus, the physical layout information such as physical voids,
relative physical direction information of sensor nodes with re-
spect to - positions, and even explicit connectivity informa-
tion among pairs of nodes are absent in a VCS description. The
above information can be revealed if the physical map is avail-
able. Having both, partial connectivity information that is em-
bedded in VCs and position or direction information as in ge-
ographical coordinates can be used to overcome the disadvan-
tages in each other’s domains. However, physical topological
information has to be generated without inheriting the disadvan-
tages associated with obtaining physical location information or
localization.
Obtaining a topology map resembling the physical layout

topology of a network from the set of VCs that is based only
on hop distances to a small set of anchors has not been pos-
sible up to now. In this paper, we present a technique to ob-
tain topology preserving maps (TPMs) that contain the topology
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of a network and physical features, including its geographical
voids, boundary profiles, and relative Cartesian directional in-
formation. TPMs overcome many of the disadvantages of VCS
compared to geographical coordinate systems, but without in-
heriting its disadvantages, while preserving all the advantages
of connectivity-based VCs.
A TPM is a rotated and/or distorted version of the real phys-

ical node map to account for connectivity information inherent
in VCs. The topological coordinates provided by the proposed
method are a good substitute for geographical coordinates for
many applications that depend on connectivity and location
information. In fact, the topological coordinates (TCs) in
conjunction with VCs from which they are derived have been
demonstrated to be better than geographical coordinates for
routing due to significantly enhanced routing performance [12].
Topology coordinate space provides an alternative that is
different from virtual and physical coordinates, yet preserving
the advantages of the two. Boundary node identification, event
region and void detection [10], and nodes gaining network
awareness [11], i.e., finding the overall shape of the network
and its place in the network, are among examples of techniques
that have been demonstrated to benefit from the TCs. The
results presented here demonstrate the ability to determine and
visualize the structural characteristics of large-scale WSNs in
both 2-D and 3-D. Ability to do such visualization without
the need for analog measurement capability at nodes will be
invaluable for networks whose nodes are extremely limited
in capability, e.g., large-scale nanosensor networks [1]. Even
though we focus on WSN context here, the technique is appli-
cable to a broader class of networks.
Next, Section II reviews the background. After presenting

the Singular Value Decomposition (SVD)-based method for ob-
taining TPMs in Section III, we also refine the method to reduce
its complexity. A performance evaluation metric for topology
maps is presented in Section IV. In Section V, we discuss the
results of three alternatives for TPM generation, with different
computational and communication complexities. Section VI ad-
dresses implementation issues. Finally, Section VII discusses
the future work and concludes our work.

II. BACKGROUND

We briefly review the related work on coordinate systems and
localization techniques for generating GCs and maps, for which
proposed TPMs are a competitive, economical alternative. The
term TPMs has been used in contexts outside sensor networking,
such as multidimensional data organization. Though some of
them are not directly applicable to WSNs, we review the most
relevant ones to place the proposed scheme in context.

A. Geographic Routing (GR) Versus Virtual Coordinate
Routing (VCR)

In geographic routing, the physical location of nodes is
used for node addressing as well as for routing. A packet is
forwarded in the direction of the destination, and thus GR gets
disrupted by geographical voids. Concave voids are especially
difficult to overcome. Greedy Perimeter Stateless Routing
(GPSR) [14] makes greedy forwarding decisions until it fails,
for example due to a geographical void, and attempts to recover
by routing around the perimeter of the void. Greedy Other
Adaptive Face Routing (GOAFR) [16] is a geometric ad hoc

algorithm combining greedy forwarding and face routing to
overcome the local minima issue. Greedy Path Vector Face
Routing with Path Vector Exchange (GPVFR/PVEX) [18] is
similar to [16], but it requires the network’s planar graph.
VC-based schemes, where each node is characterized by a

coordinate vector corresponding to hop distances to a set of
anchors, uses a distance measure in VCS to identify the node
for packet forwarding. VCR scheme in [27], e.g., uses all the
perimeter nodes as anchors. When a packet reaches a local
minima, an expanding ring search is performed until a closer
node is found or time to live (TTL) expires. In VC assignment
protocol (VCap), the coordinates are defined based on hop
distances [5]. At local minima, VCR causes a packet to follow a
rule called “local detour.” In Logical Coordinate-based Routing
(LCR) [6], backtracking is used when greedy forwarding fails at
a local minimum. Aligned VC system (AVCS) [21] reevaluates
VCs by averaging a node’s own coordinate with neighboring
coordinates in an attempt to overcome local minima. Convex
Subspace Routing [8] overcomes the local minima by using
a subset of anchors for routing and by dynamically changing
the subset to provide a convex distance surface for routing. In
Axis-Based VC Assignment Protocol (ABVCap) [33], each
node extracts a 5-tuple VC corresponding to longitude, latitude,
ripple, up, and down. Existing VCR protocols rely mainly on
Greedy forwarding, followed by a backtracking scheme to over-
come the local minima issue. Geo-Logical Routing (GLR) [12]
is a novel scheme that combines the advantages of VCS and
TPM proposed in this paper to overcome disadvantages of each
other’s domain, thus impressively outperforming existing VCR
schemes as well as GPSR, which requires physical coordinates.

