
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023 2329

A Shifting Filter Framework for
Dynamic Set Queries

Pengtao Fu , Lailong Luo , Deke Guo , Senior Member, IEEE, Member, ACM, Shangsen Li ,
and Yun Zhou , Member, IEEE

Abstract— Set query is a fundamental problem in computer
systems. Plenty of applications rely on the query results of
membership, association, and multiplicity. A traditional method
that addresses such a fundamental problem is derived from
Bloom filter. However, such methods may fail to support element
deletion, require additional filters or apriori knowledge, making
them unamenable to a high-performance implementation for
dynamic set representation and query. In this paper, we envision a
novel sketch framework that is multi-functional, non-parametric,
space efficient, and deletable. As far as we know, none of
the existing designs can guarantee such features simultaneously.
To this end, we present a general shifting framework to represent
auxiliary information (such as multiplicity, association) with
the offset. Thereafter, we specify such design philosophy for a
hash table horizontally at the slot level, as well as vertically
at the bucket level. Theoretical and experimental results jointly
demonstrate that our design works exceptionally well with three
types of set queries under small memory.

Index Terms— Dynamic set queries, element deletion, Cuckoo
filters, Bloom filters, shifting framework.

I. INTRODUCTION

SET queries upon membership, association, and multiplicity
are fundamental requests in computer systems. They are

involved in various applications, such as indexing in data
centers, distributed file systems, database storage, data dupli-
cation, set reconciliations, network packets processing, and
network traffic measurement.

Membership query decides whether an element exists in
a given set or not. A typical scenario is regular expres-
sion matching. Many caches, routers and storage systems
in networking and distributed systems [1], [2], [3], [4], [5],
[6], [7] rely on membership query. For instance, Akamai’s
CDN (content delivery network) uses membership query to
deal with HTTP request and object cache [8]. Moreover,

Manuscript received 22 February 2022; revised 13 November 2022
and 11 January 2023; accepted 18 February 2023; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor L. Huang. Date of publication
24 February 2023; date of current version 17 October 2023. This work
was supported in part by the National Natural Science Foundation of China
under Grant 62002378 and Grant U19B2024 and in part by the Research
Funding of the National University of Defense Technology (NUDT) under
Grant ZK20-30. (Corresponding author: Lailong Luo.)

Pengtao Fu, Deke Guo, Shangsen Li, and Yun Zhou are with the Col-
lege of Systems Engineering, National University of Defense Technology,
Changsha 410073, China.

Lailong Luo is with the College of Systems Engineering and Col-
lege of Computer Science and Technology, National University of
Defense Technology, Changsha 410073, China (e-mail: luolailong09@
nudt.edu.cn).

Digital Object Identifier 10.1109/TNET.2023.3247628

various network applications, such as IP lookup and net-
work packet classification [9], also often involve membership
queries.

Association query fetches the affiliations of a given element.
For instance, there are H sets S1, · · · , SH with intersections
and an element e from those sets, association query is to
query which set(s) e belongs to. Summary Cache [10] uses
association query to achieve distributed caching. Association
query is also involved in many other applications, including set
reconciliations [11], indexing in data centers [12], distributed
file system [13], database indexing [13] and data duplica-
tion [14].

Multiplicity query indicates how many times a given ele-
ment appears in a multi-set, i.e., tells the multiplicity of
this element. For example, Yahoo’s Hadoop, PIG [15], and
Microsoft’s Cosmos [16] use multiplicity queries to assist the
analysis of enormous data sets, such as web crawls, search
logs, and click streams. Besides, many network measurement
tasks [17], [18], including delay, burst detection, flow size
estimation, flow distribution, and heavy hitter detection [19],
[20], [21], [22], [23], [24], also often use multiplicity query.

As aforementioned, set queries address two types of infor-
mation for each element e: 1)existence (membership) infor-
mation, i.e., whether e is in a set; 2)auxiliary information,
some additional information such as the frequency of e (i.e.,
multiplicity information) or which set that e is in (i.e., associ-
ation information). Set queries rely on sketches to record and
track the data information above, and have been widely used
in computer networks, such as packet routing and forwarding,
web caching, network monitoring, security enhancement, con-
tent delivery, etc [25]. Therefore, it is of great significance
to improve set query performance with an elegant proba-
bilistic data structure. We envision a design that properly
concerns the following four design rationales for dynamic
set queries.
• Multi-functional (MF). The data structure supports var-

ious set queries, including the membership, association,
and multiplicity queries as mentioned above.

• Non-parametric (NP). The data structure works without
any parametric restriction. In more detail, the data struc-
ture should be able to independently support set queries
and maintain considerable performance irrespective of the
parameter of sets.

• Space efficient (SE). The data structure is space-friendly
and uses as little space as possible. This is extremely
important for space-scare scenarios, e.g., wireless sensor
networks and commodity switches.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1935-5616
https://orcid.org/0000-0002-4886-9974
https://orcid.org/0000-0003-4894-5540
https://orcid.org/0000-0002-9783-388X
https://orcid.org/0000-0001-7328-0275

2330 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

TABLE I
OUR WORK V.S. OTHER SOLUTIONS

• Deletable (DE). The data structure supports deleting a
given element from a target set. Element deletion is
essential for representing a dynamic set wherein the
elements join and leave frequently.

These rationales, if realized, will bring unprecedented
benefits for dynamic set queries. The existing data structures,
however, fail to achieve the four rationales properly and
simultaneously. As shown in Table I, many sketch data
structures are proposed to support the above tasks in terms
of membership query (Bloom filter (BF) [26], Cuckoo
filter (CF) [27]), association query (Marked Cuckoo filter
(MCF) [11]), and multiplicity query (Counting Bloom filter
(CBF) [28], Adaptive Bloom filter (ABF) [29], Elastic Sketch
(ES) [17]. In addition to suffering from the inability of
deletion, poor space efficiency, or parametric performance
(i.e., filter works with additional filters or apriori knowledge,
or degrades with the range of auxiliary information expands),
these efforts mainly work for one specific query, thus do not
appear amenable for general set queries.

To this end, the state-of-the-art Shifting Bloom filter
(ShBF) [7] addresses this problem by representing the aux-
iliary information (such as association or multiplicity) with
the offset bits in the filter. However, ShBF is limited with
two fatal drawbacks: 1) ShBF fails to represent dynamic sets,
as it does not support element deletion; 2) The performance
and design mechanism of ShBF are quite parametric. First,
ShBF suffers from substantial performance degradation when
the number of represented sets or the multiplicity of elements
increases. Second, ShBF cannot work without the assistance
of additional filters and apriori knowledge. Specifically, for
association query, it has to build additional filters to identify
the affiliation of elements; for multiplicity query, it must know
the maximum multiplicity in advance during the query phase.
One naive approach (NA) to address these issues is adding
several bits in each slot of the deletion-supporting Cuckoo
filter to store auxiliary information directly. However, each
counter would use more bits to accommodate the maximum
multiplicity of the most frequent element, which may be
space-prohibitive, especially when the element frequencies are
excessively skewed.

Consequently, a novel sketch that simultaneously covers
the above four design rationales is required for dynamic set
representation and query. To this end, this paper presents
Shifting filter (SF), a new design of Cuckoo filter. The key
idea of our method is designing a universal shifting framework
and applying it to a partitioned CF to represent the auxiliary
information of a set element. To be specific, Shifting filter
uses the shifting framework in the vertical direction to store
the element in a fixed position in the candidate buckets,
instead of storing it in any available slot like CF, so as to
obtain faster insertion, query, and deletion speed than CF.
For association queries, Shifting filter further introduces a

mark field in each slot to ease the affiliation representation
of elements. For multiplicity query, Shifting filter encodes
the multiplicity of a given element through our space-saving
shifting framework assisted by the count field, avoiding per-
formance degradation and enormous space overhead caused
by excessive multiplicities. Moreover, we redesign CF by
applying the shifting framework in the horizontal direction
to improve space efficiency.

Table I shows the empirical results through a brief com-
parison of several related solutions. It indicates that Shifting
filter achieves all the design rationales simultaneously and has
the most remarkable advantages. As fundamental research, the
proposed method can efficiently support set queries, including
the membership, association and multiplicity query, instead
of working like various sketch-based measurement designs,
which rely on only a single query mechanism and help a single
kind of task. Specifically, sketch in network measurement
relies on multiplicity queries to support a specific measurement
task, such as delay, burst detection, etc., as mentioned above.
Therefore, our design can be widely used in many computer
network fields, including network measurement, to provide
efficient new technologies and theories support. The contri-
butions of this paper can be summarized as follows:
• We present a universal shifting framework and use it to

design Shifting filter, a novel redesign of the CF that
can quickly process set queries and support set element
deletion, using a small amount of memory.

• Our shift framework is tailored for the hash table.
It works together with fingerprint and counting fields,
which enables the Shifting filter easier to implement
element deletion, multi-functional, non-parametric, and
space efficient than traditional methods.

• We further improve the Shifting filter by applying the
shifting framework in the vertical and horizontal direc-
tions for different application scenarios.

• We conduct comprehensive experiments to compare
Shifting filter with its same-kinds. Theoretical analysis
and numerical results demonstrate that Shifting filters
realize comparable or better performance than competi-
tors in terms of query throughput, insertion throughput,
deletion throughput and accuracy.

The rest of this paper is organized as follows. Section II
reviews the background and the related work. Section III
describes the design principle of shifting framework and its
two concrete specifications. Section IV, V and VI describes
three variants of SF for membership, association and multiplic-
ity query, respectively. Section VII presents a theoretical anal-
ysis of SF in different situations. Section VIII evaluates our
design with comprehensive experiments upon BF, ShBF, ABF,
CF, VCF, NA and ES. Finally, Section IX concludes this work.

II. RELATED WORK

A. Bloom Filter and Its Variants
Bloom filter. BF represents elements through a bit vector

with m bits, which are initially set as 0. To insert any element
e in a set S with n elements, k independent hash functions are
employed to map the element to k positions in the bit vector.
These mapped positions are all set to 1. To query e, BF just
checks the k corresponding positions. If all the k bits are non-
zero, BF indicates that e ∈ S; otherwise, BF judges that e /∈ S.

FU et al.: SHIFTING FILTER FRAMEWORK FOR DYNAMIC SET QUERIES 2331

However, BF may mistake an alien element as a set member
when the k hashed positions in the bit vector are all 1 due to
the unavoidable hash conflicts. The probability of such false
positive error is ϵBF = (1 − e−kn/m)k. Intuitively, standard
BF does not support element deletion unless it reconstructs the
whole bit vector, as directly resetting the corresponding bits
from 1 to 0 may cause false negative results for other elements.
Many efforts have been made to further enhance BF in terms
of deletion supporting (Counting BF [28]), capacity resizing
(Dynamic BF [30]), reverse decoding (Invertible BF [31]),
multiplicity representing (ABF [29] and ShBF [7]).

