
2614 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Enhancing TCP via Hysteresis Switching:
Theoretical Analysis and Empirical Evaluation

Ahmed M. Abdelmoniem , Member, IEEE, ACM, and Brahim Bensaou, Senior Member, IEEE, Member, ACM

Abstract— In this paper we study the relationship between the
TCP packet loss cycle and the performance of time-sensitive traf-
fic in data centers. Using real traffic measurements and analysis,
we find that such loss cycles are not long enough to enable most
partition-aggregate time-sensitive TCP applications to recover
their packet losses via the TCP 3-dup ACKs mechanism. As a
result, the Timeout (RTO) mechanism is frequently triggered,
leading to the expansion of the flow completion times (FCT) of
such applications by orders of magnitude. Hence, we seek an
alternative method that does not change the virtual machines
and that can effectively expand the loss cycle duration to enable
short flows to finish their transfer without incurring the cost of
the RTO. To this end, we propose a novel TCP-AQM mechanism
that alternates between a slow constant bitrate (CBR) mode and
a fast TCP rate via hysteresis switching to expand the loss cycle.
We prove the stability of the proposed TCP-AQM via a control
theoretic model, then evaluate its performance gains via small and
large scale NS2 simulation and by real FPGA implementation
of a prototype on the NetFPGA platform. The results show
considerable improvements in FCT distribution and reduction
of missed deadlines in simulation and real experiments.

Index Terms— Data center, congestion control, hysteresis.

I. INTRODUCTION

TCP is the most widely used transport protocol in cloud
applications. At the base, TCP is a distributed end-to-end

protocol that relies on a collection of algorithms to achieve
reliability. Most of these algorithms were not part of the early
incarnation of TCP; they were added gradually to keep up
with the changes that affected the Internet and the traffic over
the decades. As a result, most TCP implementations found in
today’s operating systems are by default fine-tuned to operate
efficiently in high-delay environments, such as the Internet.
In particular, one algorithm that plays a key role in defining
the performance of TCP applications is the congestion control
(CC) mechanism. Over time, numerous variants of the TCP
CC mechanism have seen the light. Most are designed to meet
the ever evolving design goals and operational requirements
of new operating environments [1], [2], [3], such as lossy
wireless links e.g., TCP Westwood [1]; high-speed long-
distance networks e.g., loss-based Cubic TCP [2] or
delay-based Fast TCP [3], and so on.

Manuscript received 24 November 2021; revised 11 July 2022
and 24 November 2022; accepted 26 February 2023; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor D. Malone. Date of publication
7 April 2023; date of current version 19 December 2023. This work was
supported in part by the Hong Kong Research Grant Council (RGC) under
Grant GRF16209922. (Corresponding author: Ahmed M. Abdelmoniem.)

Ahmed M. Abdelmoniem is with the School of EECS, Queen Mary Univer-
sity of London, E1 4NS London, U.K., and also with the CS Department, FCI,
Assiut University, Asyut 71515, Egypt (e-mail: ahmed.sayed@qmul.ac.uk).

Brahim Bensaou is with the CSE Department, The Hong Kong University
of Science and Technology, Hong Kong (e-mail: brahim@cse.ust.hk).

Digital Object Identifier 10.1109/TNET.2023.3262564

In the same spirit, small short-lived flows have recently been
observed to experience unnecessarily long FCT in data centers
with vanilla-TCP; consequently, several new variants of TCP
CC mechanisms have been proposed for data center networks
(e.g., DCTCP [4], [5], TIMELY [6]). In contrast, other studies
simply identified the sources of performance degradation in
data centers with vanilla-TCP and proposed tuning the existing
CC mechanisms’ parameters to match the characteristics of
data center networks (e.g., reducing the initial congestion
window to cope with the small switch buffers [7] or scaling
down the minimum RTO to match the small round-trip time
(RTT) inside data centers [8]). All these approaches have
been shown to yield some performance improvements, and
some of them are already in use in production data centers.
Nevertheless, in public multi-tenanted data centers where the
virtual machines (VMs) are controlled by the tenants, it is
not possible to modify or replace the TCP CC or to tweak
the drivers inside the VM. So we argue that these solutions
are only applicable to private data centers where the operator
has control over both ends of the internal TCP connections.
In addition, several works have investigated switch-based con-
trollers to improve the FCT of short-lived flows. For example,
pFabirc [9] and PIAS [10] leverage priority queuing in the
switches to segregate and serve short-lived flows in priority.
These mechanisms also apply exclusively to privately owned
data centers because they require modifications of the TCP
stack (e.g., PIAS relies on DCTCP, inheriting its drawbacks,
and pFabric relies on a modified version of TCP).

In public multi-tenanted data centers, the tenants share a
common physical infrastructure to run their applications on
VMs. The tenants can implement and deploy their preferred
operating system and thus version of TCP and TCP CC
mechanism. To tackle this issue, a few approaches have been
proposed in the literature. First, the public data center operator
can statically apportion the network bandwidth among the
tenants, giving each of them a fixed allocation with guar-
anteed performance bounds [11], [12]. Although effective,
this technique, would not benefit from the statistical multi-
plexing, because of the high burstiness of TCP traffic, which
results in an ineffectively used admissible region. Another
approach suggests to modify all the switches in the data
center to ensure small buffer occupancies at each switch.
This can be achieved by using separate weighted queues
and/or applying various marking thresholds within the same
queue [13], [14]. Typically, each source algorithm requires a
certain weight/threshold to fully utilize the bandwidth. That is
why such schemes are not scalable, may lead to starvation
and are hard to deploy due to the increasing number of
different CC algorithms employed by the tenants. To enable
true deployment potential in heterogeneous TCP environments

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1374-1882


ABDELMONIEM AND BENSAOU: ENHANCING TCP VIA HYSTERESIS SWITCHING 2615

without modifying TCP, in this paper, we adopt a switch-based
approach.

However, to make our scheme agnostic to the nature of
the CC mechanism employed by the tenant, we rely on a
universally adopted TCP mechanisms to convey congestion
signals to the sources. The sources become simple flow rate
enforcement entities while the switches covey the rates to the
sources during congestion. This approach allows the operators
to innovate freely in the switches and update them without
worrying about the TCP variants chosen by the tenants1

In the remainder, we first report our empirical results on the
impact of TCP RTO on the performance of the traffic flows
and then show the relation between the RTO and the TCP loss
cycles in Section II. The proposed solution, is modelled, and
some design and practical aspects are discussed in Section III.
Then, in Section V, we discuss our implementation details
and show experimental results from a real deployment in a
small-scale testbed. We introduce important related works in
Section VI. Finally, we conclude the paper in VII.

