
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023 2825

Ark Filter: A General and Space-Efficient Sketch
for Network Flow Analysis

Lailong Luo , Pengtao Fu , Shangsen Li , Deke Guo, Senior Member, IEEE, Member, ACM,
Qianzhen Zhang, and Huaimin Wang

Abstract— Sketches are widely deployed to represent network
flows to support complex flow analysis. Typical sketches usually
employ hash functions to map elements into a hash table or bit
array. Such sketches still suffer from potential weaknesses upon
throughput, flexibility, and functionality. To this end, we propose
Ark filter, a novel sketch that stores the element information
with either of two candidate buckets indexed by the quotient or
remainder between the fingerprint and filter length. In this way,
no further hash calculations are required for future queries or
reallocations. We further extend the Ark filter to enable capacity
elasticity and more functionalities (such as frequency estimation
and top-k query). Comprehensive experiments demonstrate that,
compared with Cuckoo filter, Ark filter has 2.08×, 1.34×,
and 1.68× throughput of deletion, insertion, and hybrid query,
respectively; compared with Quotient filter, Ark filter has 4.55×,
1.74×, and 22.12× throughput of deletion, insertion, and
hybrid query, respectively; compared with Bloom filter, Ark filter
has 2.55× and 2.11× throughput of insertion and hybrid query,
respectively.

Index Terms— Ark filter, network flow analysis, data sketch.

I. INTRODUCTION

NETWORK flow analysis is essential for network mon-
itoring, measuring, planning, billing, and security [1].

Nowadays, data sketches are implemented to represent the
collected flow information for instant queries such as mem-
bership, frequency, cardinality, etc. Several surveys summarize
the usage and design of sketches in the network community
[2], [3], [4]. Basically, many sketches are initially proposed
to represent and analyze network flows. Typical sketches
include Bloom filter [5], Cuckoo filter [6], count-min [7],

Manuscript received 22 June 2022; revised 14 January 2023;
accepted 26 March 2023; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor G. Iosifidis. Date of publication 13 April 2023;
date of current version 19 December 2023. This work was supported in
part by the National Natural Science Foundation of China under Grant
62002378 and Grant U19B2024 and in part by the Research Funding of
the National University of Defense Technology under Grant ZK20-30.
(Corresponding author: Lailong Luo.)

Lailong Luo is with the Science and Technology on Information Systems
Engineering Laboratory and the National Laboratory for Parallel and
Distributed Processing, National University of Defense Technology, Changsha,
Hunan 410073, China (e-mail: luolailong09@nudt.edu.cn).

Pengtao Fu, Shangsen Li, Deke Guo, and Qianzhen Zhang are
with the Science and Technology on Information Systems Engineering
Laboratory, National University of Defense Technology, Changsha, Hunan
410073, China (e-mail: fupengtao@nudt.edu.cn; lishangsen@nudt.edu.cn;
dekeguo@nudt.edu.cn; zhangqianzhen18@nudt.edu.cn).

Huaimin Wang is with the National Laboratory for Parallel and Distributed
Processing, National University of Defense Technology, Changsha, Hunan
410073, China (e-mail: whm_w@163.com).

Digital Object Identifier 10.1109/TNET.2023.3263839

Quotient filter [8] and their variants [9], [10], [11], [12].
We use the word “element” rather than “flow” to ease the
description of general sketches. Such sketches usually employ
hash functions to map the element content into one or multiple
locations in a hash table or bit array. Then the interested
information of the mapped elements is therefore recorded by
the bits, fingerprints, or counters in these locations.

Sketches may adopt different strategies to enable varied
functionalities. Bloom filter [5] relies on h independent hash
functions to map each element into h locations of a bit array
initialized as 0s. Then these bits are set to 1 to record the mem-
bership information explicitly. Queries are simply responded
to by checking these bits. By contrast, Cuckoo filter [6] stores
the fingerprint of every element directly with a hash table that
has m buckets (columns) and b slots (rows). By providing two
candidate buckets to each element, Cuckoo filter guarantees a
high space utilization. Besides membership query, more fields
(such as counter [13], [14], checkSum [11], [15], flag bits [16],
[17]) are added into Bloom and Cuckoo for better performance
and more functionalities (e.g., deletion, counting).

To support network flow analysis better, we envision
the sketches with the following three features: 1) high-
throughput, the throughput for flow insertion, deletion, and
query should be constant-time and fast enough; 2) space-
lineal, the space used by the sketch is proportional to the
number of flows to record and the length of the sketch can be
set at will; 3) multi-functional, the sketch is easy to be tuned
to support diverse functionalities beyond membership query.
Such features, if realized simultaneously, will bring great
benefits to the sketch-based network flow analysis, in terms
of throughput, space, and usability. However, the mainstream
sketches today fail to achieve these features in one stroke.
Next, we take the Cuckoo filter as a representative example to
convey this point.

Cuckoo [6] is declared to be practically better than Bloom
and many state-of-the-art sketches are designed based on
it. However, Cuckoo filter still has its intrinsic shortage
upon throughput. For an element x, when both of the two
candidates are full, Cuckoo filter kicks out a stored fingerprint
randomly to accommodate x’s fingerprint ηx. The kicked-out
victim will thereafter be redirected to its alternative candidate
bucket. Such a reallocation process is allowed for at most
max times to improve space utilization. The two candidate
buckets are indexed by: h1(x) = hash(x) and h2(x) =
h1(x) ⊕ hash(ηx). Each reallocation in Cuckoo filter has to

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4886-9974
https://orcid.org/0000-0002-1935-5616
https://orcid.org/0000-0002-9783-388X

2826 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

execute one hash calculation and one XOR operation. Such
calculations may burden the insertion throughput, especially
when the filter is already highly utilized. Therefore, a more
lightweight reallocation strategy is necessary to further speed
up the throughput of Cuckoo filter.

Besides, Cuckoo filter is not space-lineal since its length (m)
has to be precisely in the form of m = 2c, where c > 1 is
an integer; otherwise, the XOR operation may run out of
range. The lack of design flexibility makes Cuckoo filter either
underutilized or incapable of representing a given number
of elements. For instance, given b = 4 and 520 elements
to represent, the filter length should be m = 256, leading
to a severe waste of space; yet letting m = 128 will
not provide enough slots for these elements. Consequently,
a flexible structure whose capacity is proportional to the
number of elements to represent is required for better space
efficiency.

Lastly, complex network flow analysis requires the sketch
to support multiple functionalities besides membership queries
yet the original cuckoo filter and Bloom filter fail to tackle
this issue. Representative functionalities include dynamic
representation (capacity elasticity), cardinality estimation,
frequency estimation, and top-k query. These functionalities
are helpful for flow accounting, heavy hitter detection, super
spreader detection, entropy estimation, and beyond. However,
the existing sketches fail to support such functionalities
or discuss the generalization for such functionalities. For
example, Bloom filter [5], counting Bloom filter [13], Dynamic
Bloom filter [9] realize membership query, element deletion,
and dynamic representation, however, in a separated manner.
Yet none of them consider these functionalities jointly. This
problem also fits Cuckoo filter [6] and dynamic cuckoo
filter [12]. In other words, a more general sketch with joint
consideration of more functionalities is demanded to support
network flow analysis.

To meet the above needs of network flow analysis, this paper
presents Ark filter, a novel sketch that simultaneously achieves
the above design rationales. Ark filter consists of a hash table
with m buckets, each with exactly b slots. In each slot, there
are two fields, i.e., the Carry field and the Flag bit. Ark filter
also provides two candidate buckets for each element, and
reallocations are also allowed for at most max time to achieve
a higher space utilization. Ark filter bounds any fingerprint in
the range [0, m(m− 1)]. Unlike Cuckoo filter, which derives
out the candidate buckets with hash functions, Ark filter
multiplexes the fingerprint information and the candidate index
information. Specifically, the Ark filter divides the element
fingerprint into two parts (quotient and remainder upon the
filter length) to index its two candidate buckets. After that,
the bucket indexed by the quotient only needs to store the
remainder part with the Carry field, and vise versa. The
Flag bit will be correspondingly set as 1 or 0 to explicitly
indicate the Carry field stores quotient or remainder. With
this design, to ease the reallocation process, the alternative
candidate bucket can be indexed directly by the Carry, Flag,
and the index of the current candidate bucket. Consequently,
the hash calculation and XOR operation during each Cuckoo
filter reallocation are no longer needed.

Moreover, we redesign the Ark filter to support more
functionalities. To be specific, the Dynamic Ark filter (DAF)
scales up(down) by adding(removing) untapped(underutilized)
rows (i.e., changing the value of b) from the filter to enable
capacity elasticity. For frequency estimation, the Counting Ark
filter (CAF) adds a counter field into each slot to track the
frequency consistently. As for top-k query, the sorted CAF
proposes to rank the elements in every bucket according to
their frequencies in either an ascending or descending order.
We summarize the contribution of this paper as follows:
• We present Ark filter, a novel sketch that multiplexes

the fingerprint information and the candidate index
information such that the candidate buckets for each
element can be indexed with the fingerprint directly.
In this way, only one hash calculation is needed for each
element, thus saving time for element insertion, deletion,
and query.

• We further propose several Ark filter variants to support
capacity elasticity, frequency estimation, and top-k query.
DAF changes the value of b dynamically to fit the real
set volume; CAF tracks the element frequency with the
counter field in each slot; and the sorted CAF ranks the
elements in each bucket so that the top-k queries can get
instant response.

• We conduct comprehensive experiments to compare the
Ark filter with its same-kinds. Theoretical analysis and
numerical results demonstrate that Ark filter achieves the
wanted design rationales simultaneously. It outperforms
Cuckoo, Bloom, and Quotient in terms of the query,
insertion, and deletion throughput. Its variants also realize
comparable or better performance than their competitors.