Adaptive Bloom filter. Adaptive BF [29] utilizes k + c +
1 hash functions, where c is the maximum multiplicity for
elements in the set S. To insert an element e with multiplicity
c(e), ABF represents its membership information by setting
the k bits to 1s and encodes its multiplicity information in
the number of programmed 1s among the remaining c(e) bits.
ABF checks only the k corresponding bits to tell the existence
information of the queried element. Moreover, ABF tackles
the multiplicity query via counting how many bits are set to
1 by the latter hash functions. For instance, for an element
e whose multiplicity is 10, ABF must check the following
11 bits of h1(e)%m, · · · , hk(e)%m until it matches the first
0 bit. Note that, under the framework of ABF, the membership
information and multiplicity information in the bit vector may
interfere with each other.

Shifting Bloom filter. Shifting BF [7] is an array of m
bits which are all initialized to 0. For each element e, ShBF
encodes its existence information in k independent hash values
h1(e)%m, · · · , hk(e)%m, and its auxiliary information in an
offset o(e). Instead of, or in addition to, setting the k bits at
locations h1(e)%m, · · · , hk(e)%m to 1, ShBF sets the bits
at locations (h1(e) + o(e))%m, · · · , (hk(e) + o(e))%m to 1.
ShBF can support membership query for sure, but also cus-
tomize other types of queries by adjusting the offset function.
For association query, if there are j different affiliations, ShBF
uses offset function oi(e) = oi−1(e)+hk+i(e)%((w̄−1)/(j−
1))+1 to represent the element with the ith affiliation, where w̄
is a function of machine word size and o0(e) = 0. For instance,
for this type of queries with two sets S1 and S2 and an element
e in S1∪S2, there are three cases: 1) for e ∈ S1−S2, the offset
function o0(e) = 0; 2) for e ∈ S2 − S1, the offset function
o1(e) = hk+1(e)%((w̄ − 1)/2) + 1; 3) for e ∈ S1 ∩ S2, the
offset function o2(e) = o1(e) + hk+2(e)%((w̄ − 1)/2) + 1.
For multiplicity query, the offset function can be set as the
multiplicity of the element. In the query phase, given the
maximum value c of all offsets, ShBF will first check the c bits
at positions h1(e)%m, (h1(e)+1)%m, · · · , (h1(e)+c−1)%m.
For the above jth bit which is 1, if the k bits in the locations
(h1(e) + j)%m, · · · , (hk(e) + j)%m are all non-zero, thus j
may be a candidate answer for the multiplicity of element e.
Then ShBF reports the one with the largest value among these
candidates as the final answer to avoid underestimate.

B. Cuckoo Filter and Its Variants

Cuckoo filter. Cuckoo filter [27] is a lightweight probabilis-
tic data structure that represents an element e by storing its
fingerprint f(e) directly. Structurally, CF maintains a cuckoo
hash table consisting of m buckets, each of which contains

b slots to accommodate at most b fingerprints. Standard CF
provides two candidate buckets h1(e) and h2(e) for each
element e through the partial cuckoo hashing technique [32]:
h1(e) = hash(e), h2(e) = h1(e) ⊕ hash(f(e)). CF can sup-
port element deletions and constant-time membership queries.
To insert e, CF first explores two alternate buckets, and f(e)
will be stored in either of them if there is an empty slot.
Otherwise, CF randomly kicks out a fingerprint in one of the
candidates and then reinserts f(e) in the slot that has just been
vacated. After that, CF calculates the other candidate bucket
of the victim fingerprint and tries to reinsert it into that bucket.
CF recursively performs this relocation scheme until a bucket
has an available slot or the relocation reaches MAX times.
To answer a membership query of e, CF just searches f(e)
in e’s candidate buckets. If f(e) is found, CF judges e ∈ S;
otherwise, e /∈S. Due to hash conflicts, CF may tell a positive
result when querying an alien element, such error occurs with a
bounded probability ϵCF = 1−(1− 1

2l)2b ≈ b
2l−1 where l is the

length of the fingerprint. Typical CF variants include Adaptive
CF [33], Consistent CF [34], Dynamic CF [35], Simplified CF
[36], Vertical CF [37], Marked CF [11] and Vacuum filter [38].
They are investigated to enhance CF in terms of false positive
rate, flexibility, key set extension, theoretical guarantee, space
efficiency, set reconciliation and query throughput.

Vertical Cuckoo filter. As a new CF design, VCF improves
the partial cuckoo hash strategy in CF by introducing two
inverse bitmasks (e.g., bm1 and bm2). In this manner, VCF
can provide two more candidate buckets for each element than
CF, that is, h3(e) = hash(e) ⊕ hash(f(e)) ∧ bm1, h4(e) =
hash(e)⊕ hash(f(e)) ∧ bm2. The four candidate buckets of
VCF can be indexed by each other without additional hash
computation or access to element content. More candidates
make VCF obtain a higher space utilization and a faster
insertion throughput than CF, with a slight compromise of
query speed and false positive rate.

Marked Cuckoo filter. Marked Cuckoo filter [11] is
designed to represent the sets in each reconciliation participant.
The MCF attaches a mark field in each slot to indicate which
set(s) the stored fingerprint belongs to. MCF naturally inherits
the functionalities from the standard CF, including element
insertion, query, and deletion.

C. Sketch-Based Measurement Design
Elastic Sketch. Elastic Sketch (ES) [17] is a state-of-the-

art design for network measurements. ES proposes a separa-
tion technique to separate elephant flows from mouse flows
and keeps them in different parts. With such a framework,
ES prefers an approximate rather than exact multiplicity query
to achieve memory efficiency and speed up the querying at the
cost of introducing small errors. The main drawbacks of ES
are single-function, no support for deletion, and inaccurate
query. Unfortunately, this limits the use of such fast and
space-friendly ES in many practical applications.

III. SHIFTING FILTERS

This section proposes a universal shifting framework.
On this basis, we implement our shifting framework on CF
and VCF, and design a novel Shifting filter. We further extend
it to two versions for different application scenarios.

2332 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 1. An illustrative example of Shifting framework.

A. The Shifting Framework

We envision a design of probabilistic data structure that
can adequately record both the membership and auxiliary
information of a set element. We can use a fingerprint in the
proper location for a given element to record its membership
information, just like CF. However, the challenging issue with
such a design is how to represent its auxiliary information
with as little space as possible. As stated in ShBF, an intuitive
insight is to exploit a shifting framework and encode auxiliary
information in the offset. With this insight, below, we show
how to realize our idea based on a hash table that uses a slot
as the basic unit.

As shown in Fig. 1, we first partition a hash table into
multiple identical blocks, e.g., B blocks, and each block
consists of consecutive slots. To store an element e with its
fingerprint f(e), we select an initial block, say the ith block
(i = 0 in Fig. 1) through the function F (e)%B, where F (e)
can be either a hash function or e’s fingerprint f(e). Instead
of storing f(e) in this initial location, we store f(e) in the
(i + o(e))%Bth block by appending the offset o(e) which
is associated with e’s auxiliary information. Specifically, e is
inserted in its candidate slots in this block by using other hash
functions, such as h1 and h2. In the query phase, we first
locate its initial block through F (e)%B, then search f(e)
in its candidate slots in block F (e)%B and later blocks.
If f(e) is found in the jth block, then we conclude that e
is existent and decode its auxiliary information through the
offset j − F (e)%B. This offset is recorded by the interval
between the initial block and the current block. Otherwise,
if f(e) is not found in any block, we say that e is nonexistent.
To delete the inserted e, we simply remove f(e) from the
candidate slots in the block where it is found.

Note that we set the offset to a single direction. In other
words, the shifting framework either always increases or
decreases o(e) based on the initial block position F (e)%B.
This paper uses the increment direction for convenience. Note
that B has to be greater than the maximum value of o(e).
This limitation can be fixed by adding extra bits into each slot.
Specifically, we can introduce counting bits into each slot to
achieve smaller o(e) by assisting in encoding the multiplicity
information. For instance, we can use o(e)+c×B to represent
the multiplicity c(e) of an element e via the counting field c,
thus we have o(e) = c(e) − c × B. However, the offset o(e)
must be equal to c(e) without c. In Section VI, we describe
in detail how to use counting bits to assist in recording the
multiplicity of elements.

Consider the following example: the data structure repre-
sents a multi-set S, and the maximum number of occurrences
an element can appear in S is 1024. For the multiplicity
query of an element, regardless of whether it is in S or

Fig. 2. An illustrative example of SFS. Note that SFS applies the shifting
framework in vertical direction, thus B = b.

not, ShBF musts read at least 1024 bits and further check
k candidate bits for each returned 1 bit. However, in the case
of adding 5 counting bits into each slot and setting B as 32,
our design has to access only 32 blocks and has far fewer
memory accesses than ShBF. The fewer memory accesses,
the higher the query throughput. Moreover, the fewer the
number of checks, the higher the query accuracy. Overall, Our
method enables ultimate design flexibility with the shifting
framework tailor-made for hash tables. Rather than directly
encode excessive multiplicities in a long offset on the bit
vector like ShBF, which may be time-prohibitive with severe
performance degradation, our methods bound the offset range
to guarantee limited access range, fast query response and high
query accuracy. Moreover, our approach can easily implement
element deletion via the fingerprint field in the hash table.

The above shifting framework is generic and can be applied
to all filters which construct a hash table in a matrix form, such
as CF and Count-Min Sketch [39]. Moreover, our method can
obtain customized performances by partitioning the hash table
differently.

B. Shifting Filter on Slot

Here we apply the shifting framework upon a hash table
vertically. Specifically, we pack the slots that locate at the
same position of different buckets as one block, as shown in
Fig. 2. By doing so, the space efficiency of the filter will
degrade, which will be discussed later. In order to migrate
this deficiency, we design our method based on space-friendly
VCF, abbreviating to SFS.

We start with an example of a naive SFS using Fig. 2. This
SFS keeps 8 buckets, and each bucket has 4 slots. To insert a
given element e, SFS first calculates its fingerprint f(e) and
four candidate buckets (i.e., bucket 0, 2, 4 and 6) like VCF.
Then the final storage location of e is derived as the slots
(h0(e)%b + o(e))%b in four candidate buckets, where h0 is
another hash function. After that, f(e) is stored if one of them
is empty. Otherwise, the SFS performs the eviction process.
Like CF, SFS randomly chooses one of the candidate buckets,
say bucket 0, and evicts the element in slot 3. Then SFS
reinserts this victim element to its alternate location, i.e., slot
3 in bucket 2. However, another relocation will be triggered
because the alternate location is occupied. This relocation
procedure continues until an empty slot is found or the times
of such relocations reach the predefined threshold. Once the
eviction times reach the threshold, the SFS is considered too
full to insert more elements.

