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Abstract— On a high-speed link, there may be tens of millions
of IP packets per second and millions of active flows. Maintaining
the state of each flow is a fundamental task underlying many
network functions, such as load balancing and network anomaly
detection. There are two important kinds of per-flow states: per-
flow size (e.g., the number of packets received by an arbitrary
destination IP) and per-flow cardinality (e.g., the number of
distinct source IP addresses that contacted each destination IP).
In this paper, we focus on the latter kind of states, and define
a new problem: online query of per-flow cardinality, in which we
query any given flow’s cardinality entirely on the data plane with
low time complexity. For this problem, we propose three solutions
named On-vHLL, Ton-vHLL and Aton-vHLL, whose time cost
are O(1) even for the query operation. Our proposed techniques
are three folds. First, we redesign the traditional vHLL with
new supplementary data structures called incremental update
units (IUUs). When a certain flow’s cardinality is queried, these
IUUs can avoid scanning the whole data structure and reduce
the time complexity to O(1). Second, we apply a HLL register
compression technique called TailCut to the On-vHLL sketch,
which can save memory cost by 50%. Third, we add a prefilter
based on min-heap, alongside the Ton-vHLL sketch. The prefilter
is to give each currently sampled top-k superspreader a dedicated
HyperLogLog estimator for better accuracy. It can also absorb
the superspreaders’ packets bypassing the sketch. We evaluate
our new sketches by simulation with CAIDA traces. The results
show that our On-vHLL, Ton-vHLL and Aton-vHLL sketches
need about 5 memory accesses per packet. The time cost of query
operation decreases by hundreds of times than the traditional
vHLL that can only be queried offline. Meanwhile, the estimation
error of flow spread by our Aton-vHLL is comparable to vHLL.

Index Terms— Data stream, cardinality estimation, network
traffic measurement.
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I. INTRODUCTION

IN RECENT years, commodity switches deployed on
Internet backbone or data center networks have reached

unprecedented high line rate of 100Gbps and 400Gbps, when
transmitting IP packets on optical fibers. Such high line rate
has placed great stress on the packet processing throughput
of line card. As a result, they must rely on the size-
limited SRAM (Static RAM, typically tens of MBs on-chip
or hundreds of MBs off-chip) to provide memory resources
for network functions. An important network function is to
collect statistical information about the ongoing network flows,
to monitor their transmission quality and detect malicious
attacks. It has already become an integral part of OpenFlow
standard to record the number of received packets/bytes and
the durations for each active flow in the flow table [1], [2],
[3]. Researchers have also suggested measuring the per-flow
cardinality to detect fan-in or fan-out traffic patterns [4],
[5], for example, the number of distinct destination (or
source) IP addresses that has been contacted by a source
(or destination) IP. Quickly detecting the fan-in and fan-out
patterns is essential for many value-added network functions,
such as load balancing [6], network fault diagnosis [7], DDoS
detection [8], and malware spreading detection.

Compared with counting the per-flow size, it is a more
difficult problem to track the per-flow cardinality. If solved
improperly, the per-flow spread tracking function may occupy
precious SRAM space by tens-of-folds larger than the per-
flow size estimation. We define flow size as the number
of elements in each flow [2], [3], where elements can be
packets or bytes. We define flow spread (or cardinality) as
the number of distinct elements in each flow [4], [5], [9],
where elements may be source/destination IP addresses,
source/destination ports, or content elements in packet
payload. Since tracking the cardinality of a flow needs to
filter duplicated elements, practitioners often use data sketch,
such as Bitmap [10] or HyperLogLog (HLL) [9]. Regretfully,
allocating an exclusively owned sketch for each flow needs
thousands of bytes per flow, which cannot fit into on-chip
SRAM with only tens of MBs.

Researchers have designed several algorithms for tracking
the per-flow cardinality in a memory-compact way, including
virtual bitmap [4] and virtual HyperLogLog (vHLL) [5],
whose memory cost can be less than one-bit memory per
flow. Their idea is to exploit the highly skewed distribution of
per-flow spreads, which are commonly observed in network
traffic. Hence, they design a virtual-physical double-layer
structure, where the spread-counting sketches of all flows are

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8348-6277
https://orcid.org/0009-0008-2002-4823
https://orcid.org/0000-0001-7867-7765


XIAO et al.: ACCURATE AND O(1)-TIME QUERY OF PER-FLOW CARDINALITY IN HIGH-SPEED NETWORKS 2995

Fig. 1. Design objectives of On-vHLL, Ton-vHLL and Aton-vHLL.

squeezed into one-big-shared physical sketch. By this way,
they ensure good estimation accuracy of superspreaders, and
unavoidably sacrifice the accuracy of small flows, so that
the overall memory cost of all flows is small enough to fit
into SRAM.

However, most of previous works such as vHLL overlook
the importance of online querying the per-flow spread. They
follow the “Online Update, Offline Query” paradigm, in which
the sketch is online updated by the data plane as each IP packet
arrives, and at regular time intervals, transferred via PCIe bus
to the control plane for offline sketch query. As a result, the
time delay of the flow query operation can be several minutes
in this offline query scenario. The main reason is that the
time cost of querying a flow-spread sketch includes hundreds
of memory accesses for each query, which is too expensive
to run on the data plane and must be delayed to the control
plane.

We argue that “Online Query” may become a new
paradigm that can give real-time self-decisive capacity to the
programmable data plane. We have already seen that, for the
problem of measuring per-flow size, CountMin sketch [11] and
HashPipe [12] have gained their dominant adoption both due to
their memory compactness and their O(1) query complexity.
They deliver the promise that the heavy hitters whose flow
sizes are abnormally large can be online detected entirely on
the data plane. With such knowledge, the data plane can apply
instant actions to the heavy flows, for example, rate limiting
or route rescheduling. Similarly, for the problem of estimating
the per-flow spread, we expect a new sketch to become
popular if it can be queried with O(1) time complexity. This
allows the online detection of the top-k superspreaders, which
have applications in cybersecurity and load balancing. For
example, the destination IPs that have been contacted by the
largest numbers of unique source IPs are perhaps under DDoS
attacks.

For this problem of online tracking the per-flow cardinality,
our paper presents three solutions named On-vHLL, Ton-
vHLL, and Aton-vHLL, respectively. We illustrate their design
rationales in Fig. 1. On-vHLL is to increase the query
throughput by about 100 times than the traditional vHLL [5]
that can only be queried offline. But the On-vHLL sketch
provides worse per-flow spread estimation accuracy than
vHLL. Next, we further propose Ton-vHLL to decrease the
error by 30% than On-vHLL, and then Aton-vHLL for 50%
error reduction than Ton-vHLL. Finally, the accuracy of Aton-
vHLL becomes comparable with vHLL, without the loss of
the online query feature. We introduce these three sketches as
follows.

Firstly, we propose a sketch named On-vHLL (Online
virtual HyperLogLog), which needs only O(1) time cost to
query a sketch for an arbitrary flow’s spread. To tame the
high time cost of flow cardinality query, we add auxiliary data
structures to the traditional vHLL sketch [5] to cache their
intermediate query result. These auxiliary structures called
incremental update units (IUUs) can be online maintained
as each IP packet arrives, and increase the query throughput
by about 100 times. Although these IUUs can be used to
online estimate the per-flow cardinality, how to make the
estimated results unbiased needs tremendous development
efforts. We have modified the method of hashing flow IDs
to the sketch, so that the intermediate query results can be
easily cached in IUUs. We have also incorporated a multi-
stage design into On-vHLL to mitigate the impact of hash
collision among flows. At the same time, On-vHLL can be
deployed on the data plane based on multi-pipeline FPGA,
with only some minor changes to avoid floating numbers and
other complex operations.

Secondly, we propose a Ton-vHLL sketch (Tailcut online
virtual HyperLogLog). Although On-vHLL reduces the query
time cost to O(1), its estimation accuracy is still worse than
that of traditional vHLL. In this journal extension, our Ton-
vHLL sketch applies a HLL register compression technique
called TailCut [13] to On-vHLL. This technique reduces the
size of each HLL register from 5 bits (or 8 bits in practice)
to only 4 bits, thus reducing the estimation error by 30%.

Thirdly, we design another enhanced data structure named
Aton-vHLL (Adaptive tailcut online virtual HyperLogLog).
The Aton-vHLL can significantly slash the estimation error of
flow cardinality by 50%. This is because it relocates the current
top-k superspreaders from a Ton-vHLL sketch into a prefilter,
where each superspreader has a unique 16-bit fingerprint and
is given an exclusively-owned HyperLogLog [9] sketch to
track its current cardinality. Of course, we can associate an
auxiliary data structure named IUU to this dedicated HLL
estimator, so that its time cost of cardinality query reduces
to O(1). We implement the prefilter by a min-heap so that
the smallest flow can be quickly located at the tree root. This
can facilitate the flow-level swap in/out between prefilter and
sketch. We also accelerate the flow ID lookup operation in
the min-heap, by the modern CPU’s SIMD (Single Instruction
Multiple Data) instruction sets named AVX2 and AVX-512.

We have conducted extensive experiments to compare our
proposed three sketches with vHLL [5], rSkt1 [14], rSkt2 [14],
AROMA [15], and AROMA+ (online query version of
AROMA). Among them, rSkt1 and AROMA+ are the recent
solutions that can support online estimation of per-flow spread.
Our experiments show that On-vHLL is over 100 times faster
than vHLL, rSkt2 and AROMA for the sketch query operation,
assuming the number of registers d is 1024. This is because
the number of memory accesses by vHLL, rSkt2 and AROMA
is over 1026, 4098, and 67738 per packet, respectively, for
sketch update and query combined. By contrast, the number of
memory accesses of On-vHLL is smaller than 5. However, the
flow spread estimation error of On-vHLL is 100% higher than
vHLL. To compensate the accuracy loss, we propose the Ton-
vHLL with TailCut and the Aton-vHLL with prefilter. In our
experiments, Aton-vHLL provides 33% and 65% smaller
identification error than rSkt1 and AROMA+, respectively,
for the top-k superspreaders. Moreover, Aton-vHLL achieves
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comparable accuracy with vHLL that can only be queried
offline, and meanwhile it only needs 6 memory accesses per
packet, including sketch update and query.