II. BACKGROUND

Short-lived flows in data centers face the challenge of oper-
ating in small-buffered environments when off-the-shelf TCP
uses inadequate, Internet-targeted mechanisms and parameters
such as large initial congestion window, long minimum RTO
and/or exponential window growth in slow-start. This com-
bination of hardware and TCP configuration frequently leads
to multiple timeout events for small flows, which inflates the
FCT by several orders of magnitude. In particular, when the
number (N ) of such flows increases, in the presence of small
buffers, synchronized losses (the so-called TCP incast conges-
tion) occur. Knowing that the loss probability grows linearly
with N [16], the flow synchronization and the excessive losses
are known to lead to throughput-collapse for small-flows in
data centers. To illustrate this, assume the link capacity C
is shared equally among the N flows and let F be the flow
size, τ be the mean RTT and x be the nominal number of
RTTs necessary to complete the transfer. Then, the optimal
throughput (ρ∗) can be expressed as: ρ∗ = F

/
(xτ + NF

C ) .
However, in practice, when TCP incast congestion involving
N flows results in throughput-collapse, some flows experience,
say, n timeout events and have to recover via RTO each
time. Then, the transfer time becomes (n×RTO + the typical
transfer time) and the collapsed throughput (ρ−) becomes:
ρ− ∼ F

/
(nRTO + xτ + NF

C ) .
In data centers, the typical RTT is around 100µs, while

existing TCP implementations impose a minimum RTO of
about 200ms and above. For large long-lived flows, x is
large and n is typically small, hence nRTO and xτ in the
aforementioned expression of ρ− are comparable. In contrast,
for small flows, that only last a few RTTs, nRTO can be
at least several orders of magnitude larger than xτ , even
for n = 1 [8], [17]. As a consequence, if a small flow
experiences a loss that cannot be recovered by 3-dup ACKs
(called hereafter a Non-Recoverable Loss or NRL), then it
has a high chance of missing for example the service level
agreement on the deadlines (e.g., ≈100ms). So, to improve

1A preliminary version of this work appeared in IEEE INFOCOM [15].
The source code is publicly available at https://github.com/ahmedcs/HSCC

Fig. 1. An empirical study to characterize TCP flows and evaluate the effects
of the RTO on the FCT in both the websearch and DataMining workloads.

the performance of small flows, it is necessary to curb or
delay NRLs.

A. Empirical Study of The Effects of RTO on the FCT

To support this analysis, we conduct experiments in a
small-scale testbed to study the frequency of timeouts in
high-bandwidth low-delay environments. We reproduce traffic
workloads found in public and private data centers, by building
a custom TCP traffic generator. The generator establishes
TCP connections to mimic flows with sizes and inter-arrival
time distributions drawn from various realistic workloads
(e.g., WebSearch [4] and DataMining [18], as well as oth-
ers [19], [20]). To conduct the experiment, we instrument the
hosts with probing functions [21] similar to the procedure
in [22]. We run a total of 7000 flows categorized into small
flows (≤ 1MB), medium flows (1 − 10MB) and large
ones (≥ 10MB).

Fig. 1a shows the ratio of flows generated from each
size-category while Fig. 1b shows the ratio of network bytes
generated from each size category. We observe that, in both
workloads, most flows are small. But, in the WebSearch
workload, data bytes are distributed almost uniformly over
the three categories, In the DataMining workload, most of
the traffic is produced by large flows (i.e., these flows tend
to be quite large in size). Fig. 1c shows the probability
of retransmission for different flow types observed in each
workload. It suggests that retransmission is highly likely for
all flow types in both workloads. Noticeably, in the WebSearch
workload, the number of RTOs of small flows is (≈ 35%).
Fig. 1d shows the ratio of flows exceeding the FCT of 200ms
for small flows to be high (i.e., ≈ 28%,≈ 18%) for each
workload, respectively.

From our measurement study, we find that flows would
roughly experience on average 1/2 RTO in WebSearch
(2 in DataMining). Which translates into adding another
100ms (400ms) or more to the FCT, i.e., more than 66%
(366%) the ideal FCT for WebSearch (DataMining) work-
loads, respectively. This demonstrates the devastating effect



2616 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 2. A TCP loss cycle showing differences between the progress of TCP
with DropTail vs. Hysteresis Switching. The hysteresis helps prolong TCP
cycle allowing for more data transfer before experiencing a loss at the end.

that RTOs could have on small flows, which agrees with the
findings of previous studies [4], [8], [23], [24], [25], [26].
The measurements also strongly suggest that RTO frequency
is non-negligible in data centers which suggests that the
TCP loss cycle is so short that the flows in question do
not have a sufficient share of the pipe bandwidth to inject
a sufficiently large number of packets in flight to illicit 3-dup
ACKs recovery.

III. THE PROPOSED METHODOLOGY

In this part, we explore the anatomy of the problems stated
in the previous sections and discuss the proposed solution.

In congestion avoidance (CA) mode, TCP CC uses an
additive-increase multiplicative-decrease (AIMD) algorithm
which results in a congestion window Cwnd that evolves in
a typical periodic sawtooth behavior as shown in Fig. 2(A).
AIMD ensures that Cwnd attains all the values between
the maximum Cwnd(w), at which congestion occurs, and
its minimum value (or equilibrium point w/2 [16]). This
represents one loss cycle. The figure also shows that the
flow control receiver window Rwnd is quasi constant, because
receivers often allocate large enough receive buffers. The
sending window Swnd = min(Rwnd, Cwnd) is also shown.
In a typical scenario, because of the small RTT and frequent
losses in data centers, Rwnd≫1; in addition, the throughput
of TCP with AIMD can be shown to be inversely proportional
to the square root of the loss event probability [16]. Therefore,
due to frequent loss events in data centers, the loss cycle is
very short, and thus Rwnd≫Cwnd. Thus Swnd almost always
takes the value of Cwnd, with Rwnd being ineffective in such
case. This problem is encountered with window-based TCP
(e.g., Reno, Cubic, DCTCP) that rely on losses as congestion
signals to adjust their sending rates.