FU et al.: SHIFTING FILTER FRAMEWORK FOR DYNAMIC SET QUERIES 2333

Fig. 3. An illustrative example of SFB. Note that SFB applies the shifting
framework in horizontal direction.

To query element e, SFS checks whether f(e) is stored
in any of the four candidate buckets h1, h2, h3 and h4.
Suppose that f(e) is found, SFS returns a positive result for
the existence information of e. Whereafter, SFS calculates
the auxiliary information of e according to its initial block
h0(e)%b and the current block. Otherwise, SFS concludes
that e is non-existent and returns no auxiliary information.
The deletion phase of SFS is similar to that of CF. SFS first
checks all slots in all candidate buckets. If f(e) is found, that
fingerprint would be removed from the corresponding slot.
Otherwise, SFS declares that e is non-existent.

C. Shifting Filter on Buckets

Here we implement the shifting framework upon hash table
horizontally, with the ambition of more space-saving. Such
implementation is named as Shifting Filter on Bucket (SFB).

As shown in Fig. 3, SFB splits the entire hash table of the
standard Cuckoo filter into B identical blocks, and each block
contains multiple continuous buckets whose amount is a power
of two. Like SFS, SFB first locates the target block to insert
a given element e by h0(e)%B + o(e), where B is the total
number of blocks. Then SFS calculates two candidate buckets
h1 and h2 (where hi ∈ [0, m/B), i = 1 or 2) in the target
block through partial cuckoo hash. For convenience, we can
set m/B as an integer. If there is any empty slot, SFB puts
the fingerprint of e there; otherwise, it performs relocations in
this block to find an appropriate slot.

In the query phase of e, for each 0 ≤ j ≤ B − 1, if there
is a fingerprint matches f(e) in bucket h1 + j × m/B or
h2 + j × m/B, SFB outputs the offset from h0(e)%B to j
as the auxiliary information value for e. To delete a given
element e, SFB first query e, and then delete a copy of matched
fingerprint if the query returns a positive result.

D. Analysis of Errors

Like CF and ShBF, SF (including both SFS and SFB) may
cause false positive errors during the above query or deletion
phase of an alien element e1 which has not been recorded
in the filter before. The reason is that one element, e for
instance, stored in e1’s candidate buckets may have the same
fingerprint with e1 due to the potential hash collisions. In this
case, SF will return the false existence and multiplicity result
for querying e1. The existence and auxiliary information of
represented e will also be damaged after the deletion of e1.
Therefore, an element must have been previously inserted
before deleting in SF. This requirement also holds for all other
deletion-allowed filters.

Fig. 4. A toy example of SFSM, which is designed based on SFS.

Moreover, SF may find a fingerprint matched f(e) which
does not belong to e during the above query or deletion
phase of e. This scene occurs when more than one element
shares two candidate buckets and has the same fingerprint. For
example, another element e2 resides in one of e’s candidate
buckets and collides on fingerprint with e. Such multiple pos-
itives problem also exists in ShBF. When querying e, SF will
output accurate existence information while multiple possible
auxiliary information values. Moreover, SF may accidentally
delete the fingerprint of e when performing the deletion on
e2. Such a false deletion problem does not affect elements’
existence information but impacts auxiliary information. For
instance, after the false deletion of e, the query of e will
still obtain a positive result about existence information, while
returning the auxiliary information of e2 in mistake for that
of e. Multiple positives problem is the expected false-positive
behavior of an approximate set membership data structure, and
its probability remains bounded by a tunable false positive rate.

IV. MEMBERSHIP QUERIES

This section utilizes a shifting framework on slots, i.e., SFS,
to design an appropriate filter for membership queries of a
dynamic set. We use SFSM to denote this scheme.

A. SFSM-Construction Phase

Since membership represents only dealing with the exis-
tence information of each element, we set the offset in SFS
as 0 to design SFSM. Fig. 4 demonstrates the construction
phase of SFSM with an example of inserting an element e of
set S. First, SFSM calculates the fingerprint f(e) and locates
four candidate buckets h1, h2, h3 and h4 of e, i.e., bucket 0,
2, 4, and 6 in Fig. 4. Second, since the offset is discarded
here, SFSM performs p = h0(e)%b to determine which block
that e should be stored in, i.e., slot 2. Third, if any slot p
is empty in the candidate buckets, SFSM stores f(e) there.
Otherwise, SFSM randomly chooses one of the candidate slots,
say slot 2 in bucket 0, and evicts the fingerprint f(y) in it.
Then SFSM reinserts this victim to its other alternate slots.
In this example, the victim f(y) will trigger another relocation
of fingerprint f(x) in bucket 2. Then f(x) will be relocated
to its alternative candidate slot, i.e., slot 2 in bucket 5. This
allocation procedure continues until an empty slot is available
or the times of such relocations reach the predefined threshold.
Finally, SFSM inserts f(e) in slot 2 of bucket 0, which has just
been vacated. Note that each insertion in SFSM only performs
fingerprint relocation in the same block. The details are shown
in Algorithm 1.

2334 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Algorithm 1 Insert (e) in SFSM

1 f = f(e) = fingerprint(e), p = h0(e)%b;
2 h1 = hash(e), h2 = h1 ⊕ hash(f) ∧ bm1, h3 = h1 ⊕

hash(f) ∧ bm2, h4 = h1 ⊕ hash(f);
3 if slot p in bucket h1, h2, h3 or h4 is empty then
4 add f to slot p of that bucket, return Done;

5 H1 = randomly pick h1, h2, h3 or h4;
6 for t=0; t < MAX; t + + do
7 swap f and the fingerprint in slot p of bucket H1;
8 H2 = H1 ⊕ hash(f) ∧ bm1, H3 = H1 ⊕ hash(f)

∧ bm2, H4 = H1 ⊕ hash(f);
9 if slot p in bucket H2, H3 or H4 is empty then

10 add f to slot p of that bucket, return Done;

11 H1 = randomly pick [H2], [H3] or [H4];

12 Hashtable is considered full, return Failure

Algorithm 2 Query (e) in SFSM

1 f = f(e) = fingerprint(e), p = h0(e)%b;
2 h1 = hash(e), h2 = h1 ⊕ hash(f) ∧ bm1, h3 = h1 ⊕

hash(f) ∧ bm2, h4 = h1 ⊕ hash(f);
3 if slot p in bucket h1, h2, h3 or h4 has f then
4 return True;

5 return False

B. SFSM-Query Phase

The element query phase of SFSM is detailed in
Algorithm 2. To query an element e, SFSM first computes
its fingerprint, four candidate buckets, and initial block. Then
SFSM reads all candidate slots. If any existing fingerprint
matches, SFSM returns True. Otherwise, the filter returns a
negative result about the existence information for e. Fig. 4
shows a membership query of whether e is in S. In this case,
SFSM will find f(e) in one of e’ candidate slots, i.e., slot
2 in bucket 0, then SFSM judges e ∈ S. Instead of simply
searching the target element in candidate buckets like CF,
SFSM only focuses on four candidate slots during each query
phase, thereby obtaining a faster query response than CF.

C. SFSM-Delete Phase

Inheriting from CF, SF supports element deletion without
rebuilding the entire filter or aiding by other auxiliary data
structures. The deletion process of SFSM is much simpler as
no auxiliary information is represented. Similar to the query
phase, SFSM calculates the fingerprint, candidate buckets and
initial block for a given element e at first. Then SFSM checks
all candidate slots. If any slot matches, the fingerprint in that
slot will be removed. Taking Fig. 4 as an example, to delete
e, SFSM just needs to clear the slot 2 in bucket 0 where f(e)
is located. Otherwise, SFSM reports that e does not exist.

V. ASSOCIATION QUERIES

This section proposes a Shifting filter called SFSA for asso-
ciation queries of dynamic sets and presents the construction,

Fig. 5. A toy example of SFSA, where the mark field has three bits to
explicitly indicate whether the stored element is a member of S1, S2, and S3

(from right to left), respectively.

query, and delete phases of SFSA. This section further intu-
itively compares its performance with ShBF.

A. SFSA-Construction Phase
In order to support association query of dynamic sets more

efficiently and accurately, SFSA extends the similar design
concepts of Marked Cuckoo filter to SFSM, as shown in Fig 5.
Specifically, SFSA constructs a cuckoo hash table, where each
slot has two fields, including the fingerprint field to represent
the element’s existence information and the mark field to
record the affiliation information of the element. Notice that
the number of bits in the mark field equals the number of
represented sets, and each bit is initialized to 0. Assuming
that there are n elements in total H sets, then SFSA adds H
additional bits in each slot to explicitly label the affiliation(s)
of the accommodated fingerprint.

To insert an arbitrary element e in set Si (i = 1, · · · , H),
SFSA puts its fingerprint into the fingerprint field in one of its
candidate slots, as similar as SFSM. After that, SFSA converts
only the ith bit in the mark field to 1. Moreover, if e is also
in other sets, the corresponding bit(s) in the mark field will
also be set to 1. In the case of Fig 5, to insert an element e
which is in set S2 ∩ S3, SFSA first locates one of e’s empty
candidates, such as the first slot in bucket h1. Then SFSA

stores the f(e) in the fingerprint field of this slot and sets
the second and third (from right to left) bits in the mark field
therein to 1s. Notice that when a victim is kicked out, the
1s in the mark field of that slot will be reset as 0s. Pair-
wisely, when the victim is reinserted, the corresponding mark
field bit(s) in the target slot will be set to 1s. That is, SFSA

bundles the fingerprint and the mark bits together during the
fingerprint relocation phase. This guarantees the correctness
of the recorded affiliation information.

B. SFSA-Query Phase
The query phase of SFSA is similar to that of SFSM in

Algorithm 2, to query e with fingerprint f(e), SFSA just
checks its four candidate slots. If any existing fingerprint
matches f(e), SFSA then reads the mark field bits and returns
the association information of e. Taking Fig 5 (where H = 3)
as an example, the mark field of the slot that stores f(e) is
110, explicitly demonstrating that e belongs to both set S2 and
S3. If f(e) is not found, SFSA returns False to indicate that
e is not a member of any set.

C. SFSA-Delete Phase
In addition to eliminating element e from all its affiliates

with only one execution, SFSA also supports deleting e from

FU et al.: SHIFTING FILTER FRAMEWORK FOR DYNAMIC SET QUERIES 2335

a specific set Si. As an element may belong to multiple sets,
there are three cases in the delete phase of SFSA as follows:

Case 1: the deleted element’s fingerprint cannot be found
in its candidate slots, or the ith bit in the mark field is
0 when deleting an element from Si. It means this element
is nonexistence or it is not in the target set. In this case, SFSA

returns False. For instance, if deleting e from S1 in Fig 5,
SFSA will recognize the 0 on the first mark field bit and output
False to declare that e is not in S1.