II. RELATED WORK

Streaming data processing is a theoretical domain with over
three decades of prior research. A data stream is a sequence
of data elements that can be scanned by only one pass and
in order [9], [10], [11], [16], [17]. Data stream processing
techniques has many real-world applications. An important
one is network traffic measurement, which is to process a
stream of IP packets and extract useful statistics for each flow
of packets that carry a common ID. The ID may be defined as
source/destination IP addresses, or further include other fields
in the packet header, such as protocol and source/destination
ports. A high-speed switch, which is deployed at a vantage
point to inspect the IP traffic, may process millions of
active flows simultaneously. The challenge is the contradiction
between the numerous flows and the limited size of the on-
chip SRAM on a switch. There are mainly two categories of
works to solve this problem.

The first category is data sketches. When querying an
arbitrary flow ID, solutions in this branch are to answer an
approximate value about the flow statistics. There are two
kinds of per-flow statistics that are fundamental and extremely
important: per-flow size and per-flow spread (or cardinality).
The former counts the number of elements in a flow, while
the latter counts the number of unique elements, which must
filter the duplicated elements in a flow. There is a plethora
of works to approximately count the per-flow size with low
memory cost, such as CountSketch [16], CountMin [11],
CounterBraid [18] and VirtualActiveCounter [3], etc. Our
paper however is to address the second problem.

Perhaps due to its higher memory cost, per-flow spread
estimation problem has a relatively smaller number of existing
works than per-flow size estimation, such as virtual Bitmap
(vBitmap) [4], virtual HyperLogLog (vHLL) [5], WavingS-
ketch [19], ExtendedSketch [20], Self-Morphing Bitmaps [21]
and randomized error-reduction sketch (rSkt) [14]. As men-
tioned before, vBitmap and vHLL have high query time
cost, preventing them from online query. WavingSketch [19]
can support online query, but it has low memory efficiency.
It relies on a bloom filter to filter the duplicated pairs,
and then uses a size counting sketch to track each flow’s
cardinality. Regretfully, the bloom filter is very memory
consuming, whose number of bits is proportional to the sum
of spreads of all flows. ExtendedSketch designs a reversible
sketch that encodes both the flow cardinality and the flow
ID [20]. Decoding the IDs of superspreaders without errors in
a reversible sketch is often a very difficult task. By contrast,
we avoid this problem by explicitly recording the fingerprints
of superspreaders based on the online query results of flow
spreads. Self-Morphing Bitmaps [21] can support online
query, but does not allow the merging of multiple sketches
obtained from distributed monitoring sites. The rSkt [14] can
support merging, which allocates a primary HyperLogLog
estimator and a complementary estimator for each flow. rSkt
has two variants named rSkt1 and rSkt2. rSkt1 reduces the
query overhead of rSkt to O(1) by maintaining an array
of HyperLogLog estimators, and giving each estimator an

TABLE I
NOTATIONS

additional integer to accelerate its query. rSkt2 achieves better
accuracy than rSkt through register-level memory sharing, but
at the cost of O(d) level query overhead and cannot support
online queries. In summary, our goal is to design an accurate
online per-flow spread tracking sketch that has O(1) query
time cost and can also support mergeability.

The second category of works focus on capturing the
IDs of “heavy/large” flows and only measure their flow
sizes or spreads. Note that the flows with extra large
sizes are called heavy hitters. The flows with extra large
cardinalities are called superspreaders. The works that
detect heavy hitters or superspreaders include LossyCount-
ing [22], SpaceSaving [23], and HashPipe [12], TwoLayer-
Sampling [24], SimpleSampling [25], TwoPhaseFiltering [26],
Non-DuplicateSampling [27] and AROMA [15], etc. Their
common strategy is to ignore the “light/small” flows, either
by sampling techniques that automatically eliminate the
records of light flows from a size-limited flow cache, or by
filtering techniques that ignore the packets of light flows.
Their shortcomings are that they inevitably lose track of
“light/small” flows, and they must hold the IDs of the sampled
large flows to detect hash collisions, which will occupy a
large part of the memory space. By contrast, the data sketches
indeed provide per-flow measurement, and they do not store
any flow IDs or their short fingerprints, in order to avoid
the extra memory cost and improve accuracy. Moreover, the
accuracy of a data sketch can be significantly enhanced by
adding a prefilter to sample and hold the “important” flows,
which exist in the long tail of a highly skewed per-flow
size/spread distribution [28]. Our paper will investigate the
data sketching techniques.

III. PROBLEM DEFINITION

In this section, we formulate the problem of online esti-
mating per-flow cardinality, and describe its key performance
metrics. In Table I, we list the notations used by this paper.
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Stream Model. We define a flow as a sequence of elements
that can be scanned by an engine with only one pass. Note that
a same element of a flow may appear multiple times. Hence,
when counting the cardinality (i.e., the number of distinct
elements) of a flow, we need to filter the duplicated elements.

Suppose there are m flows transmitted concurrently over an
optical fiber. A stream processing engine (or more precisely,
packet processing pipeline of a high-speed switch) will receive
a stream of IP packets, sorted by their arrival time. From these
IP packets, we can extract a sequence of flow-element pairs:

S = ⟨f1, e1⟩, . . . , ⟨ft, et⟩, . . . , ⟨fℓ, eℓ⟩,

where t is the arrival time in the range [1, ℓ], ft is the flow
ID of the t-th packet, and et is the element ID. Let nf be the
spread or cardinality of a flow f . Then, we have the following
formula to calculate the exact value of the flow cardinality nf .

nf = |{⟨ft, et⟩ | t ∈ [1, ℓ] ∧ ft = f}| (1)

This formula captures all the pairs whose flow IDs ft are equal
to f , uses these pairs to construct a set {⟨ft, et⟩ | . . .}, and
computes the cardinality of the set. Let n be the number of
distinct flow-element pairs in the stream S, where the two pairs
⟨ft1, et1⟩ and ⟨ft2, et2⟩ are considered different if ft1 ̸= ft2 or
et1 ̸= et2. Clearly, this implies n =

∑
f nf , or say, the total

cardinality is equal to the sum of the cardinality of each flow.
Our research problem is to scan the packet stream S by one

pass, and determine the cardinality nf for each flow f . A naive
solution is to exactly count the flow cardinality nf , following
its definition in (1). This needs to allocate an exclusively
owned buffer to each flow f . When processing the packet
stream, we may capture all the pairs ⟨ft, et⟩ with ft = f ,
and put them in the buffer of the flow f to exactly count its
cardinality nf . However, in a high-speed network, there can
be tens of millions of flows whose IP packets are transmitted
during the monitoring time period. Capturing all the pairs of
each flow f will consume a variably large amount of memory,
which can easily exceed the SRAM capacity (tens of MBs) of
the line card on a high-speed switch. It is also unnecessary to
know the exact value of flow spread nf . We can use a memory-
compact probabilistic data sketch to record the arrival event of
the pair ⟨ft, et⟩ and approximately count the flow spread nf .

There are many data structure designs of data sketches to
approximately count the cardinality of each flow, when there
exist a very large number of flows. A straightforward solution
is to roughly count the flow cardinality nf , by allocating an
exclusively owned HyperLogLog (HLL) estimator [9] for each
flow f . This can ensure the relative approximation error of
each nf is 1.04√

d
, where d is the number of registers given to

an HLL estimator. For example, if we can give each HLL
estimator d = 1024 registers, which means 5d bits or 5KB
memory for each flow f , then the flow cardinality nf will have
1.04√
1024

= 3.25% relative estimation error. However, giving
5KB memory to each flow is not sufficiently memory-compact,
when there are millions of flows. Note that the flow spreads
follow a highly skewed distribution, e.g., zipf distribution,
in which a small proportion of flows have much larger spreads
than other flows. Therefore, the challenge is how to design an
extremely memory-compact data structure to exploit this fact.

Performance Metrics. For each flow f , we will give a
rough estimation about its spread nf , which is denoted by

Fig. 2. Online update and offline query of per-flow spread by virtual HLL.

n̂f . We must ensure the absolute estimation error n̂f − nf

is bounded by a threshold ±ϵ(nf + pn), with a probability
above 1− δ.

Pr
{
|n̂f − nf | ≤ ϵ(nf + pn)

}
≥ 1− δ (2)

Here, p is a global-noise disturbance ratio, which is decided
by the memory fraction, i.e., the memory given to a flow
f divided by the memory given to all flows, according
to proof [29].

Besides the estimation accuracy of flow spread in (2), there
are three other performance metrics. The first metric is the
query throughput, i.e., the number of query operations that can
be performed per time unit. As a packet arrives with the tuple
⟨ft, et⟩, we will call hash function to select multiple memory
units and perform read-modify-write. The fewer memory units
we have to access, the higher throughput we will achieve. The
second performance metric is the memory overhead to meet
the error bounding constraint in (2). If giving more memory,
we can attain better flow spread estimation accuracy. The third
metric is the identification accuracy of the top-k superspreader.

IV. ON-VHLL SKETCH

In this section, we present our On-vHLL (Online virtual
HyperLogLog) sketch, which requires a constant number of
memory accesses for both sketch insertion and query.

A. Basic Data Structure
In following, we describe the data structure of our

On-vHLL sketch. As shown in Fig. 2, for tracking the per-flow
cardinality, we create a matrix of registers M . Each register is
a small memory unit with only five bits. Let d be the number
of rows, and w be the number of columns. Its register at jth
row and ith column is denoted by M [j, i], with 0 ≤ j < d
and 0 ≤ i < w. This matrix is shared by all flows.

To squeeze millions of flows into this compact memory
space, we adopt a virtual-physical memory sharing scheme.
Each flow f is given an array of d registers to track its
cardinality. Let Mf be this array of “virtual” registers, whose
ith register is randomly chosen from the ith row of matrix M .

Mf [j] = M [j, h(f ⊕ j) mod w], with 0 ≤ j < d (3)

Here, h is a hash function for randomly picking a register, and
⊕ is the concatenation operator. Clearly, this virtual estimator
Mf is not dedicated to f . Its virtual register Mf [i] may be
selected by another flow f ′ due to hash collision.

A similar virtual-physical sharing scheme is used by vHLL
(virtual HyperLogLog) [5]. As shown in Fig. 2, the update
operation of vHLL sketch needs to access only one register,
which is efficient. But its query operation needs to access all
the registers in Mf , which is quite slow. We will reduce the
query time cost to O(1), by the techniques to describe later.
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B. Accelerate Total Spread Estimation
In this subsection, we describe how to estimate the total

cardinality n at O(1) time cost. By contrast, for vHLL sketch,
its query of total spread n has to scan the entire matrix M .