B. Localization

We focus on relative localization techniques, as global lo-
calization is realizable through relative localization and the ac-
tual positions of a subset of nodes or physical anchors. Cen-
tralized and distributed algorithms are available for relative lo-
calization. Distributed algorithms use received signal strength
indication (RSSI), radio hop count, time difference of arrival,
and/or angle of arrival for relative localization. RSSI uses signal
strength to estimate the distance between nodes, while radio
hop count uses hop distance. The latter uses a probabilistic cor-
rection equation to approximate the hop distance to real dis-
tance [2], [32]. Disadvantages of RSSI measurements include
sensitivity to terrain [26] and large variations due to fading and
interference. Relationship between RSSI and distance is very
difficult to predict indoors [19] as well as in complex outdoor
environments due to absorption and reflection of signals and
propagation characteristics over different terrains. No robust
and scalable algorithms are available for localization of nodes
deployed on surfaces of complex 3-D structures. An RSSI mea-
surement-based distributed algorithm using triangulation for lo-
calization of 2-D and 3-D WSNs is proposed in [35].
Centralized algorithms for localization of 2-D net-

works include Semidefinite Programming (SDP) and
MDS-MAP [2], [29]. The former algorithm develops geo-
metric constraints between nodes, represents them as linear
matrix inequalities (LMIs), and then simply solves for the
intersection of the constraints. Unfortunately, not all geometric
constraints can be expressed as LMIs, which precludes the al-
gorithm’s use in practice. MDS-MAP uses Multi-Dimensional
Scaling (MDS) based on connectivity information.
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The localization scheme in [17] first selects a subset of
boundary nodes as landmarks. Next, Delaunay triangles are
generated based on Voronoi cells formed with landmarks. Fi-
nally, the network layout is discovered based on the landmarks’
locations. Boundary nodes need to be identified accurately
without physical information, and an incremental algorithm is
required to combine the Delaunay triangles.
Factors that contribute to errors in localization include inac-

curacies in distance estimate, the position calculation, and the
localization algorithm [25]. How the localization error propa-
gates and accumulates in a network is illustrated in [25] in terms
of geographic distribution of the error, correlation, mean error,
and probability distribution of the error. This study shows that
routability of GR with GEAR [34] falls significantly, and the
percentage of deliveries to wrong destinations increases as the
error in localization increases.
As both VCS and topology maps are generated based on the

hop distances, they are not affected by fading or signal strengths.
Furthermore, they do not rely on analog measurements such as
RSSI or time delay, and thus do not have cumulative errors that
affect the performance as the networks scale.

C. Mapping Schemes for Networks and Data

TPMs discussed in this paper deviate from the localization
maps. The relative localization schemes expect the relative
distances to be accurate. Thus, given the absolute position of
a subset of nodes, global localization is realizable. In contrast,
in topology maps, what is important is the topology preserva-
tion, not the physical distances. The derived topology should
be homeomorphic (topologically isomorphic) to the physical
layout of the sensor network—i.e., between two topological
spaces, there has to be a continuous inverse function. In our
case, it is a mapping, which preserves the topological properties
of the physical network topology.
In the context of analysis of high-dimensional data, unsuper-

vised learning algorithms have been proposed that use eigen-
value decomposition for obtaining a lower dimensional embed-
ding of the data. Here, we discuss four such schemes: MDS,
Local Linear Embedding (LLE), Isomap, and Laplacian Eigen-
maps (LE) [3]. None of these methods is designed for, nor is
suitable for, resource-starved WSNs.
MDS [29], [31] is a commonly used statistical technique in in-

formation visualization for exploring similarities or dissimilari-
ties in higher-dimensional data from the complete distance ma-
trix (similarity matrix) , which is defined as the matrix of all
the pairwise distances between points/nodes. ,
where is the number of nodes in the network and is the
distance from node to node with , and .
In general can be any distance metric, but there is a possi-
bility for the algorithm to fail if is not the Euclidean distance.
Generating based on hop distances requires all the nodes in a
WSN to serve as anchors, an extremely expensive proposition
that calculates and stores information about the distances be-
tween each pair of nodes. If such information were available at
each node, 100% routing can be achieved just by following the
ordinate corresponding to the destination, i.e., without the need
for the topology map. MDS is therefore not practical or appli-
cable for generating TPMs of WSN. Our novel method, based
on SVD, generates topology maps of 2-D and 3-D networks,
using a set of anchors, where , and is the number
of nodes.

Isomaps [32] is an extension of MDS to geodesic distance-
based topology map generation. Again, the geodesic distances
are actual distances among nodes, which require expensive error
prone distance estimators such as RSSI or time of arrival (TOA).
Furthermore, if a node has the information of entire network,
100% routability is achievable without need for a topology map.
Moreover, LLE and LE both use an iterative approach to pre-
serve the neighborhood distances, the realization of which is in-
feasible in energy-limited WSNs.
All the four schemes rely highly on physical distances be-

tween all the possible pairs of nodes, and thus require localiza-
tion approaches. Accuracy of both central and distributed imple-
mentations of localization is highly sensitive to channel fading
and signal-to-noise ratio (SNR).

III. TOPOLOGY PRESERVING MAPS FOR 2-D AND 3-D WSNS

A novel technique for obtaining a TPM representation of
a sensor network from its VC set is presented next. The ob-
jective is to characterize each node with an coordinate
pair, or in the case of 3-D WSNs, that results in a
TPM that is homeomorphic to the network’s physical layout and
preserves information about node connectivity, physical layout,
and physical voids. We emphasize that the map so obtained is
not the physical map, but is a distorted version resembling it,
which takes the connectivity into account. The metromap of a
metro system versus its actual physical map drawn to scale can
be considered analogous to the TPM-versus-physical-map rela-
tionship. The metromap, though it does not have the exact phys-
ical dimensions, is in fact much more useful for the purpose of
navigation. Similarly, the TPMs have been shown elsewhere to
be much more effective for many sensor-network-related func-
tions, e.g., routing [12], boundary detection [10], and achieving
node awareness [11]. In fact, the TCs of TPM can be used as a
substitute for GCs in many GC-based algorithms.
Section III-A develops the technique by starting with the VCs

of all the nodes to obtain a TPM. Section III-B discusses the
extension of TPMs to 3-D networks. A significantly more ef-
ficient version of the technique that uses information of only
a small subset of nodes to evaluate the transformation matrix
is presented in Section III-C. Finally, Section III-D proposes a
method of calculating a node’s Cartesian coordinates with lower
computational complexity. Notations used in the text are sum-
marized in Table I.