Case 2: deleting a stored element e from Si and the ith bit
in the mark field is 1. In this case, SFSA resets the ith bit to
0 to indicate that e does not belong to Si anymore. Moreover,
if all bits in the mark field are 0s after this deletion operation,
SFSA further removes the fingerprint in this slot. For example,
to delete the element x from S3 in Fig 5, SFSA sets the third
bit to 0 and then clears the fingerprint field.

Case 3: deleting a stored element e from all of its affiliates.
In this case, SFSA simply tries to remove its fingerprint f(e)
and reset all 1s in the mark field to eliminate e from all
affiliates. In Fig 5, to eliminate e, SFSA first locates the
candidate slot that f(e) is in, i.e., the first slot in bucket h1.
Then SFSA deletes f(e) from this slot and sets the second
and third 1s in the mark field therein to 0s.

D. Comparing SFSA With ShBF
Compared with ShBF, SFSA performs better in the fol-

lowing three aspects: First, as ShBF utilizes different offsets
to identify the affiliation of elements, ShBF must obtain
the attribution information of each element before storing it.
So ShBF has to build one sketch (eg, Bloom filter or Cuckoo
filter) for each set to obtain this apriori knowledge, incurring
substantial space overhead. However, SFSA can represent the
affiliation of elements directly through the mark field without
additional data structure.

Second, ShBF does not support the deletion of elements
unless it reconstructs the whole data structure or replaces
each bit with a counter. These two strategies, however, are
substantially more complex than SFSA and do not appear
amenable to a high performance implementation for dynamic
sets test. Fortunately, SFSA not only supports deletion but also
can easily update the affiliation of one stored element through
changing the mark field bits.

Third, a fatal shortcoming of ShBF is its performance.
Its accuracy, false positive rates and query throughput will
enormously deteriorate when there are excessive sets to rep-
resent. This is because the number of possible results of the
element attribution relationship increases exponentially with
the number of sets to represent. Assuming that there are in total
H sets, the affiliation of an element has 2H possible outcomes.
In this case, ShBF has to calculate k +2H hash functions and
check corresponding bits to respond to an association query.
Thus its query time is O(2H), with a sharp increment in FPR
and a sudden decline in accuracy. SFSA declines the query
overhead to O(1) by checking only H mark field bits. As the
affiliation of elements is explicitly represented by mark field
bits, the accuracy of SFSA is nearly 100%. That is, SFSA can
always correctly identify which set(s) contain a given element.

VI. MULTIPLICITY QUERIES

This section proposes two variants of Shifting filters for
multiplicity query based on SFS and SFB. We denote them as

Fig. 6. A toy example of SFSX, which is designed based on SFS.

SFSX and SFBX. This section further details the construction,
query and delete phases of SFSX and SFBX, and analytically
compare their performance with ShBF.

A. SFSX

In order to alleviate the rapid expansion of the search range
caused by the excessive element frequency, SFSX introduces
extra bits into each slot to assist in recording the multiplicity
information of the element, as shown in Fig. 6. Specifically,
SFSX introduces a count field into each slot based on SFS in
Fig. 2, and each bit in the count field is initialized to 0.

Since SFSX is evolved from SFS, the construction, query
and delete phases of them are the same, except for the
following two aspects. First, SFSX uses f(e)%b to obtain the
initial block, instead of h0(e)%b mentioned in Section III.
This helps SFSX to reduce a hash calculation operation,
thereby reducing the computational complexity. Second, SFSX

utilizes the offset and the count field together to represent the
multiplicity information of the element.

SFSX-Construction phase. Algorithm 3 details the con-
struction phase of SFSX to insert [e, c(e)], where e is a given
element and c(e) is the multiplicity information of e. Like
SFS, to insert an element e that appears c(e) times, SFSX

performs (f(e)%b + (c(e) − 1)%b)%b to determine the final
block that contains candidate slots, where f(e)%b is the initial
position and (c(e)− 1)%b is the offset. To store the existence
information of e, SFSX records f(e) with the fingerprint field
of one empty or cleared candidate slot. To store the auxiliary
information of e, which in this case is c(e) of element e in S,
SFSX increases the count field in slot where f(e) located by
⌊(c(e)− 1)/b⌋. A toy example is depicted in Fig. 6, wherein
SFSX sets b = 32 and inserts the element e with c(e) = 1024.
In this case, SFSX first calculates that the initial position of e is
the block 0 where slot 0 is located. Then SFSX calculates the
offset o(e) = (c(e)− 1)%b = 31 and further locates the final
position, i.e., block 31. After calculating e’s four candidate
buckets, SFSX can lock e’s four candidate slots, i.e., slots
31 in bucket h1, h2, h3, and h4. SFSX then randomly picks
one of these empty slots, such as slot 31 in bucket h1, stores
e’s fingerprint f(e) in its fingerprint field and sets its counting
field as ⌊(c(e)− 1)/b⌋ = 31. In our designs, the auxiliary
information of e is encoded in both the offset and the count
field. Like SFSA, SFSX also bundles the fingerprint and the
count field together when relocating the overflowed fingerprint
during the relocation phase.

SFSX-Query phase. The query phase of SFSX is illustrated
in Algorithm 4. To query e, SFSX first explores all e’s
candidate buckets, i.e., bucket h1, h2, h3, and h4 in Fig 6.
If the fingerprint field of any slot matches with f(e), SFSX

2336 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Algorithm 3 Insert (e, c(e)) in SFSX

1 f = f(e) = fingerprint(e), c = ⌊(c(e)− 1)/b⌋;
2 p′ = (f%b + (c(e)− 1)%b)%b;
3 h1 = hash(e), h2 = h1 ⊕ hash(f) ∧ bm1, h3 = h1 ⊕

hash(f) ∧ bm2, h4 = h1 ⊕ hash(f);
4 if slot p′ in bucket h1, h2, h3 or h4 is empty then
5 add [f, c] to slot p′ of that bucket, return Done;

6 H1 = randomly pick h1, h2, h3 or h4;
7 for t=0; t < MAX; t + + do
8 swap [f, c] and the fingerprint in slot p′ of H1;
9 H2 = H1 ⊕ hash(f) ∧ bm1, H3 = H1 ⊕ hash(f)

∧ bm2, H4 = H1 ⊕ hash(f);
10 if slot p′ in bucket H2, H3 or H4 is empty then
11 add [f, c] to slot p′ of that bucket;
12 return Done;

13 H1 = randomly pick [H2], [H3] or [H4];

14 // Hashtable is considered full, return Failure

Algorithm 4 Query (e) in SFSX

1 f = f(e) = fingerprint(e), p = f%b;
2 h1 = hash(e), h2 = h1 ⊕ hash(f) ∧ bm1, h3 = h1 ⊕

hash(f) ∧ bm2, h4 = h1 ⊕ hash(f);
3 for t=0; t < b; t + + do
4 if slot t in bucket h1, h2, h3 or h4 has f then
5 if t ≥ p then
6 ∆ = t− p + 1

7 else if then
8 ∆ = t− p + b + 1

9 c(e) = ∆ + c× b, where c is the value of the
count field in that slot;

10 return c(e);

11 return False

indicates that e is in set S. Further, SFSX reads the count field
c of that slot and then calculates ∆ + c× b as the multiplicity
of an element e, where ∆ is the offset from the pth block to
the p′th block. In the case of Fig 6, for the multiplicity query
of e, SFSX will calculate ∆ as 31 − 0 + 1 = 32 and tell the
multiplicity of e as 32 + 31× 32 = 1024.

SFSX-Delete phase. The delete phase of SFSX is much
simpler than the query phase. To delete e, SFSX searches its
fingerprint f(e) in all candidate buckets. If any slot matches,
SFSX clears both the fingerprint field and the count field of this
slot. Otherwise, SFSX returns False to indicate that e is not
in set S. In Fig 6, to delete e, SFSX checks its four candidate
buckets and locates the slot that f(e) is in, i.e., slot 31 in
bucket h1. Then SFSX removes f(e) from this slot and sets
the count field therein to 0.

B. SFBX

Like SFSX, SFBX also extends each slot by adding a
count field. Together with the offset on buckets represents

multiplicity information. Besides, SFBX also replaces the
independent hash function h0(e) of SFB in Fig. 3 with f(e).

SFBX-Construction phase. To insert a given element e
with multiplicity c(e), SFBX first computes (f(e)%B+(c(e)−
1)%B)%B to locate the candidate block, then inserts the
fingerprint f(e) to e’s two candidate buckets and set the
corresponding count bits to ⌊(c(e)− 1)/B⌋. The counter in
SFBX evicts along with the fingerprint.

SFBX-Query phase. In the query phase of e, SFBX

explores each slot from the candidate buckets in the first block
to last one, until there is a fingerprint matches f(e) or all
blocks are traversed. Assuming the ith (0 ≤ i ≤ B − 1)
block has fingerprint f(e), SFBX calculates ∆ + c×B as e’s
multiplicity, where c is the counter’s value of corresponding
slot and ∆ is the offset from block f(e)%B to block i. If there
is no f(e) in all candidate buckets, SFBX returns False.

SFBX-Delete phase. The deletion process of SFBX is the
same as that of SFB, except with one more step to clear the
count field in the matched slot.

C. Comparison With ShBF
Our Shifting filters for multiplicity query, including SFSX

and SFBX, are superior to ShBF in the following four ways. 1)
as mentioned in Section V, the element deletion in SFSX and
SFBX are much simpler than ShBF. 2) ShBF needs a priori
knowledge of the most frequent element. However, this is
unnecessary for our solutions. 3) ShBF suffers from severe
degradation in terms of accuracy, false positive rates and
query throughput when representing elements with skewed
frequencies. However, SFSX and SFBX can remain a high
performance consistently. 4) To alleviate the problem of
returning multiple possible results due to hash conflicts, ShBF
must traverse all bits in the entire search range and return
the maximum value of all matching results. Such design
is highly time-consuming, especially when for an extensive
search range. By contrast, SFSX and SFBX rely on fingerprints
to mitigate hash conflicts. The probability of false matching
caused by fingerprint conflicts is low. Therefore, in the query
phase, SFSX and SFBX can immediately end the search and
return the corresponding result as long as there is a fingerprint
that matches f(e).

VII. THEORETICAL ANALYSIS

This section launches a theoretical analysis of all Shifting
filter variants in terms of insertion failure probability, false
positive rate, and space efficiency.