The remainder of this paper is organized as follows. Section
II introduces the background and related work. Section III
details the design of Ark filter. Section IV presents the
three variants of Ark to support capacity elasticity, frequency
estimation, and top-k query. Section V reports the evaluation
results. Section VI discusses several additional issues of our
Ark filter and at last, Section VI concludes the whole paper.

II. RELATED WORK

A. The State-of-the-Art Sketches

Bloom filter and its variants. Bloom filter [5] maintains
a bit vector with m bits, which are all initialized as 0. For
any element x in a set S with n members, h independent
hash functions are employed to map it into the vector. The
h corresponding bits in the vector are set to 1. To query
an element x, Bloom filter just checks the h corresponding
bits: if all the h bits are non-zero, Bloom filter returns True
to indicate that x is a member of S; by contrast, if any of
the bits is zero, Bloom filter judges that x /∈ S and returns
False. Intuitively, the Bloom filter may lead to one-sided
false positive error yet never false negative. For a query, the
potential false positive rate is ξBF ≈ (1 − e−hn/m)h. When
h = hopt = m

n ln 2, ξBF = 0.5h ≈ 0.6185m/n. Typical Bloom
filter variants include Counting Bloom filter [13] (CBF),
Dynamic Bloom filter [9] (DBF), Invertible Bloom filter [15]
(IBF) and Invertible Bloom lookup table [11] (IBLT). They are

LUO et al.: ARK FILTER: A GENERAL AND SPACE-EFFICIENT SKETCH FOR NETWORK FLOW ANALYSIS 2827

investigated to support element deletion, capacity resizing, and
reverse decoding. More Bloom filter variants are proposed to
improve the Bloom filter from a performance or generalization
perspective in diverse circumstances [2], [3], [4], [10].

Cuckoo filter and its variants. Cuckoo filter [6] represents
an element x by storing its fingerprint ηx directly. Cuckoo
filter consists of m bucket, each of which has b slots to
accommodate at most b fingerprints. Cuckoo filter provides
two candidate buckets for x so that ηx can be stored in either
of them. The two candidates are indexed as: h1(x) = hash(x),
and h2(x) = h1(x)⊕ hash(ηx).

To insert an element x, Cuckoo filter first checks the two
candidate buckets, and if either of them has available slot(s),
the fingerprint ηx will be stored there. Otherwise, Cuckoo filter
has to randomly kick out an existing fingerprint from these two
candidates and put ηx in that slot. The kicked-out fingerprint is
marked as a victim and directed to its alternative bucket. If the
alternate has an empty slot to reside the victim, the insertion
is terminated successfully; otherwise, the above kick-out-and-
reallocate scheme continues exploring more buckets until such
a reallocation reaches max times. To answer the membership
query, the Cuckoo filter just needs to check the two candidate
buckets with the following bounded false positive rate:

ξCF = 1− (1− 1
2l

)2b ≈ 2b

2l
, (1)

where l is the length of a fingerprint.
The simplified Cuckoo filter [18] calculates the indices of

buckets for an element x as h1(x) and h1(x)⊕ ηx such that a
theoretical guarantee is generated based on graph theory. The
adaptive Cuckoo filter [16] tries to remove false positive errors
from the vector by resetting the collided fingerprints with
optional hash functions. Dynamic Cuckoo filter [12] (DCF)
dynamically maintains multiple homogeneous CFs to enable
elastic capacity. The consistent Cuckoo filter [19] maps the
buckets and elements onto a consistent hash ring to enable
more fine-grained capacity alterations. Morton filter [20]
introduces virtual buckets and divides logical buckets into
memory-aligned blocks to realize higher throughput. Vacuum
filter [21] confines the element insertion, deletion, and query
within a chunk to achieve significant throughput improvements
and memory access decrements.

The Quotient filters. Quotient filter [8], [22] is a hash table
of slots to store the fingerprints of elements with the quotient
technique. The fingerprint of an element is divided into two
parts, i.e., the u most significant bits as the quotient and the
v least significant bits as the remainder. A remainder is stored
in the slot suggested by the quotient. For each slot, there are
two or three bits to handle the hash collisions. However, they
have to set their lengths as a power of two. That will somehow
hurt the generalization of quotient filters.

B. Sketches With Additional Functionalities

Frequency estimation. Frequency is a basic feature of any
element in a dataset to analyze. Maintaining a sorted table
or hash table to store the frequencies is not advisable for
massive space overhead. To this end, a bunch of sketches is
designed for frequency estimation. Count-Min [7] maintains

a matrix of counters (initialized as 0s) with d rows and w
columns. A coming element is mapped into the matrix with
d independent hash functions. Thereafter, the corresponding
d counters will be added up by 1. With such a framework,
the frequency of an arbitrary element will be returned as the
minimum value among the d corresponding counters. Several
variants of Count-Min are presented to fit the frequency
distribution better, e.g., Count-Mean-Min [23].

Multiple Bloom filter variants are also tuned to respond to
frequency queries, e.g., Adaptive Bloom filter (ABF) [24],
Shifting Bloom filter (SBF) [25]. To represent an element
whose frequency is f , ABF needs q + f + 1 independent
hash functions in total. Among them, q hash functions
act for membership just as the traditional Bloom filter
does; while f hash functions set f bits to 1s to explicitly
record the frequency. ABF has to check q + f + 1 bits
to respond to the query until the last bit is 0. As for
SBF, it records the membership information of each element
just like the traditional Bloom filter does. Additionally,
auxiliary information (e.g., multiplicity) is further recorded by
calculating an offset function o(x). To query the membership
information, SBF just checks the corresponding k membership
bits. However, to respond to a multiplicity query, SBF has
to check c bits after every membership bit, where c is the
maximum multiplicity in the dataset. Therefore, its query
throughput can be an essential drawback. Moreover, both ABF
and SBF need to know the exact multiplicity before inserting
the elements, making them inapplicable in dynamic scenarios
wherein multiplicity changes timely.

Moreover, considering the skewness of flow size (number
of packets contained by a flow), efforts have been made to
distinguish the large flows from the small ones and record them
respectively with different strategies or unequal-sized counters.
Specifically, TowerSketch [26] has different-sized counters for
different arrays so that the large flows will be kept by long
counters and vice versa. The Stingy Sketch [27] also alters the
fixed-size counters into multiple smaller counters yet organizes
them as a tree structure. The Cold filter [28] uses a two-layer
sketch with small counters to accurately record the small flows.
If all of the corresponding counters for a flow overflows, that
flow will be marked as a large flow and represented by other
sketches. Especially, Cocosketch [29] tries to answer partial
key queries by recording the meta information in the data
plane while building the query results in the control plane.
We believe such methodologies are orthogonal to our design
and can be applied to optimize the counter field of the CAF
and Sorted CAF.

Top-k query. Finding the largest k elements, also referred
to as the top-k elements, is a fundamental problem for various
data analysis jobs. To this end, Lossy Counting [30] and
Space-Saving [31] maintain a data structure that counts only
part of the promising elements. More precisely, Space-Saving
inserts a new element in the data structure by replacing
an existing element with the lowest frequency; while Lossy
Counting expels the elements at each time slot to make
room for new elements. Such designs will cause significant
errors when the space is quite limited. HeavyKeeper [32],
by contrast, records the information of top elements while

2828 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 1. The framework of Ark filter. For an arbitrary element x, its two
candidate buckets are indexed by the quotient and remainder generated by
the fingerprint ηx and the filter length m.

ignoring insignificant ones. However, it may kill those
elements which may grow as top members.

III. THE ARK FILTER METHODOLOGY

A. Framework of Ark Filter

As shown in Fig. 1, the Ark filter consists of m buckets,
each of which has b slots. Each slot has two fields, i.e.,
the Carry field and the Flag field. The Carry field records the
part information of the fingerprint (either the remainder or the
quotient as specified later). The Flag field is a single bit to
explicitly mark that the stored information is the remainder
part (by setting Flag as 1) or the quotient part (by remaining
Flag as 0) of the fingerprint. Initially, the Carry field is set as -
1 and the Flag bit is set as 0 for an empty slot. For any element
x, a hash function h(x) is employed to generate a fingerprint
ηx. The fingerprint ηx ranges from 0 to m(m− 1). Ark filter
differentiates from Cuckoo filter [6] and its variants mainly
from two aspects. First, Ark filter stores partial information
of the fingerprint, either the quotient part or the remainder
part. Second, Ark filter provides two candidate buckets with
the indexes of quotient and remainder, rather than calculated
with the partial cuckoo hashing strategy. To be specific, the
quotient and remainder (denoted as Q and R, respectively) are
calculated as follows:

Qx = ηx/m, (2)
Rx = ηx%m. (3)

In Ark filter, an element is successfully represented if the
corresponding remainder Rx is stored by the bucket indexed
by the quotient, or the quotient Qx is resided by the bucket
with the index of Rx. To resolve the hash collision and
improve the space utilization, Ark filter also follows the “kick-
out-and-reallocate” strategy. To be specific, if either of the two
candidate buckets has an empty slot, the quotient or remainder
information will be stored there. By contrast, if both candidates
are saturated, a random stored quotient (when the Flag bit is
0) or remainder (if the Flag bit is 1) will be kicked out as
a victim to offer space for the coming element x. Thereafter,
the victim will be redirected to its alternative candidate bucket.
Such reallocations succeed if there is no further victim or fail
when reallocations reach the pre-defined upper bound max.

