
IEEE/ACM TRANSACTIONS ON NETWORKING 1

LGCC: A Novel High-Throughput and Low Delay
Paradigm Shift in Multi-Hop Congestion Control

Peyman Teymoori , Member, IEEE, Michael Welzl , Member, IEEE,
and David A. Hayes , Senior Member, IEEE

Abstract— Technological advancements have provided wireless
links with very high data rate capacity for 5G/6G mobile
networks and WiFi 6, which will be widely deployed by 2025.
However, the capacity can have substantial fluctuations, violating
the assumption at the transport layer that the capacity is (almost)
steady. In this paper, we present a general and efficient, yet
deployable solution to this problem through a novel design
empowered with a rich theory, allowing a significantly improved
experience in using new technologies, especially mobile cellular
services. We employ the well-known theory of food-chain models
in biology, where a bottleneck link can be modeled as prey,
while flows are predators. We extend this model to a chain of
predators and preys to form a multi-hop congestion controller,
called LGCC. Through simulation evaluation with real-life 5G
traces we show the effectiveness of LGCC, compared with the
state-of-the-art ABC (Accel-Brake Control). Our results show an
order of magnitude bottleneck queuing delay decrease, with only
a small decrease in throughput because LGCC tries to never
exceed link capacities. LGCC’s design can additionally open a
new paradigm in stable multi-hop congestion control and flow
aggregation.

Index Terms— Multi-hop congestion control, logistic growth,
food chain, 5G/6G.

I. INTRODUCTION

IN THE Internet design, congestion control has been
deployed at the transport layer or above, and it is supposed

to operate in an “end-to-end” manner, where “end” represents
the application host [1]. The commonly used transport proto-
col, TCP, reacts to packet drops as the main congestion signal
from the network. This design greatly impedes the consid-
eration of link-specific properties. Today, wireless links are
prevalent, and the capacities that they expose to TCP are often
time-varying, especially with new link layer technologies.

Notable technological advancements in communication have
made it possible to exploit millimeter waves (mmWaves) [2]

Manuscript received 31 May 2022; revised 23 March 2023; accepted
21 July 2023; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor L. Fu. The work of Peyman Teymoori and Michael Welzl
was supported in part by the Research Council of Norway through
the “Toppforsk” Program by the “OCARINA” Project (http://www.
mn.uio.no/ifi/english/research/projects/ocarina/). The views expressed are
solely those of the authors. (Corresponding author: Peyman Teymoori.)

Peyman Teymoori was with the Department of Informatics, University
of Oslo, 0313 Oslo, Norway. He is now with the School of business,
University of South-Eastern Norway, 3679 Notodden, Norway (e-mail:
peyman.teymoori@usn.no).

Michael Welzl is with the Department of Informatics, University of Oslo,
0313 Oslo, Norway (e-mail: michawe@ifi.uio.no).

David A. Hayes was with the Simula Metropolitan Center for Digital
Engineering, 0167 Oslo, Norway (e-mail: david.hayes@ieee.org).

Digital Object Identifier 10.1109/TNET.2023.3301291

to benefit from the very high data rates it can provide.
The mmWave spectrum has also been considered for next
generation wireless networking such as cellular networks (e.g.,
5G/6G). mmWave communication is at odds with TCP’s
assumption of a relatively stable end-to-end path with a static
capacity at the bottleneck. It promises extremely low latency,
yet it will often expose a drastically fluctuating network capac-
ity. TCP should be able to react to these fluctuations—but the
reaction speed of the end-to-end control loop is inevitably in
the order of end-to-end round-trip times (RTTs). Such a control
loop cannot ensure low latency and good utilization in the face
of capacity changes that occur at sub-RTT timescales [3].

Even with today’s 4G networks, it is already common to
shorten the control loop by installing Performance Enhancing
Proxies (PEPs)—devices which interfere with TCP connec-
tions, e.g., by dividing them in two (acting as a receiver
towards a sender and acting as a sender towards a receiver) [4].
Splitting an end-to-end connection like this (or with an
application-layer proxy, which is currently under discussion
in the IETF for the QUIC protocol [5]) has shown benefits,
and it may even be the only feasible way to attain efficient
communication over mmWave links [6], [7]. Most importantly
perhaps, connection splitting eliminates the need to operate
“normal” TCP congestion control throughout the path, allow-
ing the deployment of a more suitable congestion control
mechanism on the wireless segment only.

What, then, should a mechanism for the wireless segment
look like? Rather than suggesting a quick fix for one specific
link layer technology, we argue that it is necessary to design
a general congestion control mechanism which:
• can swiftly adapt to changing physical capacity.
• will stably operate when multiple instances of the mech-

anism are used in sequence (e.g., when transferring data
from one wireless segment to another), as a chain of
control loops.

• has a low deployment barrier, e.g., by not requiring to
update every router along the path.

To the best of our knowledge, this paper is the first attempt at
devising a congestion control mechanism that satisfies all of
these requirements.

Chains of congestion control loops have been shown as
a key feature in new network architectural patters such as
the Recursive InterNetwork Architecture (RINA) [1]. In our
previous work [8], we investigated various forms of feedback
for a recursive congestion control as in RINA; the main finding
was that faster more direct feedback is better, suggesting that
chained congestion control should relay congestion signals
back to the source without delaying them; this constitutes our
main design principle in this paper. Similar to earlier explicit

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-9507-4373
https://orcid.org/0000-0001-8179-599X
https://orcid.org/0000-0002-1122-1306

2 IEEE/ACM TRANSACTIONS ON NETWORKING

feedback methods such as XCP or RCP [9], [10], we opt for an
approach that does not only rely on physical queue growth for
feedback. These mechanisms were found not to be deployable
in practice as they require to change all routers on an end-
to-end path. Our situation is more favorable, as we aim to
apply our mechanism on path segments only. By basing the
feedback method on the Datacenter TCP (DCTCP) [11] style
of ECN usage (interpreting ECN marks from multiple packets
as a multi-bit congestion signal), we made it even easier to
deploy.

Specifically, the method that we propose, called “Logistic
Growth Chain Control” (LGCC):
• can be deployed by only updating end systems, and

introducing some devices that support it at loop intersec-
tion points (a key difference from explicit rate feedback
schemes like XCP or RCP); within each control loop,
commodity hardware can be used, provided that this
hardware supports Random Early Detection (RED) AQM
marking with Explicit Congestion Notification (ECN).

• is general enough to be adopted in different use cases, and
can be easily enhanced by feeding it more information
from the network. For example, it is possible to further
accelerate convergence if there are more bits available in
the packet header than ECN. Because we use an additive
signal akin to cost as defined in the Network Utility Max-
imisation (NUM) framework [12], it would also be pos-
sible for routers to mark packets before a physical queue
even grows (as proposed in [13] and [14], for instance).

• is globally asymptotically stable.
• is fair, and can attain different types of fairness.
• is fast in terms of convergence due to the use of the

LG function. Since we shorten control loops, flows can
converge faster in case of capacity decrease/increase.

• responds quickly to capacity changes since the capacity
can be measured more directly than by inferring it based
on queue-related metrics such as ECN and delay. LGCC
uses the concept of carrying capacity, the maximum
available resource, denoted by K. In a 5G case, K is
time varying, so we add a time parameter, i.e. K(t).
There are already useful signals at lower layers that can
feed into K(t)—e.g., various MAC solutions calculate
a physical rate using rate adaptation techniques, making
the current physical rate a promising candidate as input
to K(t). K(t) is then promptly and explicitly sent back
to the sender inside the next ACK packet.1 This enables
the sender to know the current bottleneck capacity in
a duration much shorter than the RTT. Consequently,
sources do not need to rely on large, delay increasing,
buffers to avoid fluctuations. By not relying solely on
buffers and contrasting with methods like ABC [15],
which necessitates a minimal persistent queue for its
stable operation, an insignificant reduction in throughput
can occur.

LGCC is based upon an early version of our mechanism,
the biology-inspired Logistic Growth Control (LGC) [16],
combined with our additive ECN feedback theory [17] that
enables us to take advantage of higher marking probabilities.
In contrast to prior work, we now assume multiple consecutive
control loops between each source and destination, one per
administrative domain. This allows us to react much faster

1Our implementation uses the receiver window size field, and its value is
interpreted as bytes per second at the sender of the previous control loop.

to congestion than with an end-to-end loop, but it is a more
complex design approach which inevitably raises stability
concerns. A stability analysis is, thus, a key contribution of
this paper.

In Section II, we survey related work. Section III discusses
our motivations behind this paper, and Section IV introduces
the theory behind LGCC. We establish the theory of LGCC
in Section VI, and in Section VIII, we analyze stability and
fairness properties of LGCC. Section IX presents how LGCC
is implemented, and its simulation results are presented in
Section X. Finally, Section XI concludes the paper.

II. RELATED WORK

The advent of high capacity wireless links (e.g. mmWave)
has raised serious challenges for traditional congestion con-
trol [18]. In a series of work [3], [7], [19], [20], [21], [22],
it was shown that the full potential of mmWave cannot be
achieved at higher layers, especially at the transport layer.

One of the main solutions of the above problem has been
to introduce some intermediate boxes helping the end-to-
end congestion controller, e.g. by breaking it into several
shorter loops. For example, in [6], a TCP proxy architecture
was presented without any modification at the sender side.
The proxy is installed in the Radio Access Network (RAN),
and by collecting statistics from the 5G base station (gNB),
it estimates the downlink Bandwidth-Delay Product (BDP)
and performs flow window management using the advertised
window field in ACKs. Another method, called X-TCP [23],
was proposed to adjust the congestion window of TCP at the
mobile equipment side. It estimates the current physical layer
rate using the Signal to Interference plus Noise Ratio (SINR),
thus keeping the buffer small.

Explicit feedback control protocols (e.g. XCP [9] and
RCP [10]) can overcome some of the above challenges. How-
ever, they have deployment limitations in the Internet because
they need drastic changes to all packet headers, routers, and
endpoints.

The ABC mechanism [15], [24] has targeted the above
problems by providing a deployable method, compared with
prior explicit schemes, since it utilizes the existing Explicit
Congestion Notification (ECN) [25] infrastructure. This makes
the mechanism the closest competitor of the one that we
present in this paper. ABC uses a Multiplicative-and-Additive-
Increase/Multiplicative-Decrease (MAIMD) scheme to ensure
fairness among flows. ABC adjusts the sender’s window upon
receiving an ACK from the receiver: it is increased by one
if the ACK is marked as accelerate,2 and in case of a brake
mark, it is decreased by one; this allows the sender to have
a larger window size dynamic within one RTT to follow the
link capacity dynamics faster. In the network, ABC routers
mark packets with accelerate or brake proportional to the
queue length. Additionally, ABC has a fall-back mechanism to
co-exist with non-ABC traffic.