A. Insertion Failure Probability
SFS-analysis. Since the sequence index of slots has been

used to represent elements’ auxiliary information, SFS relo-
cates the overflow fingerprints only in the location of one fixed
slot in each insertion phase. Such design incurs a degree of
space efficiency degradation on the data structure. In order to
explore the impact of these restrictions on the space utilization
of filters, we derive a lower bound of the insertion failure
probability below.

Let us first derive the probability that two distinct elements
collide in the same four buckets. This situation may arise

FU et al.: SHIFTING FILTER FRAMEWORK FOR DYNAMIC SET QUERIES 2337

when they: 1) have the same fingerprint, which occurs with
probability 1/2l; 2) have the first candidate bucket as h1,
h2, h3 or h4, which occurs with probability 4/m. Thus the
probability of a given set of q items sharing the same four
candidate buckets is (4/m·1/2l)q−1. When inserting n random
elements to an empty table of m = γn buckets for a constant
γ, as long as there are q = 5 elements mapped into the same
four candidate slots, the insertion will fail. This probability
provides a lower bound for insertion failure of SFS. Since
there are in total

(
n
5

)
different possible sets of 5 elements out

of n elements, the expected number of 5 elements colliding
during the construction phase of SFS is(

n
5

) (
4

2l ·m

)4

=
(

n
5

) (
4

2l ·γn

)4

=Ω
(

n

γ4 · 24l−1

)
(1)

It is obvious that γ4 · 24l−1 must be Ω(n) to avoid a
non-trivial probability of insertion failure, as otherwise this
expectation is Ω(1). Accordingly, the minimum number of bits
required for the fingerprint in SFS must be

lSFS = ⌈log2 2n/4− log2 γ⌉ (2)

This result seems somewhat disadvantageous, as the lower
bound for fingerprint size is Ω(log n) in SFS. At the same time,
such indicator in the standard Cuckoo filter is Ω(log n/b),
which can be adjusted by the b factor in the denominator.
This is because SFS leverages slot position to represent more
information, thereby cannot store elements at will, incurring an
inferior space efficiency. However, in actual use, the fingerprint
length is jointly decided by both the space budget and the
target false positive rate. Therefore, this trade-off should be
handled by users according to their performance requirements.

SFB-analysis. As SFB splits the hash table into multiple
blocks and restricts the two candidate buckets in one block, the
probability of two distinct elements have their first candidate
bucket as h1 or h2 is 2B/m. Therefore, the expected number
of groups of 2b+1 elements colliding during the construction
phase of SFB is(

n
2b + 1

) (
2B

2l ·m

)2b

= Ω
(

n

(γ · 2l/B)2b

)
(3)

In this case, the minimum number of bits required for the
fingerprint in SFB must be

lSFB =
⌈
log2 n/2b + log2

B

γ

⌉
(4)

Equ. 4 indicates that the fingerprint size in SFB can be
saved by the b factor in the denominator of the lower bound.
In other words, as long as SFB uses reasonably sized buckets,
its fingerprint size can remain small, which is helpful for
implementation with small memory.

B. False Positive Rate

For membership query, false positive error can be intuitively
considered as a filter returning a positive result when querying
a non-existent element. Here we extend the definition of
false positive error to the association and multiplicity query.
Specifically, false positive error may arise when a filter regards
an alien element as a member of any represented set in the

association query phase, or the output multiplicity of this
element is larger than 0 in the multiplicity query phase. The
probability of such error is the false positive rate (FPR).

SFS-analysis. When looking up a non-existent element e1

in a slot, if this slot is occupied, the probability that e1

is matched against the stored fingerprint is 1/2l, otherwise
0. In the worst case to query e1, SFS must probe all four
candidate buckets each with b filled slots, thus the probability
of this query returning a false positive successful match is

FPRSFS = 1− (1− 1/2l)4b ≈ 4b/2l (5)

Equ. 5 indicates that FPR is inversely proportional to the
fingerprint length l and is positively associated with bucket
size b, and also reflects an upper bound of the total probability
of a false-positive fingerprint hit. To obtain the target false
positive rate ϵ, SFS must guarantee 4b/2l ≤ ϵ, thus the
minimum fingerprint length can be calculated as

lSFS ≥ ⌈log2 (1/ϵ) + log2 (4b)⌉ (6)

The query phase in SFSM and SFSA works differently from
that in SFSX. SFSM and SFSA only check the fingerprints at
one slot rather than all slots in candidate buckets, and thus
have a lower chance to incur fingerprint collisions. Hence the
FPR of SFSM and SFSA is

FPRSFS′ = 1− (1− 1/2l)4 ≈ 1/2l−2 (7)

Thus the minimum fingerprint size of SFSM and SFSA is

lSFS′ ≥ ⌈log2 (1/ϵ) + 2⌉ (8)

SFB-analysis. As SFB has to check two candidate buckets
in all blocks for any given element, its search scope is 2bB
slots, and thus we have

FPRSFB = 1− (1− 1/2l)2bB ≈ 2bB/2l (9)

The above result indicates that the FPR of SFB is also
positively associated with block number B besides bucket size
b. Thus the minimum fingerprint length of SFB is

lSFB ≥ ⌈log2 (1/ϵ) + log2 (2bB)⌉ (10)

C. Space Efficiency
After obtaining the minimum fingerprint size that appears

amenable to both insertion failure probability and FPR require-
ments, we can measure the space efficiency of these filters,
through the average bits per element. Assume a filter with
m buckets each of which has b slots. Each slot records the
fingerprint with l bits. The total bits of the filter is thus mbl.
After inserting elements to this empty table, let α be the
load factor, which means the ratio between the maximum size
of the filter and its capacity when the first insertion failure
occurs. Therefore, there are mbα elements represented by this
table/filter. Thus the bits per element (also the amortized space
cost) of this filter is

BPE =
mbl

mbα
= l/α (11)

where the value of l should not be smaller than the lower
bound determined by Equ. 2 and 6 for SFS, Equ. 2 and 8 for
SFSM, Equ. 4 and 10 for SFB. Moreover, when it comes to

2338 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

filters with auxiliary fields, such as mark fields in SFSA and
count fields in SFSX, Equ. 11 should be adjusted as

BPE =
mb(l + l′)

mbα
= (l + l′)/α (12)

where l′ is the amount of bits used in each auxiliary field.

D. Precision
Due to hash conflicts, filters’ association and multiplicity

query results may be inconsistent with the actual values.
Specifically, such an error may arise when filters find a
fingerprint that conflicts with the target fingerprint before
reading the correct auxiliary information. In this case, filters
will mistake another distinct element with different auxiliary
information as the queried one. Therefore, the probability of
returning an accurate result is paramount for evaluating the
results they output. Next we deduce the lower bound of the
precision of SFSA, SFSX and SFBX.

SFSA-analysis. SFSA uses the mark field to record the
affiliation information of elements explicitly. In other words,
the probability of returning an accurate result is 100% as long
as there is no false positive error. Therefore, the lower bound
of the precision of SFSA is

PSFSA = 1− FPRSFS′ = 1− 1/2l−2 (13)

SFSX-analysis. As shown in Algorithm 4, to query an
element e for its multiplicity information, SFSX searches
f(e) from the first four slots to the last ones in e’s four
candidate buckets until there is one fingerprint matching or all
candidate slots are checked. Assuming that f(e) is stored in
the ith (i ∈ {1, 2, · · · , b}) four candidate slots, the probability
of a false fingerprint match before reading f(e) is at most
1 −

(
1− 1/2l

)4i
in SFSX. Since an arbitrary element is

assigned to each candidate slot with equal probability, the
average precision of SFSX is

PSFSX =
b∑

i=1

(
1− 1/2l

)4i
/b (14)

SFBX-analysis. Like SFSX, SFBX also successively probes
two candidate buckets from the first block to the last one to
query a given element. As a consequence, the probability of
SFBX falsely matching a fingerprint before the correct slot
is at most 1−

(
1− 1/2l

)2bi
, where i represents the sequence

number of the block storing the target element. The probability
of an element being inserted into each block is also equal in
SFBX, so the average precision of SFBX is

PSFBX =
B∑

i=1

(
1− 1/2l

)2bi
/B (15)

E. Comparison With ShBF
ShBF-analysis. Recall that for a set of n elements, the FPR

of ShBF for membership query is

FPRShBFM ≈ (1− p)
k
2

(
1− p +

1
w̄ − 1

p2

) k
2

(16)

where p = e
−nk

m , k is the hash function number for each
element, m is the bit vector length of ShBF and w̄ is a

function of machine word size. ShBF further optimizes system
parameters to minimize FPRShBFM [7], it indicates that the
optimum value for w̄ is w̄opt = 57 for 64−bit architecture,
and the optimum value for k is kopt = 0.7009m

n . Substituting
the value of w̄opt and kopt into Equ. 16, the minimum value
of FPRShBFM is given by the following equation.

FPRmin
ShBFM

= 0.6204
m
n (17)

Recall that the base of BF in Equ. 17 is 0.6185 [7], which
indicates that the FPRs of ShBFM and BF are almost the
same. For the association query of an element with I possible
affiliations, or the multiplicity query of an element in a multi-
set Sm that the maximum number of times an element can
occur is L, the FPR of ShBF is adjusted as

FPRmin
ShBFA or X

= 1− (1− 0.6185
m
n)Z (18)

where Z = I−1 (Z = L) for association (multiplicity) query.
When querying an element with multiplicity J (1 ≤ J ≤ L)

in Sm, the precision of ShBFX, i.e., the probability of this
element is correctly reported to be present J times is

PShBFX = (1− 0.6185
m
n)L−J (19)

FPR Comparison. Let us compare the FPR of SFSM and
ShBFM at the same space overhead. For membership query,
assume that to represent a set with n = 0.95× 220 elements,
SFSM maintains 218 buckets with b = 4 and l = 18. Thus
the space overhead of SFSM is 18 × 220 bits, which is also
the value of m in ShBFM. Substituting these parameters value
above into Equ. 17 and Equ. 7, the FPRs of ShBFM and SFSM

are 1.32× 10−4 and 1.5× 10−5, respectively. For association
query, we further assume that the affiliation number is I =
8 and each mark field in SFSA uses 3 bits. Then the space
overhead is 21× 220 bits, we have FPRShBFA = 1.71× 10−4

by substituting m = 21 × 220 into Equ. 18, while FPRSFSA

is still equal to 1.5× 10−5. For multiplicity query, we further
assume that L = 1024 and each count field in SFSX uses
5 bits, so we have FPRShBFA = 9.05×10−3 and FPRSFSX =
4.88 × 10−4 through Equ. 18 and Equ. 5, respectively. The
above results indicate that compared to ShBF, SFS reduces
the FPR by up to one order of magnitude for various queries.