Because of frequent loss events, small flows end up by
not having enough time to build a long enough flight of
packets to trigger 3-dup ACKs for loss recovery, which leads
to frequent timeouts. To increase TCP throughput one needs to
curb such non-recoverable losses by stretching the loss cycle
to enable small flows to build their data flight size to values
that allow for 3-dup ACKs or to complete the transfer before
a loss occurs. In this spirit, we propose to use hysteresis to
control the traffic flow into the router’s buffer by setting two
thresholds: a low threshold α1, below which the sources can
start to send data according to TCP CC Cwnd, and a high
threshold α2 above which all the sources are throttled to a
small constant bit-rate (CBR) (e.g., 1MSS/RTT) that would

Fig. 3. Finite state machine of TCP with hysteresis control.

enable the congestion in the router buffer to recede. Such CBR
mode would remain in effect until the backlog clears and the
buffer occupancy drops below α1 threshold. Such behavior is
better described by the finite state machine in Fig. 3. Assuming
slow start is transient, starting in AIMD mode in the state
named ‘TCP’, the source rate alternates between using Cwnd
with additive increase in the state TCP and a constant bit-
rate (CR) of 1MSS/RTT in the state ‘CBR’, as long as the
queue does not overflow the buffer (of size M). Once a loss
occurs, not only the CR is imposed on the sources, but also
TCP’s multiplicative decrease (MD) is imposed on Cwnd ,
as depicted in the state ‘CBR+’.

To build such a controller without changing TCP in the VM,
one can imagine an oracle that can suppress the use of
Cwnd during the CBR and CBR+ states and replaces it
with a constant rate. Since the source sending rate Swnd =
min(Rwnd, Cwnd), and Rwnd has little effect on the source
rate in data centers, such an oracle could simply be the switch
itself that is i)aware of the instantaneous buffer backlog, and
ii)could impose the constant rate on the sources by simply
rewriting the CR value in the Rwnd field of the ACK packet
headers, as long as the state is in CBR or CBR+.

Under such a controller, losses are delayed; and the loss
cycle is stretched as illustrated in Fig. 2(B) that shows
Cwnd, Rwnd and Swnd in one loss cycle. In each cycle,
Cwnd becomes inactive for a certain time and Rwnd takes
over the control of Swnd. During this period, Rwnd is set by
the switch to a small rate until congestion recedes and Cwnd
can be reactivated again with its suspended value. During the
time where Rwnd controls the sending rate, Cwnd continues
to increase according to the AIMD algorithm as shown in
the figure, which ensures that TCP fairness among flows is
still maintained. It is easy to demonstrate analytically that this
approach indeed improves the throughput of TCP. Fig. 2(B)
describes the expected TCP behavior with stretched loss cycle:

1) TCP starts increasing Cwnd in the AI mode until the
window reaches wα2 (which is triggered by the queue
reaching α2 at the bottleneck switch) based on signals
coming from the switch.

2) When Cwnd reaches the threshold, the state switches
to the slow CBR mode which enforces sending at rate
1 MSS/RTT via Rwnd until an implicit signal comes
to signal that congestion has receded, which allows the
source to resume using its previous Cwnd .

3) Afterwards, TCP will operate in AI mode for at least
one RTT before switching back to the slow CBR mode.

4) This cycle of switching back and forth between AI and
slow CBR continues for a few more RTTs until Cwnd



ABDELMONIEM AND BENSAOU: ENHANCING TCP VIA HYSTERESIS SWITCHING 2617

Fig. 4. Toy scenario with incast: TCP with DropTail vs. HSCC.

Fig. 5. (a) HSCC system components, the feedback loop and the hysteresis
law which switches between TCP, CBR and CBR+ traffic sources. (b) The
control law of HSCC obeys a counter-clockwise hysteresis to switch between
states based on queue occupancy.

reaches or exceeds the maximum congestion window w
that leads to congestion.

5) Then a packet loss occurs and triggers MD and CBR,
after which a new stretched loss cycle starts. Cwnd that
was cut in half resumes the rate control.

Fig. 4 shows a toy scenario where an ongoing steady state
TCP flow shares the network with 5 new incoming incast
flows. In deep blue colour are the TCP-SYN packets to
open the 5 incast connections (we assume each of them has
two segments to transmit and the initial window is 2 MSS).
In Fig. 4a, at RTT 2, 5 SYN segments are acknowledged
leading to 5 new connections starting to send two MSS each
in RTT 3. In the presence of the existing TCP flow continuing
with CA, this leads to only one segment (in light blue) being
successfully received and 9 segments being lost, inducing a
timeout for all 5 flows. That is, at RTT 2, the window of the
ongoing flow was at w−2 and by the time the incast flows start
sending data at RTT 3, the ongoing flow has already increased
its window to w−1 leaving room for one extra segment only.
In stark contrast, Fig. 4b shows that at RTT 2, the hysteresis
switch would be active and the current sending window of all
flows is set to 1 MSS. Therefore, from RTT 3 onward, and as
long as the total window is above wα2 , each flow including
the new flows and the ongoing flow, would be allowed to
send 1 MSS per RTT only. We can clearly see that all 6 flows
are able to continue sending data albeit at reduced rates. After
two RTTs, the five incast flows finish their transmission and
the original flow can resume using its suspended congestion
window immediately after. The performance gains in terms of
FCT for incast flows and network throughput are obvious.

A. System Design and Modeling
HSCC system control loop is depicted in Fig. 5a. The

system consists of four main components: three data sources,
and the queue with a hysteresis controller that switches among
the three data sources. The sources comprise a TCP Additive
Increase source with 1 MSS/RTT increase rate, a CBR source
sending at a constant rate of 1 MSS/RTT, and a CBR+ source

Fig. 6. HSCC system real deployment components.

that combines the CBR source and a Multiplicative Decrease
applied to the congestion window. Fig. 5b shows the switching
control law used by the HSCC switch as a counter-clockwise
hysteresis system. Starting with a TCP source with rate λ1, the
switching to CBR with rate λ0 first happens when the high
threshold α2 is crossed in the buffer. Such state continues with
a constant rate λ0 until the lower threshold α1 is crossed. The
system switches back to TCP state but this time with rate
λ2

2 and so on until the system enters the TCP state with a
congestion window that leads to a packet loss. In this case
the system switches to CBR+ which is similar to CBR except
that Cwnd is also cut by half. This ends one cycle.

Fig.3 shows the transition diagram of TCP-HSCC system
states. It is clear that there is a singularity in the congestion
window value (when it is cut by half) one RTT from the loss
event. These events are caused by the queue length exceeding
the buffer size M as shown in the diagram. However, in loss
events, the HSCC control law is already operating with CBR
mode, because, to reach full buffer occupancy, the buffer must
cross the high threshold first. It is clear from the transition
diagram that the system is operating with CBR until the queue
falls back to the low threshold which starts the AIMD mode
again. This means there is a time-span in which the new
congestion window w

2 is inactive (i.e., the duration for the
switch to drain the queue back to the low threshold).