Online Update. We use the following procedure to update
our sketch for each packet. When a packet with tuple ⟨f, e⟩
arrives, we use f ⊕ e to decide which register to update in the
virtual estimator Mf , where ⊕ is the concatenation operator.
Applying hash function h, we generate a 32-bit hash value x.

x = h(f ⊕ e) j = ⟨x1x2 . . . xb⟩ q = ⟨xb+1xb+2 . . .⟩

The hash value x is split into two parts: j is the initial b bits
that are used to select a register in the virtual estimator Mf ;
q takes the remaining bits that are used to update the register
Mf [j]. So here we assume that the number of rows of matrix
M is a power of two: d = 2b, whose configured value ranges
from 27 to 213 or larger, depending on the predefined accuracy
requirement. Applying HyperLogLog’s register updating rule,

Mf [j] := max
(
Mf [j], ρ(q)

)
, (4)

where := is the assignment operator, ρ(q) is one plus the
longest run of leading zeros in the binary representation of the
hash value q, and the virtual estimator Mf is defined in (3).

Offline Query. For the vHLL sketch [5], the spread of a
flow f is queried by the following formula. It can explain well
why vHLL is slow and can only be queried in an offline way.

n̂f = w
w−1 (n̂d − 1

w n̂) (5)

Here, n̂d is the estimated number of flow-element pairs that
are mapped to the virtual estimator Mf , using the following
equation given by the renowned HyperLogLog paper [9]:

n̂d = αd · d2 ·
( ∑d−1

j=0 2−Mf [j]
)−1

, (6)

where αd is a constant bias corrector that depend on d
configuration. Specifically, α16 ≈ 0.673, α32 ≈ 0.697,
α64 ≈ 0.709, αd ≈ 0.7213/(1 + 1.079/d) as soon
as d ≥ 128. To make this estimation formula unbiased
in the entire operating range, it must be combined with
LinearCounting [10] and a maximum likelihood estimator for
estimating small cardinalities. Please refer to [13] for detailed
formula, and we omit them here for simplicity. The symbol
n̂ in (5) is the estimated total spread from the register matrix
M , given by a similar formula to (6).

n̂ = αwd · (wd)2 ·
( ∑d−1

j=0

∑w−1
i=0 2−M [j, i]

)−1
(7)

Clearly, this formula has to scan the entire register matrix M .
Total Spread IUU. We can reduce the time cost of

estimating the total spread to O(1). Since each register has
five bits to count cardinality within 225 ≈ 4× 109, (7) can be
rewritten as

n̂ = αwd · (wd)2 ·
( ∑31

v=0 N [v] · 2−v
)−1

, (8)

where the array N records the number of registers among M
that takes the value v, which is illustrated as a histogram in
Fig. 2. Clearly, the time cost of (8) is O(1), as it reads the array
N with 32 integers, which can be prefetched into data cache.

This histogram array N consisting of thirty-two 16-bit
integers has low memory cost. It is also easy to maintain per
packet: When a packet arrives, if the register Mf [j] is modified

Fig. 3. Online per-flow sketch by mapping flows to columns.

by (4), we can correspondingly update the histogram array
N . Since N essentially caches the intermediate query result,
we call N the incremental update unit (IUU) for the total
spread.

Even when the total spread n can be estimated by constant
time cost in (8), the query operation for a flow f ’s spread in
(5) has O(d) time cost. It needs to read every register of Mf as
in (6), which incurs d memory accesses. Making things worse,
to guarantee high estimation accuracy, d must be configured
to a few thousands. This is because the expected relative error
of HyperLogLog [9] is 1.04√

d
. Moreover, the virtual estimator

Mf has its thousands of registers distributing randomly in
matrix M as in Fig. 2. This random memory access pattern is
unpredictable and difficult to optimize by cache prefetching.
As a result, reading all the registers of virtual estimator Mf

is impossible in the data plane of a high-speed switch.

C. Design of a Single Stage

In this subsection, we present our first attempt to reduce
the time cost of sketch query to O(1). For the vHLL sketch,
there are wd different combinations for the register set of a
virtual estimator Mf , assuming the matrix M in Fig. 2 has w
columns and d rows. Then, for vHLL, the probability of two
flows sharing a same virtual estimator with d registers is as
small as 1

wd . This can help a flow to prevent its d registers
to completely hash-collide with those of a superspreader, thus
effectively improving its spread estimation accuracy. However,
the explosion of combination number wd also prevents us from
caching the intermediate query result of a virtual estimator.

Matrix Column IUU. For query speedup, we let each
virtual estimator Mf have its d registers in a same column
as in Fig. 3, or say, we map each flow ID f to a column of
registers.

Mf [j] = M [j, h(f) mod w], with 0 ≤ j < d (9)

Note that this column of d registers are stored contiguously
in memory, so that (6) can be computed more time efficiently.
Afterwards in this paper, we assume all the matrices are stored
by the column-major order, where the cells of a column are
arranged contiguous in memory. Since each flow now choose
a random column of registers for estimating its cardinality,
we can cache the intermediate query result for that column,
which is called an incremental update unit (IUU). In Fig. 3,
we illustrate the IUUs of all columns as a row of gray blocks,
each of which can accelerate the estimation of nd, i.e., the sum
of cardinalities of the flows that are mapped to that column.

This data structure design allows us to reduce the time cost
of sketch query to O(1). Let Q be the array of IUUs, for each
column of the matrix M . Let Qf be the IUU of flow f . Then,

Qf = Q[h(f) mod w],
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where Qf [v] records the number of registers among Mf that
carry a value v. Note that the IUU Qf is a small array with
32 integers, called a histogram, since a register with 5 bits only
have 32 possible integer values. To maintain the histogram
Qf per packet arrival, we check whether the register Mf [j]
will be updated by (4), and if it does, before updating Mf [j],
we reduce Qf [Mf [j]] by one and increment Qf [ρ(q)] by one.

We leverage the IUU Qf to quickly estimate the number
of unique flow-element pairs mapped to that column. Clearly,
the time cost of equation (10) is O(1).1

n̂d = αd · d2 ·
( ∑31

v=0 Qf [v] · 2−v
)−1

(10)

This formula (10) allows each register to give an independent
cardinality estimation 2Mf [i], and computes the harmonic
average of all registers in the virtual estimator Mf . Next,
we estimate the total cardinality n of all the flows as follows.

n̂ =
∑w−1

i=0 αd · d2 ·
( ∑31

v=0 Q[i][v] · 2−v
)−1

(11)

Different from (8), this equation estimates the total cardinality
n by computing the sum of cardinality estimations for each ith
column of HLL registers, 0 ≤ i < w. Thus, (11) is unbiased
since each column gives an unbiased cardinality estimation.
By contrast, (8) contains a minor bias, but it runs much faster.
Finally, with n̂d and n̂, we estimate the flow f ’s cardinality nf .

n̂f = w
w−1 (n̂d − 1

w n̂) (12)

This sketch design has O(1) time cost for query operation.
However, the price is the severe degradation of spread
estimation accuracy. Suppose there are top-k superspreaders
whose spreads are extra larger than other flows. The
probability for a flow f to collide with any of the
superspreaders in its mapped column is 1 − (1 − 1

w )k ≈
1 − e−k/w. If a flow f is by chance mapped to a column
occupied by a superspreader, its cardinality estimation will be
severely inflated.

D. Multi-Stage on-vHLL Sketch
In this subsection, we present our On-vHLL (Online virtual

HyperLogLog) sketch, which needs O(1) time cost for sketch
query. Of course, a single estimator in Fig. 3 will have high
variance due to the chance of hash collision in a same column
with superspreaders. To reduce the variance, a common
practice in data sketching algorithms is to run independent
copies of the estimator in parallel and combine their outputs.
Many well-known sketches such as CountSketch [16] and
CountMin [11] use this technique to tame the high variance
of a single estimator. Our single estimator in (12) can
produce an unbiased result by removing the noise 1

w n̂. From
the perspective of combining the results of multiple stages,
we regard our On-vHLL is more similar to CountSketch [16],
which applies the median or average operator for result
aggregation.

We illustrate our multiple-stage sketch design in Fig. 4.
Each stage has a matrix of HLL registers which can give
an independent estimation for an arbitrary flow’s spread.

1The basic units of data transfer in CPU cache are not bytes, but cache lines.
So we can speedup Eq. (10) by CPU cache alignment. Each IUU occupies
32 (or 64) bytes DRAM, which can fit into a single CPU cache line. Then,
Eq. (10) needs only one bus transaction to fetch histogram Qf into cache.

Fig. 4. On-vHLL sketch consists of multiple stages.

To mitigate the impact of outlier stages which have hash-
collided with superspreaders, we apply the average operator to
aggregate the flow spread estimation results of all the stages.

Symbol Definitions. Let s be the number of stages, which
is typically configured to four. In the lth stage with 0 ≤ l < s,
let M (l) be the register matrix, let Q(l) be the array of IUUs
for each column of M (l), and let N (l) be the IUU of the
entire matrix M (l). Suppose each stage configures the register
matrix with the same dimensions, i.e., the same number of
rows d and the same number of columns w. Each stage is
associated with a different hash function h(l) for its column
selection. Let M

(l)
f be the virtual estimator of flow f in the lth

stage, and let Q
(l)
f be the IUU of flow f in the lth stage. Then,

M
(l)
f [j] = M (l)

[
j, h(l)

(
h(f)

)
mod w

]
, with 0 ≤ j < d,

(13)

Q
(l)
f = Q(l)

[
h(l)

(
h(f)

)
mod w

]
. (14)

We give each stage l ∈ [0, s) a unique hash function h(l).
We apply h(l) to the 32-bit fingerprint h(f) of a flow ID
f , so that f can be randomly mapped to different columns
h(l)

(
h(f)

)
mod w in different stages. We have shown this

phenomenon in Fig. 4. Here, we apply a stage’s unique
hash function h(l) to the fingerprint h(f), instead of flow
ID f , to implement the swap-out mechanism of prefilter in
Section VI.

The procedure of On-vHLL can be divided into two parts:
sketch update and sketch query. We describe them separately.

Online Sketch Update. As a packet arrives carrying flow
ID f and element ID e, in order to track the cardinality of
flow f , we need to update M

(l)
f , Q

(l)
f and N (l) in each stage

l ∈ [0, s).
We present the Algorithm 1 to processes an arrival element

e with flow ID f . For each lth stage, we run the code in
lines 2-6. At line 2, we apply the hash function h(l) to the
arrival flow element f ⊕ e, where ⊕ is the concatenation
operator. Then, we extract the initial b bits as j and the
remaining bits as q. Line 3 calculates ρ(q), which is 1 plus
the longest run of leading zeros in the binary format of q,
and compares it with the register M

(l)
f [j]. If ρ(q) is larger,

we update the IUU N (l) of total cardinality at line 4, update
the IUU Q

(l)
f at line 5, and update the register M

(l)
f [j] at line 6.