Algorithm 1 Element insertion(x)
Input: The element to insert x

1 Calculate the fingerprint as ηx = h(x)%[m(m− 1)];
2 Decide the candidate buckets as Qx = ηx/m and

Rx = ηx%m;
3 if Either AF [Qx] or AF [Rx] has empty slots then
4 if AF [Qx] is the selected bucket then
5 Locate the first empty slot AF [Qx][i];
6 AF [Qx][i].Carry = Rx;
7 AF [Qx][i].F lag = 1;
8 return True;
9 else

10 Locate the first empty slot AF [Rx][i];
11 AF [Rx][i].Carry = Qx;
12 AF [Rx][i].F lag = 0;
13 return True;

14 else
15 count = 0;
16 Let T be a random integer selected from {Rx, Qx};
17 Let C and ϕ be the Carry and Flag fields of a

random slot in AF [T];
18 Empty the random slot from AF [T];
19 Store Qx or Rx with the empty slot and set/reset the

Flag bit;
20 while count ≤ max do
21 if AF [C] has empty slot then
22 Store T in AF [C];
23 Set/reset Flag in the empty slot based on ϕ;
24 return True;
25 else
26 r = random(0, b);
27 tempc = AF [C][r].Carry;
28 tempϕ = AF [C][r].F lag;
29 AF [C][r].Carry = T ;
30 AF [C][r].F lag = ¬ϕ;
31 T = C;
32 C = tempc;
33 ϕ = tempϕ;

34 count + = 1;

35 return False;

Ark filter naturally multiplexes the index information of
candidate buckets and fingerprint information with such a
framework. This methodology only needs one hash calculation
for each insertion. Besides, the fingerprint ranges in [0, m(m−
1)] such that both the quotient and remainder part will never
overflow from the filter.

B. Operations of Ark Filter

Ark filter supports general element-oriented operations such
as element insertion, query, and deletion. Besides, for two
sets of elements, denoted as A and B respectively, typical
set operations such as union, subtraction, and intersection
are also required for big data analysis. Therefore, filter-

LUO et al.: ARK FILTER: A GENERAL AND SPACE-EFFICIENT SKETCH FOR NETWORK FLOW ANALYSIS 2829

level functionalities (e.g., compact, subtraction, intersection)
between two Ark filters should be additionally enabled.

Element insertion. Intuitively, there are two basic princi-
ples for inserting an arbitrary element x: 1) the information
of x is stored in either of its candidate buckets; 2) Ark filter
represents x by storing Qx in the bucket AF [Rx] or reserving
Rx with the bucket AF [Qx]. As specified in Algorithm 1, Ark
filter first derives out the fingerprint, the remainder, and the
quotient of x. If either AF [Rx] or AF [Qx] has an empty
slot, the Qx or Rx will be stored there by leveraging the
Carry and Flag fields of that slot (line 3 to 13). Otherwise,
Ark filter has to kick out an existing quotient (if the Flag
is 0) or remainder (if the Flag is 1) in AF [Rx] or AF [Qx]
to accommodate x. The victim, on the other hand, will be
redirected to its alternative candidate bucket. If that bucket
can successfully represent the victim, the algorithm returns
true; otherwise, an existing element from that bucket will be
kicked out as a new victim. Such a kick-out-and-reallocate
strategy keeps exploring the filter until no further victim or
such reallocations reach a given upper bound max (line 16 to

Algorithm 2 Membership query(x)
Input: The element to query x

1 Calculate the fingerprint as ηx = h(x)%[m(m− 1)];
2 Decide the candidate buckets as Qx = ηx/m and

Rx = ηx%m;
3 for i = 0 to b− 1 do
4 if AF [Qx][i].Carry == Rx and

AF [Qx][i].F lag == 1 then
5 return True;

6 for i = 0 to b− 1 do
7 if AF [Rx][i].Carry == Qx and

AF [Rx][i].F lag == 0 then
8 return True;

9 return False;

34). During the whole process, the Flag bit is updated as 1(0)
if the slot stores a remainder(quotient). Note that when the
filter returns false, the filter is marked as full, and no more
elements should be inserted. The time complexity of inserting
an element is O(b ×max), since at most max reallocations
will be conducted, and each reallocation needs to check at
most b slots in a bucket.

Membership query. As specified in Algorithm 2, to query
the membership of any element x, Ark filter first derives out
the fingerprint ηx, as well as the two candidate buckets Qx

and Rx. After that, Ark filter just checks the two buckets.
In the AF [Qx] bucket, if Rx can be found in any slot, and
the Flag bit in that slot is precisely 1, Ark filter commits
the membership of x and returns true. Alternatively, if Qx is
searched out as the Carry field in a slot and the Flag bit in that
slot is right 0, Ark filter also returns true. Unlike Cuckoo filters
which verify the fingerprints directly, Ark filter checks whether
the quotient part is stored by the bucket, which is indexed by
the remainder with the correct Flag bit, or vice versa. The

Algorithm 3 Element deletion(x)
Input: The element to query x

1 Calculate the fingerprint as ηx = h(x)%[m(m− 1)];
2 Decide the candidate buckets as Qx = ηx/m and

Rx = ηx%m;
3 for i = 0 to b− 1 do
4 if AF [Qx][i].Carry == Rx and

AF [Qx][i].F lag == 1 then
5 AF [Qx][i].Carry == −1;
6 AF [Qx][i].F lag == 0;
7 return True;

8 for i = 0 to b− 1 do
9 if AF [Rx][i].Carry == Qx and

AF [Rx][i].F lag == 0 then
10 AF [Rx][i].Carry == −1;
11 return True;

12 return False;

time complexity of membership query is still constant since
only two buckets will be accessed and examined.

Algorithm 4 Filter Compact(AFA and AFB)
Input: Two homogeneous Ark filters AFA and AFB

1 %% Suppose AFA stores more elements than AFB ;
2 for i = 0 to m− 1 do
3 for j = 0 to b− 1 do
4 if AFB [i][j].Carry ̸= −1 then
5 if AFA[i] or AFA[AFB [i][j].Carry] has an

empty slot then
6 Store AFB [i][j].Carry with AFA[i] or

store i with AFA[AFB [i][j].Carry];
7 Set the Flag bit of this empty slot;

8 if This element cannot be stored by AFA by
reallocations then

9 return False;

10 return True;

Element deletion. To delete an element x, Ark filter has
to figure out whether x has been represented previously.
As illustrated in Algorithm 3, Ark filter first calculates the
fingerprint, the quotient, and the remainder for x. Then, Ark
filter tries to delete the quotient information Qx from the
bucket whose index is exactly Rx and vise versa. Note that,
before deletion, the Flag bit has to be checked to make sure
that the right element is removed from the filter. If it succeeds,
Ark filter returns true; otherwise, it returns false to demonstrate
that x is not stored before. The time complexity of element
deletion also remains constant.

Filter compact/union. Given two homogeneous filters
(denoted as AFA and AFB) with the same parameters m
and b, filter compact means to merge the two filters as one
which contains all the fingerprints. As shown in Algorithm

2830 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

4, suppose that AFA stores more elements than AFB , the
compact operation tries to represent the fingerprints in AFB

with AFA. If all the fingerprints in AFB can be inserted
into AFA successfully, the algorithm returns true, else false.
By doing so, the updated AFA records all the elements in
the union set A ∪ B. Such operation can be accomplished
iff |A| + |B| is less than the capacity of AFA. Besides,
when multiple filters are maintained to represent dynamic sets
wherein elements arrive or perish dynamically, the compact
algorithm can be employed to recycle the sparse filters. This
functionality is quite essential for space-scarce situations. The
time complexity of this operation is O(m×b).

Filter subtraction. Given two homogeneous Ark filters
AFA and AFB , subtracting AFB from AFA means to remove
the common elements from AFA. Algorithm 5 specifies how
the common elements are removed from AFA. For any slot
AFA[i][j] in AFA, if its Carry field is not −1, this slot
stores an element. Then we try to search this element from
AFB . If AFA[i][j].Carry can be found in AFB [i] and these
two slots have equal Flag value, or i can be found in the
bucket AFB [AFA[i][j].Carry] and the Flag of that slot is
¬AFA[i][j].F lag, this element is a common element and will
be removed from AFA. After traversing the whole AFA filter
and emptying necessary slots, AFA only contains the elements
in A−B. Pair-wisely, by subtracting AFA from AFB , AFB

will only store the elements in B − A. The time complexity
of such an operation is also O(m×b).

Algorithm 5 Subtracting AFB From AFA

Input: Two homogeneous Ark filters AFA and AFB

1 for i = 0 to m− 1 do
2 for j = 0 to b− 1 do
3 if AFA[i][j].Carry ̸= −1 then
4 if AFA[i][j].Carry can be found in AFB [i]

and the Flag bit fits or i can be found in
AFB [AFA[i][j].Carry] and the Flag bit fits
then

5 Delete the information of this element
from the filter AFA;

6 return AFA;

Filter intersection. Intersection is also a fundamental
operation between two given sets. For Ark filters AFA

and AFB , intersection means to determine the common
elements/fingerprints recorded. To this end, this algorithm
just goes over a filter w.l.o.g, AFA, which has fewer stored
fingerprints. If a fingerprint ηt in AFA cannot be found in
AFB , then ηt is removed from AFA. After that, the algorithm
returns the adjusted AFA as the intersection, which only stores
elements in A ∩ B. The time complexity of this operation is
O(m×b).

Ark filter can also support filter-level operations for
heterogeneous Ark filters, if these filters share the same range
of fingerprints and the same hash function. In this situation,
Ark filters can deduce the original fingerprint of a represented
element by jointly considering the Carry, Flag, and the index

Fig. 2. The p values of random tests presented by NIST [34] at the level
of 1%, when m = 215, b = 2, and N = 50, 432. It is obvious that the Ark
filter passes all the randomness tests simultaneously.

of the bucket:

ηt =

{
Carry ×m + index, if F lag = 0
index×m + Carry, if F lag = 1

(4)

Then, when querying ηt against another Ark filter, the
candidate buckets can be located with ηt directly. Therefore,
the above compact, subtraction, and intersection can also be
conditionally applied to heterogeneous Ark filters.