Fig. 6 shows the HSCC system practical components and
operations. It consists of the HSCC switch module that
performs the Hysteresis switching and an end-host module
residing under the hypervisor (HS Shim layer) whose role
is to translate window scaling option. First, at connection-
setup, flows are hashed into a hash-table with the flow’s
4-tuples (source and dest. IP address, and source and dest.
port number) used as the key and the receiver window Rwnd
scale factor used as the value. Flow entries are cleared from
the table when a connection is closed (i.e., FIN is received).
The module writes the scale factor for all outgoing ACK
packets in the 4-bit reserved field of TCP headers.3 The
used bits for window scaling are cleared after their usage
by the HSCC switch to avoid packets being dropped by the
destination due to invalid TCP checksum value. This saves the

2Note that despite the sending rate is controlled by the Rwnd , the returning
ACKs in the VM continue to increase Cwnd , albeit with very small fractions.

3Instead, 4-bits of the receive window field could be used to encode the
window scaling and the remaining 12 bits used for the actual window values.



2618 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

need to recalculate the checksum at both the end-host and the
switch. As shown in Fig. 6, the module resides right above
the NIC driver for a non-virtualized setup and right below the
hypervisor to support VMs in cloud data centers. Hence, this
does not impact the network stack implementation of the host
or guest OS, making it readily deployable in production data
centers. The end-host module tracks the scaling factor used
by local communication end-points and explicitly append this
information only to outgoing ACKs of the corresponding flow.
The switch module on the other hand monitors the queue and
whenever it detects that the hysteresis (high) threshold has
been crossed for one of the ports, it immediately switches to
CBR mode and apply receiver window updates in the incoming
ACKs of that port.

B. Practical Aspects of The System
Control Packets Loss: TCP packets are considered lost

if the data or its corresponding ACK is lost and connections
cannot be opened/closed if the SYN/FIN segments are lost.
Hence, if Rwnd is set to small values such as 1 MSS, then an
ACK segment loss can lead to timeout. To address this issue,
HSCC may leave room in the buffer for any control packets
(e.g., SYN, FIN, ACK and so on) to safeguard them from
possible losses. In our design, we set another drop point σ
on all switch queues below the size of the buffer: σ is set to
reserve a small amount of buffer (e.g., ≈3%) for the different
control packets like pure ACK packets. If ACKs are piggy-
packed, then similar to [25], the switch could cut the payload
and forward only the ACK. The evaluation of these tweaks is
not covered in this paper.

Receive Window Scaling: HSCC relies on a scale factor
to rescale the modified window written into TCP header
of incoming ACKs. TCP specification [27] states that the
three-byte scale option may only be sent in SYN segments by
each TCP end-point to let its peer know what factor it uses for
its own window value scaling. The scaling may be unnecessary
for networks with Bandwidth-Delay Product (BDP) of 12.5KB
(i.e., with NICs of 1 Gbps and RTT≈ 100µs). However,
with the adoption of high speed links of 10 Gbps (i.e.,
BDP = 125KB), 40 Gbps (i.e., BDP = 500KB) and 100 Gbps
(i.e., BDP = 1.25MB), the scaling factor becomes necessary
to utilize the bandwidth effectively. This applies to cases when
there are less than 2 (for 10Gbps), 8 (for 40Gbps) and 20 (for
100Gbps) active flows. Even though, the probability of having
such small number of active flows per host in data centers are
extremely small [4]. HSCC should be designed to handle win-
dow scaling via flow-level tracking. Since implementing this at
the switch would result in a non-scalable system, we propose
the light-weight end-host shim-layer to explicitly send scaling
factor with outgoing ACKs. The shim-layer extracts and stores
the advertised scaling factor (i.e., from the window scaling
option) from outgoing SYN and SYN-ACK segments for each
established TCP flow. The shim-layer encodes the scaling
factor using 4 of the 8 reserved bits of the TCP header. Then,
the switch uses this value to scale the new window properly
and clears the used bits. In Ethernet networks, IP checksum is
not checked by forwarding devices and checked at the receiver
IP layer. So by clearing the used bits, computation of new IP
checksum is not necessary both at the shim-layer and at the
switch.

IV. SYSTEM MODELING AND STABILITY

In this section, we will study the stability of our controller
using the standard fluid modeling and linearization methods.
Fig. 3 shows the state transitions in TCP-HSCC where the
control alternates between two systems namely AIMD of
TCP and the slower CBR when HSCC is actively rewriting
Rwnd. Since the two states happen disjointedly, we model
TCP-HSCC behavior, via two decoupled sets of differential
equations that represent the dynamics of each system then
combine them as a weighted sum. For this define pu ∈ [0, 1)
as the Rwnd update probability (i.e., the average fraction of
time when CBR is active). Define pl ∈ [0, 1) as the loss event
probability triggered via 3-dup Acks. Similar to [28], [29],
we assume a finite buffer capacity M , and that the difference
in RTT among competing flows to be negligible, therefore the
congestion windows and RTTs of the different flows converge
respectively to w(t) and τ(t). Assume also that the packet
sizes are constant and the sources have a continuous supply of
data, that is, short-lived flows are considered to be a temporal
low-frequency disturbance/noise imposed on the system and
are absorbed by the system dynamics. Then, let N represents
the steady state number of flows sharing the buffer. The
RTT for a packet with a bottleneck link capacity of C is
τi(t) = Tc + Tt + Tp + qi(t)

C , where Tt is the transmission
time, Tp is the propagation delay, Tc is the processing delays
on the path and qi(t)

C is the queueing delay seen by flow i at
time t. Let t′ = t − τ(t), then the system dynamics can be
stated as:

dw(t)
dt

=
1− pu(t′)

τ(t)
+

1
w(t)

pu(t′)
τ(t)

− w(t)pl(t′)
2

w(t′)
τ(t′)

,

dq(t)
dt

= Nw(t)
(1− pu(t′))

τ(t)
+ N

pu(t′)
τ(t)

− C. (1)

The first line in Eq.1 describes the congestion window
dynamics and consists of three terms; the first term on its
right-hand side indicates additive increase by 1 MSS per RTT
when not in Rwnd update mode, which happens with probabil-
ity 1−pu(t′), the second term indicates the CBR constant rate
of 1 MSS when in CBR mode, which happens with probability
pu(t′), and the third term indicates multiplicative decrease
when a loss event occurs. The second line in Eq.1 describes
the bottleneck queue dynamics and consists of two terms; the
first term represents the arrival data rate when the system is
operating under TCP mode, and the second term represents
the arrival data rate when the system is under the CBR mode.
The derivations are a modified version of window and queue
dynamics of TCP as in [28] and [29].