We still maintain N (l), since (8) is a faster way to estimate
total cardinality than (11).

Online Sketch Query. After inserting the arrival packet
⟨f, e⟩ into the sketch, we estimate the spread of the flow f .
The query procedure is shown in the right-hand side of Fig. 4.
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Algorithm 1 Update On-vHLL When a Packet Arrives
Data: Flow ID f , Element ID e

1 foreach l ∈ [0, s) do
2 x = h(l)(f ⊕ e), j = ⟨x1x2 . . . xb⟩, q = ⟨xb+1 . . .⟩
3 if ρ(q) > M

(l)
f [j] then

4 N (l)[M (l)
f [j]] −= 1, N (l)[ρ(q)] += 1

5 Q
(l)
f [M (l)

f [j]] −= 1, Q
(l)
f [ρ(q)] += 1

6 M
(l)
f [j] = ρ(q)

Firstly, we query the s stages in parallel, each of which
gives an independent estimation of the flow spread denoted
by n̂

(l)
f . For On-vHLL, each stage has w columns of registers,

and each column is associated with a query acceleration unit,
called IUU. Let Q

(l)
f be the IUU of the column picked by flow

f in stage l, which is defined in (14). Then, we have

n̂
(l)
d = αd · d2 · (

∑31
v=0 Q

(l)
f [v] · 2−v)−1 (15)

n̂
(l)
f = w

w−1

(
n̂

(l)
d − 1

w n̂(l)
)
, (16)

where α is bias corrector with α16 ≈ 0.673, α32 ≈ 0.697,
α64 ≈ 0.709, αd ≈ 0.7213/(1+1.079/d) when d ≥ 128, and

n̂(l) =
∑w−1

i=0 αd · d2 ·
( ∑31

v=0 Q(l)[i][v] · 2−v
)−1

, (17)

or n̂(l) = αwd · (wd)2 · (
∑31

v=0 N (l)[v] · 2−v)−1, (18)

where the matrix IUU N (l) and the column IUU Q(l) have
the relation N (l)[v] =

∑w−1
i=0 Q(l)[i][v]. Eq. (17) is completely

unbiased, while Eq. (18) has a small degree of bias but runs
faster. We can prove n̂

(l)
f is an unbiased estimation of nf [29].

Secondly, we aggregate the estimated results of all stages to
obtain a more accurate estimate n̂f of the flow f ’s cardinality.

n̂f = 1
s

∑
0≤l<s n̂

(l)
f (19)

This query result n̂f may be inserted into a min-heap to help
record the flow IDs of top-k superspreaders, or be compared
with a predefined threshold for security alarming, depending
on the detailed applications built upon the On-vHLL sketch.

Accuracy Evaluation. For the flow spread estimator
in (19), we have analyzed its bias and variance in the
appendix online [29]. We have proved that it is unbiased with
E(n̂f ) ≈ n, and

V ar(n̂f ) = 1
s

(
w

w−1

)2(γ2
d

d A2 + (γ2
d

d + 1)B + γ2
d

wd ( n
w )2

)
,

(20)

where γd is 1.04 for On-vHLL, when the number of registers
in a virtual estimator d ≥ 128. The definitions of A and B are

A = nf + (n− nf ) 1
w , B = (n− nf ) 1

w (1− 1
w ). (21)

E. Implementation Issues on Hardware Data Plane
Our multi-stage sketch design may be deployed on either

software data plane (e.g., Open vSwitch and VPP) or hardware
data plane (e.g., Intel Tofino). The latter platform can provide
much higher packet processing throughput, but has much
more programming restrictions than the former. Although the
query operation of our On-vHLL has been redesigned to have

O(1) time cost, it still needs a few modifications before the
deployment on hardware data plane with many implementation
restrictions. To prove that our On-vHLL sketch is indeed
suitable for hardware data plane, we have developed a system
prototype based on the P4-programmable Intel Tofino switch.

Firstly, our original design of IUU is a small array consisting
of 32 integers (called a histogram), which is difficult to be
scanned by the hardware data plane when we query the sketch,
since the data plane allows only a limited number of on-
chip memory accesses per packet. Therefore, we simplify the
definitions of the matrix IUU N (l) and the column IUU Q

(l)
f to

N (l) =
∑d−1

j=0

∑w−1
i=0 231−M(l)[j, i], (22)

Q
(l)
f =

∑d−1
j=0 231−M

(l)
f [j]. (23)

Clearly, the IUUs are not encoded as histograms anymore, but
as these two integer numbers. Since the value v of a 5-bit
HLL register ranges from 0 to 31, 231−v is always an integer
after the amplification by 231. So for the register matrix M (l)

of the lth stage, N (l) records the amplified denominator of
the harmonic mean of all its registers, and Q

(l)
f records the

amplified denominator of the harmonic mean of the registers
on its column h(l)(f) mod w. The IUUs in (22) and (23) can
be incrementally updated per packet. So we can change the
IUU update commands at the lines 4 and 5 of Algorithm 1 to

N (l) −= 231−M
(l)
f [j] − 231−ρ(q), (24)

Q
(l)
f −= 231−M

(l)
f [j] − 231−ρ(q). (25)

Secondly, the flow spread estimation formulas in (15),
(17) and (18) relies on harmonic average computation,
which has to manipulate a series of floating numbers 2−v ,
1 ≤ v ≤ 31. However, in order to keep up with high line speed
at hundreds of Gbps, many hardware implementations of data
plane, for example, by P4 language [30], do not support the
floating number calculations and other complex operations,
e.g., logarithmic and exponential functions. So using the
above new definitions of IUUs, we simplify the flow spread
estimation formulas as

n̂
(l)
d = αd·d2·231

Q
(l)
f

, (26)

n̂(l) =
∑

0≤i<w
αd·d2·231

Q(l)[i]
or n̂(l) = αwd·(wd)2·231

N(l) , (27)

n̂
(l)
f = w

w−1

(
n̂

(l)
d − 1

w n̂(l)
)
. (28)

Note that the division operator is also not supported by the P4
language, but can be implemented by the advanced computing
units named MathUnit, available on the Intel Tofino switch.

Another subtle issue originates from the memory access
restriction of P4-programmable Tofino switch: During hard-
ware synthesis, it allows a packet processing “pipeline” to
apply at most one read and one write operations to an on-
chip register. In order for our multi-stage design not to violate
this rule, we implement each stage of the On-vHLL sketch
by a pipeline of the Tofino switch. As a result, the memory
allocation and per-packet memory accesses of these pipelines
(or stages) are completely isolated from each other. Then,
for the lth pipeline, we allocate the three kinds of registers
M

(l)
f , Q

(l)
f and N (l). When each packet passes through the

lth pipeline, it needs to apply only one read and one write to
each kind of the registers.
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V. MORE ACCURATE SKETCH WITH SMALLER REGISTERS

Although our On-vHLL sketch can reduce the time cost
of querying a flow f ’s spread to O(1), its spread estimation
error nearly doubles as compared with vHLL [5], as shown
later by Fig. 11 and Fig. 12 in the experiments. So in
this section, to compensate the accuracy loss, we propose
a new sketch named Ton-vHLL (Tail-cut Online virtual
HyperLogLog). It can reduce the memory cost by 50% as
compared with On-vHLL, or equivalently, it can reduce the
spread estimation error by 30% when they are given the same
amount of memory.

The key technique of Ton-vHLL is to compress each HLL
register used by On-vHLL from 5 bits to 4 bits, without
degrading its flow spread estimation accuracy. Moreover,
for many industrial projects, each 5-bit HLL register is
implemented by a byte, so that each register can be quickly
located in a byte array, which however will waste 3 bits in each
byte. If we can compress each register from 5 bits to 4 bits,
it means we allow each byte to hold two registers without
wasting any bit. Thus, a 4-bits HLL register can in fact save
50% memory.

Basic Idea. To motivate our new register design, we re-
examine the old design of a HLL register. HyperLogLog is
an excellent cardinality estimation algorithm, providing 1.04√

d
relative estimation error at the expense of 5d bits memory,
where d is the number of HLL registers. Each register is given
5 bits, so that the counting range is as large as 225

= 232 ≈ 4 ·
109. Let nd be the number of unique elements that are mapped
to these d registers. Consider a column of registers Mf picked
by the flow f in the matrix M . Here, for simplicity, we omit
the index of the stage l. According to [9], the probability for
a HLL register Mf [j] defined in (13) to carry a value v is

Pr{Mf [j] = v}

=


(1− 1

d
)nd if v = 0

(1− 1
d 2v

)nd − (1− 1
d 2v−1

)nd if v ≥ 1,

where nd is the number of unique elements that are mapped
to the column Mf , and may or may not belong to the flow f .

In Fig. 5, we show the probability distribution for a HLL
register to carry different values. The red curve is theoretical
probability given by the above formula. The black histogram
shows the empirical distribution. In plot (a), the number of
registers d = 512 and the number of elements nd = 128d.
In plot (b), d = 8192 and nd = 1024d. Clearly, the shape
of the distribution is not significantly affected by d and nd.
As the load factor nd

d decreases or increases, the distribution
only shifts leftwards or rightwards. As the number of registers
d grows from 512 to 8192 in plot (a) and (b), the empirical
histogram becomes more consistent with the theoretical curve.

Moreover, according to our observation in experiments, the
histogram of register values always shows a strongly right-
skewed distribution, whose left tail follows a steep slope, and
whose right tail is long and thin. The distance between the
minimum register and the maximum register is no larger than
16 for most circumstances, both when the number of registers
d is configured to a small value 512 or a large value 8192.
This inspires us to track the current minimum value for the
column of HLL registers in Mf by additionally maintaining

Fig. 5. Probability distributions of register values, for a varying number of
registers d and a varying number of elements nd.

a base register Bf . With this known minimum register value,
the registers in Mf can store their own offsets relative to Bf ,
which can be encoded by only four bits without accuracy loss.