C. Performance Analysis

Randomness of candidate buckets. In effect, the
randomness of candidate buckets is the core of exploring
empty slots in the filters. Unlike Cuckoo filter, which selects
the two candidate buckets with the partial-key cuckoo hashing
strategy [33], Ark filter calculates the quotient or remainder
as the indexes of its candidate buckets. Therefore, the
Cuckoo filter requires two hash functions, one for fingerprint
generation and another for candidate bucket selection. Ark
filter, on the contrary, only relies on one single hash function
to deduce the fingerprint and derive out the candidate
buckets with the fingerprint. The randomness of fingerprint
guarantees the randomness of the candidate buckets. We test
the randomness of candidate buckets with the 16 methods1

suggested by the NIST (National Institute of Standards
and Technology) [34]. As shown in Fig. 2, we consider
three different ways to calculate the candidate buckets, i.e.,
the partial-key cuckoo hashing in the cuckoo filter, the
fingerprint-enabled method in Ark filter and two independent
hash functions. According to the p values of these tests,
we conclude that these methods pass all 16 random tests and
generate random candidate buckets for elements.

Besides, we also note a special case of Ark filter wherein
Qx = Rx for an element x. In this case, x can only be stored
by this bucket. For a bucket with index i, this special case
occurs iff ηx = i×m + i. Therefore, for the whole filter, the
probability that all of the N elements has exactly 2 diverse

1Frequency Test, frequency test within a block, runs test, test for the
longest of Ones in a block, binary matrix rank test, discrete Fourier transform
test, non-overlapping template matching test, overlapping template matching
test, Maurer’s universal statistical test, linear complexity test, serial test,
approximate entropy test, cumulative sums (forward) test, cumulative sums
(reverse) test, random excursions test, and random excursions variant test.

LUO et al.: ARK FILTER: A GENERAL AND SPACE-EFFICIENT SKETCH FOR NETWORK FLOW ANALYSIS 2831

Fig. 3. The false positive rate (fpr) and bits per element (bpe) of Ark filter.

candidate buckets is:(
m(m−1)−m

N

)(
m(m−1)

N

) =

(
m(m−2)

N

)(
m(m−1)

N

) . (5)

The same cases may also happen when the Cuckoo filter
employs two independent hash functions. However, the
partial-key cuckoo hashing strategy will not incur this trouble
due to the XOR operation.

Considering the randomness of candidate buckets, the
following conclusion introduced in [35] and [36] for Cuckoo
filter still holds in the framework of Ark filter: given the
number of elements to represent n and the number of buckets
in the filter m, there is a threshold T such that when n

m ≤ T ,
all the n elements can be successfully represented by the filter
with probability 1−o(1); otherwise, the filter fails to represent
all the elements with probability 1−o(1). Basically, a larger b
results in a larger T , which implies a higher space utilization
in the filter.

False positive rate (fpr). Ark filter employs a hash function
to generate a fingerprint for an element x. Such collisions lead
to potential false positive errors of membership query, i.e.,
regarding a non-member element as an element of the set. For
instance, given two elements x ∈ A and y /∈ A and x has
been recorded by the filter, then the query of y against the
filter may result in a false positive error. Considering that the
candidate buckets of x are only decided by its fingerprint ηx,
we can calculate the false positive rate of querying an element
as:

ξ =
n

m(m− 1)
, (6)

where m is the length of Ark filter and n ≤ n denotes
the number of fingerprints represented by the filter. Fig. 3(a)
presents the theoretical and practical false positive rates of
Ark filter when m increases from 28 to 221 while b = 4.
We remain the space utilization as 0.95 in this experiment.
The false positive decreases consistently when m increases.
Besides, the theoretical and practical fpr values match with
each other well.

Bits per element (bpe). According to Fig. 3(a), the bpe of
Ark filter increases when m grows since more bits are required
to represent the stored quotient/remainder in each slot.

Theorem 1: Given the same b and n, with the same false
positive rate guarantee, the bpe of Ark filter is no more than
that of Cuckoo filter.

Proof: This theorem can be derived out by letting Equ.
6 equal to Equ. 1 then calculating the bpe of Ark filter and
Cuckoo filter. We omit the details here for space reasons.

Fig. 4. The trade-off between bpe and fpr, where bCF = bAF = 4 and
αCF = αAF = 0.95, respectively .

As shown in Fig. 3(b), when the number of elements to
represent increases constantly, the bpe of Ark filter is no more
than that of Cuckoo filter. The initial reason is that the Cuckoo
filter’s filter length (i.e., m) can only be the form of 2c, where
c is a non-negative integer. As a result, the space of Cuckoo
filter is always under-utilized. By contrast, in Ark filter, the
overall space overhead can be more flexible and proportional
to the number of elements to represent.

Parameter setting in Ark filter. Equ. 6 suggests that more
buckets in the filter guarantee a lower false positive rate; by
contrast, as stated in [35] and [36], better space utilization
requires larger b which lowers the value of m in return.
Therefore, there is a natural contradiction between space
utilization and false positive rate in Ark filter. As declared
in [35] and [36], the increase of b leads to marginal upgrade
of space utilization. We note that when b = 2, the space
utilization may reach about 90% (T ≈ 1.80) with a high
probability. Consequently, when the space is given, we remain
b = 2 in Ark filter to ensure a large value of m, such that
a lower false positive rate is generated; pair-wisely, when n
is known previously, we calculate the length of Ark filter as
m = b×n

T , where b = 2 and T ≈ 1.80, to save space and
ensure the probability of successful representation. Note that
the length of Ark filter can be set at will, while the length
of a Cuckoo filter is only allowed to be 2c (c > 1) to avoid
overflow of XOR operations. This flexibility makes Ark filters
more practical than Cuckoo filters.

Trade-off between bpe and fpr. For probabilistic data
structures, there is a trade-off between bpe and fpr. Lower
fpr can be generated with higher bpe. Here we derive out
the relationship between bpe and fpr in Bloom filter, Cuckoo
filter, and Ark filter, respectively. For Bloom filter, ξBF ≈
(1 − e−hn/mBF)h = (1 − e−h/bpeBF)h, given the optimal
number of hash functions hopt = mBF

n × ln 2 = bpeBF × ln 2,
we have:

ξBF = (1− e− ln 2)ln 2×bpeBF (7)

For Cuckoo filter, let αCF be the allowed space utilization.
We have bpeCF = l×bCF×mCF

bCF×mCF×αCF
= l

αCF
; thus l = bpeCF ×

αCF . Then,

ξCF =
2b

2l
=

2b

2bpeCF×αCF
, (8)

where l is the length of fingerprint and bCF is the number of
slots in each bucket. For Ark filter, ξAF = n

mAF×(mAF−1) =
αAF×bAF

mAF−1 . While bpeAF = ⌈log2 mAF ⌉+1, therefore, we can

2832 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 5. The framework of DAF. All filters have the same length (m), yet
the value of b is changed dynamically for instant capacity alteration.

quantify the relationship between bpeAF and ξAF as:

bpeAF = ⌈log2(αAF × bAF /ξAF + 1)⌉+ 1. (9)

Fig.4 depicts the trade-off between bpe and fpr in Bloom,
Cuckoo, and Ark. Bloom filter may have a bit lower fpr than
Cuckoo filter and Ark filter when the bpe is small. By contrast,
when bpe increases to some extent, Ark filter has the lowest
fpr, while Bloom filter gets the highest fpr.

IV. ARK FILTER VARIANTS

Based on the above framework, we further redesign Ark
filter for various network flow analysis jobs. Intuitively, the
sketch data structure should be extended to represent dynamic
sets. Besides membership queries, big data algorithms usually
rely on sketch data structures to realize approximate yet fast
cardinality estimation, frequency estimation, and top-k query.
In effect, cardinality estimation is simple in Ark filter by
maintaining a global counter. When a new element is inserted
successfully, the global counter will be increased by 1. Once
an element is removed from the filter, the global counter will
be decreased by 1. With such a design, the global counter tells
the number of elements represented by the filter precisely.
Therefore, this section details how to augment Ark filter to
achieve capacity elasticity, frequency query, and top-k query.

A. Ark Filter for Dynamics

The Ark filter introduced in Section III is only capable
of static set representation. Despite the support of element
deletion, an instant capacity scaling and recycling mechanism
are missing in Ark filter.

To this end, we propose the Dynamic Ark filter (DAF)
inspired by previous work like DCF [12] and DBF [9] which
maintain multiple homogeneous filters so that the indexes of an
element in the first filter are also applicable in others. Due to
the dependency between element fingerprint and filter length,
it is not advisable to launch filters with various lengths in
DAF. For instance, if there are two filters with m1 and m2

(m1 ̸= m2) buckets, respectively, to check the existence of
element x, DAF has to calculate the respective fingerprints
in the two filters by accessing the actual element content.
By contrast, when m1 = m2, both the fingerprint and the
indexes of candidate buckets can be multiplexed with only
one access of the element content. Therefore, DAF prefers
to adding ∆b arrays of untapped slots while remaining m
immutable.

Fig. 6. The framework of Counting Ark filter. A counter field is added to
each slot to explicitly count the frequency of the stored element.