Proposition 1: The system described in (1) is stable
Proof: To show that the system is stable, it is sufficient

to show that it is Hurwitz-stable after linearization [30].
The system state is defined by the pair (w(t), q(t)) and has

two inputs (pl, pu). By definition of the FIFO queue, it is
straightforward to notice that since α2 ≤ M then pu ≥ pl

(i.e., the backlog in the buffer crosses several times α2 before
one packet loss occurs). So, without loss of generality, we can
write pu = p, pl = κp, where κ ∈ [0, 1] is a positive scalar
that is on average inversely proportional to the number of times
the queue length exceeds the high threshold α2 before a single
buffer overflow occurs. Note that, after every time α2 threshold



ABDELMONIEM AND BENSAOU: ENHANCING TCP VIA HYSTERESIS SWITCHING 2619

is crossed, the window increases by 1 MSS per flow when the
TCP mode becomes active again. And so if N is given then
κ can be calculated from the ratio of N , to the number of
packets filling the queue between the high threshold α2 and
the full buffer size M (i.e., κ = N

(M−α2)
). The operating point

of the system is when the system dynamics comes to rest
(i.e., the equilibrium point which is defined by the following
parameters (w0, q0, pu0 = p0, pl0 = κp0). Given τ0 = q0

C + T ,
the equilibrium point parameters p0 and w0 are as follows:

dw(t)
dt

= 0 → P0 =
(

κw0τ0

2
− 1

w0
+ 1

)−1

dq(t)
dt

= 0 → w0 =
Cτ0
N − p0

1− p0
, (2)

Linearization. we define the perturbed variables as δw = w−
w0, δq = q−q0 and the perturbed system input δpu = pu−pu0 ,
and denote by ẇ(t) = dw(t)/dt and q̇(t) = dq(t)/dt; then, the
linearized system of equations around the equilibrium writes:

δẇ(t) = −p0

τ0

(
1

w0τ0
+

κw0

2

)
δw(t)− p0

Cτ3
0

δq(t)

− 1
τ0P0

δp(t− τ0),

δq̇(t) = (1− p0)
N

τ0
δw − 1

τ0
δq −

(
C − N

τ0

)
δp(t− τ0).

(3)

Stability Analysis. Let V1 = 2P0
τ0

(
1

w0τ0
+ κw0

2

)
, V2 =

P0
Cτ3

0
, V3 = (1− P0) N

τ0
, and V4 = 1

τ0
: V1, V2, V3, and V4 are

positive if w0 > 0 and P0 > 0. From (2), it is easy to see
that w0 > 0 if Cτ0 ≥ N and 0 < P0 < 1. The condition
P0 > 0 means 1

w0
< 1 + κw0τ0

2 which is true if w0 ≥ 1.
Similarly, the condition P0 < 1 is true if 0 < κw0τ0

2 < 1 and
w0 ≥ 1. So the variables V1, V2, V3 and V4 are positive if
Cτ0 ≥ N, w0 ≥ 1 and 0 < κw0τ0 < 2. Define A, X , b and y
as:

A =
[
−V1 −V2

V3 −V4

]
, x =

[
δw
δq

]
,

b =

 − 1
τ0P0

−(C − N
τ0

)

 and y = δp(t− τ0); (4)

then, (3) can be written in matrix form as: ẋ = Ax + by.
To prove that this system is stable, it is sufficient to show

that A is a Hurwitz matrix, i.e., all its eigenvalues have
negative real parts [30]. A has two eigenvalues:

λ1,2 = −V1

2
− V4

2
±

√
V 2

1 − 2V1V4 + V 2
4 − 4V2V3

2
. (5)

If V 2
1 − 2V1V4 + V 2

4 − 4V2V3 <= 0 then ℜ(λ1,2) <
0. Otherwise, if V1 + V4 <

√
V 2

1 − 2V1V4 + V 2
4 − 4V2V3,

one of the eigenvalues may be positive; however, by simple
algebraic manipulations of the inequality, we can show that
for such case to happen 4V1V2 < 0 which is impossible
since V1, V2, V3 and V4 are all positive quantities; therefore
the system is stable.

Sensitivity Analysis of The System: we conduct simulation
experiments using WebSearch workload with various values of
the thresholds α1 and α2 to assess the sensitivity of HSCC

to their settings. The details on simulation settings, flow sizes,
inter-arrival times and network loads are the same as in [15].
The results indicate that FCT is not affected at all by the
choice of the parameters α1 and α2 and similar results are
also observed for DataMining workload. This is not surprising
because in all cases the system switches between TCP and low
rate CBR but at slightly different times (i.e., switching time
differences are in the sub microsecond scale) as well as the
small size of the switch buffers. This means that our scheme is
robust and the operator can deploy it without worrying about
the right values for thresholds. However, we believe further
testing and verification in real deployments are still necessary.

V. IMPLEMENTATION AND EXPERIMENTS

A simulation study of HSCC early design has been con-
ducted in [15], therefore for brevity in this paper we only focus
on investigating the performance of HSCC via a hardware
prototype implemented with Verilog as a new switch design
on the NetFPGA platform. The new switch is used to conduct
a series of testbed experiments in a small data center to verify
its potential benefits. We will first start the experiments via a
synthetic micro-benchmark to understand the performance of
HSCC, then we will run a variety of experiments using realistic
traffic from our traffic generator to assess the performance of
HSCC under realistic data center traffic.

Our testbed consists of 14 servers with 12 cores and 6
1Gbps Ethernet cards each connected via a 2-level FatTree
topology. Four of the Ethernet cards in each server are reserved
for building the testbed data center (the others are left for
control and communication). Each card is bonded to two
cores and is connected to a ToR switch allowing us to form
4 virtual racks. The four racks are interconnected via a 4 ports
NetFPGA core switch on which we built the HSCC controller.
By controlling the source and destination of the traffic, we can
create bottleneck links as needed.

A. Experimental Results Benchmark Scenario
Incast Traffic without Background Workload: First,

we run one mild and one heavy incast traffic scenarios where
a large number of small flows transfer 11.5KB of data each.
In both scenarios, 7 servers in rack 4, issue 1000 web requests
to retrieve “index.html” webpage of size 11.5KB from the
other 21 servers in rack 1, 2 and 3. In the mild load scenario,
each requester uses 2 parallel TCP connections to finish the
1000 requests; hence, a total of 252 ((21 × 7 − 21) ∗ 2)
synchronized requests are issued. In heavy load, the same
number of requests are issued, however, each requester uses
5 parallel TCP connections instead of 2. This results in
630 incast flows (i.e., 126× 5).