Precision Comparison. To compare the worst precision of
SFSX and ShBFX at the same space overhead, we further set
the l = 16 in the case of the FPR analysis for multiplicity
query above. According to Equ. 19, we find that ShBFX

achieves the worst precision when J has the minimum value.
Therefore, substituting m = (16+5)×220 and J = 1 into Equ.
19, we have Pmin

ShBFX
= 0.9753. Since SFSX searches target

fingerprint step by step, it has the worst precision when target
locates at the last slot. With this insight, we can calculate that
Pmin

SFSX
= (1− 1/2l)4b−1 = 0.9981. Apparently SFS performs

better than ShBF in terms of precision.

VIII. EVALUATION

A. Experiment Setup

Platform: All experiments are conducted in a machine
with an Intel Core i7 processor and 16GB DRAM. All codes
are available at Github (https://github.com/fptjy/Shifiing-filter-
framework).

FU et al.: SHIFTING FILTER FRAMEWORK FOR DYNAMIC SET QUERIES 2339

Dataset: We use synthetic and real-world datasets to make
the experimental results more statistically significant and con-
vincing. Specifically, for membership queries, we randomly
generate numerous strings of sufficient length, and such strings
constitute a synthetic dataset for testing. For association
queries, we generate synthetic datasets with different affilia-
tions under the circumstances of two, three, and four subsets.
For multiplicity queries, we first generate synthetic datasets
wherein the data multiplicity follows a normal distribution
with different expectations u and standard deviations δ (u =
2i, δ = i where i varies from 5 to 10), because the normal dis-
tribution is one of the most common distributions in statistics.
Furthermore, we use five public traffic traces from MAWI [40]
with the 5-tuple as the flow ID. These real-world datasets
contain 2.3 to 4.2 million network flows, where the distinct
flows’ number varies from 19k to 31k, and the multiplicity
of the top-1 flow, i.e., c, varies from 49376 to 86069. Unlike
the synthetic datasets above, the multiplicity of network flows
in traffic traces is highly skewed and has a heavy-tailed
distribution.

Parameter setting: All Shifting filters maintain m = 218

and b = 4, except for SFSX (m = 215, b = 25). For traffic
traces tests, the value of m in SFSX (SFBX) is tuned as 210

(213). The l is 18 in SFSM and 16 in other Shifting filters.
All Shifting filters set MAX = 500. ShBF configures the
value of k through kopt = 0.7009m

n . For the membership
query experiments, we maintain the overall false positive rate
of the filters as 1.5×10−5, and the space occupancy of filters
varies from 5% to 95%. For the association and multiplicity
query experiments, the competitors maintain the same space
overhead with Shifting filters, except for NA (m = 213,
b = 22, l = 16), which consumes 18.5% more space due
to its bigger counters. The experiments for association and
multiplicity queries of synthetic datasets are conducted under
95% space occupancy. In other words, the data set fed to
a filter has a size equal to 0.95 times the capacity of this
filter, and this numeric is close to the load factor of both
Cuckoo and Shifting filters. For multiplicity queries of traffic
traces, as flows with different sizes are inserted into filters
whose capacity is fixed, the space occupancy of these filters
varies from 59.7% to 95.5%. Elastic Sketch sets the predefined
threshold of the rate between negative votes and positive votes
as eight and utilizes three arrays in its light part. All Shifting
filters utilize Python built-in hash functions and DJB hash
functions.

B. Metrics

Throughput: We perform insertion, query and deletion
operations of all elements, and record the total time used. Then
the throughput is defined as N

T , where N is the total number
of operations, and T is the total measured time.

Precision: Precision is defined as φ
N , where N is the

number of queries among which φ queries are correctly
responded.

Average Relative Error (ARE): ARE is defined as
1
|Ψ|

∑
ei∈Ψ

|x̂i−xi|
xi

, where Ψ is the set consists of queried
elements, x̂i is the estimated multiplicity of element ei, whose
real multiplicity is xi. ARE can evaluate the error rate of the
element multiplicity estimated by the filter.

Fig. 7. Load factor α achieved of SFS and SFB.

Overlap score (O-score): Overlap score is an indicator
defined by us to reflect the overlap degree of several subsets in
an universe. If there are total Z target subsets, the proportion
of elements belonging to i target subsets at the same time is yi.
Then O-score of this universe can be defined as

∑Z
i=0 i×yi/Z.

For example, there are two target subsets S1, S2 and an
universe U . The proportion of element which belongs to
U − S1 ∪ S2, S1 ∪ S2 − S1 ∩ S2 and S1 ∩ S2 is 70%, 20%
and 10%, respectively. So the O-score of U is 0.2. Note that
the above formula is adjusted as

∑Z
i=1(i− 1)× yi/Z when it

comes to constructing insertion datasets with different O-score.
Aiming at association query, O-score is utilized to explore the
performance of filters under different distributions of element
affiliation.

Consider the following example: ShBF performs an asso-
ciation query of an element e after constructing through two
data sets consisting of S1 and S2, one with an O-score of
0.5 and the other with an O-score of 0.9. Recall that ShBF
would first check if e falls into the first two cases, i.e.,
e ∈ S1 − S2 or e ∈ S2 − S1, and ShBF utilizes the offset
function o2(e) = o1(e) + hk+2(e)%((w̄ − 1)/2) + 1 for
e ∈ S1 ∩ S2. Consequently, ShBF has to execute more hash
computation and read more bits for those elements in S1∩S2.
It follows that ShBF will perform worse when facing the
data set whose O-score is 0.9. That is, the more off-center
the O-score, the more the overhead time for the association
query of those parametric data structures. With this insight,
designing an indicator to analyze how data structures perform
when element affiliation distributions vary is interesting and
essential.

C. Numerical Results

1) Space Efficiency: Either SFS or SFB supports a high
performance query of dynamic sets, with a compromise of
space efficiency. We measure the load factor α of SFS and
SFB with different fingerprint lengths l, as shown in Fig. 7.
We vary l from 1 to 24 for the experiments. Random synthetic
elements are inserted into an empty filter until an insertion
failure, and then we measure the achieved α. We fix b to 4 for
each bucket and set B as 32 for SFB. We run this experiment
thirty times for filters with m = 214, 216, 218 and 220 buckets,
then record their minimum load factors.

As shown in Fig. 7, with sufficiently long fingerprints, SFS
and SFB with b = 4 realize 98% and 95% occupancy, respec-
tively. SFB is more space-friendly than SFS because it needs
shorter fingerprints for high space utilization. As suggested by
the theory, the minimum l required by SFS to obtain a low
FPR (0.001) is 15 bits, which is also the minimum l required
to achieve close-to-optimal occupancy. In effect, SFS has a

2340 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 8. The insertion throughput of different types of query.

better space efficiency for the practical application of high
accuracy than its same kinds. When filters remain the same
FPR of 1.5 × 10−5, the BPE of BF, ShBF, CF, VCF, and
SFSM would be configured as 23.11, 24.11, 20, 21.05 and
18.95, respectively. SFS uses the fewest bits for each element
and saves that by 21.4%, 18%, 9.98%, and 5.25% than ShBF,
BF, VCF, and CF, respectively.

2) Insertion Throughput: Fig. 8(a) indicates the instanta-
neous element insertion throughput of those filters for mem-
bership query when α grows. As depicted in Fig. 8(a), the
insertion throughput of BF and ShBF remain constant while
the other three filters show dramatic declines when α grows.
The reason is that they have to execute the kick-out-and-
reallocate process for overflowed buckets or slots when the
filters get crowded. Compared to CF and VCF, SFSM has a
better insertion performance when the α is lower than 0.75.
Because SFSM checks fewer candidate slots to find an empty
slot for the coming fingerprint. However, as the table gets
crowded, the relocation strategy begins to take a major role in
diminishing the construction speed, especially for SFSM with
fewer candidate slots. In general, SFSM’s overall construction
speed is 1.14×, 1.18×, 1.30× and 1.60× faster compared with
CF, VCF, ShBF and BF, respectively.

For association query, we vary the O-score and test the
overall insert throughput of ShBF and SFSA as shown in
Fig. 8 (b), where the integer subscript in the legend means
the number of subsets that the insertion dataset contains.
SFSA ensures a high and almost constant insert throughput,
while the construction speed of ShBF is much lower and
declines with the increments of O-score and the number
of affiliations. Because with a higher O-score, ShBF needs
more hash calculations in its offset function, consuming more
time. Besides, ShBF must explore assistant filters to fetch
the affiliations of a given element before inserting it. On the
whole, compared with ShBF, SFSA accelerates the insertion
throughput by 3.36×, 2.61×, and 1.88× in the case of 4, 3 and
2 subsets, respectively.

Fig. 8(c) further compares the overall insert throughput of
different filters for multiplicity query when another compari-
son method ABF is adopted. In this experiment, we feed these
filters with synthetic datasets, then quantify their overall con-
struct speed with the average multiplicity (i.e., M) increasing
from 25 to 210. Like SFSA, SFSX and SFBX also remain a
high and almost constant construct speed. Since the element
multiplicities are used directly as offsets instead of other
hash values, the insertion throughput of ShBF is significantly
improved. However, ABF performs the worst and gets worse
as multiplicity increases because ABF exploits the extra hash
functions whose number is the same as the recorded elements’
multiplicity.

For multiplicity query experiments with traffic traces,
we have added two new competitors to replace unqualified
ABF, i.e., the NA method and Elastic Sketch (ES) [17].
As shown in Fig. 8(d), as the input traffic traces size increases,
the data structures get crowded, and the α also grows, the
insertion throughput of ShBF and ES remain constant, while
CF variants, including SFSX, SFBX and NA show a degree of
decline. Although ES is fast to insert, it records the network
flows arriving one by one, substantially different from the
working mechanism of those data structures that can directly
record auxiliary information. In general, compared with these
filters of the same type, SFSX has a slightly inferior insertion
throughput when tracing network flows.

3) Query Throughput: Membership query. First, we vary
α of these filters from 0 to 95%, and measure their instanta-
neous query throughput when the queried elements occupy
100% (positive) and 0% (negative) of the represented ele-
ments, as shown in Fig. 9(a) and (b). The throughput of CF,
VCF and SFSM is stable across different α on both negative
and positive queries. Because the total number of slots to
read and compare remains constant irrespective of the filter
occupancy. In contrast, BF and ShBF behave differently when
serving negative and positive queries. For the positive query,
they must always check in total k bits irrespective of filter
occupancy, thus providing constant query throughput. SFSM

outperforms others when serving positive queries while it is
inferior to ShBF and BF when it comes to negative queries.
BF can immediately terminate the next series of hash function
calculations and candidate bits access once a zero bit is found.
CF and its variants use the fingerprints in the hash table rather
than the bit vector to encode elements information. Therefore,
SFSM can only end the query once a fingerprint match or
all candidate buckets have been traversed. That explains why
ShBF performs better than SFSM when facing a negative
query. Despite compromising negative query throughput due
to the working mechanism, SFSM also gains many advantages,
such as element deletion support, higher accuracy, better space
efficiency, and good scalability.