The previous work [13] mentioned a similar technique that
compresses a 5-bit HLL register to a 4-bit offset register.
However, this technique needs to maintain a base register that
records the minimum value for an array of HLL registers. This
cannot be realized for the vHLL [5], since the registers of a
virtual estimator are scattered in the vHLL’s register matrix in
Fig. 2. But it becomes possible for our new On-vHLL, since
the registers of a virtual estimator are hashed to one same
column in Fig. 3. For that column of registers, it is possible to
maintain a base register. Additionally, the time cost of updating
the base register in [13] is O(d) by scanning the column of d
registers, but we can leverage the column’s IUU histogram to
update the base register more efficiently with O(1) time cost.

Base Register and Offset Registers. Thanks to our
mapping of a flow ID f to a column as shown in Fig. 3,
it now becomes possible to maintain a base register B[i] for
each ith column of registers in the matrix M , which can help
compress that column of 5-bits registers to an array of 4-bits
offset registers.

Suppose we have a multi-stage design as in Fig. 4. Let M (l)

be the d×w matrix of HLL registers in the l-th stage. Let B(l)

be the array of base registers in the l-th stage, whose length
is w. The ith base register B(l)[i], 0 ≤ i < w, is to record the
smallest value among the ith column of HLL registers in M (l).

B(l)[i] = min0≤j<d M (l)[j, i] (29)

This base register can be updated with O(1) time cost as each
packet arrives, thanks to the column-wise IUU Q̃

(l)
f defined

latter in (36). Let M̃ (l) be the d×w matrix of offset registers in
the l-th stage, relative to the base registers B(l). Then, we have

M̃ (l)[j, i] = max
(
M̃ (l)[j, i], ρ(q)−B(l)[i]

)
, (30)

where j is the row index, i the column index, and for the arrival
element e with flow ID f , we calculate the following four hash
values x = h(l)(e), j = ⟨x1x2 . . . xb⟩, q = ⟨xb+1xb+2 . . .⟩,
and i = h(l)(f) mod w. Recall that ρ(q) is 1 plus the longest
run of leading zeros in the binary format of the hash value q.

However, since each offset register M̃ (l)[j, i] is given only
four bits memory, it has an upper bound of recording the
offset value ρ(q)−B(l)[i], which is denoted as K = 24 = 16.
Considering the upper bound K, (30) needs to be modified as

M̃ (l)[j, i] = max
(
M̃ (l)[j, i], min(ρ(q)−B(l)[i], K − 1)

)
,

(31)

where min operator is to round down the offset to its largest
possible value K− 1, when it surpasses the bound K. We call
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this rounding technique TailCut, because it essentially cuts off
the long tail of the probability distribution of HLL register
values shown in Fig. 5 beyond a floating bound B[i] +K.

With the base register array B(l) and the offset register
matrix M̃ (l), we can estimate the cardinality of a flow n̂

(l)
f by

n̂
(l)
d = αd · d2 ·

( ∑d−1
j=0 2−B

(l)
f −M̃

(l)
f [j]

)−1
, (32)

n̂(l) =
∑w−1

i=0 αd · d2 ·
( ∑d−1

j=0 2−B(l)[i]−M̃(l)[j,i]
)−1

, (33)

and then we estimate n̂
(l)
f by (16). Here, B(l) is the array of

base registers in (29), and we define the jth offset register
M̃

(l)
f [j] and the base register B

(l)
f selected by the flow f as

M̃
(l)
f [j] = M̃ (l)

[
j, h(l)

(
h(f)

)
mod w

]
, with 0 ≤ j < d,

(34)

B
(l)
f = B(l)

[
h(l)

(
h(f)

)
mod w

]
= min0≤j<d M

(l)
f [j],

(35)

where h(l) is a unique hash function given to the lth stage,
which is applied to the 32-bit fingerprint h(f) of the flow f to
pseudo-randomly select a column, and M̃ (l) is the matrix of
offset registers for lth stage, which has been explained in (31).

Online Sketch Query. The cardinality query formula in
(32) has high time cost at the scale of O(d). It has not yet
leveraged the column-wise IUU (incremental update units) in
Fig. 3 to reduce the query time cost. We will present our Ton-
vHLL sketch, whose matrix of registers M̃

(l)
f are compressed

to four bits each, and which can be queried online by O(1)
time cost.

Let Q̃(l) be an array of w IUUs, each of which is used to
accelerate the cardinality query of a column of offset registers
in M̃ (l). The ith IUU Q̃(l)[i] consists of K counters, which
are to record for any integer value v ∈ [0,K) how many offset
registers carry the v value among the ith column of M̃ (l). More
specifically, the vth counter Q̃(l)[i, v] records the number of
offset registers that carry the value v, among the offset registers
M̃ (l)[j, i], 0 ≤ j < d. Similar to (35) and (34), we can define
the IUU hashed by a flow f , which can simplify our formula:

Q̃
(l)
f [v] = Q̃(l)

[
h(l)

(
h(f)

)
mod w

]
[v] =

∑
0≤j<d

1
M̃

(l)
f [j]=v

,

(36)

where 1
M̃

(l)
f [j]=v

is an indicator function which equals 1 if the

condition M̃
(l)
f [j] = v satisfies, and equals 0 otherwise. With

B
(l)
f in (35) and Q̃

(l)
f [v] in (36), we rewrite (32) and (33) as

n̂
(l)
d = αd · d2 ·

( ∑K−1
v=0 Q̃

(l)
f [v] · 2−B

(l)
f −v

)−1
, (37)

n̂(l) =
∑w−1

i=0 αd · d2 ·
( ∑K−1

v=0 Q̃(l)[i][v] · 2−B(l)[i]−v
)−1

.
(38)

The time overhead of (37) is O(1), since K is a constant. The
time cost of (38) is also O(1), because it can be incrementally
updated as each packet arrives. Their results can be applied to
(16) to obtain n̂

(l)
f , the estimated flow cardinality by the lth

stage, which can be further applied to (19) to obtain n̂f , the
estimated cardinality of flow f by all the stages.

Online Sketch Update. We present the Algorithm 2 to
update the column of offset registers M̃

(l)
f , the base register

B
(l)
f , the column IUU Q̃

(l)
f , and the matrix IUU N (l), upon the

arrival of a flow element. At the beginning of a measurement
period, all of them M̃

(l)
f , B

(l)
f , Q̃

(l)
f and N (l) are reset to zeros.

Algorithm 2 Update Ton-vHLL When a Packet arrives
Data: Flow ID f , Element ID e

1 foreach l ∈ [0, s) do
2 x = h(l)(f ⊕ e), j = ⟨x1x2 . . . xb⟩, q = ⟨xb+1 . . .⟩
3 if ρ(q)−B

(l)
f ≥ K then

// ∆B = min0≤j<dM̃
(l)
f [j] has O(d) cost

4 ∆B = min
(
{v | Q̃

(l)
f [v] ̸= 0 ∧ 0 ≤ v < K}

)
5 if ∆B > 0 then
6 B

(l)
f += ∆B

7 foreach j ∈ [0, d) do M̃
(l)
f [j] −= ∆B

8 foreach v ∈ [∆B,K) do Q̃
(l)
f [v−∆B] = Q̃

(l)
f [v]

9 y = min(ρ(q)−B
(l)
f , K − 1)

10 if y > M̃
(l)
f [j] then

11 N (l)
[
B

(l)
f + M̃

(l)
f [j]

]
−− , N (l)

[
B

(l)
f + y

]
++

12 Q̃
(l)
f

[
M̃

(l)
f [j]

]
−− , Q̃

(l)
f

[
y
]
++

13 M̃
(l)
f [j] = y

Whenever a packet arrives with a flow ID f and an element
e, we use Algorithm 2 to update the multi-stage Ton-vHLL
sketch. For each lth stage, we run the code in lines 2-13, which
are explained below. At line 2, we apply the lth stage’s hash
function h(l) to the arrival flow element f ⊕ e, where ⊕ is the
concatenation operator. Then, we extract the initial b bits as j,
and treat the remaining bits as q. Line 3 computes the offset
of ρ(q) relative to the base register B

(l)
f . If it is larger than

or equal to the upper bound K, the offset ρ(q)−B
(l)
f exceeds

the capacity of the register M̃
(l)
f , which is called “overflow”.

We handle this overflow event by lines 4-8. Line 4 computes
the increment ∆B to the base register B

(l)
f . There are two

calculation methods. The first is proposed by [13], i.e., ∆B =
min0≤j<dM̃

(l)
f [j], which scans the column of offset registers

M̃
(l)
f [j] defined in (34) to find the minimum. The time cost of

this method is O(d). By contrast, the second method computes
∆B, leveraging the column-wise IUU Q̃

(l)
f defined in (36).

Clearly, this method has O(1) time cost. So we use it at Line 4.
If ∆B > 0 at line 5, we add it to the base register B

(l)
f at

line 6, update the offset registers M̃
(l)
f [j] at line 7, and update

the column IUU Q̃
(l)
f at line 8. With a high probability, the

overflow event will disappear after increasing the base with
∆B. If not, we must round down the offset ρ(q) − B

(l)
f to

K− 1 at line 9, to obtain an offset value y. If y > M̃
(l)
f [j] at

line 10, we increase the offset register M̃
(l)
f [j] to y at line 13.

Before that, we update the matrix IUU N (l) for total spread at
line 11, and update the flow f ’s column IUU Q̃

(l)
f at line 12.

Sketch Merging. For a data sketch, an important feature is
the mergeability, i.e., any two On-vHLL or Ton-vHLL sketches
that are collected from different locations can be merged to
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capture the global information about per-flow spreads. Assume
that the two sketches are configured with the same parameters,
including the number of stages s, the number of rows d, the
number of columns w, and the hash seeds of h(l) and h.

The merging of two sketches must be performed column by
column for each stage, since each column of offset registers
has its own base register and IUU. To ease the presentation,
we show only the column merging process in Algorithm 3.
Suppose we want to merge the second sketch into the first
sketch. In the lth stage of the first sketch, let M̃

(l)
f be the

column of offset registers chosen by a flow f , which has its
own base register B

(l)
f and IUU Q̃

(l)
f . In the lth stage of the

second sketch, we use W̃
(l)
f to denote its column of offset

registers chosen by the same flow f , which is associated with
the base register β

(l)
f and the column IUU Φ̃(l)

f . Therefore,
Algorithm 3 is to merge the second column into the first.