Experimental Results: Fig. 7 shows that HSCC achieves a
significantly improved performance under both mild and heavy
load scenarios. Even though, Fig. 7a shows that TCP-HSCC
in the mild case achieves almost the same FCT on average
compared to TCP-DropTail and DCTCP, it reduces, for more
than 65% of the flows, the FCT standard deviation and
maximum FCT by more than 1.5 orders-of-magnitude. This
suggests that almost all flows (including tail-end ones) can
finish before the end of their deadlines. In the heavy traffic
case, Fig. 7b shows that the improvements are less significant
compared to the mild case. This is because in heavy load case,



2620 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 7. Incast Scenario: FCT statistics and bottleneck link packet drops for
TCP-HSCC, TCP-DropTail and DCTCP.

the CBR mode is always active and flows send at the minimum
rate of 1 MSS per RTT, then the total rate is 920KB per RTT.
The aggregate rate in this case is ≈ 3.2 times larger than the
size of the bottleneck pipe (i.e., the switch buffer size plus the
Bandwidth-Delay Product (BDP), or 287 KB). Fig. 8b and 8c
show that HSCC can significantly decrease the in-network
packet drop rate during incast events by ≈ 96% in medium
load and by ≈ 86% in heavy load scenarios, respectively.

Mild Incast Traffic with Background Workload: now
we examine HSCC performance when it is subjected to
background long-lived flows. For this, we generate incast flows
and let them compete for the same output port buffer with
long-lived flows. To achieve this, we use iperf [31] to generate
21 long-lived flows set to send towards rack 4 continuously
for 20s. As a result, the incast web traffic competes for the
bottleneck bandwidth with each other as well as the new
background traffic. A single incast epoch of Web requests is
scheduled to run for 100 consecutive requests (i.e., each client
requests a 1.15 MB file partitioned into 100 11.5KB chunks
totalling ≈ 145 MB). This epoch is scheduled to start after the
iperf flows have reached steady state (i.e., at the 10th sec).

Experimental Results: Fig. 9a shows that, HSCC achieves
FCT improvements for small flows while nearly not affect-
ing the performance of long-lived flows. In addition, the
FCT standard deviation is reduced by one order-of-magnitude

Fig. 8. Mild Incast with background traffic: FCT statistics, bottleneck link
packet drops and throughput.

compared to TCP (Cubic, Reno) with DropTail and DCTCP.
Finally, HSCC reduces the tail FCT (i.e., the 90th percentile),
by more than 1.5 order-of-magnitude. The improvements mean
that small flows can finish quickly before their deadlines.
Fig. 9c shows that long-lived flows are almost not affected
by HSCC’s intervention (throttling their rates during the short
incast periods). Fig. 9b reveals that packet drop under HSCC
is reduced considerably due to switching to the slow CBR
during incast by throttling long-lived flows to avoid excessive
packet losses for small flows.

Heavy Incast Traffic with Background Workload: We
repeat the above experiment, increasing the frequency of
shot-lived incast epochs to 9 times within the 20 second period
(i.e., at the 2nd, 4th, . . . and 18th sec). In each epoch, the
servers request a 1.15MB file partitioned into 100 11.5KB
chunks (i.e., ≈145 MBytes per epoch and approximately
1.45 GBytes for all 9 epochs).

Experimental Results: Fig. 9a shows that HSCC scales
well with higher incast frequencies even in presence of long-
lived flows. The average FCT and standard deviation for
small flows are significantly improved compared to TCP with
DropTail and DCTCP. This can be attributed to the lower
frequency of buffer overflows thanks to the expanded loss
cycles in TCP-HSCC as shown in Fig.9c. The lower drop
rate translates also into lower chance of experiencing timeout.
Compared to the previous experiment, Fig. 9b shows that the
long-term average throughput of 60% of the long-lived flows
is reduced by roughly 5Mb/s. We believe that the system
switches to CBR for long periods in heavy loads which enables
fair utilization of the bandwidth and hence all flows (small and
long) can progress equally and at the same rate.

B. Experimental Results With Realistic Workloads
We use now the traffic generator described in Section II,

to run experiments that involve realistic traffic from real data



ABDELMONIEM AND BENSAOU: ENHANCING TCP VIA HYSTERESIS SWITCHING 2621

Fig. 9. Heavy incast with background traffic: FCT statistics, bottleneck link
packet drops, and average throughput.

centers, namely, WebSearch and DataMining traffic workloads.
In addition, in some experiments, we use iperf [31] to emulate
some long-lived background traffic (e.g., VM migrations,
backups and so on). We create a One-to-All scenario with
and without long-lived background traffic. In this One-to-All
experiment, clients from the VMs in one rack send requests
randomly to any of all other servers in the cluster. In addition,
in the experiment with background traffic, we run long-lived
iperf flows in an all-to-all fashion to mimic sudden and
persistent spikes in network load. Even though, we classify
flows by size (i.e., <= 100KB as small, > 100KB and <=
10MB as medium and >= 10MB as large), we focus more
on the results of small flows which are the main target for
HSCC.

A Scenario without Background Traffic: the traffic gen-
erator is set to randomly initiate 1000 requests per server per
rack to randomly selected servers on one of the other racks.
We report the performance in terms of average, median and
maximum FCT and the number of flows that missed the 200ms
deadline for small flows in Figures 10a, 10b, 10c and 10d for
the WebSearch workload; and in Figures 11a, 11b,11c and 11d
for the DataMining workload.

We can make the following observations: i) For WebSearch,
HSCC improves the performance of small flows in both
the average and maximum FCT as well as the number of
missed deadlines for all TCP variants. For example, compared
to Reno, Cubic and DCTCP, HSCC reduces the FCT of
small flows by ≈ (34%, 33%, 5%), ≈ (30%, 32%, 4%) and
≈ (58%, 34%, 6%) on the average, median and maximum,
respectively. In addition, the number of missed deadlines
is improved by ≈ (52%, 62%, 18%) for Reno, Cubic and
DCTCP, respectively. ii) For DataMining, the improvements
are even more significant due to the predominance of small
flows in this workload. For instance, compared to Reno,

Fig. 10. One-to-All WebSearch; no-background traffic.

Fig. 11. One-to-All DataMining; no-background traffic.