Second, we fix α to 95% and vary the fraction of positive
elements in the query set, i.e., F from 0.05 to 0.95 for
each filter, and then record the overall query throughput with
Fig. 9(c). The results indicate that the query throughput of
SFSM increases when F grows, while it decreases substan-
tially for ShBF and BF. Our method outperforms other filters
when F is larger than 0.5. The reason is that CF and its
variants search fewer slots before finding the target element
as F increases. However, BF and ShBF have to check more
bits. The throughput of ShBF is nearly double that of BF,
irrespective of the types of queries. The reason is that ShBF
only used half number of hash functions compared with BF.

FU et al.: SHIFTING FILTER FRAMEWORK FOR DYNAMIC SET QUERIES 2341

Fig. 9. The query throughput of different types of query.

Association query. Given α = 0.95, we vary O-score
from 0 to 1 and then measure the overall query throughput
of filters. As shown in Fig. 9(d), no matter how many sets the
queried element is, SFSA remains a fast query speed which
gets even faster with the growth of O-score. Because SFSA

explicitly represents element affiliations by mark field bits,
it can respond faster when more queries are positive. However,
the performance of ShBF degrades when the elements may
belong to more sets or O-score gets larger. This is because
ShBF must compute additional hash functions and read more
bits. In brief, when serving queries with 2, 3 and 4 subsets,
SFSA has 0.95×, 1.71× and 3.03× overall query throughput
compared with ShBF, respectively.

Multiplicity query. Fig. 9(e) and (f) depict filters’ query
throughput of coping with synthetic datasets with varying M
when all queries are negative and positive. SFSX and SFBX

always ensure a high query throughput irrespective of the
increase of M or the type of queries. SFSX performs better
than SFBX as it fetches fewer slots. However, ShBF and ABF
suffer substantial performance degradation when M grows.
We also note that ShBF works worse than ABF. In fact, SFSX

and SFBX always fetch a fixed number of candidate slots
or buckets. However, ShBF must check almost c × k bits to
avoid underestimation where c is the maximum multiplicity
of all inserted elements. For a positive query with multiplicity
i, ABF has to compute additional i + 1 hash functions and
read k + i + 1 bits at least. ABF can return immediately
after fetching the first 0 for a negative query. Unfortunately,
ABF has to compute more hash functions and check more
bits if this negative query incurs a false positive error, which
is common when M grows. In short, the negative (positive)
query throughput of SFSX is 2.31, 2.37 and 5.07 (2.54, 0.6 and
2.75) times higher than SFBX, ABF and ShBF, respectively.

Fig. 9(g) shows the hybrid query throughput of filters with
fixed M = 210 when checking synthetic datasets. SFSX

always performs best, followed by SFBX. They respond even
faster as F increases. This is because if there are fewer nega-
tive queries, the query may return earlier before all candidate
slots or buckets are checked. In contrast, ShBF and BF remain
a much lower query throughput. SFSX has 2.45×, 14.41×

and 29.04× overall hybrid query throughput, compared with
SFBX, ABF and ShBF, respectively.

In Fig. 9(h), we fix the F above as 0.5 and further
measure the hybrid query throughput of data structures through
real-world trace-driven experiments. The performance of CF
variants slightly degrades with the α growing due to more
occupied slots having to check. Besides, SFSX performs
worse than NA because NA checks much fewer slots at the
cost of 18.5% more space overhead. The query speed of
ShBF remains extremely low and gets even lower with the
increment of the top-1 flow’s multiplicity, i.e., c. By contrast,
ES maintains a high and stable query throughput irrespective
of the increase of either α or c. Compared with ES, NA, SFBX

and ShBF, SFSX has 0.09×, 0.3×, 2.23×, and 2623× trace-
driven hybrid query throughput.

4) Deletion Throughput: Since BF, ShBF, and ES fail to
enable element deletion, we quantify the deletion throughput
of our methods compared with CF, VCF, and NA for three
types of set queries in Fig. 10. For membership query, SFSM

has 1.56× and 1.43× deletion throughput compared with VCF
and CF, respectively. Besides, all filters experience instant
deletion throughput drop when α grows. That is a natural
result of searching for more slots before deleting the target
fingerprint. For association query, the deletion throughputs of
SFSA with different numbers of affiliations are about the same,
maintaining a high level and increasing with the increment
of O-score. For multiplicity queries of synthetic datasets, the
deletion curves of both SFSX and SFBX are similar to curves
of positive query in Fig. 9(e), and the deletion throughput
of SFSX is 2.77× compared with SFBX in Fig. 10(c). For
multiplicity queries of traffic traces, as shown in Fig. 10(d),
SFSX has 0.61× and 2.45× deletion throughput compared
with the space-prohibitive NA method and SFBX.

5) Error Rate: We further evaluate the error rate of affilia-
tion and frequency estimation as shown in Fig. 11 and Fig. 12.
The quantified metrics include precision, ARE and FPR.

Precision. As depicted by Fig. 11(a), the precision of SFSA

is always higher than the lower bound 99.994% derived by
Equ. 13, which is better than ShBF. Furthermore, we find that
ShBF suffers from a precision degradation when the number

2342 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 10. The deletion throughput of different types of query.

Fig. 11. The error rate of different queries for synthetic datasets.

Fig. 12. The error rate of multiplicity queries for real-word network traffic traces.

of affiliation increases, as also predicted by the analysis in
Subsection V-D. Because ShBF has to check more bits with
a higher probability of false matches. For multiplicity queries
of synthetic datasets in Fig. 11(b), when M increases from
25 to 210, both ShBF and ABF show significant accuracy
drops, and ABF has terrible performance. By contrast, our
SFSX and SFBX always guarantee above 99.9% and 99.8%
multiplicity estimation precision, as Equ. 14 and Equ. 15 also
suggests. The fundamental reason is that our method records
the exact multiplicity directly. However, ShBF and ABF have
to check the non-zero bits to estimate the multiplicity. Besides,
ABF realizes worse accuracy than ShBF since it sets much
more bits to 1 when recording an element with a large multi-
plicity. Consequently, the non-zero bits set by other elements
may overestimate the actual multiplicity more easily in ABF.
Moreover, the membership and multiplicity information in
ABF may interfere with each other, leading to even worse
precision. For multiplicity queries of traffic traces in Fig. 12(a),
SFSX and SFBX still guarantee above 99.9% and 99.8%
multiplicity estimation precision, far ahead of ShBF and ES,
especially at rated 95% workload. NA always maintains nearly
100% precision because it records the multiplicity exactly and
fetches fewer slots. With the input of five traffic traces of
different sizes, the precision of all data structures degrades
more or less for different reasons. For CF variants, the reason
is that filters have to check more fingerprints as α grows.
For ShBF and ES, it is because the number of vacant bits or
count fields decreases when α grows, so they are more likely

to fetch incorrect multiplicity information. The increase in c
also exacerbates the degradation of ShBF precision. Overall,
the trace-driven precision of SFSX at 95% workload is 1.34×
and 1.66× compared with ShBF and ES.

ARE. For multiplicity queries of synthetic datasets in
Fig. 11(c), SFSX has near 3.0×10−5 ARE, irrespective of
the increment of M . In contrast, the ARE of SFBX declines
from 9.0×10−4 to 6.7×10−5, while increases from 1.8×10−4

to 3.4×10−4 (0.114 to 0.145) in ShBF (ABF). The above
results happen for two main reasons: 1) the larger M is, the
more bits ShBF has to search, and the more likely it mistakes
an element with an incorrect multiplicity. 2)the larger M is,
the more bits in ABF are set to 1, so the mechanism of
representing information by 0 or 1 in ABF is more likely to
fail in a limited space. For trace-driven multiplicity queries in
Fig. 12(b) and (c), all data structures suffer ARE increment
but NA, especially for ShBF and ES. The reasons for that
are the same as that of precision degradation described above.
In short, the ARE with synthetic datasets of SFSX is 0.10×,
0.14×, and 0.0002× compared with SFBX, ShBF, and ABF,
and the trace-driven ARE of SFSX is 8.04×, 0.02×, 0.006×,
and 0.000001× compared with NA, SFBX, ES, and ShBF.

FPR. Fig. 11(d) shows the multiplicity query FPR of filters
checking synthetic datasets. The FPR of SFSX and SFBX

remain fairly low, which is always lower than the upper
bounds 0.002 and 0.004 derived in Equ. 5 and Equ. 9, respec-
tively. However, as the average multiplicity grows, this metric
degrades for ShBF and ABF. ABF performs the worst with

FU et al.: SHIFTING FILTER FRAMEWORK FOR DYNAMIC SET QUERIES 2343

significant growth from 0.37 to 1. The reason is that substantial
extra bits have been set to 1 in ABF to record element
multiplicities. For trace-driven multiplicity queries, Fig. 12(d)
shows more clearly that FPR for SFSX and SFBX is always
below 0.002 and 0.004, which further confirms our theoretical
analysis. Similar to the ARE numeric results in Fig. 12 (b)
and (c), all data structures suffer performance degradation
with varying degrees of FPR increments, including NA, and
the reasons are also same to that of precision degradation.
In brief, the overall FPR tested with synthetic datasets of SFSX

is 0.494×, 0.089×, and 0.002× compared with SFBX, ShBF,
and ABF, and the trace-driven FPR of SFSX is 13.6×, 0.48×,
0.02×, and 0.006× compared with NA, SFBX, ShBF, and ES.

In summary, SF saves space by 21.4%, 18%, 9.98%, and
5.25% than ShBF, BF, VCF, and CF, when they remain the
same FPR of 1.5× 10−5. SF also saves space by 18.5% than
NA. For membership query, SF has 1.14×, 1.18×, 1.30× and
1.60× insertion throughput compared with CF, VCF, ShBF,
and BF. SF also has 1.56× and 1.43× deletion throughput
compared with VCF and CF, respectively. For association
query, in the case of four, three, and two subsets, SF has
3.36×, 2.61×, and 1.88× insertion throughput, and 0.95×,
1.71× and 3.03× query throughput compared with ShBF,
respectively. The greater the number of subsets, the lower the
insertion throughput, query throughput, and query accuracy of
ShBF, while SF remains stable performance irrespective of the
number of subsets varies. For multiplicity queries of synthetic
datasets, SFSX has 2.45×, 29.04× and 14.41× hybrid query
throughput, 0.10×, 0.14× and 0.0002× ARE, and 0.494×,
0.089× and 0.002× FPR compared with SFBX, ShBF and
ABF, respectively. For trace-driven multiplicity queries, SFSX

has 2.23×, 0.3×, 2623× and 0.09× hybrid query through-
put, 1.0×, 1.0×, 1.34× and 1.66× precision, 0.02×, 8.04×,
0.000001× and 0.006× ARE, and 0.48×, 13.6×, 0.02×
and 0.006× FPR compared with SFBX, NA, ShBF and ES,
respectively. Given the strength of query throughput, deletion
throughput, precision, ARE, and FPR, we prefer to recommend
SFSX for multiplicity queries. However, if space is the primary
resource for optimizing, then SFBX is a better choice as it is
more space-efficient than SFSX.