Algorithm 3 Merge Second Column of Registers Into first

Data: offset registers M̃
(l)
f , base register B

(l)
f , IUU Q̃

(l)
f

offset registers W̃
(l)
f , base register β

(l)
f , IUU Φ̃(l)

f

1 ∆B = min
(
{v | Q̃

(l)
f [v] ̸= 0 ∧ 0 ≤ v < K}

)
2 ∆β = min

(
{v | Φ̃(l)

f [v] ̸= 0 ∧ 0 ≤ v < K}
)

3 newB = max(B(l)
f + ∆B, β

(l)
f + ∆β), newQ̃ = 0

4 foreach j ∈ [0, d) do
5 N (l)

[
B

(l)
f + M̃

(l)
f [j]

]
−−

6 M̃
(l)
f [j] = min

(
K− 1,

max(B(l)
f + M̃

(l)
f [j], β

(l)
f + W̃

(l)
f [j])− newB

)
7 N (l)

[
newB + M̃

(l)
f [j]

]
++, newQ̃

[
M̃

(l)
f [j]

]
++

8 B
(l)
f = newB, Q̃

(l)
f = newQ̃

At lines 1 and 2, we use the IUUs Φ̃(l)
f and Q̃

(l)
f to

quickly compute the increments to the base registers ∆β and
∆B, respectively. Then, at line 3, we calculate the new base
newB after the merging, and initialize the new IUU newQ̃

to zeros. At line 5, before updating the offset register M̃
(l)
f [j],

we decrement its corresponding bar in the matrix IUU N (l).
At line 6, we use the maximum operator to merge the jth
register β

(l)
f +W̃

(l)
f [j] and the jth register B

(l)
f +M̃

(l)
f [j], which

is a common practice to merge two HyperLogLog registers.
If the merging result minusing the new base newB exceeds
the bound K = 24, we round it down to K − 1, so that a 4-
bit offset register M̃

(l)
f [j] can encode the result. After merging

the register W̃
(l)
f [j] into M̃

(l)
f [j], at line 7, we correspondingly

increment the matrix IUU N (l), and the column IUU newQ̃.
After finishing the register merging, at line 8, we update the
column base B

(l)
f , and the column IUU Q̃

(l)
f , to finish merging

a pair of columns. Note that to finish merging a pair of Ton-
vHLL sketches, we must merge all their s·w pairs of columns.

VI. MORE ACCURATE SKETCH
AUGMENTED BY PREFILTER

There is a common design for vHLL [5], On-vHLL, and
Ton-vHLL. The matrix of registers M (l) or M̃ (l) are shared
by all flows. As a result, when some flows are hashed to

the same registers with a flow f , their elements will become
external noises to the cardinality estimation of the flow f .
Although the cardinality of noises has been removed in (16)
by subtracting their expected value 1

w n̂(l), the noises inevitably
fluctuate when a different set of flows are hashed to share the
same registers as f . This noise fluctuation problem becomes
more severe for our On-vHLL and Ton-vHLL than vHLL [5],
because the memory sharing design shifts from register-level
to a much coarser column-level, as shown in Fig. 2 and Fig. 3.

In this section, we separate the top-k superspreaders, whose
cardinalities are the top-k largest among all flows from
other smaller flows, and give each of them an exclusively
owned column of HyperLogLog registers, which are free
from external noises, therefore appreciably improving their
cardinality estimation accuracy. This is a mission impossible in
this past, because the traditional sketches for tracking the per-
flow cardinality, such as vBitmap [4] and vHLL [5], are too
time expensive to query online. By contrast, our On-vHLL and
Ton-vHLL sketches can be queried with O(1) time complexity.

As a result, when a packet arrives with a flow ID f , we can
check whether the cardinality of f is above a threshold or
ranked top-k. If the answer is yes, we can move the flow
f from the sketch to the prefilter. This has two benefits: It
dramatically improves the estimation accuracy of the top-k
superspreaders, since in the prefilter they will have exclusive
owned memory for their spread estimation and no interference
from other flows. It can also moderately improve the accuracy
of small and medium flows. This is because the sketch
has much smaller noises, after the top-k superspreaders are
swapped into the prefilter, whose future arrival packets will be
absorbed by the prefilter, bypassing the sketch. Note that this
optimization is orthogonal with the improvement in Section V.

Data Structure. We propose an algorithm named Aton-
vHLL (Adaptive tail-cut online virtual HyperLogLog).
As shown in Fig. 6, its data structure has two components:
a prefilter and a multi-stage Ton-vHLL sketch. Each stage of
the sketch is implemented by the base register array B(l), the
offset register matrix M̃

(l)
f , the column IUU Q̃(l), and the

matrix IUU N (l), similar to the symbols defined in Section V.
We will leverage the sketch’s online query result to sample
and hold the top-k superspreaders into the prefilter. In Fig. 6,
we illustrate the basic idea how to maintain the prefilter: When
a flow f grows to be a top-k superspreader as its packets arrive,
we will swap it from the sketch into the filter. When f is no
longer ranked top-k, we will swap it out from the filter to the
sketch.

We implement the prefilter by a min-heap structure, so that
the flow with the smallest cardinality in the prefilter is always
placed at the root. This can help quickly evict the smallest flow
that is no longer ranked top-k. More specifically, as shown in
Fig. 6, the prefilter consists of a key array K, an index array
X , and a register matrix W̃ . We elaborate them in following.

• The key array K is to record the 16-bit fingerprints of the
top-k superspreaders. For an arbitrary flow f , we apply
the general hash function h to obtain a 16-bit fingerprint
h(f) mod 216, which is treated as the shortened ID of the
flow. To check whether a flow f exists in the prefilter,
we need to scan the key array K to search for a fingerprint
that exactly matches h(f) mod 216. Let K[f ] be this flow
searching operation in the key array K. If the flow f does
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Fig. 6. Aton-vHLL consists of a prefilter and a multi-stage sketch.

not exist, it returns NIL; Otherwise, it returns the array
index where f is found. Note that we can accelerate the
flow searching speed by 256bits

16bits = 16 times or 512bits
16bits =

32 times, if we use the SIMD (Single Instruction Multiple
Data) instructions of modern CPUs, i.e., AVX2 or
AVX-512 [28].

• The index array X is to translate an index of the key
array K to a column index of the register matrix W̃ .
When the key searching result K[f ] ̸= NIL, we can use
X

[
K[f ]

]
to find the mapped column index of the flow

f in the register matrix W̃ . For example, in Fig. 6, the
flow f is given a dedicated column of registers with the
index 3 in the register matrix W̃ . Thanks to the index
array, when we adjust the min-heap to keep the smallest
flows at the root, we only have to adjust the key array
K and the index array X , with no need to relocate the
heavy-weighted columns in the matrix W̃ .

• The register matrix W̃ is to allocate an exclusively owned
column of HLL registers, for each cached flow f in
the key array K. As shown in Fig. 6, we partition the
value matrix horizontally into equal-size chunks, and each
chuck has d HLL registers. Let W̃ (l) be the lth partition
of W̃ , which is associated with the hash function h(l), the
same as the lth stage M̃ (l) of the sketch, 0 ≤ l < s. Let
W̃

(l)
f be the HLL estimator allocated to the flow f in the

partition W̃ (l). If the flow f exists in the key array with
K[f ] ̸= NIL, we can define W̃

(l)
f = W̃ (l)

[
X

[
K[f ]

]]
.

Next, we define the jth register of this HLL estimator
W̃

(l)
f [j] as follows.

W̃
(l)
f [j] = W̃ (l)

[
X

[
K[f ]

]](l)

[j], if K[f ] ̸= NIL
(39)

Of course, it is much better to associate an IUU to each
estimator W̃

(l)
f , so that we need only O(1) time cost to

estimate the cardinality of a flow. These IUUs are shown
as gray blocks and denoted as Φ̃(l)

f in Fig. 6. Thanks to
the accelerated query speed, we can compare the estimated
cardinalities of any two flows at low time cost. This helps

us to quickly adjust the min-heap, keeping the smallest flow
always at the root. Besides IUUs, we will apply the TailCut
optimization to the HyperLogLog estimator W̃

(l)
f , so that its

d registers can be compressed from 5 bits each to 4 bits each
for saving memory. In Fig. 6, we show this optimization as
horizontal dashed lines cutting through the cells of the register
matrices W̃ (l), which splits the bytes into 4-bit offset registers.
During the swap-in of a flow f from the sketch to the prefilter,
we take snapshots of the total cardinality n̂(l) in the sketch,
and copy them to the prefilter, which are denoted by η̂

(l)
f .

Algorithm 4 Query Aton-vHLL as a Packet arrives
Data: Flow ID f

1 if K[f ] ̸= NIL then // whether the filter holds f
2 foreach l ∈ [0, s) do // query the prefilter

3 n̂
(l)
d = αd · d2 ·

(∑K−1
v=0 Φ̃

(l)
f [v] · 2−β

(l)
f
−v)−1

4 copy the total cardinality n̂(l) from the snapshot η̂
(l)
f

5 estimate the flow cardinality n̂
(l)
f by (16)

6 else
7 foreach l ∈ [0, s) do // query l-th stage of sketch

8 estimate the column cardinality n̂
(l)
d by (37)

9 estimate the total cardinality n̂(l) by (38)
10 estimate the flow cardinality n̂

(l)
f by (16)

11 return n̂f estimated by aggregating n̂
(l)
f , 0 ≤ l < s, by (19)

Online Query. We present the Algorithm 4 to generate a
cardinality estimation n̂f for an arbitrary flow f . At line 1,
we check whether f exists in the key array K of the prefilter.
If yes, we query each l-th partition of the prefilter at lines 3-5.
Otherwise, we query each lth stage of the Ton-vHLL sketch
at lines 8-10. At line 11, we aggregate the flow cardinality
estimate n̂

(l)
f given by the lth partition or stage, 0 ≤ l < s,

to obtain an online estimated result n̂f .
Online Insertion. We present the Algorithm 5 to insert

the arrival packet ⟨f, e⟩ into the prefilter and the sketch.
At line 1, we check whether the flow f exists in the key
array K of the prefilter. If yes, at lines 2-12, for each lth
partition of the prefilter, we update the column allocated to
the flow f . For example, in Fig. 6, the column 3 is given
to the flow f , as indicated by the arrays K and X . We update
the base register β

(l)
f at line 7, the column of registers W̃

(l)
f at

lines 8&12, and the column IUU Φ̃(l)
f at lines 9&12. Since this

part is similar to Algorithm 2, we do not explain it in details.
Note that we do not need to update the total cardinality η̂

(l)
f ,

which is already determined when the flow f is swapped out
of the sketch into the filter. Since the spread of flow f is
increased, at line 13, we sift-up the flow f to restore the min-
heap property. At line 14, we end the function execution to
bypass the sketch updating.