At its core, DAF scales up by increasing the value of b
adaptively. The number of added arrays ∆b is decided by
the expected number of future elements. According to the
theory in [35] and [36], ∆b can be set such that all the
coming elements can be represented with high probability.
If there are ∆n more elements to represent, the value of
∆b should be calculated as ⌈∆n

Tm⌉, where T is the threshold
given in [35] and [36]. A toy example of DAF is depicted
in Fig. 5. The initial DAF has three arrays (b0 = 3) and
scales up to 4 arrays (b1 = 4) to accommodate more elements.
Note that the insertion of a coming element will be handled
by the activated arrays (i.e., newly added arrays). To query
the membership of x, DAF has to check all the slots in its
candidate buckets: if both of them fail to find ηx, DAF returns
false to show that x is not a member; otherwise, DAF returns
true. The deletion of x will also check the two buckets and
then try to delete x.

When a DAF is sparse enough, it is necessary to release
the space for efficiency. A global counter C is implemented
to record the number of elements in DAF. If C

m ≤ T̄ , where
T̄ is the threshold when b = b̄, then the number of arrays in
DAF can be decreased to b̄. To this end, DAF selects the b− b̄
arrays that store the least number of elements and reinserts
these elements into other arrays. DAF hasn’t to access the
real element contents for any element reinsertion since the
candidate bucket indexes suit all the arrays. Specifically, for
a bucket with no more than b̄ fingerprints, the fingerprints in
the removed slots are pushed to the b− b̄ empty slots directly;
otherwise, part of the fingerprints in this bucket has to be
redirected to their alternative candidate buckets.

B. Ark Filter for Frequency Estimation

Given a set of elements, frequency estimation tells how
many times an element x occurs in the set. For example,
in network measurement, the selected routers have to estimate
the undergoing flow size. Then, further analysis such as heavy
changer, heavy hitter, and entropy estimation can be enabled.
For a recommendation system, it is necessary to record or
estimate how many times a user clicks on a specific product.

To this end, we propose Counting Ark filter (CAF), which
extends the Ark filter by introducing a counter field into each
slot to record the frequency information of the stored element
explicitly. As depicted in Fig. 6, with such a design, each
slot in CAF has three fields, i.e., the Carry field to store the
fingerprint information, the Flag bit to mark the stored part of
the fingerprint, and the counter field to counts the frequency
of the represented element.

LUO et al.: ARK FILTER: A GENERAL AND SPACE-EFFICIENT SKETCH FOR NETWORK FLOW ANALYSIS 2833

Fig. 7. A toy example of “partial rank” in an ascended CAF. Each bucket
has 3 slots, and the elements represented by a bucket are sorted according to
their counter values.

Note that operations in CAF can be slightly different from
the original Ark filter. When inserting an element x, CAF
still follows the “kick-out-and-reallocate” strategy. However,
CAF has to additionally check whether x has been stored
by its candidate buckets or not. If that commits, only the
counter field in the accommodation slot will be added up by 1;
otherwise, all three fields of the selected slot will be updated.
To query the frequency of x, CAF traverses its two candidate
buckets to locate its resident slot, then returns the counter field
of that slot. If x cannot be found, CAF returns false. CAF
offers two kinds of deletion operations, i.e., deleting a replica
of x or trashing x. To delete a replica of x, CAF locates the
fingerprint of x and then decreases the corresponding counter
field by 1. If the counter gets down to 0, the Carry and Flag
fields will also be updated as -1 and 0 respectively to remove
x from the filter. By contrast, to trash x, CAF locates the
element and then clears the slot by letting Carry = −1 and
zerolizing both counter and Flag. Compared with Ark filter,
CAF may lead to a bit more time to insert elements since it
has to check the existence of the elements before storing them.
However, query and deletion in CAF are still time-constant.

As for the filter-level operations, CAF still reserves the
ability to compact, subtract and intersect two filters CAFA

and CAFB . However, CAF has to handle the counter field
when executing these operations. For an arbitrary element
x, suppose CAFA and CAFB represent fA(x) and fB(x)
replicas of x, respectively. In the compact result, the counter
is calculated as fA(x) + fB(x). To subtract CAFB from
CAFA, the resultant CAF needs to record fA(x) − fB(x)
replicas of x. By contrast, after the intersection, the generated
CAF only keeps min{fA(x), fB(x)} replicas of x. Certainly,
according to their practical needs, users can customize their
own definitions of these filter-level operations and attach
diverse calculations to the counters. This design flexibility
makes CAF general in many cases. For instance, one may
regard max{fA(x), fB(x)} as the counter value of x in the
union result.

Besides membership query, CAF provides accurate fre-
quency estimation once an element is represented correctly.
The number of bits a counter needed is tricky. Too large
counters lead to space waste, while small counters incur
overflow risk. Basically, the length of a counter is directly
determined by the element with the maximum frequency. It
is possible to optimize the counter field by unequalizing the
length of the counter in a bucket so that slots with lengthy
counters can store elements with a large frequency, just like
the TowerSketch [26], Stingy Sketch [27] do.

C. Ark Filter for Top-k Query

Top-k query returns the k highest ranked flows in a both
quick and efficient fashion. We rely on the counter field in
CAF to record the flow size. Based on CAF, there are two
different methodologies to search the filter and find the top-k
flows, i.e., rank while query and rank before query. A rank
while query strategy ranks all the counters in the filter to derive
out the top-k elements during the query. This brute-force
method guarantees accurate query results and promises no
additional space overhead; however, it can be impractical due
to its time consumption. State-of-the-art sort algorithms, such
as TimSort [37] and Quicksort [38], require O(mb× log(mb))
time-consumption to rank all the mb counters in the filter.
On the contrary, a rank before query scheme maintains an
extra max (min) heap, which ranks the elements according
to their counter values dynamically [39]. The max (min)
heap just returns its first (last) k elements to answer the
query. This scheme naturally realizes precise and constant-
time top-k queries; however, the introduced space overhead
of such a method contradicts the design philosophy of sketch.
Therefore, the above methods are either time-consuming or
space-aggressive.

The sorted CAF. We present a conservative proposal that
sorts the counters in a bucket and derives out the top k
elements when querying based on the sorted buckets. We call
this design as sorted CAF. Specifically, when an element is
inserted or updated, its location in the resident bucket will
be re-arranged according to its frequency. CAF stores the
fingerprints inner a bucket in either an ascending or descending
order. In a descended CAF, the first slot of each bucket stores
the element with the maximum counter value, the second
bucket accommodates the second maximum counter value,
so on and so forth. On the contrary, the element with the
maximum counter is stored in the last slot in an ascended
CAF bucket. Without loss of generality, Fig. 7 presents a
toy example of a sorted CAF. In this example, each bucket
has three slots, and the elements in each bucket are sorted
and stored ascendingly. Whenever the counter value changes,
the bucket will re-sort all the elements it records. To answer
the top-k query, the ascended CAF has to sort all the last
slots in m buckets to derive out the k elements with the top
counters.

Accuracy of sorted CAF. In reality, the sorted CAF may
lead to incorrect top-k query results. As shown in Fig. 7,
suppose the maximal counter is 7, then the element (whose
counter is exactly 6) stored in the second slot of the last
bucket will not be listed in the query result when k ∈ [1, m].
A naive solution is to search more slots in the filter to compare
more elements before listing the results. Generally, let θ denote
the number of searched slots in a bucket. Then we have the
following Theorems to guarantee the query accuracy.

Theorem 2: In a sorted CAF with m buckets each of which
has b slots, for a top-k query, the filter returns correct results
when k ≤ θ.

Proof: Whether the sorted CAF returns a correct query
result or not entirely depends on the distribution of the top-
k elements in the filter. When k ≤ θ, even if all the top-k

2834 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

TABLE I
QUALITATIVE COMPARISON AMONG STRATEGIES FOR TOP-k QUERY,

IN TERMS OF ACCURACY, SPACE, AND TIME-COMPLEXITY

elements are represented by a single bucket, they will still be
searched by the filter.

Theorem 3: According to existing theory [40], when
inserting the top-k elements into the filter, the asymptotic
expected maximum number of elements a bucket will store
is:

Γ−1(m)
(

1 +
ln(k/m)

ln Γ−1(m)
+ O

(
1

ln2 Γ−1(m)

))
. (10)

Besides, when representing k elements with the sorted CAF,
let λ be an integer variable and denote the number of elements
stored by a bucket, then the probability that λ is greater or
equal to i ∈ [0, k] can be bounded as:

Pr(max(λ) ≥ i) ≤ m

(
k

i

)
1

mi
≤ m

(
e× k

m× i

)i

. (11)

The proof is omitted. Please refer to [40] for detail.
Corollary 1: Based on Theorem 3, when θ ∈ [1, b− 1], the

probability p that the sorted CAF returns correct top-k query
results can be calculated as:

p = 1− Pr(max(λ) ≥ θ + 1)

≥ 1−m

(
k

θ + 1

)
1

mθ+1
≥ 1−m

(
ek

m(θ + 1)

)θ+1

. (12)

When θ = b, p = 1 since all the slots will be traversed and
checked to search out the top k elements.

V. EVALUATION

In this section, we first implement Ark filter and compare
it with typical sketches regarding the throughput of element
insertion, query, and deletion. Thereafter, we quantify the
performance of Ark filter variants for other big data analysis
jobs, i.e., dynamic representation, frequency estimation, and
top-k query. All experiments are conducted in a machine
with an Intel Core i7 processor and 16GB DRAM. In our
experiments, if no otherwise statement, the Bloom filter,
Adaptive Bloom filter, Shifting Bloom filter and CM-sketch
run the Murmurhash algorithm to generate the hash functions
they needed, while quotient filter and Ark filter use the python
built-in hash function. All results are the average values
of 100 executions. All the codes are available at GitHub
(https://github.com/fptjy/ArkFilter).