New network architectures such as the Recursive InterNet-
work Architecture (RINA) [26] represent a different approach
to many aspects of networking, including congestion control:
here, network mechanisms are designed from scratch, without
compromise.3 In RINA, it is natural to break an end-to-end

2To solve the problem that “AQM schemes do not signal increases” [15].
3Compromises will usually be necessary when trying to interconnect the

whole architecture with the Internet. This can, for example, be done by
tunneling, using gateways or with direct switch-over as explained in [27]
for relatively short communication paths.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TEYMOORI et al.: LGCC: A NOVEL HIGH-THROUGHPUT AND LOW DELAY PARADIGM SHIFT 3

path into several shorter control loops, each with its own
customized congestion controller. In addition, a larger control
loop can operate over several shorter ones; this is the recursive
property of RINA, which can provide many benefits [28].
What we propose in this paper can also be adopted by RINA.

Since the advent of hop-by-hop congestion controllers,
as the extreme case of multi-hop controllers, their stability has
been of paramount concern because some unstable behavior
was observed in some situations [29], [30]. This had led to
the “fear of instability”. However, as demystified by [30],
the cause of instability was the unsuccessful use of non-
discriminatory on-off type controls. In addition, research work
such as [29], [30], [31], [32], and [33] has shown that per-hop
controllers accelerate the response to load changes in the
path, and that certain conditions can be obtained under which
the chain of control loops is stable. For example, in case
of Split-TCP (where a middlebox spoofs IP addresses to
act like a receiver towards the sender and act like a sender
towards the receiver), the system can be stable under certain
conditions [31], [34].

The assumption of having links with time-varying capac-
ity also complicates stability conditions of the congestion
controller. Analyses such as [35] show system stability with
feedback delay can be achieved in the joint congestion control
and scheduling for multi-hop wireless networks. In [36],
a family of optimization-based distributed traffic control laws
was developed to enable load balancing and/or rate adaptation
in response to capacity variations in the network. Instead of
proving system stability around a single equilibrium point,
the authors in [37] propose a primal-dual congestion control
algorithm which is proven to be trajectory stable when link
capacities are time-varying; this guarantees the system is stable
around a time varying reference trajectory.

III. MOTIVATION

In this section, we motivate the need for a deployable
multi-hop congestion controller with preliminary simulation
and evaluation; this shows why the controller needs to be fast,
in both rate increase and decrease, and also in terms of conver-
gence rate, with the direct knowledge of link capacity and its
changes as well as employing ECN to increase deployability.

In previous sections, we discussed about limitations of end-
to-end congestion control and why shortening control loops
can respond faster to congestion and capacity change. ABC
is a very recent state-of-the-art mechanism, which, according
to its authors, operates at the Pareto frontier when compared
with other congestion controllers such as TCP Cubic, Vegas,
XCP, BBR, and PCC [15]. Although ABC is empowered by
ABC routers on the path to signal a rate increase/decrease via
ECN, it still operates in an end-to-end manner. This means that
ECN marks first arrive at the destination, and then they are
echoed back to the source. Considering the topology illustrated
in Fig. 1, in Fig. 2 we show a preliminary simulation4

comparison of LGCC with ECN-based mechanisms: LGC (our
previous end-to-end approach [16]), DCTCP [11], and ABC.
We observe that DCTCP produces the largest queue because it
cannot incorporate link capacity fluctuations, and because it is
additive-increase, it is very slow in filling the newly increased
capacity.

4It is performed in OMNeT++; we used the code we had implemented
in [16] for DCTCP and LGC. We re-implemented ABC, and validated it vs.
the results in [15].

Fig. 1. A simple topology used for a preliminary comparison of DCTCP,
LGC, ABC, and LGCC. The links have a capacity of 500 Mbps, and Source’s
end-to-end RTT is 6 ms. The link capacity between Router 2 and Destination
is time-varying; it drops to one third in [2, 3]s of the simulation. Other
parameters are set such that 100% utilization with minimal delay is achieved
for each method.

LGC can incorporate link capacity in its rate dynamics, but
it cannot track capacity changes since it is end-to-end, and
starts fluctuating when the capacity drops, leading to a larger
queue. ABC only incorporates link capacity at ABC routers
through queue drain rate, but still the ABC sender can track
changes faster because the ABC router motivates the source
in both increase and decrease through ECN marks. LGCC
can, however, outperform all of the others in terms of rate
fluctuation, convergence speed, and keeping the queue small
because of a multi-hop design where Router 1 and Router 2
act as connection splitters, shortening the control loop, and
incorporating the link capacity and its changes directly in their
rate dynamic.

In terms of convergence rate, we need a fast method for
flows to reach their target rate. Although ABC flows can
follow the underlying link capacity quickly with the help of
ABC routers, they do not get a fair share of the capacity
promptly as they fill the capacity. The main problem is
that when a new flow joins, to attain fairness among flows,
ABC’s MAIMD adds/subtracts less than 1 packet per RTT
to/from the congestion window (cwnd) of the flows, and the
increase/decrease becomes smaller as flows converge.

We evaluate ABC’s convergence rate through a simple anal-
ysis: assume n flows with equal RTTs and congestion window
wi, competing for a bottleneck capacity. ABC’s congestion
window of flow i increases by 1 + 1/wi per accelerate and
decreases −1 + 1/wi per brake signal. Therefore, during an
RTT where the proportion of accelerates is f , the window
increases by fwi(1 + 1/wi) = f(wi + 1) and decreases by
(1−f)wi(−1+1/wi) = (1−f)(−wi +1). Adding these two
changes to wi to obtain the new window size, and considering
the bottleneck capacity is completely filled, we have

w
(new)
i = wi + f(wi + 1) + (1− f)(−wi + 1)

= 2fwi + 1
n∑

i=1

w
(new)
i = BDP = 2f

(
n∑

i=1

wi

)
+ n

Let f∗ denote the equilibrium of f . Solving for f∗ yields

f∗ =
BDP− n
2
∑n

i=1 wi
=

1
2

BDP− n
BDP

<
1
2
.

As an example, if n = 2 and BDP = 200 packets, then
f∗ = 0.495. If w1 = 198 and w2 = 2, in the next RTT,
w1 = 2fw1 + 1 = 197.02, and w2 = 2fw2 + 1 = 2.98.
Since (2f − 1) < 0, the only term that increases w2 is
1. This means that in each RTT, the w2 increase is less
than 1, and it becomes smaller as w1 and w2 get closer.
For example, after 50 RTTs, w2 = 40 and w1 = 160, and
after 400 RTTs, they are approximately equal, which can be
a very long time. Simulation results also confirm this. In case
of LGCC, after 25 RTTs we have w2 = 40 and w1 = 160,
and after 60 RTTs, w1 ≈ w2. It should be noted that RTTs

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Performance comparison of 1 flow of DCTCP, LGC, ABC, and LGCC. The dotted line in the top row illustrates the link capacity, and the blue lines
show the senders’ rate using each of the aforementioned methods.

Fig. 3. Convergence comparison of two flows.

are shorter in LGCC because of shorter control loops. Fig. 3
shows a simulation comparison on the convergence of ABC
and LGCC in OMNeT++. The first flow fills the capacity,
and then the second flow joins. We can observe that it takes
a long time for the ABC flows to converge. However, this
is shorter than half a second for LGCC. In the following
sections, we elaborate on the design of LGCC and show how
it incorporates link capacity, capacity changes, and ECN in its
rate dynamic.

IV. LOGISTIC GROWTH (LG)
The base of LGCC is the Logistic Growth (LG) function.

LG is usually used to model the growth of a species population
over time. This function is defined by the following differential
equation

Ṅ =
γN(t)(K −N(t))

K
(1)

where N is the population size, K the “carrying capacity”
determining the maximum value of N , and γ is growth
rate. By the dot notation, we mean time differentiation, i.e.
Ṅ = dN

dt . We summarize the notation in Table I. The idea of
growth constrained by a capacity limit in LG has inspired the
use of this function in network congestion control [16], [38],
[39].

The LG function (and its dynamics (1)) is usually normal-
ized by defining x(t) = N(t)/K, which yields

ẋ = γx(t)
(
1− x(t)

)
(2)

with the solution

x(t) =
1

1 +
(

1
x(0) − 1

)
e−γt

(3)

where x(0) denotes the initial population. Clearly,
limt→∞ x(t) = 1.

TABLE I
NOTATIONS

A. Lotka-Volterra Model
The LG function specifies how one species population

grows over time. The Lotka-Volterra model consists of a set
of equations examining the effect of inter-species competition
where two or more species compete for some limited resource.
The growth rate of a species is then not only bounded by the
carrying capacity, but also by the growth rate of a competing
species. If a generalized Lotka-Volterra model for n interacting
species has a non-trivial equilibrium, x∗i > 0, then there can
be found a Lyapunov function that is zero at the equilibrium
and negative at other points [40]. This implies that the model
is globally stable. In Section VI, we will use this relationship
to model the interconnected loops of a path like individual
species, using this relationship to interconnect them.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TEYMOORI et al.: LGCC: A NOVEL HIGH-THROUGHPUT AND LOW DELAY PARADIGM SHIFT 5

Fig. 4. 5 LGC competing flows with γ = 1.

V. LOGISTIC GROWTH CONTROL (LGC)
LGC [16] was presented as a congestion controller using

the Lotka-Volterra competition model [41]. In this controller,
the rate of source r is updated by

ẋr = xrγr

(
1− xr − p̂r

)
(4)

or in the discrete form,

xr[n+ 1] = xr[n]γr

(
1− xr[n]− p̂r[n]

)
+ xr[n] (5)

where γr is a constant value and p̂r is the (end-to-end) mea-
sured marking probability at source r. This yields a normalized
rate which sources can multiply by their link capacity to
obtain a send rate in bits per second. Since LGC needs the
link capacity, it was proposed for data centers in which link
capacities are known/fixed. If there is only one bottleneck on
the path, it is proven that p̂r converges to S−1

S where S is the
number of competing flows, and hence, x∗r = 1

S .
To illustrate how LGC works, we numerically evaluated (5):

we assume that there were 5 flows competing for a bottleneck
capacity, and excess traffic was marked proportional to the
capacity. Formally speaking,

pr =

[
pr +

(5∑
i=1

xi − 1
)]1

0

(6)

where [.]10 = max(min(., 1), 0). Fig. 4 shows how the 5 flows
compete when they join one by one. The first flow starts at
time step 0, and then after every 20 time steps, one new flow
joins. We see that the normalized rate of flows converges to
0.2, and their observed marking probability converges to 0.8.
At step 150, flows leave one by one every 20 steps until there
is only one flow left. We can also see that the convergence
speed of pure logistic growth decays as more flows enter the
system—flow 5 is quite slow at obtaining its bandwidth share.
We have fixed this by making γ adaptive in [16], and we apply
the same method in this paper, in Section IX-A.