A. 2-D Topology Preserving Maps From VCs

Consider a 2-D sensor network with nodes and anchors.
Thus, each node is characterized by a VC vector of length .
Let be the matrix containing the VCs of all the nodes,
i.e., the th row corresponds to the -long VC vector of the th
node, and the th column corresponds to the virtual ordinate
of all the nodes in the network with respect to the th anchor.
Therefore

where is the hop distance from node to anchor .
For sensor network applications, it is generally desirable to have
only a small subset of nodes as anchors, i.e., . A 2-D
network has an -dimensional representation under the VC
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TABLE I
NOTATION USED IN THE TEXT

transformation. The main goal thus is to extract the 2-D rep-
resentation of the network from this M-D space. SVD [15] of
is denoted as

(1)

where , and are , and ma-
trices, respectively [14]. and are unitary matrices, i.e.,

and . SVD extracts and pack-
ages the salient characteristics of the dataset providing an op-
timal basis for . Moreover is an optimal basis of , i.e.,
spans . Let us consider the principle components (PCs)

of

(2)

is an matrix that describes each node with a new
set of -length coordinate vectors. It gives the coordinates for
the data in under the new basis . As is a diagonal ma-
trix with diagonal elements being the singular values of ar-
ranged in their descending order, elements in provide unequal
weights on columns of . Using the unitary property of , it is
also the projection of onto [15], i.e.,

(3)

Fig. 1. (a) Circular network of 707 nodes with 15 anchors. (b)–(d) First three
PCs , , and plotted against the physical positions. Randomly
selected anchors are marked in circles.

Fig. 2. (a) Odd-shaped network with 550 nodes with 15 anchors. (b)–(d) First
three PCs , , and plotted against the physical positions. Ran-
domly selected anchors are marked in circles.

The columns of , i.e., the PC values of the VC set are
arranged in the descending order of information about the orig-
inal coordinate set. The first PC captures the highest variance
of the data set, and each succeeding component has the highest
variance possible under the constraint that it be orthogonal to
the preceding components.
Figs. 1 and 2 show, for two different networks, the variation

over the physical layout of the first three PCs, i.e., columns of
given by (3), plotted against the corresponding physical

positions of the nodes. As observed in [9], the first three SVD
components dominate in magnitude over the remaining PCs,
which are similar to Fourier basis vectors.
The set of VCs has the connectivity information embedded

in it, though it has no directional information. All the nodes that
are hops away from the th anchor have as the th ordi-
nate. Each ordinate propagates as a concentric circle centered
at the corresponding anchor, while the angular information is
completely lost. Note that the most significant ordinate based on
SVD, i.e., the first column of shown in Figs. 1(b) and 2(b),
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Fig. 3. Nature of principal component directions derived from VC.

Fig. 4. (a) Physical map of a T-shaped example network. (b) Topology map of
the network in (a).

is a convex surface centered at some point within the network,
thus capturing the resultant effect of the conical propagation of
different anchor coordinates. As SVD provides an orthonormal
basis, second and third ordinates are orthogonal to the first or-
dinate while being perpendicular to each other as illustrated in
Fig. 3. Plots of the variation of second and third components
for the two example networks in Figs. 1 and 2 illustrate this as
well. Therefore, the second and third columns of provide
a set of two-dimensional Cartesian coordinates for node posi-
tions, less encumbered by the dominant radial information in
VCs, which was captured by the first column. Thus, instead of
the coordinates of a row of to characterize a node, the
second and third columns are used as Cartesian coordinates for
plotting an approximate map of the network, i.e.,

(4)

where is the th column of . is the
Cartesian coordinate matrix of entire node set, i.e., its th row,

, is used as the Cartesian coordinates of th node.
We now illustrate the procedure using the T-shaped network

of 10 nodes shown in Fig. 4(a) as an example. Physical coordi-
nates and VC matrix with respect to anchors A, C,
E, and J are given in Table II. SVD evaluation as in (1) provides
as

can now be evaluated using (3), and thus topological
coordinates of nodes are given by (4). is tabulated
in Table II and plotted in Fig. 4(b).
A question that naturally arises is why the removal of the

largest PC and keeping less significant second and third terms,
which in many applications of PCA correspond to error or de-
viations, yield a good layout map. First, we address why the

TABLE II
COORDINATES, VCS, AND TOPOLOGICAL COORDINATES

FOR THE NETWORK IN FIG. 4(a)

dominant PC cannot be used. Note that our dataset consists of
the VCS of a network. Therefore, if we were to reconstruct the
VCS using a subset of PCs, the first component would be the
most important one. However, the reconstruction space we seek
is an approximation to the physical layout, and the mapping
from the physical layout to the acquisition space (VCS) is highly
nonlinear. Each VC propagates concentrically w.r.t. to the cor-
responding anchor, i.e., all the nodes at a minimum distance
from the anchor map to the value .
The impact of conical nature of propagation of each VC from

the corresponding anchor and the net effect of many such an-
chors completely dominate over any cardinal direction informa-
tion embedded in VCS. In Appendix-A, we show the convexity
of the first PC for a simple 1-D network and extend the result to a
2-D network. This convex nature is also evident from Figs. 1(b)
and 2(b). As the first PC contains much of the dominant convex
form of distortion introduced in going from physical layout to
the VC space, using it as a major axis for mapping produces
maps with a significant amount of folding. Appendix-A also il-
lustrates the resulting folding of themap, both for a 1-D example
and the simple 2-D example of Fig. 1(a), when the first PC is
used for reconstruction.
Based on the assertion above that the 1st PC contains much