Cubic and DCTCP, HSCC reduces the FCT of small flows
by ≈ (92%, 93%, 30%) on the average, ≈ (65%, 67%, 25%)
on the median and ≈ (98%, 98%,−%) on the maximum,
respectively. In addition, the number of missed deadlines is
improved by ≈ (93%, 94%, 4%) for Reno, Cubic and DCTCP,
respectively. iii) DCTCP improves the FCT over Reno and
Cubic and HSCC further improves the performance of DCTCP.

A Scenario with Background Traffic: to put HSCC under
true stress, we run the same One-to-All scenario but we
introduce an all-to-all long-lived background traffic during the
experiment. We report similar metrics as in the aforementioned
case. Figures 12a, 12b, 12c and 12d show the average,



2622 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

Fig. 12. One-to-All WebSearch with background traffic.

median and max FCT, and missed deadlines for small flows.
We observe the following in this case: HSCC improves further
the average, median and maximum FCT of small flows regard-
less of the TCP congestion controller in use. As shown in the
results, compared to Reno, Cubic and DCTCP, HSCC reduces
the FCT of small flows by ≈ (66%, 63%, 26%) on the average,
≈ (52%, 54%, 51%) on the median and ≈ (75%, 75%,−) on
the maximum, respectively. HSCC has managed to decrease
the maximum FCT and consequently the number of missed
deadlines by ≈ (75%, 75%) for Reno, Cubic, respectively.
However, DCTCP sees a slight increase in the max FCT and
missed deadlines, which might be attributed to its reaction to
excessive ECN marks caused by background flows.

In summary the micro-benchmark and traffic generator
experimental results show the performance gains (esp. for
time-sensitive applications) obtained by adopting HSCC sys-
tem. In particular, they show that: 1) It reduces the mean and
variance of the FCT of small flows and significantly reduce
by 1 to 2 orders-of-magnitude the FCT for the tail end; 2)
It can improve the performance further in the presence of
bandwidth-hungry long-lived flows; 3) It efficiently handles
short-lived traffic, even in low and high frequency incast
events; 4) It achieves its goals without requiring modifications
to the network stack of the guest VMs.

VI. RELATED WORK

Much work has been devoted to addressing congestion prob-
lems in data centers and in particular incast congestion [26],
[32], [33], [34]. Recent works [22], [23], [24], [26], [32],
[35] analyzed the nature of incast events in data centers and
shown that incast leads to throughput collapse and longer FCT.
They show in particular that throughput collapse and increased
FCT are to be attributed to the data center ill-suited timeout
mechanism and use of large initial congestion windows in
TCP’s congestion control [15], [36], [37], [38].

Towards solving the incast problem, one of the first
works [39] proposed changing the application layer by limiting
the number of concurrent requesters, increasing the request
sizes, throttling data transfers and/or using a global scheduler.
Another work [8] suggested modifying the TCP protocol in
data centers by reducing the value of the minRTO value
from 200ms to microseconds scale. Then DCTCP [4] and
ICTCP [40] were proposed as new TCP designs tailored
for data centers. DCTCP modifies TCP congestion window
adjustment function to maintain a high bandwidth utilization
and sets RED’s marking parameters to achieve a short queuing
delays. ICTCP modifies TCP receiver4 to handle incast traffic
by adjusting the TCP receiver window proactively, before
packets are dropped via throughput estimation. These solutions
require changes to the TCP logic at the end hosts, can not
react fast enough with the dynamic traffic of data centers and
impose a limit on the number of senders.

Similar to DCTCP, DCQCN [41] was proposed as an end-
to-end congestion control scheme implemented in custom
NICs designed for RDMA over Converged Ethernet (RoCE).
It achieves adaptive rate control at the link-layer relying on
Priority-based Flow Control (PFC) and RED-ECN marking to
throttle large flows. DCQCN, not only relies on PFC which
adds to network overhead, it introduces the extra overhead of
the explicit ECN Notification Packets (CNPs) between the end-
points. TIMELY [6] is another congestion control mechanism
for data centers which tracks fine-grained sub-microsecond
updates in RTT as network congestion indication. However,
its fine-grained tracking increases CPU load on the end hosts
and it is sensitive to delay variations on the backward path.

VII. CONCLUSION

In this paper, we show empirically that the low
bandwidth-delay product of data centers results in excessive
timeouts. We find that the short TCP loss cycle is one of the
major reasons for this. We show analytically that short cycles
can greatly degrade TCP performance when the losses at the
end of the cycle are only recoverable via timeout. To enhance
the performance of short TCP flows, we propose to stretch
the period of TCP cycles in data centers and design HSCC,
an efficient control theoretic hysteresis switching mechanism.
We implemented HSCC as a hardware prototype and tested
its performance thoroughly via simulation and experiments in
a small testbed data center. The experimental results demon-
strated that HSCC improves the FCT of most TCP small flows,
which are known to account for the large part of flows gener-
ated by data center workloads, without impacting the progress
of long-lived flows. Last but not least, HSCC achieves such
feat without the need for TCP modifications in the guest VMs.

REFERENCES

[1] C. Casetti, M. Gerla, and S. Mascolo, “TCP Westwood: End-to-end
congestion control for wired/wireless networks,” Wireless Netw., vol. 8,
pp. 467–479, Sep. 2002.

[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Syst. Rev., vol. 42, no. 5,
pp. 64–74, Jul. 2008.

4ICTCP [40] implementation as an NDIS driver is only applicable to
Windows OS and would not apply to other OSes such as Linux in which case
the implementation requires changes to the TCP logic in the Linux kernel.



ABDELMONIEM AND BENSAOU: ENHANCING TCP VIA HYSTERESIS SWITCHING 2623

[3] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast TCP: Motivation,
architecture, algorithms, performance,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1246–1259, Dec. 2006.

[4] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM CCR,
vol. 40, p. 63, Aug. 2010.

[5] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
Stability, convergence, and fairness,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 39, no. 1, pp. 73–84, 2011.

[6] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 537–550, 2015.

[7] M. Mellia and H. Zhang, “TCP model for short lived flows,” IEEE
Commun. Lett., vol. 6, no. 2, pp. 85–87, Feb. 2002.

[8] V. Vasudevan et al., “Safe and effective fine-grained TCP retransmissions
for datacenter communication,” ACM SIGCOMM Comput. Commun.
Rev., vol. 39, p. 303, Aug. 2009.

[9] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker, “Deconstructing datacenter packet transport,” in Proc. 11th
ACM Workshop Hot Topics Netw., 2012, pp. 133–138.

[10] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in Proc. USENIX
NSDI, 2015, pp. 455–468.

[11] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in Proc. USENIX NSDI, 2011, p. 23.