A. Deflated LGC
In [17], we obtained the utility function of LGC, and showed

how LGC can be adopted by the NUM theory. This also
helps change the equilibrium marking probability of LGC.
In other words, we can deflate its marking probability, which
can become very high when the number of competing flows
is large. The send rate dynamic is

ẋr = xrγr

(
− logϕ1

(xr) + logϕ2
(1− p̂r)

)
. (7)

where ϕ1 and ϕ2 are the base parameters that can be config-
ured to control the marking probability. If ϕ1 = ϕ2, then (7)
reduces to (4). In case there is one bottleneck, the equilibrium

Fig. 5. An example of how loops are formed.

marking probability can be obtained, which is given by

p∗r = 1− e
log(ϕ2) log(1

S
)

log(ϕ1) (8)

where S is the number of competing flows. In this case,
if ϕ1 > ϕ2, the equilibrium marking probability becomes
smaller. For example, if we set ϕ1 = 10 and ϕ2 = 2,
then p∗r = 0.1897 (this was 0.8 in Fig. 4(b)). However, the
congestion controller behavior does not change—it exhibits
the exact behavior shown in Fig. 4(a).

VI. LG CHAIN CONTROL (LGCC) MODEL

A. Network Model
In this section, we model a chain of LGCs and discuss

its deployment considerations. Our main aim is to have a
deployable solution with minimal required changes to current
commodity hardware. ECN is a widely-deployed mechanism
in commodity hardware with broad utility. We utilize this
feature and assume that routers in the network support packet
marking via RED. However, some of the nodes on the path
towards the destination need to support LGCC, which we call
LGCC router; these nodes could be domain border routers.
In other words, LGCC does not need to be implemented as a
hop-by-hop solution although that is also possible.

Fig. 5(a) illustrates an example network topology of a source
and a destination with m routers on the path. This can be
mapped into the diagram in Fig. 5(b) in which only some of the
routers deploy LGCC, meaning that an end-to-end congestion
controller between the source and the destination is broken in
several smaller congestion control loops. The other routers are
assumed to have RED deployed, which ECN-marks packets
randomly if the output queue is non-empty. Therefore, there
is one LGC loop from the source to Router 2, another one from
Router 2 to some other router, and finally, there is one from
Router m to the destination. There is one LGC loop per source
from sources 1 and 2 to Router 2, one loop from source 3 to
Router 2, another one per source from Router 2 to some other
router (continued in that way until Router m), and finally,
there is one per source from Router m to the destination.
This example already highlights the possibility of aggregating
traffic to reduce unnecessary competition between flows, but
we deem a full flow aggregation mechanism for heterogeneous

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. Loop management architecture in LGCC routers.

traffic out of scope for the present paper. However, here we
discuss the possibility of flow aggregation and its benefits with
regards to LGCC, and provide a fairness analysis.

The number of LGCC routers and where they operate
depends on the network design. For example, each loop can be
formed over one domain, or if the medium is wireless, the loop
can operate over only that medium specifically. We assume that
it is a design issue and up to the network manager where to
deploy LGCC routers; however, we will provide performance
evaluations about different deployments in Section X.

Fig. 6 shows a high level internal structure of an LGCC
router. It has several “Receivers” to control the congestion
control loops ending at it, and several “Senders” to start
new ones towards their destination/next LGCC router. Senders
have their own send queues with the aim of holding excess
incoming packets if their current send rate is lower than
the incoming rate. The role of “Schedulers” is to prioritize
taking packets from receivers and pass them to the correct
next sender. If packets are accumulated at receivers waiting
for schedulers to pass them, a virtual queue management
scheme can be deployed to ECN-mark packets. These marks
are sent back towards the previous senders via ACKs from
the receivers. In addition to the ECN echo each ACK carries
back to the sender of the loop, the current send rate of the
next loop is also copied to the receiver window size field of
the ACK. This ensures that previous senders as well as the
original source are updated very quickly, i.e., in at most half
an end-to-end RTT depending on the bottleneck location, with
the latest rate changes of the next loops to reduce the risk of
instability. The value of this field can be interpreted as bit (or
Byte) per second at the previous sender side; this determines
the carrying capacity of the previous loop ending at this LGCC
router. The sender of the last loop receives the buffer size
from the destination as normal since the last hop sender needs
to ensure that it does not overflow the destination. However,
it feeds back its current rate inside the receiver window size5

field of ACKs originating from it. In the next section, we will
show how carrying capacity is used in rate calculations.

LGCC routers could be implemented as PEPs or a part
of border routers. Here we assume that they explicitly break
a connection, and hence, packets of one LGCC router are
destined explicitly to another one, and so on. As such, it is
not possible for one LGCC router to be somehow bypassed
by changes in the traffic route. However, it is possible to have
route changes between two LGCC routers. The goal of ECN
is to capture traffic load changes on the path segment, even
due to routing changes.

5In practice this may have side effects, such as causing the source operating
system (or middle boxes) to become suspicious of the ever-changing field.
One possible alternative is to use TCP options. Use with IPSec is another
challenge, that may require trusted routers. However, implementation specifics
are beyond the scope of this paper.

To elaborate the LGCC router design in Fig. 6, assume
there are two loops arriving at an LGCC router from different
links, and departing it from the same link. In case of per-flow
chaining, which is our main focus in the paper, each incoming
flow has its own dedicated receiver and sender in the router.
Packets from the receivers are passed to their corresponding
senders, which now compete for the same output queue; their
packets might also be ECN-marked in the next loops as well.
The senders accordingly adjust their send rate to the fair share
of the capacity of the next link/loop, and their current send
rate is echoed back to the senders of the previous loops using
every ACK generated by the receivers. The previous senders
will accordingly adjust their send rate in the same manner.
In case of aggregated chaining, there is only one sender at
the output link, and the scheduler passes packets from the
receivers to the sender; with the assumption that there are
only homogeneous greedy flows, sharing for aggregations is
simply weighted with respect to the number of flows in each
aggregated flow. If there are no other senders at this output
link, the sender can send at the link capacity without queuing.
However, the sender of the previous loops need to send at a
lower rate, which can be done through ECN-marking packets
at the receivers’ virtual queue. We will demonstrate a simple
policy to perform this kind of marking in Section X-E.

In the above architecture, each LGCC loop operates within
an autonomous administrative domain, e.g., from an ingress
router to an egress router, where these two can also act as
LGCC routers. Incorrect ECN configuration might lead to
either longer delays or competing flow instability within that
domain. However, since LGCC uses the same ECN as DCTCP,
it should be able to coexist harmoniously with traditional TCP
in the L4S (Low Latency, Low Loss, and Scalable Throughput)
architecture [42]. A detailed evaluation is out of the scope of
this paper.

B. Congestion Controller Model
Here, we introduce LGCC. First, we form a chain of (4)

where the carrying capacity is not normalized to 1. Instead,
it is determined by the send rate of next loop. In addition,
we use notation p̂r,i to reflect the marking probability of only
loop i that is measured by its sender. Assume a flow broken
into n loops from a source to a destination. The rate dynamics
at the sender of each loop are given by

ẋr,1 = xr,1(t)γr,1

(
1− xr,1(t)

kr,1(t)
− p̂r,1(t)

)
, (9a)

ẋr,2 = xr,2(t)γr,2

(
1− xr,2(t)

kr,2(t)
− p̂r,2(t)

)
, (9b)

...

ẋr,n = xr,n(t)γr,n

(
1− xr,n(t)

kr,n(t)
− p̂r,n(t)

)
, (9c)

where

kr,1(t) = min
(
xr,2(t), cl(t)

)
, ∀l ∈ Lr,1 , (10a)

kr,2(t) = min
(
xr,3(t), cl(t)

)
, ∀l ∈ Lr,2 , (10b)

...

kr,n(t) = min
(
xr,n+1(t), cl(t)

)
, ∀l ∈ Lr,n , (10c)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TEYMOORI et al.: LGCC: A NOVEL HIGH-THROUGHPUT AND LOW DELAY PARADIGM SHIFT 7

and xr,n+1(t) and cl denote the destination’s processing rate
and link capacity, respectively. LGC uses the notion of car-
rying capacity, and so does LGCC. Therefore, the carrying
capacity K should be determined in each loop. This can be
the minimum of the send rate of the next loop and the link
capacity in the current loop, which is obtained by (10). p̂
includes the price of the receiver’s virtual queue to the next
sender as well in case of aggregated chaining. Since we assume
that the formation of each loop is under one authority/domain,
link capacities may be known in that domain. In case a link
capacity is changing over time, e.g. in a wireless medium,
information about the current capacity and modulation is
usually available at the output link of the LGCC router. This
could be used as the current link/carrying capacity. A similar
technique has been done by ABC [15].

In case of aggregated chaining and if packets of two or
more receivers are forwarded to the same sender in the next
loop, i.e., the loops are aggregated into one flow in the next
loop, we can enable schedulers to prioritize packets of certain
receivers while passing to their next sender. Here, we assign
weights to receivers and employ a weighted fair queuing
discipline in the scheduler. This is under the assumption that
flows are homogeneous and greedy. Other cases will be left as
future work. In this case, the rate dynamic of loop i is given by

ẋr,i = xr,i(t)γr,i

(
1− xr,i(t)

kr,i(t)
− p̂r,i(t)

ωr,i

)
(11)

where ωr,i denotes the normalized weight assigned to the
send rate of flow r in loop i.

C. Benefits of the LGCC Design
The notion of carrying capacity is an important feature of

the LGCC design. It helps the controller to have an accurate
estimate of the upper capacity limit, which is a direct signal
sent back to previous controllers, relieving them from having
to wait for indirect congestion/cost signals such as queue
marks to adjust their rates. In other words, each loop uses
the send rate of the next loop as its own K, which leads to
faster rate adjustment to available capacity at next loops.

LGC’s increase/decrease behavior is non-linear. As opposed
to controllers with, e.g. additive increase, how fast to
increase/decrease depends on the difference between xr,i and
(1− p̂r,i)kr,i. This means that in case of a sudden increase in
the medium capacity (assume a wireless link that is recovered
from a rate drop due to an intermittent noise), capturing the
available capacity can be fast.