A. Performance of Ark Filter

Before quantifying the element-level performance (i.e.,
insertion, deletion, query), we first measure the filter-level
performance, mainly in terms of the time consumption for
compact, intersection, and subtraction. We initiate two filters

TABLE II
PARAMETER SETTING FOR THROUGHPUT TEST

AFA and AFB such that mA = mB = 218 and bA =
bB = 22. For compact, the space occupation of AFA is
set as 0.1; then we increase the space utilization of AFB

from 0.1 to 0.9. As shown in Fig. 8(a), the resultant time
consumption goes up constantly since more reallocations may
be triggered when storing these elements with a single filter.
As for intersection and subtraction, AFA and AFB have equal
space utilization (0.95) yet the ratio of common elements (i.e.,
|AFB ∪ AFA|/|AFA|) ranges from 0.1 to 0.9. With more
common elements, Ark filter can finish the intersection and
subtraction operations faster.

In this section, we compare Ark filter with three typical
sketches, including Bloom filter, Cuckoo filter, and the
Quotient filter, in terms of the query, insertion, and deletion
throughput. Note that these filters use hash functions to map
the element directly, therefore, the element content has no
impact on the filter performance. For simplicity, we feed these
filters with random strings. We record the throughput of the
filters at different space occupancy α (ranging from 0.025 to
0.975). We remain the overall false positive rate of the sketches
as 1.5× 10−5. The default parameters of this experiment are
summarized in Table. II.

Then, we quantify the query throughput when the queried
elements occupy 100% (positive), 0% (negative), and 0%
to 100% (hybrid) of the represented elements. As shown
in Fig. 8(b), when the filters hold an increasing number of
elements, Cuckoo, Quotient, and Ark all lead to decreasing
throughput for the positive queries. The reason is that these
filters have to check more non-empty slots to conclude
the existence of the queried elements when α increases.
By contrast, the query throughput of Bloom filter remains
stable around 0.99 × 105 irrespective of the increase of α,
since it always fetches the corresponding h bits for any
membership query. The Quotient filter experiences the most
cliffy decrements from 6.57×105 to 0.38×105 entry/second.
Note that the Quotient filter relies on the linear probing
technique to resolve the hash collisions so that it has to go over
a long “run” to search the target fingerprint when α grows.
The curve of Cuckoo filter decreases slowly since it needs
to check more non-empty slots but checking them takes just a
little extra time. Ark filter experiences a significant throughput
drop but remains high even when the filter is full. Compared
with Cuckoo filter, Ark filter only checks the quotient or
remainder part of the fingerprint, both of which are much
shorter than a fingerprint. Besides, Ark filter only executes one
hash computation. Consequently, Ark can outperform Cuckoo
significantly.

For negative queries, as depicted in Fig. 8(c), all of
the sketches show either dramatic (Quotient, Ark) or slight

LUO et al.: ARK FILTER: A GENERAL AND SPACE-EFFICIENT SKETCH FOR NETWORK FLOW ANALYSIS 2835

Fig. 8. The filter-level performance and the throughput of different types of queries.

Fig. 9. The throughput of element insertion and deletion.

(Cuckoo, Bloom) throughput decrements when α grows.
A common reason is that all of them need to check more
non-empty/non-zero slots/bits to determine the membership
of the queried elements. In this case, Bloom can significantly
outperform Cuckoo because Bloom returns the negative results
once a zero bit is found. The numerical results drop from
7.82×105 to 0.60×105 for Quotient filter. It is understandable
since the “runs” in Quotient filter can be quite lengthy with
a higher α. We note that when α ≥ 0.45, Ark filter has a
bit lower throughput than Bloom filter. In effect, the sketches
are usually highly utilized. Therefore, we believe the query
throughput when α ≥ 0.8 is of great significance for real
applications. From the above experiments, it is evident that
Ark filter can significantly outperform others when the space
utilization is high, thus committing the practicability of Ark.

Given α = 0.95, we vary the fraction of positive elements
p in the query set for each sketch (from 0.025 to 0.975),
and then record the query throughput with Fig. 8(d). The
query throughput of Bloom filter and Quotient filter decreases
directly from 2.93 × 105 and 0.18 × 105 to 0.99 × 105 and
0.11 × 105, respectively. By contrast, both Cuckoo filter and
Ark filter have significant increments of query throughput
from 1.63 × 105 and 2.70 × 105 to 1.91 × 105 and
3.47×105, respectively. For Bloom filter, querying more stored
elements means it has to check more non-zero bits before
exit. Quotient filter checks the is_occupied bit of each cell
first, thereby pruning unnecessary cell accesses and speeding
up the negative queries. The Cuckoo filter and Ark filter
return the query results once they find the corresponding
fingerprints; thus, they have higher query throughput when p
grows. Besides, Ark still outperforms others on a large scale
in this experiment.

Fig. 9 indicates the element insertion and deletion
throughput of those sketches when the space occupancy
α grows gradually. As depicted in Fig. 9(a), the insertion
throughput of Bloom filter remains constant while the other
three sketches show dramatic declines when α grows. The

TABLE III
HASH FUNCTIONS USED IN EXPERIMENTS

reason is that they need to handle the overflow of bucket/cell
when the filters get crowded. Specifically, Cuckoo and
Ark have to execute the kick-out-and-reallocate process for
overflowed buckets, while Quotient filter must probe an
empty cell for the coming fingerprint linearly. Ark filter
always has a higher insertion throughput than Quotient and
Cuckoo since it only executes one hash computation for
each element insertion. Besides, Bloom filter fails to enable
element deletion; thus, we quantify the deletion throughput
of Ark, Cuckoo, and Quotient in Fig. 9(b). These sketches
experience instant deletion throughput drop when α grows.
That is a natural result of searching more slots/cells before
deleting the fingerprint. Especially, Quotient filter decreases
from 5.47× 105 to 0.54× 105, making it impractical for real
implementation. By contrast, Ark filter outperforms Cuckoo
filter consistently.

Ark filter and cuckoo filter have different mechanisms
to decide the candidate buckets of each element. Fig. 10
further quantifies the impact of such difference by recording
the time consumption of fingerprint generation and candidate
bucket determination for an element. The hash functions used
in this experiment (including python built-in hash function
and several general hash functions) are listed in Table. III.
As shown in Fig.10, to represent more elements, both Ark
filter and Cuckoo filter need more time to derive out their
candidate buckets. Obviously, Ark filter requires the least
time compared Cuckoo filters. This experiment quantitatively
indicates Ark filter is able to save time by multiplexing
the fingerprint information with the candidate bucket index
information.

Putting the above results together, compared with Cuckoo
filter, Ark filter has 2.08×, 1.34×, and 1.68× throughput of
deletion, insertion, and hybrid query, respectively; compared
with Quotient filter, Ark filter has 4.55×, 1.74×, and
22.12× throughput of deletion, insertion and hybrid query,
respectively; compared with Bloom filter, Ark filter has
2.55× and 2.11× throughput of insertion and hybrid query,
respectively. By the above implementation and experiments,
we conclude that Ark filter outperforms state-of-the-art
sketches significantly by enabling faster element insertion,
query, and deletion.

2836 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 10. The time of fingerprint generation and candidate bucket
determination.

Fig. 11. The capacity elasticity of filters for dynamic set representation.

TABLE IV
BPE OF DAF AND DCF AT PEAK TIME

B. The Merit of Ark Filter Variants

Here we quantify the performance of the variants of Ark
filter for dynamic set representation, frequency estimation, and
top−k query, respectively.

1) Quantification of Capacity Elasticity: Dynamic Ark filter
(DAF) adjusts its capacity by adding or removing slots from
every bucket. The most relevant design is Dynamic cuckoo
filter [12] which includes (excludes) untapped (underutilized)
Cuckoo filters on demand. In this section, we compare such
two typical designs for capacity elasticity with real-world
network traces. We choose traffic trace collected by the MAWI
group [41] from May 20, 14:00:00, 2021 to May 20, 14:01:25,
2021. There are 7,220,238 IPv4 packets. We use src.IP, dst.IP,
src.port, dst.port and protocol in each packet as the key and
identify 1,082,109 flows in total. Besides, our tracking results
show that the maximum size of this traffic is 30,101 at the peak
time. We represent such flows with DAF and DCF and record
their capacities at each millisecond. We set m = 8, 192 for
DAF, therefore the value of b should be no less than 4 to
accommodate the flows at peak time and the associated fpr
is about 4.8 × 10−4. With such observation, we deploy two
versions of DCFs with b = 4. Specifically, “DCF1” has 2,048
buckets while “DCF2” remains 1,024 buckets.

As shown in Fig. 11(a), the optimum capacity (the least
number of slots) for such trace changes with time (increase
first and then drop constantly after the peak). DAF, “DCF1”,
and “DCF2” all try to scale up or scale down to fit the
real capacity demand. “DCF1” costs the highest capacity than
others since its filters are two long and only coarse-grained
elasticity is achieved. To represent a small number of flows,

the value of b should be no less than 1, while DCF may
change the number of filters to fit the flows. That explains
why DAF performs no better than DCF at the beginning
and ending phases. Fig. 11(b) further presents the CDF of
the resultant capacities. DAF and “DCF2” have the same
maximum capacity. However, DAF needs much less capacity
to represent 80% of the flows than “DCF2”. The reason is
that DAF has a larger space utilization than its competitors
on the whole; when b gets larger, its space utilization rises
accordingly [35], [36]. Moreover, as shown in Table. IV,
DAF saves 27.1% and 17.6% bpe than “DCF1” and “DCF2”,
respectively. In other words, DAF guarantees comparable
capacity elasticity as DCF while consuming much less space
overhead.