When the flow f does not exist in the key array K,
at line 15, we insert the packet ⟨f, e⟩ into the Ton-vHLL sketch
by Algorithm 2. After updating the sketch, at line 16, we use
Algorithm 4 to online query the sketch for the cardinality of
the flow f at O(1) time cost. If the estimated cardinality n̂f is
smaller than a predefined threshold, then we stop the execution
at line 17 to avoid unnecessary swap in and out. At line 18,
if the prefilter is full already, then we retrieve the flow f ′ at the
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Algorithm 5 Update Aton-vHLL as a Packet arrives
Data: Flow ID f , Element ID e

1 if K[f ] ̸= NIL then
2 foreach l ∈ [0, s) do // update the flow in filter
3 x = h(l)(h(f ⊕ e)), j = ⟨x1 . . . xb⟩, q = ⟨xb+1 . . .⟩
4 if ρ(q)− β

(l)
f ≥ K then

5 ∆β = min
(
{v | Φ̃

(l)
f [v] ̸= 0 ∧ 0 ≤ v < K}

)
6 if ∆β > 0 then
7 β

(l)
f += ∆β

8 foreach j ∈ [0, d) do W̃
(l)
f [j] −= ∆β

9 foreach v∈[∆β,K) do Φ̃
(l)
f [v−∆β]=Φ̃

(l)
f [v]

10 y = min(ρ(q)− β
(l)
f , K − 1)

11 if y > W̃
(l)
f [j] then // modify the filter

12 Φ̃
(l)
f

[
W̃

(l)
f [j]

]
−−, Φ̃

(l)
f

[
y
]
++, W̃

(l)
f [j] = y

13 if filter has been modified then sift down f in min-heap
14 return // bypass the sketch and return

directly

15 insert ⟨f, e⟩ into Ton-vHLL sketch by Algorithm 2
16 estimate the flow f ’s cardinality n̂f by Algorithm 4
17 if n̂f ≤ c · n̂ / w then return // set a threshold
18 if prefilter is full then
19 n̂f ′ = minimum spread in the prefilter with flow ID f ′

20 if n̂f ≤ n̂f ′ then return // not a superspreader
21 foreach l ∈ [0, s) do // swap out the flow f ′

22 for f ′, use Algorithm 3 to merge its column of prefilter
into its column of Ton-vHLL sketch, i.e.,W̃

(l)

f ′ , β
(l)

f ′ ,
Φ̃

(l)

f ′⇒ M̃
(l)

f ′ , B
(l)

f ′ , Q̃
(l)

f ′

23 replace flow ID f ′ by the new superspreader f in K
24 else
25 append flow ID f to the end of key array K

26 find an empty column in W̃ , and allocate it to f

27 foreach l ∈ [0, s) do // swap in new superspreader f

28 η̂
(l)
f = n̂(l) // take a snapshot of
total spread

29 W̃
(l)
f = M̃

(l)
f , Φ̃

(l)
f = Q̃

(l)
f , β

(l)
f = B

(l)
f // copy

30 adjust the prefilter to restore the min-heap property

root of the min-heap by line 19, whose estimated cardinality
n̂f ′ is the smallest in the prefilter. If the cardinality n̂f of the
arrival flow f is no larger than n̂f ′ , then at line 20, we can stop
the because the flow f is not ranked top-k. Otherwise, the flow
f surpasses the flow f ′, and becomes the new superspreader.

To make room for the new superspreader f , we use line 21
to swap out f ′ back to the sketch. Note that we do not know the
flow ID of the swap-out flow f ′, and we only know its 32-bit
fingerprint h(f ′) stored in the prefilter’s key array K. But still
we can use its fingerprint to locate its column in the sketch,
since in (13) we compute the mapped column by applying
the stage l’s unique hash function h(l) to the fingerprint, i.e.,
h(l)

(
h(f ′)

)
mod w. Then, we can reuse Algorithm 3 to merge

the column of prefilter of f ′ back into its column of Ton-
vHLL sketch. At line 23, we overwrite the flow f ′ by the
new superspreader f in the key array K, such that f can
directly occupy the register column in W̃ previously used
by f ′.

Lines 25-26 are to handle the case that the prefilter is
not full. Lines 27-29 swap in the new superspreader f from

the sketch to the prefilter, through directly copying. Finally,
the line 27 adjusts the prefilter to restore the min-heap
property.

VII. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the performance
of On-vHLL, Ton-vHLL and Aton-vHLL sketches, including
packet processing throughput, the number of memory accesses
and hashes per packet, flow spread estimation error, and
superspreader identification error. We also evaluate the impact
of parameters settings on proposed sketches.

A. Experiment Settings
We evaluate the proposed algorithms by trace-driven

simulations. Our network traces are from CAIDA, each of
which contains 1 billion packets [31]. Our paper mainly
considers “online query” scenario that a sketch is both updated
and queried for the spread of flow f , rather than “offline
query” scenario that a sketch is only updated as a packet
⟨f, e⟩ arrives.

vHLL [5] is an offline-query solution which uses sublinear
memory to estimate the per-flow spreads with excellent
accuracy, we choose it for accuracy comparison with our
sketches. A more recent sketch is rSkt [14], which has two
variants rSkt1 and rSkt2. The former can support online query
and has similar accuracy with rSkt. The latter provides better
accuracy than rSkt, but has high query time cost proportional
to the number of counting units. We also compare our
sketches with another recent work named AROMA [15], which
allocates an array of slots to sample the ⟨flowID, elementID⟩
pairs uniformly by the MinHash technique. AROMA can be
modified to an online-query variant named AROMA+, which
must allocate another ⟨flowID, number of sampled pairs⟩ hash
table to record all the flows whose pairs have been sampled
in the MinHash table.

When comparing the proposed sketches with vHLL, rSkt1,
rSkt2, AROMA and AROMA+, we evaluate the following
metrics. The first is update and query throughput, i.e., the
number of update or query operations per second, evaluated
on Intel Xeon Sliver 4214. The second is the average number
of memory accesses and hashes, needed by sketch update and
query. The third is the estimation error of per-flow cardinality.
We quantify the estimation error by relative bias, and root-
mean-square relative error (RMSRE), which are defined as

relative bias(X̂) = 1
r

∑
1≤i≤r

X̂i−Xi

Xi
, (40)

RMSRE(X̂) =
√

1
r

∑
1≤i≤r

(X̂i−Xi)2

X2
i

, (41)

where Xi is the actual value of a flow’s cardinality, X̂i is
its estimated cardinality, and r is the number of trials we
run a same experiment. The fourth metric is the identification
error of top-k superspreaders, quantified by false negative rate
(FNR) |D\D̂|

|D| , where D is the true set of superspreaders, and
D̂ is the set of flow IDs reported as superspreaders.

These sketches will be given the same amount of memory
in experiments. The memory cost of vHLL is w · 8d bits, On-
vHLL with multiple stages is w ·s ·8d bits, Ton-vHLL without
the prefilter is w ·s ·4d bits, Aton-vHLL is (k+w) ·s ·4d bits,
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Fig. 7. Compare vHLL, On-vHLL, Ton-vHLL, Aton-vHLL, rSkt1, rSkt2,
AROMA and AROMA+ on (a) Update and (b) Query throughput, with 128KB
(d = 128, AROMA slots = 10922, AROMA+ slots = 6553) or 1MB
(d = 1024, AROMA slots = 87381, AROMA+ slots = 52428) memory.

if we ignore the relatively small memory cost of IUUs. The
memory cost of rSkt1 and rSkt2 is w ·s ·8d bits, where s = 2,
since both of them consist of a primary HLL estimator and a
complement HLL estimator. The memory cost of AROMA is
96·8·slots bits. The memory cost of AROMA+ is 160·8·slots
bits, since it enhances AROMA with another HashMap for
online query, which occupies extra 64 · 8 · slots bits.

B. Throughput, Number of Memory Accesses and Hashes
In this subsection, we give the same amount of memory to

vHLL, rSkt1, rSkt2, AROMA, AROMA+, and our proposed
sketches. Then, we compare their performance on the packet
processing throughput, the number of memory accesses per
packet, and the number of hash function calls per packet.

In Fig. 7, we evaluate the update and query throughput in
the unit of mega packets per second (MPPS). Fig. 7a shows
that the update throughput of these sketches does not decline
as the estimator size grows. Our sketches can be updated faster
than rSkt1 and rSkt2, but slightly slower than vHLL, AROMA
and AROMA+. Fig. 7a also shows that Aton-vHLL has 20%
lower query throughput than On-vHLL and Ton-vHLL, due
to the additional CPU cycles according to Algorithm 5. In the
online query scenario, query throughput is more important than
update throughput, since query is much slower than update
and is the bottleneck of packet processing. Fig. 7b shows that
On-vHLL, Ton-vHLL, Aton-vHLL, rSkt1 and AROMA+ (or
vHLL, rSkt2 and AROMA) have their query throughput to
stay the same (or reduce linearly), when the memory size
increases with virtual estimator size d. Therefore, vHLL, rSkt2
and AROMA will be regarded as “offline query” sketches.
Fig. 7b also shows that our On-vHLL, Ton-vHLL, Aton-vHLL
have 2 to 3 times higher query throughput than rSkt1 and
AROMA+. This is because our sketches are based on the
multi-stage design shown in Fig. 7b, in which the stages can
execute parallelly as multiple pipelines in data plane.

To figure out the causes for the disparity in the throughput of
these sketches, we break down the packet processing time cost
into the number of memory accesses and hash function calls
per packet, which are evaluated separately in Fig. 8 and Fig. 9.

In Fig. 8, we evaluate the number of memory accesses
per packet when updating or querying. Fig. 8a shows that
all the sketches under comparison need less than 5 memory
accesses when updating, regardless of the estimator size.
Aton-vHLL needs more memory accesses when updating,
since it occasionally swaps in/out flows, and adjusts the
prefilter to restore the min-heap property. Whereas, situation
becomes different when querying. Fig. 8b shows that vHLL,
rSkt2 and AROMA need to access O(d) memory units
per query, and thus their number of per-packet memory

Fig. 8. Compare number of memory accesses of vHLL, On-vHLL,
Ton-vHLL, Aton-vHLL, rSkt1, rSkt2, AROMA and AROMA+ with the same
128KB and 1MB memory, when (a) updating and (b) querying.