of the radial distortion introduced in physical layout to VC
mapping, it follows that the removal of the first PC from
consideration removes much of this radial information from
the data set. This is evident in the second and third PC plots
in Figs. 1(c), 1(d), 2(c), and 2(d) for the two examples. The
remaining PCs contain the information from the physical
layout that was masked due to this convex distortion in the
original VC set. Therefore, as specified in (4), we use the next
two significant components to yield the cardinal directional
information to plot the layout maps. SVD-based construction
assures that these two components, i.e., second and third PCs,
form an orthogonal Cartesian plane for network. Note that these
maps are not physical layout maps; rather, they are distorted
maps that preserve much of the topological relationships of the
network layout.
These Cartesian coordinates are estimated without having

any kind of physical directional or positioning information
beyond the radial information (hop distance) with respect to the
anchors. Results presented later demonstrate that a TPM thus
obtained preserves the topological characteristics of the original
network. One can even identify features such as physical voids
that were not apparent in the VC-based description.
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Fig. 5. (a) Network on a cylindrical surface (900 nodes). Randomly selected
20 anchors are marked in circles. (b) Topology map of (a).

Fig. 6. First four PCs (a) , (b) , (c) , and (d) of a cylin-
drical network plotted as a color map on the surface of the network.

A formal general proof as to how the second and third PCs
preserve many of the physical features of the network layout
has so far eluded us. The above description is the best intuitive
explanation we have based on analysis of many data sets.

B. 3-D Topology Preserving Map From VCs

Sensor networks may be deployed within 3-D volumes, on
3-D surfaces, or a combination of those. Here, we consider sen-
sors deployed on a 3-D surface, which may even wrap around,
thus affecting VC propagation in complex ways. Consider
the uniform cylindrical surface shown in Fig. 5(a) on which
900 nodes are deployed. Fig. 6(a)–(d) shows the plots of the
first four PCs for each node in the network. They are denoted by

, and , respectively. As SVD provides
an orthonormal basis, the second, third, and fourth PCs are
orthogonal to the first ordinate while being perpendicular to
each other. Like with the 2-D case, the salient feature of the
VCS, i.e., the radial propagation of coordinates, is captured
by the first PC as seen in Fig. 6(a). The value is lowest at the
center of the surface and increases toward edges, resulting in
a convex variation along the height. Thus, removing it from
further consideration allows us to uncover linear patterns
embedded in the VC set. As seen in Fig. 6(b), the second PC
varies monotonically along the height of the cylinder, thus it
can be used to obtain the -coordinate for the topology map.

More interestingly, third and fourth PCs, which are taken as -
and -coordinates, directionally distribute in such a way that
they are orthogonal to each other while being normal to the
second PC. The resulting TPM is illustrated in Fig. 5(b). TPM
generation on 3-D surfaces can thus be done by ignoring the
first PC and by taking the second, third, and fourth columns of

to provide a set of 3-D Cartesian coordinates.
To summarize, the topological coordinates of node for the

3-D case are given by

(5)

where is th PCs of node . Note that the above result
holds for 3-D volumes as well. The first PC in that case will
propagate radially outward from the center of the volume, as
opposed to from the center of the area in case of 2-D networks.

C. Generation of Cartesian Coordinate Set Using VCs of
a Subset of Nodes

Cartesian coordinates for 2-D TPM are obtained by multi-
plying the node’s VC by as in (3) and (4) [and as in (5) for
3-D TPMs]. is based on , the matrix that consists
of VCs of all the nodes. In sensor networks, it is crucial to re-
duce communication and computation overheads. This section
presents a process to generate the transformation matrix with
only a small subset of rows of , thus significantly reducing
the computation overhead. Let be the submatrix of corre-
sponding to an appropriately selected set of nodes (rows). Let
the SVD of be

(6)

is , where is the number of anchors. , and
are , , and matrices, respectively. If
is selected appropriately, can serve as a substitute, or at

a minimum a good approximation, for for TPM generation.
Note that has the same size as in (1) and is also unitary.
Following the same procedure as earlier, we use

(7)

The Cartesian coordinates for TPMs of 2-D and 3-D networks
can be written as

(8)

respectively.
While the there are many possible ways to select the subset

of nodes, we use the following two simple options in this paper:
1) use the set of anchor nodes ;
2) use a set of randomly selected nodes .
As , significant savings in overhead can be

achieved, and results presented later demonstrate that the
impact on accuracy is negligible.

is a basis of is also a basis for even though
it is based on a subset of coordinates. Therefore, we can write

, where is a rotation matrix. If the selected subset
of coordinates is a good representation of the entire , similar
TPMs can be generated as demonstrated in Section V, with sig-
nificantly lower computational, memory, and communication
complexities.
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TABLE III
COMPLEXITY AND MEMORY USAGE COMPARISON

D. Computationally Efficient Implementation

Computational power and memory available at a sensor node
is limited. Conventional SVD calculation of
, which involves computing , and , has approximately

operations [13]. Also, the memory
requirement is approximately the sizes of and that are

. In this section, we present a
technique for further enhancing the efficiency of the computa-
tion necessary for 2-D and 3-D TPM generation. Note that
is a by-product of SVD and is not necessary for topology map
computation. The eigenvalue decomposition (EVD)-based ap-
proach [15] to evaluate matrix not only allows us to imple-
ment the TPM generation in a distributed manner, but also com-
pletely avoids generating matrix , thus reducing the computa-
tional complexity and memory requirement compared to those
for SVD. From (1), (3), and (4) , the th column of
is given by

(9)

is the coordinate vector of the node .
Also, is the th basis vector/column of . for
2-D networks, while for 3-D networks. Thus,
and are sufficient to evaluate 2-D Cartesian coordinates

of node . Three-dimensional networks require
and . Define as

(10)

is an symmetric matrix. This is an eigenvalue
problem [15]. Therefore, let us solve

(11)

is an eigenvector of that is a column of . Eigenvalues
can be found by solving

(12)

The eigenvectors corresponding to second and third largest
eigenvalues provide the second and third columns of . Now,

for 3-D case) can be evaluated
locally without calculating the entire matrix. Also,
is not evaluated at all, which reduces the memory consump-
tion significantly. Therefore, the memory consumption is upper-
bounded by . Number of computations re-
quired for this method of calculating is upper-bounded by

[13], which is the computations associated
with calculation of entire and . Since , this method
is significantly less complex compared to the full SVD imple-
mentation (see Table III). For example, if the number of anchors
in the network is set to , which is reasonable based
on our experience, the upper bound of computations required
with this method is only 0.99% of the computations required
for a full SVD-based calculation with (3) and (4), indicating a
significant reduction in complexity.