D. Utility Function
For LGCC, we apply the same method that we used

to obtain the LGC utility function in [17]. In equilibrium,
we know that q∗r,i = U ′(xr,i) where q∗r,i = − logϕ2

(1− p∗r,i).
Solving for p yields p∗r,i = 1−ϕq∗r,i

2 . We also have 1− x∗r,2(t)

kr,2(t)
−

p∗r,2(t) = 0. These give

U(xr,i) = xr,i

(
1

log ϕ1
− logϕ1

(
xr,i

kr,i

))
, (12)

which is a strictly concave, twice differentiable function in
the range (0, kr,i]. These properties facilitate its stability and
convergence.

VII. CONGESTION CONTROL ALGORITHMS

The LGCC dynamics (9) can be converted into a Network
Utility Maximization (NUM) problem. This enables us to
analyze LGCC better and find deployable solutions, especially
on commodity routers. In [17], we obtained the utility function
of LGC, and showed how LGC can be adopted by the
NUM theory. Here, we use the utility function behind LGCC
dynamics, i.e., (12), and then, we divide the optimization
logic between sources and routers. Since sources and LGCC
routers use the same module to send packets, by sender
dynamics we mean the controller logic in both of them, and
by router dynamics we mean commodity routers that do not
break connections. Our assumption about these routers is that
they can either implement our specific packet marking scheme
or at least, they support RED, which is a widely-deployed
mechanism.

A. Primal Algorithm
In this algorithm, the optimization logic is deployed at the

sender side. The routers only return a network cost to senders,
which is a direct mapping of the current total traffic of a link
to a non-negative real value. It is given by

ẋr,i = xr,iγr,i

(
U ′(xr,i) + logϕ2

(1− p̂r,i)

)
(13)

where U(.) is the utility function of senders [17]. Substituting
the derivative of (12) in (13) yields

ẋr,i = xr,iγr,i

(
− logϕ1

(
xr,i

kr,i

)
+ logϕ2

(
1− p̂r,i

))
.

(14)

Since our assumption is that routers support RED, the network
cost can be sent back to senders via ECN marks. This is
denoted in (13) by p̂r,i. In the next subsection, we introduce
an ECN marking algorithm for this purpose.

B. Dual Algorithm
In the dual algorithm, the optimization logic is deployed in

routers, and senders directly map the cost they get from the
network into a send rate. First, we discuss a general router
which could run this algorithm, and then discuss how routers
with RED AQM can employ it.

We use the fact that at equilibrium, q∗r,i = U ′(x∗r,i) where
q∗r,i is the cost sender i gets. As we already showed in [17],
in case of employing RED, qr,i = − logϕ2

(1 − p̂r,i). Com-
bined, these two yield

xr,i = kr,i e

(
log(1−p̂r,i) log(ϕ1)/log(ϕ2)

)
(15)

meaning that the sender can directly calculate its optimal
send rate using p̂r,i. However, routers need to iterate on their
cost until they converge to the optimal value. The first dual
algorithm, called Dual1 is given by

ṗl = βl

[
yl − C

]+
pl

(16)

where pl and yl denote the marking probability of link l (at the
router’s output queue to the link) and the total traffic sent over
link l in the last interval. βl denotes the step size. At output
queues, C = cl where cl is the link capacity, and at receivers’
virtual input queues, C = xr,i+1, i.e. the send rate of the next

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. 5 loops chained towards the destination.

loop, and yl is equal to the rate of the traffic sent to this queue
from the sender of loop i in the last interval.

As we showed in our previous work, we can use RED
with a special configuration (see Appendix E of [17]) as the
dual algorithm. This enables us to have a more deployable
solution. The cost/marking probability dynamics at routers’
output queues (links) in a discrete form is given by

pl[n] =
[
bl[n]
maxth

]1
0

(17)

where bl, maxth, and n denote the queue length, the maximum
threshold parameter of RED over which all the packets are
marked, and the interval number. Other RED parameters are
minth = 1, wq = 1, and maxp = 1. This algorithm implies that
the current backlogged size can be divided by the maximum
threshold to have a marking probability for the current interval.

One of the benefits of the dual algorithms of LGCC is that,
due to the notion of carrying capacity, senders can sometimes
jump to a send rate if, for example, the carrying capacity
suddenly changes. In case the sender’s loop is not shared
with other loops, jumping to higher rates does not affect the
network. Otherwise, if some links of a loop is shared with
other loops, the primal algorithm can be used instead of (15);
the use of a primal-dual algorithm can also handle this case,
which will be explained in the next subsection.

C. Primal-Dual Algorithm
This type of algorithm divides the optimization logic

between senders and routers. The combinations (14)–(16) and
(14)–(17) form two sets of primal-dual algorithms.

D. Numerical Evaluation
In order to have a notion on how (9) is effective and can

accelerate convergence of a chain of loops due to the usage of
the carrying capacity, we perform a numerical evaluation here
on the topology shown in Fig. 7. We consider two scenarios:
1) a chain of 5 loops where inside each loop, there is no other
competing loop (i.e. Source 2 to Source 5 do not send any
packets), and 2) a chain of 5 loops where inside each loop,
there is another competing loop, which will be aggregated into
one flow in the next loop (i.e. all sources send packets, which
will be aggregated at the next router). Therefore, in the last
loop, only two flows compete for the bottleneck capacity, and
each one should get half of the capacity; in the previous loop,
the two flows that are aggregated in the next loop using one
of the flows should also get half of the send rate of that flow.

If we assume a normalized capacity of 1 in the last loop,
then last-loop flows get 0.5, each flow in the previous loop
gets 0.25, and the values are 0.125, 0.0625, and 0.03125,
respectively for the flows in the previous loops. Apparently,
in both scenarios, the rate of loop i, xr,i, is the carrying
capacity of loop i − 1, but p∗r,i is equal to 0 and 0.5 in
scenarios 1 and 2, respectively. In the figures, we only report

the rate of one flow in each loop labeled with “Loop i”.
At step 200, we cut the capacity of the last loop to 0.5 to
observe how fast the chain of congestion controllers can
converge.

We evaluated the Primal-Dual and Dual algorithms under
the above scenarios. In addition, to see how a chain of
controllers that do not employ the notion of carrying capacity
behaves, we used a controller with a logarithmic utility func-
tion, i.e. U(x) = log(x). Hence, the rate dynamics in loop i
are given by

ẋr,i = γr,i

(
1
p̂r,i

)
. (18)

The Dual algorithm (16) was used for the algorithms, and
the controllers were also tuned for fastest convergence. Fig. 8
and Fig. 9 illustrate the results of scenario 1 and scenario 2,
respectively, and Fig. 10 shows the results of the controller
with a logarithmic utility function. From the figures we
observe that LGCC can converge faster when the capacity
drops to 0.5 in loop 5 at step 200, and also at step 400, when
it changes back to 1. It might seem that a Dual method is
superior to the other one. As mentioned before, if links in a
loop is not shared by other flows, a Dual method can be used
to jump to the rate routers imply; however, it is not true in a
general topology.

VIII. ANALYTICAL EVALUATION

In this section, we analytically evaluate properties of LGCC
such as equilibrium, stability, and fairness.

A. Equilibrium
Depending on where the bottleneck in the network is, LGCC

can converge to different values. For this analysis, we assume
that the bottleneck is always in some loop n, and then, the min
operator in (10) always kicks in, and for the sake of simplicity,
we assume that schedulers in Fig. 6 employs a fair queuing
discipline. Hence, assuming xr,i+1(t) ≤ cl(t), ∀l ∈ Lr,i,∀t:

x∗r,i(t) = x∗r,i+1(1− p∗r,i) (19)

and when the marking probability is deflated

x∗r,i = x∗r,i+1 e

(
log(1−p∗r,i) log(ϕ1)/log(ϕ2)

)
(20)

Employing a fair queuing discipline in the scheduler implies
that x∗r,i = x∗s,i for competing flows r and s in loop i. Using
the fact that

∑
r x
∗r, i = x∗r,i+1, we get

e

(
log(1−p∗r,i) log(ϕ1)/log(ϕ2)

)
=

1
S

(21)

where S is the number of competing flows. Solving for p∗r,i
yields

p∗r,i = 1− e
(
log(1/S) log(ϕ2)/log(ϕ1)

)
. (22)

B. Stability Analysis
Here, we discuss the stability of LGCC. The following

theorem will prove its global stability.
Theorem 8.1: The primal-dual algorithm (14)–(16) is glob-

ally, asymptotically stable.
Proof: See Appendix A-A. □

Although Theorem 8.1 proves that the system of equations
(14)–(16) is globally stable, we also analyze its local stability;

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TEYMOORI et al.: LGCC: A NOVEL HIGH-THROUGHPUT AND LOW DELAY PARADIGM SHIFT 9

Fig. 8. Chaining 5 loops of LGCC. (a) and (b): Primal-Dual, and (c) and (d): Dual.

Fig. 9. Chaining 5 loops of LGCC where there are two competing flows in each loop, aggregated into one the next loop. (a) and (b): Primal-Dual, and
(c) and (d): Dual.

Fig. 10. Chaining 5 loops of the logarithmic controller where there are two competing flows in each loop, aggregated into one the next loop. (a) and (b):
Primal-Dual, and (c) and (d): Dual.

this provides us a relationship between the step size parameters
γ and β, and we can use this as a guideline for setting those
parameters.

Local stability refers to the analysis of the system behavior
close to an equilibrium. We use the dual algorithm (16) as
the cost generator at routers. This indeed includes a step size
parameter, β, which can affect the system stability.

We use an aggregation tree topology that is illustrated in
Fig. 11 with variable depth (the number of loops of the
chains – denoted by δ) and breadth (the number of competing
flows in each loop – denoted by ζ). The circles represent
LGCC routers at which incoming flows compete. For the sake
of simplicity, we assume that the flows in each loop only
compete at the input queue of the next loop, and they are
all aggregated into one flow in the next loop.

Theorem 8.2: The system of equations (14)–(16) is locally
stable if and only if

βd ≤
1

4K
γd ζ

(δ−d−2) for 1 ≤ d ≤ δ . (23)

Proof: See Appendix A-B. □
The above theorem implies that the stability in each loop i

only depends on the number of competing flows in that loop;
this means that the value of γi and βi determine the stability,
and as we get closer to the bottleneck link, i.e. i = 1 in this
case, γ should be smaller than β.

C. Fairness Analysis
Fairness properties of a congestion controller determine how

fairly the capacity is shared among a number of competing

Fig. 11. Aggregation tree.

flows and how much each flow can expect to receive. Since
LGCC chains controllers, we focus on two types of fairness:
intra-loop and inter-loop.