Fig. 9. Compare number of hashes of vHLL, On-vHLL, Ton-vHLL,
Aton-vHLL, rSkt1, rSkt2, AROMA and AROMA+ with the same 128KB
and 1MB memory, when (a) updating and (b) querying.

accesses can be hundreds or even thousands, depending on
the configuration of virtual estimator size d. By contrast, this
number decreases to 2, when On-vHLL, Ton-vHLL or Aton-
vHLL are applied. Such dramatic reduction comes from the
caching of the intermediate results in IUUs. Fig. 8b also shows
that AROMA+ and rSkt1 can also be online queried. Their
numbers of memory accesses are 2 and 8, respectively, for the
query operation.

In Fig. 9, we evaluate the number of hash function calls per
packet when updating or querying. Fig. 9a shows that Aton-
vHLL and rSkt1 require more than 10 times of hashes, which
makes their updating throughput slightly slower than other
sketches. Fig. 9b shows that the sketches strongly differ, with
respect to their number of hashes for the query operation. Our
sketches need no more than 2 times of hashes, whereas vHLL
and rSkt2 need over 1000 times when querying, which will
dramatically slow down their packet processing throughput.

Since this paper focuses on online per-flow spread
estimation, in the rest of the evaluation, we will focus on
comparing with rSkt1 and AROMA+, which support online
query. As our proposed sketches can be regarded variants of
vHLL to support online query, we will also compare with
vHLL, in order to evaluate the degree of accuracy loss.

C. Flow Spread Estimation Error

We evaluate the relative bias and the RMSRE of per-flow
spread estimation, when all the solutions are given the same
amount of memory, which is either 128KB (i.e., 0.1 bit per
flow) or 1MB (i.e., 1 bit per flow).

In Fig. 10, we show that our sketches are unbiased at any
flow spread value, no matter whether the memory is 128KB
or 1MB. This is consistent with the theoretical analysis in
Eq. (20). We find that vHLL and AROMA+ are also unbiased,
but rSkt1 has −5% bias due to hash collision.

In Fig. 11, we illustrate the RMSRE of all spread values,
when all the sketches are given the same 128KB memory.
It shows that vHLL has excellent estimation accuracy. On-
vHLL trades its online query capability for more than 100%
higher error for small flows whose spreads range from 1 to
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Fig. 10. Compare the relative bias of per-flow spread estimation under the
same (a) 128KB memory, or (b) 1MB memory.

Fig. 11. Compare per-flow spread estimation error under 128KB memory.

Fig. 12. Compare per-flow spread estimation error under 1MB memory.

5000 due to more intense hash collisions. However, the
estimation error of On-vHLL is always lower than rSkt1 and
is lower than AROMA+ for larger flows, thanks to our multi-
stage design in Fig. 4. In order to further improve estimation
accuracy on small flows, we need a larger number of registers
swd, according to (20). Therefore, TailCut technique is
proposed to compress a register from one byte into 4 bits.
Smaller register size means more registers can be allocated
for the sketch, while the total memory remains the same.
Therefore, we can double the parameter d of Ton-vHLL and
Aton-vHLL, such that their virtual estimators are twice the size
of other sketches. As shown in Fig. 11, Ton-vHLL reduces
estimation error by 30% compared to On-vHLL. With the
addition of the pre-filter, Aton-vHLL dramatically improves
the estimation accuracy of flow spreads. It always outperforms
On-vHLL, Ton-vHLL and rSkt1 in Fig. 11b. Its estimation
error is over 50% lower than Ton-vHLL and AROMA+ for
flows whose spreads are above 1000. Aton-vHLL also attains
better accuracy than vHLL when flow spreads are larger
than 2500.

In Fig. 12, our proposed sketches still perform well under
1MB memory. For small spreads smaller than 1000 in (a),
the accuracy of On-vHLL and Ton-vHLL is similar to rSkt1,
but for large flows in (b), their accuracy are better than rSkt1
by 50%. Aton-vHLL has smaller errors than AROMA+ and
vHLL when the spread is larger than 100 and 300, respectively.
After being modified into the online-query version, AROMA+
suffers a relatively high cost in terms of memory consumption.
We need to pre-allocate at least α·M slots and each slot in the

HashMap requires 64 bits, which results in a 66.7% increase
in memory usage and worse accuracy under the same memory.
As we know, the average flow spread in CAIDA is about 1.8,
which means that a significant proportion of slots of AROMA+
will be filled with small flows. Therefore, AROMA+ does
not perform well when estimating medium and large flows.
By contrast, Aton-vHLL not only ensures the accuracy of the
estimation of superspreaders in the prefilter, but also improves
the accuracy of the estimation of small and medium flows
compared to On-vHLL and Ton-vHLL, since the large flows
will collide with the smaller flows less frequently.

D. Superspreaders Identification Error
In this subsection, we compare different solutions on the

identification error of the top-k superspreaders, which is
measured by false negative rate (FNR) in Fig. 13 and Fig. 14.

Fig. 13 shows that our three proposed sketches outperform
both rSkt1 and AROMA+ in detecting superspreaders under
128KB of memory. Aton-vHLL have comparable ability with
vHLL to detect the top-k superspreaders, slightly better
than On-vHLL and Ton-vHLL. Aton-vHLL’s FNR for top-
500 superspreaders is 65% lower than AROMA+ and is 33%
lower than rSkt1. Since the size of Aton-vHLL’s prefilter is
only 64, it cannot fit all the top-1000 superspreaders, so this
can prove that Aton-vHLL’s prefilter not only improves the
accuracy of large flows, but also reduces the noise in sketch,
thus improving the accuracy of small and medium flows.

When given more memory, like 1MB in Fig. 14, FNRs
of all the sketches become lower than 2% when k > 200.
In Fig. 14, our On-vHLL, Ton-vHLL and Aton-vHLL
outperform rSkt1 and AROMA+. Aton-vHLL in (d) has
the lowest FNRs of superspreader detection, comparing with
vHLL in (a), On-vHLL in (b), Ton-vHLL in (c), rSkt1 in
(e) and AROMA+ in (f).

E. Impact of Parameters on Spread Estimation Accuracy
In this subsection, we evaluate the impact of parameters on

the accuracy of our sketches, including the number of stages
s, the size of prefilter k, the number of columns in sketch w,
and the number of rows in both sketch and prefilter d.

1) Impact of k and w: The prefilter improvew accuracy by
allocating dedicated memory to the top-k superspreaders. If k
is configured larger, more flows can be held in prefilter and
fewer flows will be squeezed in sketch, resulting in smaller
noise and better accuracy. Meanwhile, if w is configured larger,
flows will be less disturbed by hash collision. However, the
sum of k and w is a fixed value due to memory constraint.
So we try to figure out the optimal setting of k, that is to say,
how much memory partitioned off from sketch is the most
worthy.

In the first experiment, we configure s = 4, k + w =
2048, d = 256 under 1MB memory and evaluate the impact
of k and w on accuracy. Fig. 15a shows that Aton-vHLL
is unbiased for all spread values, whatever k and w is.
Fig. 16a and Fig. 16b reveals that prefilter helps to reduce
RMSRE dramatically, not only the superspreaders, but also
the flows that are not accommodated in prefilter. For a flow
whose spread is 200 outside the prefilter, RMSRE decreases
24.5% due to the 64-column prefilter. When k is configured
larger, 512 for example, Aton-vHLL can achieve 47.4% lower
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Fig. 13. Compare the false negative rates of different algorithms for identifying the top-k superspreaders, when they are given the same 128KB memory.

Fig. 14. Compare the false negative rates of different algorithms for identifying the top-k superspreaders, when they are given the same 1MB memory.

Fig. 15. Evaluate the relative bias of per-flow spread estimation under 1MB
memory, in (a) different k and w settings, or (b) different s and d settings.

Fig. 16. Evaluate the RMSRE of per-flow spread estimation under the same
1MB memory, but assuming the different k and w settings.

RMSRE comparing with none-prefilter. However, the marginal
benefit of increasing k value decreases, and diminishes when
the size of prefilter reaches a certain bound. Also, oversized
prefilter may crowd sketch’s memory space, resulting in
performance degradation when estimating small and medium
flows. As a result, the accuracy when k = 512 outperforms
that when k = 1024. Afterwards, we choose k = 512 and
w = 1792 by default for Aton-vHLL under 1MB memory.
We conducted similar experiments with 128KB of memory
and found the best overall performance when k = 64 and set
it as the default parameter.

2) Impact of s and d: According to (20), larger s helps
mitigate the impact of hash collision among flows, and larger d
improves the accuracy of a virtual estimator. However, keeping
both parameters large will be infeasible due to memory limit.

In the second experiment, we configure k = 512, w =
1792, s · d = 1024, and evaluate the impact of s and
d on estimation error. Fig. 15b shows that Aton-vHLL is
unbiased under every pair of s and d setting. In Fig. 17a
and Fig. 17b, when s is configured larger, Aton-vHLL attains
better accuracy for small and medium flows under 1000. When
d is configured larger, Aton-vHLL attains better accuracy for

Fig. 17. Evaluate the RMSRE of per-flow spread estimation under the same
1MB memory, but assuming the different s and d settings.

large flows, since large flows are less affected by noise but
sensitive to HLL estimator size. Besides, increasing s will
not affect the throughput, because the multi-stage Aton-vHLL
can be implemented in multi-core or multi-pipeline systems,
as explained in Section IV-E. We conducted experiments with
128KB of memory, and get similar result. To strike a balance
between accuracy of small flows and large flows, we assign
the number of stages s = 4 by default.

VIII. CONCLUSION

For network traffic measurement, it is an important problem
to estimate the per-flow cardinality, i.e., approximately
count the number of unique elements in each flow, which
demands the ability to filter duplicated elements. If each
flow cardinality can be estimated on a per-packet basis with
low time complexity, then the super-spreading flows with
a significant number of unique elements can be tracked
by an online manner. For this new problem, we propose
three algorithms named On-vHLL, Ton-vHLL and Aton-
vHLL, whose time cost of online query are strictly O(1).
We adopt three optimization techniques: incremental update
units, HLL register compression by TailCut, and sample-
and-hold the top-k superspreaders in a prefilter, where they
are given the exclusively owned HyperLogLog estimators for
better accuracy. We evaluate the throughput and accuracy
improvements that can be brought about by these techniques,
using CAIDA traffic traces. Furthermore, we show that, upon
the arrival of each packet, our On-vHLL, Ton-vHLL and
Aton-vHLL sketches need about 5 memory accesses for the
sketch updating and querying combined. Our Aton-vHLL
can not only attain this high query speed, but also provide
good estimation accuracy of per-flow spread comparable
to vHLL.
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