Fig. 7. (a) Network. (b) Topology map of (a) with a node flip. (c) Topology
map of (a) with 180 rotation.

IV. METRIC FOR EVALUATING 2-D TOPOLOGY PRESERVATION

Evaluating the degree of topology preservation of the sensor
node maps generated is essential for investigating the effective-
ness of the proposed scheme. While visual inspection can pro-
vide preliminary evidence of its effectiveness, a formal metric is
needed for quantifying the accuracy. A quantitative parameter to
express the error provides a framework to compare and improve
different mapping techniques. An effective metric should be
able to capture and quantify the failures to preserve the topology
of the real node map and the neighborhoods. Such a metric is not
currently available. Here, we develop a metric that can be used
for this purpose.
A method based on coloring of nodes is used in [28] to show

whether a neighborhood has been altered in the topology map.
In [28] and [32], error is quantified as the difference of the po-
sitions in the actual physical map and the topology map, and
the residual variance, respectively. The focus of our paper is
TPMs based on hop distances. The requirement is that the map
from calculated set is homeomorphic to the physical
layout and preserves information about node connectivity, phys-
ical layout, and physical voids. Thus, the actual physical dis-
tance is not of significance, and the metrics in [28] and [32] are
not appropriate.
Consider as an example a 1-D network with six nodes num-

bered 1–6 as in Fig. 7(a). Fig. 7(b) and (c) shows two derived
maps that need to be evaluated. If all the nodes are in same order
as in initial topology, then topology preservation error must be
0%. Node 3 in Fig. 7(b) has flipped two node positions. The
error metric should identify the number of out-of-order nodes
as well as the degree of the error/node flips [one node and two
node positions, respectively, for Fig. 7(b)].
Consider a 1-D network with nodes, and define an indi-

cator function , where
and are out of order
compared to original placement
and are in same order
as original placement or

to
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Fig. 8. (a) Odd-shaped network with 550 nodes and 10 random anchors. is generated based on (b) Case 1: entire vc set; (c) Case 2: anchors’ coordinate
set; (d) Case 3: randomly selected nodes’ coordinate set; (e) Case 4: coordinate set with all the nodes are anchors, and (f) MDS.

Then, the number of out-of-order pairs is . The
total number of possible pairs in an -node network is . We
define the following metric:

(13)
For the network in Fig. 7(b), , and

Nodes 1 and 2 are in the right position compared to the rest,
while node 3 is shifted by two positions. Moreover, nodes 4 and
5 flipped their positions by 1. Therefore, total node flips are 4,
and is 13.3%. A TPM is invariant to rotations. Thus, for
Fig. 7(c), where nodes are just reversed, has to be zero.
To handle such cases, the two lines being compared need to be
adjusted for any rotations.
To extend the equation to 2-D topologies, we evaluate

the 2-D topology by considering all contiguous line segments in
two orthogonal directions (say and ) of the physical map.
Let there be lines in direction and lines in direction

in the network, then topology preservation error in -direction
is equal to

(14)

where are nodes in each horizontal line, and each line has
nodes. Similarly, error in vertical direction is evaluated as

vertical neighborhood preservation error

(15)

where are nodes in each vertical line, and each has nodes.
The overall topology preservation error can be defined as

(16)

V. RESULTS

The performance of the proposed TPM generation method is
evaluated next using three 2-D examples and two 3-D examples
representative of a variety of networks. MATLAB 2009b was
used for the computations.

A. TPMs of 2-D Networks

Figures identified as (a) in Figs. 8–10 show the physical maps
of the three 2-D networks considered: An odd-shaped network
with 550 nodes [Fig. 8(a)], a 496-node circular-shaped network
with three physical voids/holes [Fig. 9(a)], and a network of
343 nodes on walls of a building [Fig. 10(a)]. Communication
range of a node in all three networks is unity. Detailed specifi-
cations of these networks are available in [4]. Topology maps
are generated based on methods summarized in Table IV.
Unless otherwise indicated, the results shown correspond

to 15 randomly placed anchors in each of the networks.
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Fig. 9. (a) Circular network with three physical voids with 496 nodes and 10 random anchors. is generated based on (b) Case 1: entire VC set; (c) Case 2:
anchors’ coordinate set; (d) Case 3: randomly selected nodes’ coordinate set; (e) Case 4: coordinate set with all the nodes are anchors; and (f) MDS.