1) Intra-Loop Fairness: Here, we focus on only one loop.
We consider a number of flows competing for links capacity in
an arbitrary topology. First, we define a new type of fairness.

Definition 1 (Logarithmic Proportional Fairness): Every
rate change from the equilibrium proportional to the logarithm
of the equilibrium is non-positive. Formally speaking,∑

r

− log(x∗r)(xr − x∗r) ≤ 0 . (24)

This is obtained from the fact that if the feasible set is
convex and U(.) has a globally maximized at x∗, then for
any feasible allocation vector x, we have ∇(U)|x∗(x−x∗) ≤
0 meaning that the gradient of U , evaluated at x∗, times the
change is not positive. The above definition also implies that
if there are n sequential links with the normalized capacity

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

of 1, 1 n-hop flow with rate x1 crossing all the links, and n
1-hop flows crossing each link with rate x2, then x∗1 is the
multiplication of the equilibrium rate of other 1-hop flows in
its path. In other words,

x∗1 =
n∏

i=1

x∗2.

2) Inter-Loop Fairness: To focus on only inter-loop fair-
ness, here, we assume that all routers support LGCC. This
implies that loops are formed in a hop-by-hop fashion. In this
case, schedulers determine the fairness type. We consider a
number of flows in a loop arriving at an LGCC router and
analyze two types of chaining: 1) the flows are aggregated into
one flow in the next loop, and 2) a separate flow is created in
the next loop for each flow. We employ a weighted fair queuing
discipline in LGCC routers. LGCC is able to attain max-min
fairness in type 1) if weights are set equal to the number
of aggregated flows, and proportional fairness in type 2) if
weights are set in a special manner. The following theorems
prove these characteristics.

Theorem 8.3: In case of aggregated chaining, if weights are
set equal to the number of aggregated flows, LGCC attains
max-min fairness.

Proof: See Appendix B-A. □
Theorem 8.4: Let pu

r,i denote the upstream marking prob-
ability of flow r, i.e. the marking probability at the output
queues of LGCC routers 1 to i. In case of per-flow chaining,
if weights are set inversely proportional to − log(1− pu

r,i) at
the scheduler in LGCC router i + 1 for all routers i on the
path, then LGCC attains proportional fairness.

Proof: See Appendix B-B. □
Since in LGCC we assume that each loop operates with its

own marking probability, accessing pu
r,i at downstream routers

would need a special bit in the LGCC header to convey the
marks received so far at the output queues of LGCC routers.

IX. LGCC ALGORITHM AND IMPLEMENTATION

Algorithm 1 shows how each sender adjusts its rate. It can
be either a Primal-Dual or a Dual algorithm. At startup, send
rate x is set to the initial value xinit; this can be interpreted as
the initial window size of TCP. However, the unit of x is bits
per second. We estimate the loop marking probability, p̂, using
an exponential smoothing average with parameter α. As a
rate-based method, we define intervals to sample ECN-marks,
and at the end of each interval, p̂ is updated. The carrying
capacity is also obtained: it can be the minimum link capacity
in the loop, or the last send rate of the next loop, which is
echoed back to the previous loop via the receiver window size
field; the value of this field is interpreted as a rate in bits
(or to save space, Bytes) per second. Then, depending on the
algorithm, and in case of Primal-Dual, (14) is run. Before the
rate calculation, from line 11 to 18, the adaptive step size
algorithm is run. The goal is to be more aggressive if the
calculated rate from a Dual algorithm is far from the current
send rate; this will be discussed in the next subsection. Then,
the send rate is set, ensuring it is not lower than the initial send
rate. In case of Dual, the send rate is directly calculated from
the measured marking probability, p̂. Details of the parameter
setting are presented in the next section.

In both of the algorithms, we assume that routers run (17),
which can be realized through a special configuration of RED.
At the end of the loop, the receiver module of the next LGCC
router, echoes back ECN marks.

Algorithm 1 LGCC Congestion Control for Flow r in Loop i
1: procedure INIT
2: x← xinit
3: p̂← 0
4: γ ← γinit
5: end procedure
6: procedure ONINTERVALENDS
7: m← ECN-marked percentage of ACKs
8: p̂← (1− α) p̂+ αm
9: k ← min

(
xr,i+1, cl

)
∀l ∈ Lr,i

10: if Primal-Dual then
11: x̂← k e

(
log(1−p̂) log(ϕ1)/log(ϕ2)

)
12: if |x− x̂| ≤ g1 then
13: γ ← γconv
14: else if |x− x̂| ≥ g2 then
15: γ ← γinit
16: else
17: γ ← |x− x̂|γinit−γconv

g2−g1
+ γconv

18: end if
19: x← xγ

(
logϕ2

(
1− p̂

)
− logϕ1

(
x
k

))
+ x

20: x← max(x, xinit)
21: else if Dual then
22: x← k e

(
log(1−p̂) log(ϕ1)/log(ϕ2)

)
23: end if
24: end procedure

The following subsections elaborate on some aspects of this
algorithm that go beyond the previously discussed basic LGCC
dynamics: adapting γ, obtaining the right capacity value to use
(in line 9, we assume that the minimum of all link capacities
is known), and how often to trigger “OnIntervalEnds”.

A. Adaptive Step Size
To improve the performance of LGCC via faster conver-

gence, we use the same technique that we used in LGC [16]
to adjust the step size of the Primal-Dual algorithm, i.e. γ.
In LGCC, p̂ and accordingly, (15) provides an indication of
what the target rate can be, and how far the current send rate
is from that target. In the Primal-Dual algorithm, when the
current rate is far from the target, we use a larger value of
γ. When the rates are close, then we use a small value for γ
to have a smoother behavior. The algorithm (line 11 to 18 in
Algorithm 1) determine if the difference of x and x̂ are larger
than the threshold g2. If so, γ is set to a large value, i.e. γinit;
if the difference is smaller than the threshold g1, then γconv
is used; otherwise, it is set linearly based on the proportion
of the difference. The range [γconv, γinit] is chosen such that it
does not affect stability.

B. Carrying Capacity
As shown in (10), LGCC senders need to know the carrying

capacity of their loop to obtain their rate; this could be either
the minimum link capacity on their path in the loop, or the
current send rate of the next sender in the next loop of the
chain. In [16], we showed that if an LGC sender cannot
get the carrying capacity, it still can operate (as we see in
Fig. 2(b)). However, the queue length fluctuates more. When
each loop is formed under one domain or over a specific

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TEYMOORI et al.: LGCC: A NOVEL HIGH-THROUGHPUT AND LOW DELAY PARADIGM SHIFT 11

Fig. 12. Send rates and marking probability of 5 flows when the carrying
capacity changes.

medium, e.g. a wireless link, obtaining the carrying capacity
is sometimes straightforward. In wireless links with time-
varying capacity, the current send rate (depending on the
noise level and modulation) is the carrying capacity. This is
how the current transmission rate is obtained in some work
such as [23]. ABC also uses a method based on the output
queue drain rate to estimate the current link capacity. Hence,
we assume that if there is a link with time-carrying capacity,
an LGCC router is run on that node to start a new loop over
that link; in case of wired links, LGCC routers can be run on
interior/exterior routers of each authority domain, e.g. ISPs.

C. Rate Update Time Intervals
The rate is regularly updated by each sender per interval.

The LGCC dynamics, (9), imply that the fair rate only depends
on p̂ in each loop, and as long as all sources see the same p̂,
they converge to the same rate. This means that the steady
state behavior of the controller is not sensitive to the update
interval: updating it more or less often will naturally make the
control converge faster or slower, but the point of convergence
is not affected (but updating it extremely fast could lead
to oscillations). There are several options for the update
frequency such as using the smallest RTT value seen over a
certain time interval (an estimate of the RTT without queuing
delay). If a flow’s smallest RTT is still a long time interval,
especially for a large-RTT flow, we can use shorter intervals.
Based on our observation in simulations (performed in [16],
the performance is robust if a flow can receive at least 4 ACKs
per interval. Hence, another option is to use small, equal-sized
intervals that can fit receiving a few ACKs.

X. SIMULATION AND EXPERIMENT RESULTS
A. Simulation Setup

In this section, we present simulation results of LGCC
over various topologies and scenarios, compared with ABC as
the state-of-the-art. Simulations were performed in the INET
framework6 of OMNeT++. We set the general parameters as:
γinit = 0.3, γconv = 0.05, ϕ1 = 10, ϕ2 = 5, α = 0.05,
g1 = 0.05 x̂, g2 = 0.015 x̂.

B. Flow Competition and Fairness Evaluation of LGCC
Here, we evaluate LGCC using when 5 sources (flows)

competing for the bottleneck in a dumbbell topology, sending
packets to 5 different destinations. Links have a capacity of
500 Mbps with 1 ms propagation delay. Router 1 and Router 2
that connect sources to destinations are LGCC routers, making
3 loops, and the capacity of the link between them changes
every 1 second: it is 500 Mbps in the first simulation second,
and drops to 400 Mbps at second 1 and to 300 Mbps at second
2. Then, it changes back to 400 Mbps and 500 Mbps. Fig. 12(a)

6The code is available at https://cutt.ly/2yV7eQK.

Fig. 13. Performance comparison of ABC and LGCC in a dumbbell topology:
5 flows start at the same time, and the capacity of the bottleneck link drops
to 150 Mbps in [2, 3]s.

shows how the rate of the 5 flows in the middle loop changes
over time, and the dashed, black line is the fair share of
the capacity. We see that sources closely track the capacity
change while competing with each other. Fig. 12(b) plots the
marking probability of the flows in the second loop, i.e. flows
starting from Router 1 to Router 2. These flows compete at
the output queue of Router 1. We used RED as the Dual
algorithm with maxth = 75 KB, and ϕ1 = 10 and ϕ2 = 3. The
Equilibrium Marking Probability (EMP) is 0.6. Referring to
the figure, we observe that EMP only depends on the number
of competing flows, not the current link capacity. There are two
drops for a short period in MP because the carrying capacity
suddenly increases, and it takes a short period for the flows to
converge by adjusting their rate.

C. Comparison With ABC
We compared LGCC with ABC. As the first topology,

we used a dumbbell topology with 5 sources, sending packets
to 5 different destinations. Fig. 13 shows the result of the
first scenario, in which the flows start together, and in [2, 3]s,
the capacity drops to 150 Mbps. The links have a capacity of
500 Mbps, and the link propagation delay is 1 ms. The queue
length of the bottleneck router is also shown. Both ABC and
LGCC have a special router at the bottleneck link. From the
figures we see that LGCC operates faster and more smoothly
in terms of convergence, which also results in a smaller queue
at the bottleneck.