[12] E. Zahavi, A. Shpiner, O. Rottenstreich, A. Kolodny, and I. Keslassy,
“Links as a service (LaaS) Guaranteed tenant isolation in the shared
cloud,” in Proc. Symp. Archit. Netw. Commun. Syst., Mar. 2016,
pp. 87–98.

[13] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter,
“Practical DCB for improved data center networks,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., Apr. 2014, pp. 1824–1832.

[14] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” in Proc. USENIX NSDI, 2016, pp. 537–549.

[15] A. M. Abdelmoniem and B. Bensaou, “Hysteresis-based active queue
management for TCP traffic in data centers,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., Apr. 2019, pp. 1621–1629.

[16] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior
of the TCP congestion avoidance algorithm,” ACM SIGCOMM Comput.
Commun. Rev., vol. 27, no. 3, pp. 67–82, Jul. 1997.

[17] V. Paxson, M. Allman, J. Chu, and M. Sargent. (2011).
Computing TCP’s Retransmission Timer. [Online]. Available:
https://tools.ietf.org/html/rfc6298

[18] A. Greenberg et al., “VL2: A scalable and flexible data center net-
work,” in Proc. ACM SIGCOMM Conf. Data Commun., Aug. 2009,
pp. 51–62.

[19] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,”
in Proc. 9th ACM SIGCOMM Conf. Internet Meas., Nov. 2009,
pp. 202–208.

[20] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 92–99, 2010.

[21] M. H. J. Keniston and P. S. Panchamukhi. Kernel Probes (KPROBE).
Accessed: Nov. 1, 2021. [Online]. Available: https://www.kernel.
org/doc/Documentation/kprobes.txt

[22] A. M. Abdelmoniem and B. Bensaou, “T-RACKs: A faster recovery
mechanism for TCP in data center networks,” IEEE/ACM Trans. Netw.,
vol. 29, no. 3, pp. 1074–1087, Jun. 2021.

[23] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understand-
ing TCP incast throughput collapse in datacenter networks,” in Proc. 1st
ACM Workshop Res. Enterprise Netw., Aug. 2009, pp. 73–82.

[24] J. Zhang, F. Ren, and C. Lin, “Modeling and understanding TCP
incast in data center networks,” in Proc. IEEE INFOCOM, Apr. 2011,
pp. 1377–1385.

[25] P. Cheng, F. Ren, R. Shu, and C. Lin, “Catch the whole lot in an action:
Rapid precise packet loss notification in data center,” in Proc. USENIX
NSDI, 2014, pp. 17–28.

[26] W. Chen, F. Ren, J. Xie, C. Lin, K. Yin, and F. Baker, “Comprehensive
understanding of TCP incast problem,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2015, pp. 1688–1696.

[27] D. Borman, R. Braden, and V. Jackbson. (2014). TCP Exten-
sions for High Performance. [Online]. Available: https://www.
ietf.org/rfc/rfc7323.txt

[28] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a
network of AQM routers supporting TCP flows with an application to
RED,” in Proc. Conf. Appl., Technol., Architectures, Protocols Comput.
Commun., Aug. 2000, pp. 151–160.

[29] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and design
of controllers for AQM routers supporting TCP flows,” IEEE Trans.
Autom. Control, vol. 47, no. 6, pp. 945–959, Jun. 2002.

[30] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[31] Iperf. The TCP/UDP Bandwidth Measurement Tool. Accessed: Nov. 1,
2021. [Online]. Available: https://iperf.fr/

[32] A. M. Abdelmoniem and B. Bensaou, “Efficient switch-assisted con-
gestion control for data centers: An implementation and evaluation,” in
Proc. IEEE IPCCC, Dec. 2015, p. 96.

[33] A. M. Abdelmoniem and B. Bensaou, “Enforcing transport-agnostic
congestion control in SDN-based data centers,” in Proc. IEEE 42nd
Conf. Local Comput. Netw. (LCN), Oct. 2017, pp. 128–136.

[34] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu, “HyGenICC:
hypervisor-based generic IP congestion control for virtualized data
centers,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[35] A. M. Abdelmoniem and B. Bensaou, “Curbing timeouts for TCP-incast
in data centers via a cross-layer faster recovery mechanism,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., Apr. 2018, pp. 675–683.

[36] A. M. Abdelmoniem, B. Bensaou, and V. Barsoum, “IncastGuard:
An efficient TCP-incast congestion effects mitigation scheme for data
center network,” in Proc. IEEE GlobeCom, Jan. 2018, pp. 1–6.

[37] A. M. Abdelmoniem and B. Bensaou, “Incast-aware switch-assisted TCP
congestion control for data centers,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2014, pp. 1–6.

[38] A. J. Abu, B. Bensaou, and A. M. Abdelmoniem, “Inferring and
controlling congestion in CCN via the pending interest table occupancy,”
in Proc. IEEE Local Comput. Netw. (LCN), Nov. 2016, pp. 433–441.

[39] E. Krevat et al., “On application-level approaches to avoiding TCP
throughput collapse in cluster-based storage systems,” in Proc. 2nd
Int. Workshop Petascale Data Storage, Held Conjunct Supercomputing,
Nov. 2007, pp. 1–4.

[40] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion
control for TCP in data-center networks,” IEEE/ACM Trans. Netw.,
vol. 21, no. 2, pp. 345–358, Apr. 2013.

[41] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 523–536,
Aug. 2015.

Ahmed M. Abdelmoniem (Member, IEEE) recei-
ved the Ph.D. degree in computer science and engi-
neering from the Hong Kong University of Science
and Technology, Hong Kong, in 2017. He was a
Research Scientist with KAUST, Saudi Arabia, and
a Senior Researcher with Huawei’s Future Network
Laboratory, Hong Kong. He is an Assistant Professor
with the Queen Mary University of London, U.K.
and Assuit University, Egypt. His work appears
in top-tier conferences and journals. His research
interests include distributed systems and networks
and machine learning.

Brahim Bensaou (Senior Member, IEEE) received
the Ph.D. degree in computer science from Univer-
sity Paris VI in 1993. He was a Research Assis-
tant with France Telecom Research Laboratories,
a Research Associate with HKUST, and a Senior
Staff with the National Research and Development
Centre for Wireless Communications in Singapore.
He is a Faculty Member with the CSE Department,
HKUST. He published more than 130 papers in
prominent conferences and journals, received numer-
ous research grants, and supervised more than 20 PG

students. His research interests include centered around internet, wireless
and mobile communications, and their performance (e.g., congestion control,
energy efficiency, and performance evaluation).