Fig. 10. (a) Network in a building with 343 nodes and three anchors. is generated based on (b) Case 1: entire VC set; (c) Case 2: anchors’ coordinate
set; (d) Case 3: randomly selected nodes’ coordinate set; (e) Case 4: coordinate set with all the nodes are anchors; and (f) MDS.
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TABLE IV
DIFFERENT TOPOLOGY MAP GENERATION APPROACHES FOR WSNS

OF NODES AND ANCHORS

Building network in Fig. 10(a) has just three anchors. Figs. 8(b),
9(b), and 10(b) show TPMs constructed based on (4) using the
entire VC set of each network. Therefore, TPMs in Figs. 8(b),
9(b), and 10(b) use input data matrices of sizes 550 15,
496 15, and 343 3, respectively (Case 1, Table IV).
Figs. 8(c), 9(c), and 10(c) are the topology maps created using
only the anchors’ coordinate set, that is, using (7) and (8)
based on the input data matrices of size 15 15, 15 15,
and 3 3, respectively (Case 2, Table IV). Topology maps in
Figs. 8(d), 9(d), and 10(d) are created based on coordinates
of 10 randomly selected nodes, i.e., the corresponding sizes
of are 10 15, 10 15, and 10 3, respectively (Case 3,
Table IV). For the purpose of comparison, Figs. 8(e), 9(e), and
10(e) consider all the nodes in the network to be anchors, corre-
sponding to of sizes 550 550, 496 496 , and 343 343,
respectively, for the three networks (Case 4, Table IV). Case 3
is more efficient in terms of memory consumption and compu-
tational complexity. Finally, we compare our results to those of
the MDS-MAP method proposed in [29] shown in Figs. 8(f),
9(f), and 10(f). For MDS, data from the complete distance
matrix , which is defined as the matrix of all the pairwise
distances between points/nodes, are required. ,
where is the number of nodes in the network and is the
distance from node to node . As proposed in [29], can be
either geodesic distance or hop distance between and . For
this comparison, we use hop distances to generate MDS-MAP,
thus VCS requires all the nodes to be anchors. TPM for the
circular network of Fig. 1(a) can be found in [9].
Figs. 8–10 clearly demonstrate the effectiveness of the

proposed method in generating TPMs. Starting just with VCs,
without explicit knowledge of geographical information, the
generated topology maps have captured significant features
such as the physical voids and boundaries of the original
network. A key observation we can draw from Figs. 8–10 is
that the constructed topology maps are nonlinearly scaled and
rotated compared to the actual network map. Yet, the original
and constructed maps are topologically isomorphic. In contrast
to previous cases, the topology maps of Fig. 10(b)–(d) are
simply rotated and linear scaled versions of the original. In
this network, we used only three anchors that were manually
selected. The physical voids present in Fig. 10(a) are well
preserved. Even though the map in Fig. 10(e) was obtained
using all the nodes as anchors, its shape is deformed compared
to Fig. 10(b)–(d), but in terms of neighborhood preservation,
Fig. 10(e) is better. For example, one of the L-shaped rooms in
the building network [Fig. 10(a)] is distorted in the topology
maps of Fig. 10(b)–(d). In Fig. 10(e), the L-shape is deformed,
but neighborhood of that L-shaped room is preserved. Case 4

TABLE V
FOR TOPOLOGY MAPS IN FIGS. 8–10

is presented here only for the purpose of comparison. If all
nodes are anchors, a very expensive proposition for WSNs,
need for maps does not arise for many applications such as
routing. Obtaining MDS-MAPs shown in Figs. 8(f), 9(f), and
10(f) requires the hop distances from each node to every other
node. A major disadvantage is that it is not feasible to imple-
ment MDS in a distributed manner due to the extremely high
communication cost associated with generating the distance
matrix consisting of distance between every pair of nodes. In
fact, if such information is available at each node, it can be
used to achieve 100% routability without the need to generate
topology preserving maps.
Moreover, from topology maps in Fig. 10, we can draw the

valuable conclusion that a good anchor placement can signifi-
cantly reduce the number of anchors required for topology map
generation. It is topology-preserving to a very high degree as in-
tended. It can be clearly seen that maps in Fig. 10(b)–(d) are very
close to the original map, indicating that an appropriately placed
small number of anchors can produce very accurate topology
maps. This points to the possibility of obtaining even physi-
cally representative layout maps with appropriate selection of
anchor nodes for a certain class of networks. Furthermore, our
later research in [22] demonstrates that TPMs can be obtained
even under large communication ranges.

[in (16)] for the different topology maps is presented in
Table V. Note that the error in all the cases is less than 2%. The
best performance in terms of was achieved when all the
nodes were selected as anchors for the networks in Figs. 8–10.
Case 4 (Table IV) acts as a lower bound for the for each
network.
Even though SVD-based TPM generation started with a

VC set where there is no directionality information, resultant
topology map has directional information that can be used for
routing in many ways. For example to avoid logical voids in
VC routing, organized random routing and GR on TPM may be
used [12]. Moreover, as discussed in Section II, there are other
VCSs [21], [33], which are derivatives of hop-distance-based
VCS used here. Use of the proposed TPM generation method
with two such systems is addressed in Appendix-B.

B. TPMS of 3-D Networks

In this section, we present the 3-D TPMs generated using the
proposed scheme. Two example networks deployed on 3-D are
considered as shown in Figs. 11(a) and 12(a).
1) T-joint (3-D surface network): A pipeline structure joining
two perpendicular cylinders in a T-joint. There is a hole
in one of the cylinders [see Fig. 11(a)]. Each cylinder has
a unit radius and a height of 7 units. It is covered with
1642 nodes, each with a communication range of 0.4. Fifty
randomly selected nodes (i.e., 3% of the nodes) served as
anchors.
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Fig. 11. 3-D surface network, consisting of two perpendicular cylinders
(T-joint) (1642 nodes, 50 randomly selected anchors): (a) physical layout and
(b) TPM.

Fig. 12. 3-D volume network, consisting of a sphere standing on two crossed
cylinders. Sphere has a hole in it (3827 nodes and 50 randomly selected an-
chors): (a) physical layout and (b) TPM.

2) 3-D volume network: It consists of a solid sphere of ra-
dius 4 with a cylindrical hole, mounted on two perpendic-
ularly crossed cylinders with height 10 and radius 2 [see
Fig. 12(a)]. The entire volume is filled with 3827 nodes,
each with a communication range of 0.5. Fifty randomly
selected nodes (i.e., less than 1.5% of the nodes) served as
anchors.