2) Performance of Frequency Estimation: We further
evaluate the performance of frequency estimation when Ark
filter, Shifting Bloom filter (SBF) [25], Adaptive Bloom
filter (ABF) [24], and CM-sketch [7] are adopted. The
quantified metrics include accuracy, false positive rate,
insertion throughput, and query throughput. We feed these
filters with synthetic datasets wherein the data frequency
follows a normal distribution. We implement two versions of
SBF, as well as ABF, when the number of hash functions for
membership representation is set as 4 (SBF_4 in Fig. 12) and 8
(SBF_8 in Fig. 12), respectively. The involved sketches have
the same space overhead in our experiments. Generally, ABF
and SBF determine the membership of the queried element
first before checking the thereafter bits for frequency.

As shown in Fig. 12(a), when the average frequency f
increases from 5 to 30, both SBF and ABF show significant
accuracy drops. By contrast, our Ark filter guarantees 100%
frequency estimation accuracy. The essential reason is that Ark
filter records the exact frequency directly, while ABF and SBF
have to check the non-zero bits to estimate the frequency.
Besides, ABF realizes lower accuracy than SBF since it
may set more bits to 1 when representing the multiplicity
information. For instance, for an element whose frequency is
10, ABF must set 10 bits h1(x), · · · , h10(x) to 1 besides the
q bits for membership. By contrast, SBF only set the later
10th bit of h1(x), · · · , hk(x). The value of k can be smaller
than 10. Consequently, the non-zero bits set by other elements
may result in overestimating frequency more easily in ABF.
Moreover, using more hash functions to record the existence
information of elements can improve the query accuracy by
pruning more false positives. As for CM-sketch, it has better
accuracy than ABF yet lower accuracy than SBF and Ark filter.

Fig. 12(b) demonstrates the specific false positive rates (fpr)
of Ark filter, ABF, SBF, and CM-sketch. Ark filter guarantees
no more than 1× 10−5 fpr, which is orders lower than others.
CM-sketch has the highest fpr since it can always overestimate
the frequency. For ABF, the fpr is much higher than SBF and
Ark filter, and goes wild when frequency increases. ABF sets
later f bits of the f hash bits to 1 to record a frequency. Thus
the increase of f leads to more false positives. For SBF, when
f grows, the filter has to check more bits before reaching a
conclusion.

As depicted by Fig. 12(c), Ark filter realizes a high
and stable insertion throughput (more than 1.6×105). SBF

LUO et al.: ARK FILTER: A GENERAL AND SPACE-EFFICIENT SKETCH FOR NETWORK FLOW ANALYSIS 2837

Fig. 12. The frequency estimation performance of filters.

Fig. 13. The Top−k estimation performance of filters.

represents any element’s membership with the f hash bits and
its frequency with the affiliation bits. Therefore the increase
of element frequency can barely impact its insertion speed.
By contrast, more hash functions (i.e., larger f) slow down
element insertions significantly. Unlike Ark filter and SBF,
the insertion speed of ABF becomes slow when f increases
since ABF has to check and set more bits to 1 to record the
growing frequencies. Using more hash functions also brings
more insertion time for ABF. Besides, CM-sketch realizes the
best insertion throughput. The reason is that it just increases
the corresponding counters. Such operations need less memory
access, therefore can be quite fast.

We have also quantified the query throughput upon sets with
a diverse fraction of recorded elements (i.e., r). As shown in
Fig. 12(d), the query throughput of Ark filter remains high and
keeps increasing when r grows. Ark filter has to check all the
2b slots to determine the non-existed elements but may find a
stored element fingerprint before going over all the 2b slots.
On the contrary, ABF and SBF need more time to decide the
existence and frequency of a given element. ABF performs the
worst since it checks more bits for each query. With more hash
functions, the query throughput also decreases for both ABF
and SBF. Still, CM-sketch has the highest query throughput
because it just checks the corresponding counters for each
query, while others have to check more bits or fields.

In brief, Ark filter outperforms others and guarantees
accurate and fast frequency query simultaneously and a high
level of insertion speed. SBF and ABF need to trade-off the
accuracy speed by leveraging the number of hash functions.
Besides, the accuracy and speed of SBF and ABF can also be
significantly impacted by element frequency. Moreover, Ark
filter supports online frequency statistics, while ABF and SBF
must know the precise frequency before recording it, thus
falling short of representing dynamic or stream datasets. As for
CM-sketch, it has great throughput yet suffers from high fpr
and low accuracy.

3) Accuracy of Top-k Queries: In this subsection, we com-
pare Ark filter with the existing methods for top-k queries,

including Lossy Counting (LC) [30], Space-Saving (SS) [31],
and HeavyKeeper (HK) [32]. We quantify the query accuracy
and average relative error (ARE) when representing a synthetic
stream dataset with the same and fixed space overhead.
Just like mentioned by HeavyKeeper [32], we suppose the
frequency of flows in the dataset follows a Zipf distribution
with a specific skewness. Here, we vary the skewness and
value of k to explore their impact on these methods. For
experiments of varying k, we set the skewness to 1.5. For
experiments with varied skewness, we set the k = 200.

As shown in Fig. 13(a) and (b), the top-k query accuracy
of Ark filter and HeavyKeeper have near 1.0 accuracy and
0.0 ARE, irrespective of the increment of k. Moreover, the
ARE of Ark filter remains at 0 while other methods increase
with the growth of k. In effect, the sorted counting Ark
filter records each arrived flow precisely and searches the
last several slots of each bucket to determine the top-k flows.
In this experiment, there are in total 214 buckets whose last
two slots are searched. Therefore, Ark filter can respond to
the top-k query with high accuracy and export the exact size
of top-k flows. HeavyKeeper also performs well because it
intelligently omits mouse flows and focuses on recording the
elephant ones using an exponential weakening decay strategy.
By contrast, the accuracy of Space-saving and Lossy Counting
strategies remains low when k is small and gets even lower
when k grows. Space-saving and Lossy Counting have a much
higher ARE than Ark filter and HeavyKeeper. That happens
for two main reasons: 1) as the typical admit-all-count-some
strategies, Space-saving and Lossy Counting only store part
of the flows and expel the smallest ones to make room for
the new-comings. Such a design causes significant errors,
especially when the memory is limited; 2) the difference
of flow frequencies among flows gets smaller as k grows
from 200 to 600, making it easy for Space-saving and Lossy
Counting to regard others as top-k flows.

Fig. 13(c) and (d) show the experiment results when
varying the skewness. The precision of both Space-saving
and Lossy Counting perform much worse than Ark filter and

2838 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

HeavyKeeper and decreases dramatically when the dataset
is highly skewed. By contrast, Ark filter and HeavyKeeper
realize near-accurate top-k queries. When the dataset is highly
skewed, some elements whose frequencies are not too high are
also lying in the top-k community. However, such elements
may be pruned by Space-Saving or Lossy counting, resulting
inaccurate query results.

In summary, Ark filter outperforms its same-kinds such
as Cuckoo filter, Bloom filter, and Quotient filter, in terms
of insertion and query. Its variants also support dynamic
set representation, frequency estimation, and top-k query
elegantly with comparable or better performance than their
competitors.

VI. DISCUSSION

We further discuss several essential issues about the Ark
filter as follows.

The dependency between fingerprint length and Ark
filter length. In Ark filter, given the filter length m, the
fingerprint of any element must lie in the range [0, m(m−1)].
Such a tight dependency enables the multiplexing of the
fingerprint information and the candidate bucket information.
Therefore, we can deduce the indices of candidate buckets
directly based on the fingerprint and filter length (using the
quotient or remainder). However, this dependency also limits
the design flexibility of Ark filter. A possible solution for this
problem is to divide the filter into multiple segments. With
such a design, the dependency is limited within each segment,
reducing the bpe cost and guaranteeing better flexibility
consequently.

The use of flag bit. In Ark filter, the flag bit is
implemented to explicitly indicate the carry field stores a
quotient (remaining the bit as 0) or a remainder (setting the bit
as 1). For a query, the Ark filter will check whether the bucket
indexed by the quotient stores the remainder or vice versa.
This is helpful when the filter responds to a query. We also
note that it is possible to remove the flag bit from the filter for
higher query and insertion throughput. However, this alteration
will undoubtedly double the false positive rate of Ark filter,
since the filter cannot distinguish the quotient part from the
remainder part. For better accuracy, the flag bit is suggested;
for higher throughput, the flag bit can be removed. Such a
choice is left to the users.

Future work. The future work of this paper is mainly two-
fold. First, more variants can be designed to further enrich the
functionality of Ark filter. This paper details how to support
dynamic representation, multiplicity estimation, and top-k esti-
mation, while additional data analysis jobs such as affiliation
query, weighted set representation, element decay, etc. Second,
the performance of Ark filter can be improved with additional
alterations. Besides the mentioned redesigns about the flag bit
and segment above, the counter fields in CAF and sorted CAF
can be optimized to save space. Moreover, cross-checking [42],
bit resetting [43], and hash remapping [44] techniques can
also be employed to decrease the false positive rate of
Ark filter.

VII. CONCLUSION

This paper presents the Ark filter design for set representa-
tion with the ambition of higher throughput, better flexibility,
and more functionalities. At its core, Ark filter relies on the
fingerprint of each element to index its candidate buckets
such that no hash calculations nor XOR operation is needed
during reallocations. For any element x, its quotient and the
remainder upon the filter length are calculated to index its
candidate buckets. Then multiple variants of Ark filter are
proposed to enrich its functionalities. Theoretical analysis
indicates that, given the same false positive rate, the bpe
of Ark is no more than Cuckoo. Besides, comprehensive
experiments commit that, Ark outperforms Bloom, Cuckoo,
and Quotient significantly. Besides, the proposed variants
support dynamic set representation, frequency estimation, and
top-k query elegantly with comparable or better performance
than their competitors.

ACKNOWLEDGMENT

The authors thank all the anonymous reviewers for their
insightful feedback.

REFERENCES

[1] B. Li, J. Springer, G. Bebis, and M. H. Gunes, “A survey of network flow
applications,” J. Netw. Comput. Appl., vol. 36, pp. 567–581, Jan. 2013.