IX. CONCLUSION

This paper presents the Shifting filter design for dynamic
set representation and query with the ambition of higher
throughput, lower error rate, fewer constraints, and more func-
tionalities. We exhibit how to use Shifting filter to answer three
crucial dynamic set queries, i.e., membership, association,
and multiplicity query. At its core, Shifting filter encodes the
auxiliary information of the set element in the offset on slot or
bucket level, with mark field or count field as assistance. Such
a design avoids significant performance degradation while
ensuring compact space overhead. Theoretical analysis and
comprehensive experiments commit that Shifting filter and its
variants support elegantly all three types of set queries with
comparable or better performance than its competitors. The
major limitation of our methods is that the various throughputs
are not high enough, especially the query throughput. In future
work, we will try to design a lightweight indexing scheme to
replace the partial cuckoo hashing technique in the Cuckoo

filter so that the data structure can respond faster to various
data operations.

ACKNOWLEDGMENT

The authors would like to thank all the anonymous review-
ers for their insightful feedback.

REFERENCES

[1] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of Bloom filters for distributed systems,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 1, pp. 131–155, 1st Quart., 2012.

[2] X. Wang, Y. Liu, Z. Yang, K. Lu, and J. Luo, “Robust component-
based localizationin sparse networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 5, pp. 1317–1327, May 2014.

[3] Y. Zhai, H. Xu, H. Wang, Z. Meng, and H. Huang, “Joint routing and
sketch configuration in software-defined networking,” IEEE/ACM Trans.
Netw., vol. 28, no. 5, pp. 2092–2105, Oct. 2020.

[4] P. Reviriego and O. Rottenstreich, “The tandem counting Bloom filter—
It takes two counters to tango,” IEEE/ACM Trans. Netw., vol. 27, no. 6,
pp. 2252–2265, Dec. 2019.

[5] A. Sánchez-Macián, P. Reviriego, J. A. Maestro, and S. Liu, “Single
event transient tolerant Bloom filter implementations,” IEEE Trans.
Comput., vol. 66, no. 10, pp. 1831–1836, Oct. 2017.

[6] T. Buddhika, S. L. Pallickara, and S. Pallickara, “Pebbles: Leveraging
sketches for processing voluminous, high velocity data streams,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 8, pp. 2005–2020, Aug. 2021.

[7] T. Yang et al., “A shifting Bloom filter framework for set queries,” ACM
J. VLDB Endowment, vol. 9, no. 5, pp. 408–419, Jan. 2016.

[8] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 3,
pp. 52–66, Jul. 2015.

[9] J. H. Mun and H. Lim, “New approach for efficient IP address lookup
using a Bloom filter in trie-based algorithms,” IEEE Trans. Comput.,
vol. 65, no. 5, pp. 1558–1565, May 2016.

[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, Jun. 2000.

[11] L. Luo, D. Guo, Y. Zhao, O. Rottenstreich, R. T. B. Ma, and X. Luo,
“MCFsyn: A multi-party set reconciliation protocol with the marked
cuckoo filter,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 11,
pp. 2705–2718, Nov. 2021.

[12] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient B-tree based
indexing for cloud data processing,” Proc. VLDB Endowment, vol. 3,
nos. 1–2, pp. 1207–1218, 2010.

[13] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable
distributed B-tree,” Proc. VLDB Endowment, vol. 1, no. 1, pp. 598–609,
Aug. 2008.

[14] G. Lu, Y. J. Nam, and D. H. C. Du, “BloomStore: Bloom-filter based
memory-efficient key-value store for indexing of data deduplication on
flash,” in Proc. IEEE 28th Symp. Mass Storage Syst. Technol. (MSST),
Pacific Grove, CA, USA, Apr. 2012, pp. 1–11.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: A not-so-foreign language for data processing,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, Vancouver, BC, Canada, Jun. 2008,
pp. 1099–1110.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., Lisbon,
Portugal, Mar. 2007, pp. 59–72.

[17] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Budapest, Hungary, Aug. 2018, pp. 561–575.

[18] Y. Zhang et al., “CocoSketch: High-performance sketch-based measure-
ment over arbitrary partial key query,” in Proc. ACM SIGCOMM Conf.,
Aug. 2021, pp. 207–222.

[19] L. Liu et al., “SF-sketch: A two-stage sketch for data streams,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 10, pp. 2263–2276, Oct. 2020.

[20] L. Tang, Q. Huang, and P. P. C. Lee, “A fast and compact invertible
sketch for network-wide heavy flow detection,” IEEE/ACM Trans. Netw.,
vol. 28, no. 5, pp. 2350–2363, Oct. 2020.

2344 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

[21] H. Wang, H. Xu, L. Huang, and Y. Zhai, “Fast and accurate traffic
measurement with hierarchical filtering,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 10, pp. 2360–2374, Oct. 2020.

[22] D. Tong and V. K. Prasanna, “Sketch acceleration on FPGA and
its applications in network anomaly detection,” IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 4, pp. 929–942, Apr. 2018.

[23] Z. Zhong, S. Yan, Z. Li, D. Tan, T. Yang, and B. Cui, “BurstSketch:
Finding bursts in data streams,” in Proc. Int. Conf. Manage. Data,
Jun. 2021, pp. 2375–2383.

[24] D. Paul, Y. Peng, and F. Li, “Bursty event detection throughout histo-
ries,” in Proc. IEEE 35th Int. Conf. Data Eng. (ICDE), Macao, China,
Apr. 2019, pp. 1370–1381.

[25] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
Bloom filter: Challenges, solutions, and comparisons,” IEEE Commun.
Surveys Tuts., vol. 21, no. 2, pp. 1912–1949, 2nd Quart., 2018.

[26] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[27] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than Bloom,” in Proc. 10th ACM Int.
Conf. Emerg. Netw. Exp. Technol., Sydney, NSW, Australia, Dec. 2014,
pp. 75–88.

[28] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area web cache sharing protocol,” in Proc. ACM
SIGCOMM, Vancouver, BC, Canada, Aug. 1998, pp. 254–265.

[29] Y. Matsumoto, H. Hazeyama, and Y. Kadobayashi, “Adaptive Bloom
filter: A space-efficient counting algorithm for unpredictable network
traffic,” IEICE Trans. Inf. Syst., vol. 91, no. 5, pp. 1292–1299, 2008.

[30] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic Bloom
filters,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, pp. 120–133,
Jan. 2010.

[31] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s
the difference? Efficient set reconciliation without prior context,” in
Proc. ACM SIGCOMM Conf. (SIGCOMM), Toronto, ON, Canada, 2011,
pp. 218–229.

[32] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
concurrent memcache with dumber caching and smarter hashing,” in
Proc. USENIX NSDI, Lombard, IL, USA, Apr. 2013, pp. 371–384.

[33] M. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive cuckoo fil-
ters,” in Proc. ALENEX, New Orleans, LA, USA, Jan. 2018, pp. 36–47.

[34] L. Luo, D. Guo, O. Rottenstreich, R. T. B. Ma, X. Luo, and B. Ren,
“The consistent cuckoo filter,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., Apr. 2019, pp. 712–720.

[35] H. Chen, L. Liao, H. Jin, and J. Wu, “The dynamic cuckoo filter,”
in Proc. IEEE 25th Int. Conf. Netw. Protocols (ICNP), Toronto, ON,
Canada, Oct. 2017, pp. 1–10.

[36] D. Eppstein, “Cuckoo filter: Simplification and analysis,” in Proc. SWAT,
vol. 53, Reykjavik, Iceland, Jun. 2016, p. 8.

[37] P. Fu, L. Luo, S. Li, D. Guo, G. Cheng, and Y. Zhou, “The vertical
cuckoo filters: A family of insertion-friendly sketches for online appli-
cations,” in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst. (ICDCS),
Washington, DC, USA, Jul. 2021, pp. 57–67.

[38] M. Wang, M. Zhou, S. Shi, and C. Qian, “Vacuum filters: More space-
efficient and faster replacement for Bloom and cuckoo filters,” VLDB
Endow., vol. 13, no. 2, pp. 197–210, 2019.

[39] P. Reviriego, J. Martinez, and M. Ottavi, “Soft error tolerant count min
sketches,” IEEE Trans. Comput., vol. 70, no. 2, pp. 284–290, Feb. 2021.

[40] (2016). The Wide Internet Traces. [Online]. Available:
http://mawi.wide.ad.jp/mawi

Pengtao Fu received the B.S. and M.S. degrees
from the College of Systems Engineering, National
University of Defense Technology, Changsha, China,
in 2020 and 2022, respectively. His research interests
include data structure and network measurement.

Lailong Luo received the B.S., M.S., and Ph.D.
degrees from the College of Systems Engineer-
ing, National University of Defense Technology,
Changsha, China, in 2013, 2015, and 2019, respec-
tively. He is currently an Associate Professor with
the College of Systems Engineering, National Uni-
versity of Defense Technology. His research interests
include data structure and distributed networking
systems.

Deke Guo (Senior Member, IEEE) received the
B.S. degree in industry engineering from the Beijing
University of Aeronautics and Astronautics, Beijing,
China, in 2001, and the Ph.D. degree in manage-
ment science and engineering from the National
University of Defense Technology, Changsha, China,
in 2008. He is currently a Professor with the Col-
lege of Systems Engineering, National University of
Defense Technology. His research interests include
distributed systems, software-defined networking,
data center networking, wireless and mobile systems,

and interconnection networks. He is a member of ACM.

Shangsen Li received the B.S. degree in automa-
tion from Northeastern University, Shenyang, China,
in 2019, and the M.S. degree from the College
of Systems Engineering, National University of
Defense Technology, Changsha, China, in 2021,
where he is currently pursuing the Ph.D. degree.
His research interests include network measurement,
SDN, and sketch data structure.

Yun Zhou (Member, IEEE) received the Ph.D.
degree in computer science from the Queen Mary
University of London, U.K., in 2015. He is currently
an Associate Professor with the College of Sys-
tems Engineering, National University of Defense
Technology, Changsha, China. His research interests
include machine learning and probabilistic graph-
ical models. He has published several papers in
reputed journals and conferences in this area, includ-
ing INFOCOM, IJCAI, International Journal of
Advanced Research (IJAR), UAI, and PGM.