In the next scenario over the previous topology, flows join
one-by-one every two seconds, and they last for 12 seconds.
Fig. 14 illustrates how the two protocols operate; again, LGCC
converges faster and behaves more smoothly than ABC with
a smaller queue length.

We ran the above two scenarios 10 times, each with a
different random seed and a random start of flows. Fig. 15
shows how LGCC and ABC operate. Short-term fairness was
calculated over the average values of time windows of 24 ms.
This also confirms that LGCC operates more smoothly, and
flows converge fast. The queue length is accordingly smaller
because of the faster reactions to changes in the number of
flows.

In the next scenario, we ran ABC and LGCC over three
real LTE link capacity traces of the AT&T, TMobile, and
Verizon operators. These are the traces used by [15] to evaluate
ABC. The topology includes a destination, connected through
an LTE link whose capacity changes over time (the capacity

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 14. Performance comparison of ABC and LGCC in a dumbbell topology:
5 flows join one-by-one at every two seconds, and leave after 12 seconds of
transmission.

Fig. 15. Box-Whisker plot of short-term Jain’s fairness index and queue
length of ABC and LGCC in the two different scenarios. Black and gray dots
are near and far outliers, respectively.

Fig. 16. Box-Whisker plot of rate difference and queuing delay of ABC and
LGCC.

follows the pre-measured trace) and a source 3 hops away
from the destination. Fig. 16 illustrates the difference between
the send rate of Source and the rate in the trace file at any
time; the smaller the difference, the faster the controller at
convergence. In case of 2 flows, each flow should get half of
the current capacity, and the difference is calculated with this.
Referring to the figure, we observe that LGCC flows can track
capacity changes faster, leading to a smaller queue at the LTE
link. As the number of flows increases, the difference between
ABC and LGCC becomes smaller because each flow should
receive a smaller share of the capacity. The link utilization of
the protocols are 93% for both ABC and LGCC.

D. 5G Use Case
In the next scenario, we used a 5G trace collected from

a major Irish operator in [43], which is the first publicly
available dataset containing throughput information for 5G
networks. The dataset contains traces of two different mobility
patterns: static and car. We used the traces of the static
pattern because results of [43] have shown that 5G coverage
in streets was not complete, so the car traces mostly included
LTE/4G. The trace files had some dramatic capacity changes

dropping to values of around 0.3% of the maximum achieved
throughput. We did not consider cases with connection time-
outs or with dis-connectivity since our focus was on devising
a congestion control method.

We applied the traces in OMNeT++ to dictate link speeds
over time, where the maximum capacity was 333 Mbps. The
topology was the one in Fig. 5(a) with m = 5 except
there was only one source, i.e. Source 1, and there were
5 routers, making 6 hops to Destination. Link capacities were
500 Mbps with a propagation delay of 5 ms, yielding an end-
to-end RTT 60 ms. There was one flow from Source 1 to
Destination transferring a large file. We used this application
as an example of various high-bandwidth applications 5G is
envisioning such as holographic video call.7 We set ABC’s δ
parameter to 300 ms; ABC recommends setting this to at least
two third of the base RTT to guarantee stability. The ABC’s
minimum queuing delay threshold parameter were set to 1 ms.
In general, we tried to set the ABC’s parameters such that it
is more responsive to capacity changes, has a shorter queue,
while stability is not affected.

We ran ABC and LGCC over this network with various link
configurations. First, we assumed that only the link between
Router 5 and Destination is 5G with capacities collected
by [43]; the results are shown by “ABC-R5” and “LGCC-R5”
in Fig. 17, and there is only one ABC/LGCC router deployed,
which was on Router 5. Second, we assumed that the link
between Source 1 and Router 1 is 5G, with results shown by
“ABC-S” and “LGCC-S”; in this case, the ABC queue is
installed on Source 1 while the LGCC router logic should be
installed on Router 1. “LGCC6-R5” shows the results of 6
LGCC loops, operating hop-by-hop where the last hop was
5G. In the third scenario both of the above links were 5G,
shown by “ABC-2B” and “LGCC-2B”. We used different
combinations of traces as capacities, combined all collected
data, and measured queuing delay illustrated as box-whisker
plot, excluding outliers, in Fig. 17 with a logarithmic y-axis.

The queuing delay measurements of LGCC were performed
in two categories: 1) the bottleneck link queuing delay, mea-
suring only the delay at the bottleneck, and 2) the end-to-end
queuing delay, which measures the delay of every queue
(including all the senders’ queues at LGCC routers) along
the path to destination. The aim of the latter measurement
is to include effects of all congestion control loops since they
might momentarily delay forwarding packets if their current
send rate is smaller than the send rate of their previous loop.
In case of ABC, the end-to-end queuing delay is equal to the
bottleneck queuing delay.

From the figure, we observe that LGCC can reduce queuing
delay significantly. The achievable utilization8 values of ABC
and LGCC for the scenarios shown in Fig. 17 from left to
right were 93.9%, 85.8%, 93.9%, 90.2%, 87.8%, 94%, and
90.3%, respectively.9 In total, LGCC’s utilization was a bit
smaller than that of ABC because LGCC tries not to exceed
the carrying capacity, which is the current link bandwidth;
however, ABC needs a small standing queue for the sake of
stability, which helps the link in sending more packets when
its capacity increases, but at the cost of an order of magnitude

7This has been demonstrated by Ericsson and Vodafone Germany
https://www.ericsson.com/en/news/2018/11/3d-holographic-calls-with-5g.

8Defined as application layer throughput divided by the average link
physical rate in percent.

9We did not plot the channel utilization since the utilization values of the
two methods were close with little variation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TEYMOORI et al.: LGCC: A NOVEL HIGH-THROUGHPUT AND LOW DELAY PARADIGM SHIFT 13

Fig. 17. Queuing delay represented by a Box-Whisker plot over a 5G use case. Figure 5(a) topology with: i) last hop is 5G—ABC-R5 and LGCC-R5;
ii) first hop is 5G—ABC-S and LGCC-S (LGCC R1); iii) last hop is 5G—LGCC6-R5 (LGCC all routers); iv) both first and last hops are 5G: ABC-2B and
LGCC-2B (LGCC R1 and R5). Boxes span from the 0.25 quantile to the 0.75 quantile, where outliers are not shown for the sake of visibility.

increased delay. LGCC-R5 has the lowest utilization and larger
delay values than the other LGCC configurations because it
comprises a long loop from the sender to the last router, where
the bottleneck is; this also implies the benefits of shortening
control loops. The end-to-end queuing delay of LGCC-R5,
in Fig. 17(b), shows larger variations compared with the delay
of ABC-R5 because in LGCC-R5, the sender at Router 5 might
delay forwarding packets due to a lower send rate than the
incoming rate, which does not happen in ABC. However, the
median value is smaller in LGCC.

Any capacity change takes time to affect the source. We see
that if the first link is 5G, shown by LGCC-S, any change is
reflected very fast at the source, resulting in the highest utiliza-
tion (90.2%). LGCC6-R5 which has 6 loops, can compensate
for this without increasing queuing delay. ABC’s utilization
is approximately equal in all the cases because it is end-to-
end. If both source’s and destination’s links were 5G, we see
that LGCC and ABC achieve approximately equal utilization
even though LGCC has only 3 loops; this is because the first
loop, similar to LGCC-S, is very fast, compensating for the
second loop that is longer, and the average utilization becomes
comparable to that of ABC.

In order to evaluate the effect of increasing the number of
loops, we also measured the utilization of two other cases
where the last link is 5G: LGCC with 3 loops, where Router 1
and Router 5 are LGCC routers, and LGCC with 4 loops where
Router 3 acts as an LGCC router as well. The utilization values
were 85.8%, 86.4%, 86.6%, and 87.8% respectively, for the
2 loop (LGCC-R5), 3 loop, 4 loop and 6 loop (LGCC6-R5)
scenarios. All the queuing delays are very close. This shows
that adding more loops can increase the utilization, without
increasing queueing delay, due to shortening control loops and
faster convergence.

As discussed previously, the trace files included some
dramatic capacity changes. So, if future 6G (and beyond)
links have similar characteristics, as expected with sub-THz
and Visual Light Communication (VLC) technology, LGCC
is expected to operate similarly well. However, it should be
noted that LGCC is only a congestion control method, expect-
ing other underlying network mechanisms, such as multipath
forwarding and load balancing, to manage cases where a link
is down for a long time. LGCC could also be extended to work
as a multipath congestion control scheme operating similarly
to MPTCP [44], but with the additional advantages that LGCC
routers provide.

E. Flow Aggregation
One of the potentials of LGCC is flow aggregation.

Although a detailed evaluation of this needs a complete
aggregation protocol (including scheduling algorithms and
some form of signaling for fair sharing), which is out of

Fig. 18. Send rate and marking probability of 2 aggregated flows when the
carrying capacity changes in a Dumbbell topology.

the scope of this paper, however, using a simple topology we
demonstrate how it looks in practice. Fig. 18 shows the results
of two flows aggregated at an LGCC router into one flow on
a dumbbell topology. The link capacity is 500 Mbps, but the
capacity at the second link drops to 150 Mbps in [2, 3]s. Since
there is only one flow operating on the second link, there is
no competition there. The LGCC router only applies a fair
queuing discipline on the flows to be aggregated. The general
LGCC router design shown in Fig. 6 and the two types of
LGCC algorithms (Primal in (14) and Dual in (15)) allows
different ways of implementing this scenario.

We adopted the Primal algorithm along with a marking
policy at virtual queues of the LGCC router at the bottleneck.
The marking policy operates as follows: it randomly marks
every incoming packet with a fixed probability of 0.4 that
is calculated by the scheduler using (22) to fairly divide the
next sender’s rate among these incoming loops. So, the flows
receive half of the capacity, and in case of a drop, they follow
the capacity change fast. The scheduling does not change the
equilibrium marking probability seen by sources; the spikes in
Fig. 18(b) only happen when on-the-fly packets arrive at the
bottleneck link whose capacity is just dropped. This scenario,
however, represents a simple case showing the possibility of
aggregation, which can be of a huge potential in LGCC. For
example, the use of a Dual algorithm at sources eliminates
the waiting time for them to reach the maximum/equilibrium
capacity, and newly-joined flows can instantly hop on the
already established aggregated flow in the bottleneck. How-
ever, a more complicated scenario needs further design con-
siderations, which are considered as future work.

XI. CONCLUSION

In this paper, we presented a novel multi-hop congestion
controller using the well-known Logistic Growth (LG) func-
tion in a food chain style. The idea of carrying capacity in
LG parallels with the bottleneck link capacity, which in case
of link layer capacity measurements, can provide an excellent
feedback to sources to adapt their send rate, especially for links
with time-varying capacity. This combined with employing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

ECN enables us to deploy LGCC over path segments, and
react faster to available capacity changes.