[2] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of Bloom filters for distributed systems,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 1, pp. 131–155, 1st Quart., 2012.

[3] S. Geravand and M. Ahmadi, “Bloom filter applications in network
security: A state-of-the-art survey,” Comput. Netw., vol. 57, no. 18,
pp. 4047–4064, Dec. 2013.

[4] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[6] B. Fan, D. Andersen, M. Kaminsky, and M. Mitzenmacher, “Cuckoo
filter: Practically better than Bloom,” in Proc. ACM CoNEXT, 2014,
pp. 75–88.

[7] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[8] M. Bender et al., “Don’t thrash: how to cache your hash on flash,” in
Proc. USENIX HotStorage, 2011, pp. 1–5.

[9] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic Bloom
filters,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, pp. 120–133,
Jan. 2010.

[10] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
Bloom filter: Challenges, solutions, and comparisons,” IEEE Commun.
Surveys Tuts., vol. 21, no. 2, pp. 1912–1949, 2nd Quart., 2018.

[11] M. T. Goodrich and M. Mitzenmacher, “Invertible Bloom lookup
tables,” in Proc. 49th Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Sep. 2011, pp. 792–799.

[12] H. Chen, L. Liao, H. Jin, and J. Wu, “The dynamic cuckoo filter,” in
Proc. IEEE 25th Int. Conf. Netw. Protocols (ICNP), Oct. 2017, pp. 1–10.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, Jun. 2000.

[14] L. Luo, D. Guo, Y. Zhao, O. Rottenstreich, R. T. B. Ma, and X. Luo,
“MCFsyn: A multi-party set reconciliation protocol with the marked
cuckoo filter,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 11,
pp. 2705–2718, Nov. 2021.

[15] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the
difference? Efficient set reconciliation without prior context,” in Proc.
ACM SIGCOMM, 2011, pp. 218–229.

[16] M. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive cuckoo
filters,” in Proc. SIAM ALENEX, New Orleans, LA, USA, 2018,
pp. 1–16.

LUO et al.: ARK FILTER: A GENERAL AND SPACE-EFFICIENT SKETCH FOR NETWORK FLOW ANALYSIS 2839

[17] P. Fu, L. Luo, S. Li, D. Guo, G. Cheng, and Y. Zhou, “The vertical
cuckoo filters: A family of insertion-friendly sketches for online
applications,” in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2021, pp. 57–67.

[18] D. Eppstein, “Cuckoo filter: Simplification and analysis,” 2016,
arXiv:1604.06067.

[19] L. Luo, D. Guo, O. Rottenstreich, R. T. B. Ma, X. Luo, and
B. Ren, “The consistent cuckoo filter,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2019, pp. 712–720.

[20] A. D. Breslow and N. S. Jayasena, “Morton filters: Faster, space-efficient
cuckoo filters via biasing, compression, and decoupled logical sparsity,”
Proc. VLDB Endowment, vol. 11, no. 9, pp. 1041–1055, 2018.

[21] M. Wang, M. Zhou, S. Shi, and C. Qian, “Vacuum filters: More space-
efficient and faster replacement for Bloom and cuckoo filters,” Proc.
VLDB Endowment, vol. 12. no. 2, pp. 197–210, 2019.

[22] P. Pandey, M. Bender, R. Johnson, and R. Patro, “A general-purpose
counting filter: Making every bit count,” in Proc. ACM ICMD, 2017,
pp. 775–787.

[23] F. Deng and D. Rafiei, “New estimation algorithms for streaming data:
Count-min can do more,” Webdocs. Cs. Ualberta. Ca, 2007. [Online].
Available: http://www.cs.ualberta.ca/~fandeng/paper/cmm.pdf

[24] Y. Matsumoto, H. Hazeyama, and Y. Kadobayashi, “Adaptive Bloom
filter: A space-efficient counting algorithm for unpredictable network
traffic,” IEICE Trans. Inf. Syst., vol. 91, no. 5, pp. 1292–1299, 2008.

[25] T. Yang, A. Liu, M. Shahzad, Y. Zhong, Q. Fu, and Z. Li, “A shifting
Bloom filter framework for set queries,” in Proc. IEEE VLDB, Sep. 2016,
pp. 408–419.

[26] K. Yang et al., “SketchINT: Empowering INT with towersketch for
per-flow per-switch measurement,” in Proc. IEEE 29th Int. Conf. Netw.
Protocols (ICNP), Nov. 2021, pp. 1–12.

[27] H. Li, Q. Chen, Y. Zheng, T. Yang, and B. Cui, “Stingy sketch: A
sketch framework for accurate and fast frequency estimation,” Proc.
VLDB Endowment, vol. 15, no. 7, pp. 1426–1438, 2022.

[28] Y. Zhou et al., “Cold filter: A meta-framework for faster and
more accurate stream processing,” in Proc. SIGMOD/PODS, 2018,
pp. 741–756.

[29] Y. Zhang et al., “CocoSketch: High-performance sketch-based measure-
ment over arbitrary partial key query,” in Proc. ACM SIGCOMM, 2021,
pp. 207–222.

[30] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in Proc. 28th Int. Conf. Very Large Databases (VLDB), 2002,
pp. 346–357.

[31] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Proc. ICDT, 2005,
pp. 398–412.

[32] T. Yang et al., “HeavyKeeper: An accurate algorithm for finding top-k
elephant flows,” IEEE/ACM Trans. Netw., vol. 27, no. 5, pp. 1845–1858,
Oct. 2019.

[33] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
concurrent MemCache with dumber caching and smarter hashing,” in
Proc. USENIX NSDI, 2013, pp. 1–14.

[34] A. Rukhin et al., “A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” Appl. Phys. Lett.,
vol. 22, no. 7, pp. 179–1645, 2010.

[35] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh,
and M. Rink, “Tight thresholds for cuckoo hashing via XORSAT,” in
Proc. ICALP, 2010, pp. 213–225.

[36] N. Fountoulakis, M. Khosla, and K. Panagiotou, “The multiple-
orientability thresholds for random hypergraphs,” in Proc. 22nd Annu.
ACM-SIAM Symp. Discrete Algorithms, Jan. 2011, pp. 1222–1236.

[37] N. Auger, C. Nicaud, and C. Pivoteau. (2015). Merge Strategies:
From Merge Sort to Timsort. [Online]. Available: https://hal-upec-
upem.archives-ouvertes.fr/hal-01212839

[38] C. Hoare, “Quicksort,” Comput. J., vol. 5, no. 1, pp. 1–16, 1962.
[39] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, “CountMax: A

lightweight and cooperative sketch measurement for software-defined
networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2774–2786,
Dec. 2018.

[40] G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data
Structures: In Pascal and C. 1991.

[41] WIDE MAWI WorkingGroup. Traffic Trace Info. Accessed:
Apr. 6, 2021. [Online]. Available: https://mawi.wide.ad.jp/mawi/
samplepoint-F/2021/202105201400.html

[42] H. Lim, N. Lee, J. Lee, and C. Yim, “Reducing false positives of a
Bloom filter using cross-checking Bloom filters,” Appl. Math. Inf. Sci.,
vol. 8, no. 4, pp. 1865–1877, 2014.

[43] K. Huang, J. Zhang, D. Zhang, and G. Xie, “A multi-partitioning
approach to building fast and accurate counting Bloom filters,” in Proc.
IEEE 27th Int. Symp. Parallel Distrib. Process. (IPDPS), Cambridge,
MA, USA, May 2013, pp. 1159–1170.

[44] S. Z. Kiss, E. Hosszu, J. Tapolcai, L. Ronyai, and O. Rottenstreich,
“Bloom filter with a false positive free zone,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Honolulu, HI, USA, Apr. 2018,
pp. 1412–1420.

Lailong Luo received the B.S., M.S., and Ph.D.
degrees from the College of Systems Engineering,
National University of Defense Technology, Chang-
sha, China, in 2013, 2015, and 2019, respectively.
He is currently an Associate Researcher with the
School of Systems, National University of Defense
Technology. His research interests include data
structure and distributed networking systems.

Pengtao Fu received the bachelor’s and master’s
degrees from the National University of Defense
Technology, China, in 2020 and 2022, respectively.
His research interests include data structure and
network measurement.

Shangsen Li received the B.S. degree in automation
from Northeastern University, Shenyang, China,
in 2019, and the M.S. degree in management science
and engineering from the National University of
Defense Technology, Changsha, China, in 2021,
where he is currently pursuing the Ph.D. degree.
His research interests include network measurement,
SDN, and sketch data structure.

Deke Guo (Senior Member, IEEE) received the
B.S. degree in industry engineering from the Beijing
University of Aeronautics and Astronautics, Beijing,
China, in 2001, and the Ph.D. degree in manage-
ment science and engineering from the National
University of Defense Technology, Changsha, China,
in 2008. He is currently a Professor with the College
of Systems Engineering, National University of
Defense Technology. His research interests include
distributed systems, software-defined networking,
data center networking, wireless and mobile systems,

and interconnection networks. He is a member of ACM.

Qianzhen Zhang received the Ph.D. degree from the
National University of Defense Technology, China,
in 2022. He is currently a Lecturer with the College
of Systems Engineering, National University of
Defense Technology. His research interests include
continuous subgraph matching, graph data analytics,
and knowledge graph.

Huaimin Wang received the Ph.D. degree in
computer science from the National University of
Defense Technology (NUDT) in 1992. He has
published more than 100 research papers in peer-
reviewed international conferences and journals.
His current research interests include middleware,
software agent, and trustworthy computing. He has
been awarded the “Chang Jiang Scholars Program”
Professor and the Distinct Young Scholar.