TPMs of the corresponding physical topologies are shown in
Figs. 11 and 12, respectively. The results clearly demonstrate
the effectiveness of the TPM generation for sensor networks de-
ployed on 3-D surfaces and in 3-D volumes. Moreover, it indi-
cates that the maps can be obtained using a very small number
of random nodes serving as anchors.

VI. REALIZATIONS, APPLICATIONS, AND EXTENSIONS

The major contribution of this paper is the technique de-
scribed and evaluated above for the generation of TPM.
Section VI-A, briefly addresses the realization details of the
TPM algorithm in a static WSN. Routing is a crucial operation
in WSNs. Section VI-B discusses howWSN routing can benefit
from TPMs. Section VI-C discusses the impact of network
dynamics on TPMs.

A. Off-Network and In-Network Realization of TPM

First, let us consider the case where the TPM computation
is done at a central node. There are many scenarios where a
centralized implementation is feasible or even preferable. In a
sensor network where the nodes are randomly deployed (e.g.,
dropped from a plane), it may be necessary and useful for the
command center to obtain a map of the sensor node deployment
indicating geographic voids, boundaries, etc. In this case, each
node may send information about its neighbors to a base or a

TABLE VI
PROBABILITY OF SELECTING THE CORRECT NEIGHBOR BASED ON TPM

AND PHYSICAL MAP FOR THE NETWORKS IN FIG. 10

TABLE VII
PERFORMANCE COMPARISON OF GLR, LCR, CSR AND GPSR

WITH 10 ANCHORS [12]

central station. The adjacency matrix of the network is formed
based on the nodes connectivity information, which can be gath-
ered with the worst-case complexity of , where is the
number of nodes in the network. Then, the procedures explained
in Section III can be used to generate an effective and accurate
TPM since there is no computational or memory limitations at
the base station. Moreover, if necessary, the map can be broad-
cast back to the individual nodes, together with the transforma-
tion matrix ( or ), an operation of worst-case complexity of

. Note that redistributing second and third columns of
or is sufficient for a node to calculate its topological coordi-
nate. Generating coordinates at a central station avoids multiple
flooding in the network [5], [6].
A distributed implementation of the above may be achieved

as follows. The anchor-based VC generation is first carried out
the traditional way, i.e., via flooding. Following that, the anchors
broadcast their coordinates, which requires messages.
Since the submatrix of all the anchors’ coordinates
is now available at each node , every node can generate
[using (7)] and compute its own locally by simply
multiplying its own coordinates by second and third columns of
.

B. TPM-based Routing

We already asserted that in many ways the TPM is a better
candidate for GR than the original physical map, as the former
is based on actual connectivity information rather than the node
position. A set of coordinates is good for routing if it results in
accurate forwarding decisions. This can be quantitatively eval-
uated using

(17)

Table VI shows this probability using physical and
topology-based Cartesian coordinates for two example net-
works. Topology maps generated with 10 randomly selected
anchors have the capability of selecting the correct next
neighbor as accurately as with physical coordinates for the
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networks in Figs. 9(a) and 10(a). Many other self-organization
tasks can also be expected to perform well with TCs instead of
geographical coordinates.
In static WSNs, the VC generation needs to be done less

frequently or perhaps only once during initialization. Therefore,
topological coordinates also need not be updated frequently.
Thus, the cost incurred in calculating Cartesian coordinates
may be more than compensated by efficiency gains in terms of
performance during long-term operation. For example, as illus-
trated in [12], the GLR scheme that uses both VCS and TPM to
overcome disadvantages in each other’s domains outperforms
the physical information-based routing scheme—GPSR [14].
Table VI summarizes the performance of GLR, the GC-based
scheme GPSR, and two VCS-based routing schemes, namely
Convex Subspace Routing (CSR) and Logical Coordinate
Routing (LCR). Routability is evaluated over all possible
source–destination address pairs. Additional details of GLR
algorithm are available in [12].

C. TPM for Dynamic Networks

Network dynamics that cause changes in connectivity among
nodes pose a challenge for VC-based approaches as VC values
depend on the connectivity of the network. Examples of such
conditions include node failures, the introduction of new nodes,
and change in connectivity due to mobile nodes. TPMs pre-
sented here capture the physical layout information of the net-
work, i.e., the topological coordinates correspond to the phys-
ical position of a node, albeit on a somewhat distorted layout.
When a node (or even an anchor) fails, the already calculated
TCs of a node still remain valid for the topology map. Thus, any
algorithm relying on TCs can continue to function even though
the underlying VCs may no longer be valid. This can be con-
sidered as an advantage of using the TCs instead of the VCs,
as VCs have to be regenerated to accommodate the change in
connectivity.
Introduction of new nodes or mobility of nodes that cause

major changes in network topology can render the TPM inaccu-
rate, thus requiring its recomputation. If the change in the con-
nectivity pattern is completely localized, it may be possible to
estimate the TCs of a new node based on some localized com-
putations involving its immediate static neighbors.