We analytically evaluated LGCC for stability and fairness;
we proved that the system is globally stable, and provided
conditions for the step size parameter setting. Through simula-
tion study, we evaluated the performance of LGCC in terms of
latency (queuing), utilization, and short-term fairness. We also
used real-life traces of some LTE/4G/5G link capacities, and
compared LGCC with ABC. Results confirm that LGCC
can improve the delay and fairness performance significantly.
LGCC greatly reduces queuing delay on the bottleneck link,
minimizing the delay impact on other flows. It does this by
moving queuing from the router’s shared output queue, to a
separated LGCC sender queue. LGCC also keeps a low e2e
queuing delay, while maintaining a high utilization. In this
paper we focused on delay. The balance between delay and
utilization can be adjusted to meet QoS requirements, and
does not impact the QoS of other flows sharing the bottleneck.
In addition, LGCC can provide flow aggregation, which is of
great benefits for congestion control.

As future work we will look at the effect of delay on control
loop stability. Preliminary analysis indicates a generally stable
system but suggests the corner case of connecting loops with
slightly different equilibrium points needs further investiga-
tion. In addition, we will perform a deeper analysis of flow
aggregation, devise a flow aggregation protocol, and provide
a scalable solution considering heterogeneous flows, which
might not be greedy; this will include the case where a flow has
a bottleneck after it is split from an aggregation. Performing
experiments on real use cases is a key interest of ours.

APPENDIX A
STABILITY ANALYSIS

A. Proof of Theorem 8.1
Proof: We define a Lyapunov function based on the

Primal-Dual algorithm in the form of

V(x, p) =
∑
r∈R

Or∑
i=1

∫ xr

x∗r

1
xr,iγr,i

(
φ− x∗r

)
dφ

+
∑
l∈Q

∫ pl

p∗l

1
σl(ψ)

(
logϕ2

(1− p∗l)

− logϕ2
(1− ψ)

)
dψ (25)

which is inspired from the Lyapunov function in [17] where
the marking probability is mapped to cost using the func-
tion − logϕ(1 − p∗l). Fixing the cost dynamics to the Dual1
algorithm and taking the time derivative of V(x, p) yields

dV
dt

=
∑
r∈R

Or∑
i=1

ẋr,i

xr,iγr,i
(xr,i − x∗r,i)

+
∑
l∈L

[
yl − cl

]+
pl

(
logϕ2

(1− p∗l)− logϕ2
(1− pl)

)
+
∑
l∈A

[
yl − xr,i+1

]+
pl

(
logϕ2

(1− p∗l)−logϕ2
(1− pl)

)
≤
∑
r∈R

Or∑
i=1

(
U ′(xr,i) + logϕ2

(1− pr,i)
)
(xr,i − x∗r,i)

+
∑
l∈L

(yl − cl)
(
logϕ2

(1− p∗l)− logϕ2
(1− pl)

)

+
∑
l∈A

(yl − xr,i+1)
(
logϕ2

(1− p∗l)− logϕ2
(1− pl)

)

=
∑
r∈R

(
logϕ2

(1− pr,i)− logϕ2
(1− p∗r)

)
(xr,i − x∗r,i)

(26a)

+
∑
l∈L

(
logϕ2

(1− p∗l)− logϕ2
(1− pl)

)
(yl − y∗l)

(26b)

+
∑
l∈A

(
logϕ2

(1− p∗l)− logϕ2
(1− pl)

)
(yl − y∗l)

(26c)

+
∑
l∈L

(y∗l − cl)
(
logϕ2

(1− p∗l)− logϕ2
(1− pl)

)
(26d)

+
∑
l∈A

(y∗l − xr,i+1)
(
logϕ2

(1− p∗l)− logϕ2
(1− pl)

)
(26e)

+
∑
r∈R

(
U ′(xr,i) + logϕ2

(1− p∗r,i)
)
(xr,i − x∗r,i)

≤ 0. (26f)

The sum of (26a), (26b), and (26c) is equal to zero. (26d)
and (26e) are less than or equal to zero: if, for example, y∗l =
cl, then (26d) is zero, and if y∗l < cl, then p∗l , which makes
logϕ(1 − p∗l) zero, and since − logϕ(1 − pl) ≥ 0, this term
is non-positive. The same argument holds for (26e). In order
for (26f) to be non-positive, if xr ≤ x∗r , then we should have
U ′r(xr) ≥ − logϕ(1− p∗r), or vice versa. This means that, for
example, in case of xr ≤ x∗r , xr,i+1 should be large enough
to let the first term become non-negative. Since we connect
each loop to the next one (i.e. the carrying capacity in each
loop is only dependent on the rate of the next loop, not the
previous one), loops converge from the last one, and for each
loop, xr,i+1 will increase until it meets the above condition
and stabilizes the system. In case of xr ≥ x∗r , the first term
should be non-positive. Since the value of xr,i+1 does not
depend on xr,i, this means that xr,i+1 should be small enough
for the term to become non-positive. Again, as the next loop
converges first, and it does not depend on the previous one,
this condition is met. This means that the Lyapunov function is
negative, and it is zero at the equilibrium, making the system
globally, asymptotically stable. □

B. Proof of Theorem 8.2

The following theorem establishes the necessary and suffi-
cient conditions for local stability.

Theorem 1.1 (see [45]): The equilibrium x∗ of the system
of equations ẋ = F(x) is locally stable if and only if all
the eigenvalues of the Jacobian of the system of equations
evaluated at x∗ have real parts less than zero.

Now we prove Theorem 8.2:
Proof: First, we write the system equations and then,

we obtain the equilibrium. We use (9) to obtain system
dynamics. Consider some LGCC router i at depth d of the
aggregation tree whose flows are aggregated into flow xk,j

in loop j at depth d + 1. The incoming flows to router i are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TEYMOORI et al.: LGCC: A NOVEL HIGH-THROUGHPUT AND LOW DELAY PARADIGM SHIFT 15

governed by

ẋ1,i = x1,i(t)γd

(
1− x1,i(t)

xk,j(t)
− pi(t)

)
, (27a)

ẋ2,i = x2,i(t)γd

(
1− x2,i(t)

xk,j(t)
− pi(t)

)
, (27b)

...

ẋζ,i = xb,i(t)γd

(
1− xb,i(t)

xk,j(t)
− pi(t)

)
, (27c)

where

ṗi = βd

[(ζ∑
y=1

xy,i

)
− xk,j

]
. (28)

In the loop at depth δ, xk,j = K. The equilibrium of the above
system is given by

p∗i =
ζ − 1
ζ

, (29)

x∗.,i = (1− p∗i)x∗k,j , (30)

where x∗k,j = K for d = δ. Now we obtain the Jacobian of the
above system. In each loop, there are ζ +1 variables: ζ equa-
tions representing flows’ rate, and one equation adjusting the

cost. This makes a Jacobian matrix of dimension
(1+ζ)(−1+ζδ)

−1+ζ
(this is obtained by considering that the aggregation tree is a
perfect m-ary tree, where the number of nodes determines
the number of rate dynamics, and the number of non-leaf
nodes also determines the number of LGCC routers). Although
obtaining eigenvalues of a matrix is not trivial, since the above
matrix has a special form, we can calculate its eigenvalues for
an arbitrary ζ and δ. Each element of the Jacobian matrix is
given by ∂χ̇

∂υ where χ and υ are any two system variables. For
example, for 0 ≤ b ≤ ζ

∂ẋb,i

∂xb,i
= γd

(
1− xb,i

xk,j
− pi

)
− γd

xb,i

xk,j
, (31)

∂ẋb,i

∂pi
= γdxb,i , (32)

∂ṗi

∂xb,i
= γd , (33)

and the partial derivatives are zero for other variables. This
matrix has a number of eigenvalues; some of them are nega-
tive, and some of them are in the form of

1
4

(
− γd +

√
−4Kζ(d+2−δ)γdβd + γ2

d

)
.

Constraining this eigenvalue to be negative and solving for a
relationship between γ and δ yields (23). □

APPENDIX B
FAIRNESS ANALYSIS

A. Proof of Theorem 8.3

First, we provide a definition and theorem from [46] on
max-min fairness.

Definition 2 (Bottleneck Link): Link l is a bottleneck for
source r if and only if link l is saturated, and source r has
the maximum rate among all sources crossing link l.

Theorem 2.1: A feasible rate allocation vector to all
sources is max-min fair if and only if every source has a
bottleneck link.

Now we prove Theorem 8.3:
Proof: At every LGCC router, there is a schedule

per-output port. Taking into account that all the incoming
flows that are forwarded towards the same output port are
aggregated, and they are fairly scheduled, if this is LGCC
router 1, then it is a bottleneck for source r; if the bottleneck
is at some router i, then our weight assignment guarantees that
again this is a bottleneck for source r, and hence, every source
has a bottleneck, confirming that the policy attains max-min
fairness. □

B. Proof of Theorem 8.4
Lemma 2.2: A proportionally-fair rate allocation vector

assigns rates inversely proportional to the end-to-end cost the
network charges each source r.

Proof: With a logarithmic utility function, which attains
proportional fairness, x∗r = 1∑

l∈Lr
ql

. □
Now we prove Theorem 8.3: Proof: According to the

employed scheduling policy, as flow r crosses multiple routers,
each router’s cost is accumulated. Consider the last router with
a non-zero cost: if it constrains xr to 1∑

l∈Lr
ql

, then every
flow r gets a share of the bandwidth inversely proportional
to its cost. Since the sum of costs is less constrained at
previous routers, it is the role of the last router to enforce
fairness; previous loops of flow r are backpressured due to
this constraint. This is similar to limiting the carrying capacity
at the last router, not to increase more than a proportionally
fair share. In [17], we proved that the function − log(1 −
pu

r,i) provides the cost using ECN. Therefore, setting weights
inversely proportional to this value guarantees proportional
fairness. □

REFERENCES

[1] P. Teymoori et al., “Congestion control in the recursive internetwork
architecture (RINA),” in Proc. ICC, May 2016, pp. 1–7.

[2] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular
wireless networks: Potentials and challenges,” Proc. IEEE, vol. 102,
no. 3, pp. 366–385, Mar. 2014.

[3] M. Zhang et al., “Transport layer performance in 5G mmWave cellular,”
in Proc. INFOCOM Workshops, Apr. 2016, pp. 730–735.

[4] D. A. Hayes, D. Ros, and Ö. Alay, “On the importance of TCP splitting
proxies for future 5G mmWave communications,” in Proc. IEEE 44th
LCN Symp. Emerg. Topics Netw., Oct. 2019, pp. 108–116.

[5] M. Kühlewind, Z. Sarker, T. Fossati, and L. Pardue, “Use cases and
requirements for QUIC as a substrate,” Internet Eng. Task Force,
Tech. Rep. draft-kuehlewind-masque-quic-substrate-00, Mar. 2020,
p. 13. [Online]. Available: https://datatracker.ietf.org/doc/draft-
kuehlewind-masque-quic-substrate/00/

[6] M. Polese et al., “MilliProxy: A TCP proxy architecture for 5G mmWave
cellular systems,” in Proc. 51st Asilomar Conf. Signals, Syst., Comput.,
Oct. 2017, pp. 951–957.

[7] R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan, and M. Zorzi,
“Achieving ultra-low latency in 5G millimeter wave cellular networks,”
IEEE Commun. Mag., vol. 55, no. 3, pp. 196–203, Mar. 2017.

[8] D. A. Hayes, P. Teymoori, and M. Welzl, “Feedback in recursive
congestion control,” in Computer Performance Engineering, D. Fiems,
M. Paolieri, and A. N. Platis, Eds. Cham, Switzerland: Springer, 2016,
pp. 109–125.

[9] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 32, no. 4, pp. 89–102, Oct. 2002.

[10] N. Dukkipati, “Rate control protocol (RCP): Congestion control to make
flows complete quickly,” Ph.D. dissertation, Dept. Elect. Eng., Stanford
Univ., Stanford, CA, USA, 2008.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE/ACM TRANSACTIONS ON NETWORKING

[11] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf., New Delhi, India, Aug. 2010, pp. 63–74.

[12] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, Apr. 1998.

[13] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda, “Less is more: Trading a little bandwidth for
ultra-low latency in the data center,” in Proc. 9th USENIX
Symp. Netw. Syst. Design Implement. (NSDI). San Jose, CA,
USA: USENIX, 2012, pp. 253–266. [Online]. https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/alizadeh

[14] K. Ciko, P. Teymoori, and M. Welzl, “LGC-ShQ: Datacenter congestion
control with queueless load-based ECN marking,” ACM SIGCOMM
Comput. Commun. Rev., vol. 52, no. 4, pp. 2–11, Dec. 2022, doi:
10.1145/3577929.3577931.

[15] P. Goyal, A. Agarwal, R. Netravali, M. Alizadeh, and H. Balakrishnan,
“ABC: A simple explicit congestion controller for wireless
networks,” in Proc. NSDI. Santa Clara, CA, USA: USENIX
Association, Feb. 2020, pp. 353–372. [Online]. https://www.usenix.
org/conference/nsdi20/presentation/goyal

[16] P. Teymoori, D. Hayes, M. Welzl, and S. Gjessing, “Even lower latency,
even better fairness: Logistic growth congestion control in datacenters,”
in Proc. IEEE 41st Conf. Local Comput. Netw. (LCN), Nov. 2016,
pp. 10–18.

[17] P. Teymoori, D. A. Hayes, M. Welzl, and S. Gjessing, “Estimating an
additive path cost with explicit congestion notification,” IEEE Trans.
Control Netw. Syst., vol. 8, no. 2, pp. 859–871, Jun. 2021.

[18] X. Wang et al., “Millimeter wave communication: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 1616–1653,
3rd Quart., 2018.

[19] P. J. Mateo, C. Fiandrino and J. Widmer, “Analysis of TCP performance
in 5G mm-wave mobile networks,” in Proc. IEEE Int. Conf. Commun.
(ICC), 2019, pp. 1–7, doi: 10.1109/ICC.2019.8761718.

[20] M. Zhang, M. Mezzavilla, J. Zhu, S. Rangan, and S. Panwar, “TCP
dynamics over mmWave links,” in Proc. IEEE SPAWC, Jul. 2017,
pp. 1–6.

[21] M. Pieska and A. Kassler, “TCP performance over 5G mmWave links—
Tradeoff between capacity and latency,” in Proc. WiMob, Oct. 2017,
pp. 385–394.

[22] M. Polese, R. Jana, and M. Zorzi, “TCP and MP-TCP in 5G mmWave
networks,” IEEE Internet Comput., vol. 21, no. 5, pp. 12–19, Sep. 2017.

[23] T. Azzino, M. Drago, M. Polese, A. Zanella, and M. Zorzi, “X-TCP:
A cross layer approach for TCP uplink flows in mmWave networks,”
in Proc. 16th Annu. Medit. Ad Hoc Netw. Workshop (Med-Hoc-Net),
Jun. 2017, pp. 1–6.

[24] P. Goyal, M. Alizadeh, and H. Balakrishnan, “Rethinking congestion
control for cellular networks,” in Proc. HotNets, Nov. 2017, pp. 29–35.

[25] K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit
Congestion Notification (ECN) to IP, document RFC 3168, Inter-
net Engineering Task Force, Sep. 2001. [Online]. http://www.ietf.org/
rfc/rfc3168.txt

[26] J. Day, Patterns in Network Architecture: A Return to Fundamentals.
Upper Saddle River, NJ, USA: Prentice-Hall, 2007.

[27] K. Ciko and M. Welzl, “First contact: Can switching to RINA save the
internet?” in Proc. ICIN, Feb. 2019, pp. 37–42.

[28] M. Welzl, P. Teymoori, S. Gjessing, and S. Islam, “Follow the model:
How recursive networking can solve the internet’s congestion control
problems,” in Proc. IEEE ICNC, Big Island, HI, USA, Feb. 2020,
pp. 518–524.

[29] V. Kulkarni, S. Bohacek, and M. Safonov, “Stability issues in hop-
by-hop rate based congestion control,” in Proc. Annu. Allerton Conf.
Commun. Control Comput., vol. 36. Champaign, IL, USA: Univ. of
Illinois, 1998, pp. 79–88.

[30] P. P. Mishra and H. Kanakia, “A hop by hop rate-based congestion
control scheme,” ACM SIGCOMM Comput. Commun. Rev., vol. 22,
no. 4, pp. 112–123, Oct. 1992.

[31] S. Bohacek, “Stability of hop-by-hop congestion control,” in Proc. IEEE
Decis. Control, vol. 1, Dec. 2000, pp. 67–72.

[32] P. P. Mishra, H. Kanakia, and S. K. Tripathi, “On hop-by-hop rate-based
congestion control,” IEEE/ACM Trans. Netw., vol. 4, no. 2, pp. 224–239,
Apr. 1996.

[33] Y. Yi and S. Shakkottai, “Hop-by-hop congestion control over a
wireless multi-hop network,” IEEE/ACM Trans. Netw., vol. 15, no. 1,
pp. 133–144, Feb. 2007.

[34] F. Paganini, J. Doyle, and S. Low, “Scalable laws for stable network
congestion control,” in Proc. 40th IEEE Conf. Decis. Control, Dec. 2001,
pp. 185–190.

[35] F. Qiu and Y. Xue, “Robust joint congestion control and scheduling for
time-varying multi-hop wireless networks with feedback delay,” IEEE
Trans. Wireless Commun., vol. 13, no. 9, pp. 5211–5222, Sep. 2014.

[36] W. Su, C. M. Lagoa, and H. Che, “Optimization-based, QoS-aware
distributed traffic control laws for networks with time-varying link
capacities,” Automatica, vol. 72, pp. 158–165, Oct. 2016.

[37] G. Zhang, Y. Wu, and Y. Liu, “Stability and sensitivity for congestion
control in wireless mesh networks with time varying link capacities,”
Ad Hoc Netw., vol. 5, no. 6, pp. 769–785, Aug. 2007.

[38] M. Welzl, Scalable Performance Signalling and Congestion Avoidance,
1st ed. New York, NY, USA: Springer, 2003, p. XI and 167, doi:
10.1007/978-1-4615-0519-8.

[39] G. Hasegawa and M. Murata, “TCP symbiosis: Congestion control
mechanisms of TCP based on Lotka-Volterra competition model,” in
Proc. Interperf, New York, NY, USA, 2006, p., 11.

[40] B. S. Goh, “Global stability in many-species systems,” Amer. Naturalist,
vol. 111, no. 977, pp. 135–143, Jan. 1977.

[41] J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel, and
J. C. Sprott, “Chaos in low-dimensional Lotka–Volterra models of
competition,” Nonlinearity, vol. 19, no. 10, pp. 2391–2404, Oct. 2006.

[42] B. Briscoe, K. D. Schepper, M. Bagnulo, and G. White, Low Latency,
Low Loss, and Scalable Throughput (L4S) Internet Service: Archi-
tecture, document RFC 9330, Jan. 2023. [Online]. https://www.rfc-
editor.org/info/rfc9330

[43] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan, “Beyond throughput,
the next generation: A 5G dataset with channel and context metrics,” in
Proc. Multimedia Syst., 2020, pp. 303–308.

[44] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”
in Proc. NSDI, vol. 11, 2011, p. 8.

[45] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ, USA:
Prentice-Hall, 2001.

[46] B. Radunovic and J.-Y. L. Boudec, “A unified framework for max-
min and min-max fairness with applications,” IEEE/ACM Trans. Netw.,
vol. 15, no. 5, pp. 1073–1083, Oct. 2007.

Peyman Teymoori (Member, IEEE) received the
Ph.D. degree in computer science from the Uni-
versity of Tehran, with a focus on wireless ad hoc
networks. He was a Post-Doctoral Researcher with
the University of Oslo, where he was a Senior
Research Fellow. He is currently an Associate Pro-
fessor with the University of South-Eastern Norway
(USN). His current research interests include the
modeling, optimization, and performance evaluation
of communication networks, recursive internetwork
architecture (RINA), and networking technologies,

like the Internet of Things (IoT), 5G/6G, WiFi, and ad hoc networks.

Michael Welzl (Member, IEEE) received the Ph.D.
and Habilitation degrees from the University of
Darmstadt, Germany, in 2002 and 2007, respectively.
He has been a Full Professor with the University
of Oslo, Norway, since 2009. His current research
interests include the transport layer. He is active in
the IRTF and the IETF.

David A. Hayes (Senior Member, IEEE) received
the Ph.D. degree in telecommunications engineer-
ing from The University of Melbourne, Australia.
He was with the Simula Metropolitan Center for
Digital Engineering, Oslo, and the Center for
Resilient Networks and Applications. He has been
working on reliable consistent very high-data-rate
mmWave communication. His current research inter-
ests include network performance and protocol
engineering.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1145/3577929.3577931
http://dx.doi.org/10.1109/ICC.2019.8761718
http://dx.doi.org/10.1007/978-1-4615-0519-8