VII. CONCLUSION AND FUTURE WORK

We presented a novel and a fundamental technique for gen-
erating TPMs from VCs for 2-D and 3-D (both surface and
volume) WSNs. The transformation matrix for converting the
virtual (logical) coordinates to a set of topological Cartesian co-
ordinates can be obtained using the VCs of a very small set of
nodes. Results show that a remarkable 2-D topology preserva-
tion error is achievable with a small number of
anchors.
The topology coordinate space provides an alternative space

for sensor networking algorithms beyond the traditional phys-
ical and VC spaces. It preserves the main advantage of VC
scheme in not requiring distance measurements and that of GC
scheme in having cardinal direction and boundary/void infor-
mation. TPMs may be used in lieu of physical maps for many
applications and WSN protocols [12]. The TPM generation
scheme presented above has been used for functions such as

boundary node identification, event region, and void detec-
tion [10] with performance on par with GC-based schemes.
In fact, the TCs in conjunction with VCs from which they are
derived have been demonstrated to be better than geographical
coordinates for routing with significantly enhanced routing
performance [12]. While there are certain applications for
which the exact sensor location is necessary, for others that do
not need such information, TPM presents a robust, accurate,
and scalable alternative to physical map generation or local-
ization. Sensor network applications of TPMs are diverse and
vast; examples include routing, localization, boundary node
identification, and effective anchor placement.
We envision many applications of the proposed topology pre-

serving map extraction methodology in other types of networks
as well as in multidimensional graphs, e.g., for dimension re-
duction, visualization, and information extraction. Methods to
compensate for the distortion of the maps compared to physical
maps and techniques that use derived Cartesian coordinates and
the topology map to improve self-organization and routing pro-
tocols are also under investigation.

APPENDIX

This appendix addresses the convexity of first principle com-
ponent of an anchor-based VCS and the applicability of pro-
posed TPM generation scheme for other existing VCSs

A. Convexity of the First Principle Component

Being the distance to the corresponding anchor from a node,
by definition each VC radially increases around the corre-
sponding anchor. Due to the fact that the first PC captures the
salient dominant features of the data set, its magnitude variation
over the network is always convex; due to the possibility of
having positive or negative sign, the actual shape of first PC
variation is either convex or concave.
We demonstrate the convexity of magnitude first on a simple

1-D network, and then extend it to a 2-D full grid. Let the VCS
with respect to anchors of a 1-D network, as illustrated in
Fig. 13(a), be . By definition, each
VC with respect to anchor is a convex function with
respect to the node position .
The first PC can be written as

(A.1)

is a linear combination of the set of convex functions
’s. Reference [24] proves that the direction of the first PC,

i.e., , goes through the centroid of the data points. Since
lie in the first orthant of the multidimensional space all the

time, its centroid is also in the first orthant. Hence, is a
unit vector with either all positive coefficients or all negative
coefficients. Without loss of generality, one can say (A.1) is the
addition of convex functions, and thus the first PC is also a
convex function. For example, variation of first and second PCs
is shown in Fig. 13(b). The 1-D maps of the network obtained
using the first PC [Fig. 13(c)] shows a network that is folded in
two as expected, that using the second PC [Fig. 13(d)] shows a
map where topology and local neighborhoods are preserved.
A similar argument can be made for the 2-D full grid since

VCs with respect to anchor are a 2-D convex surface. More-
over, all the ordinates lie in the first orthant. Hence, for a 2-D
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Fig. 13. (a) VCS corresponding to two anchors in a 1-D network. (b) First and
second PCs for the VCS in (a). (c) TPM of the network in (a) based on first PC.
(d) TPM of the network in (a) using second PC.

Fig. 14. Topology preserving map of a circular network [Fig. 1(a)] using (a)
first and second PC and (b) second and third PC. The edge nodes of the network
are highlighted.

grid, is a unit vector with either all positive or all nega-
tive coefficients resulting in a sum of convex functions, which
is convex. Therefore, the first PC is convex for a 2-D full grid
as well. Fig. 14(a) shows the map of the network of Fig. 1(a)
when the first and second PCs are used as axis. The network
gets folded due to the dominant convex shape of the first PC.

Fig. 15. (a) Example network with its ABVCap VCs [33]. (b) TPM only with
ABVCap coordinates in bold black. (c) TPM with all possible ABVCap coor-
dinates of node 12. (d) TPM from Aligned VCs.

In contrast, the map in Fig. 14(b) using second and third PCs as
axis is a TPM that preserves local neighborhoods.

B. TPM From Other Virtual Coordinate Systems

The use of proposed TPM generation technique with other
VCSs derived from hop distances is demonstrated next using
two such schemes, ABVCap [33] and Aligned VCS [21].
ABVCap [33] characterizes each node by a 5-tuple consisting

of (longitude, latitude, ripple, up, down). These entries are spec-
ified relative to virtual lines identified in the network as follows.
Initially, three anchors ( ) are selected based on VCap an-
chor selection. A fourth anchor, , is selected such that it is far-
thest away from and equidistant from and . Generation
of 5-tuple (longitude, latitude, ripple, up, down) involves sev-
eral additional network floodings. Fig. 15(a) shows an example
network used in [33] with ABVCap-VCS.
One notable property of ABVCap-VCS is that some nodes

have more than one VC tuple assigned to them. Either one of
the tuples has to be selected for each node, which introduces un-
necessary complexity to identify the proper tuple for topology
map generation, or multiple positions in TPM will be assigned
to the same node based on different coordinate tuples. The TPM
shown in Fig. 15(b) is generated using our scheme based on
VC tuples identified in bold in Fig. 15(a). Fig. 15(c) indicates
multiple positions created for node 12 due to its multiple co-
ordinates in ABVCap. As ABVCap-based VCS does not have
concentrically increasing property, the first PC and second PC
provide the TPM. While this demonstrates the applicability of
TPM for ABVCap, we note that essentially the same informa-
tion can be obtained simply by applying the method to a simple
VCS without having to undergo overhead required to generate
ABVCap.
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Aligned VCS [21] proposes a modification for VCS to alle-
viate the local minima problem simply by replacing the VCs of
each node with the average of node’s and its neighbors’ VCs.
Thus, we have used the VCS w.r.t. of Fig. 15(a)
to evaluate aligned VCS as in [21]. The TPM from the corre-
sponding aligned VCS is shown in Fig. 15(d). Since aligned
VCs are also radial in nature, the radial component can be re-
moved using the first PC, and the second and third PCs pro-
vide the Cartesian coordinates. These results indicate the appli-
cability of the proposed TPM generation technique to other VCS
as well.
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