
2070 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

AlignTrack: Push the SNR Limit of
LoRa Collision Decoding

Qian Chen , Graduate Student Member, IEEE, and Jiliang Wang , Senior Member, IEEE

Abstract— LoRa has been shown as a promising Low-Power
Wide Area Network (LPWAN) technology to connect millions
of devices for the Internet of Things by providing long-distance
low-power communication when the SNR is very low. Real LoRa
networks, however, suffer from severe packet collisions. Existing
collision resolution approaches introduce a high SNR loss, i.e.,
require a much higher SNR than LoRa. To push the limit of LoRa
collision decoding, we present AlignTrack, the first LoRa collision
decoding approach that can work in the SNR limit of the original
LoRa. Our key finding is that a LoRa chirp aligned with a
decoding window should lead to the highest peak in the frequency
domain and thus has the least SNR loss. By aligning a moving
window with different packets, we separate packets by identifying
the aligned chirp in each window. We theoretically prove this
leads to the minimal SNR loss. In practical implementation,
we address two key challenges: (1) accurately detecting the
start of each packet, and (2) separating collided packets in each
window in the presence of CFO and inter-packet interference.
We implement AlignTrack on HackRF One and compare its
performance with the state-of-the-arts. The evaluation results
show that AlignTrack improves network throughput by 1.68×
compared with NScale and 3× compared with CoLoRa.

Index Terms— LPWAN, LoRa, collision resolution, CSS.

I. INTRODUCTION

RECENT years have witnessed the rapid development of
Internet of Things (IoTs) technology [1]. LPWANs have

been shown as a promising technology to provide low-power
long-distance communication for IoT applications [2] such as
health monitoring [3], smart agriculture [4], smart traffic light
congestion monitoring [5], intelligent parking space alloca-
tion [6], etc. LoRa, as a representative LPWAN technology,
has attracted both academic and industrial attention in the
world [7], [8]. LoRa can communicate for a distance of up
to tens of kilometers with very low energy consumption and
a very low SNR. The operational lifetime of battery-powered
LoRa nodes can reach up to ten years.

However, real LoRa networks suffer from severe packet
collisions. The vision of LoRa is to support connections with
a large number of low-cost and low-power devices. LoRa
network adopts a star network topology for communication.

Manuscript received 5 April 2022; revised 4 November 2022; accepted
22 December 2022; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor K. C.-J. Lin. Date of publication 23 January 2023; date of current
version 17 October 2023. This work was supported in part by NSFC under
Grant U22A2031, Grant 61932013, and Grant 62172250. (Corresponding
author: Jiliang Wang.)

The authors are with the School of Software, Tsinghua University,
Beijing 100084, China (e-mail: cq20@mails.tsinghua.edu.cn;
jiliangwang@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TNET.2023.3235041

And a LoRa gateway is supposed to connect with thousands of
nodes or even more in practice. However, a typical LoRa gate-
way can only receive LoRa packets from eight channels. This
leads to severe packet collisions in real LoRa deployments.
Moreover, to reduce control overhead, typical LoRa networks
use Aloha [9] based MAC protocols (e.g., LoRaWAN [10]),
in which LoRa nodes send packets without detecting the
channel status. This feature exacerbates the collision problem
in practice [11].

Existing approaches. Different approaches are proposed
to address the collision problem for LoRa. mLoRa [12] can
decode three collided LoRa packets using Successive Inter-
ference Cancellation (SIC). FTrack [13] calculates the conti-
nuity of instantaneous frequency to separate collided packets.
However, those approaches are based on time-domain signal
analysis and do not leverage features of LoRa encoding. Thus,
they require a high SNR of the packets (e.g., SNR > 0 dB)
in decoding, which deviates from LoRa application scenarios.
Further, CoLoRa [14] leverages the time offset among packets
and translates the time offset to frequency-domain features
to separate different collided packets. NScale [15] uses a
non-stationary scaling method to translate the time offset to
more robust features. Those two approaches can work for the
scenario of SNR < 0 dB. However, they need to partition a
chirp (symbol in LoRa) and therefore still introduce inevitable
SNR loss in practice. In summary, existing approaches require
a much higher SNR in decoding collision than traditional LoRa
(SNR ≈ −20 dB). Thus, those approaches cannot work in
many practical scenarios.

Our design. To push the limit of LoRa collision decoding
under low SNR, we propose AlignTrack, a novel LoRa packet
collision decoding approach to minimize SNR loss. Different
from the existing approaches that introduce non-negligible
SNR loss and require a higher SNR than traditional LoRa.
AlignTrack leverages the entire chirp to concentrating the
whole energy and can decode collisions in the SNR limit of
the original LoRa (SNR ≈ −20 dB).

LoRa modulates data with chirps of linearly increasing
frequency with different frequency shifts to encode data bits.
The start frequency shift fs is decoded by de-chirp: a linearly
increasing chirp is multiplied with a standard linearly decreas-
ing down-chirp, which leads to a single tone at frequency fs.
By applying Fast Fourier Transform (FFT) to the de-chirp
result, we can estimate the start frequency shift fs.

AlignTrack is based on the following basic findings.
Figure 1 shows three decoded packets with time offset τ1

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5762-1524
https://orcid.org/0000-0003-1464-3245

CHEN AND WANG: AlignTrack: PUSH THE SNR LIMIT OF LoRa COLLISION DECODING 2071

Fig. 1. An example of AlignTrack to decode a 3-packet collision. AlignTrack
moves a window to align with different chirps, and finds the aligned chirps
to separate packets.

and τ2. We only show a chirp for each packet for brevity.
Assume we have a moving window aligned with the chirps of
those three packets. The length of the moving window is equal
to the length of a chirp. Figure 1 shows the decoding result of
three windows w1, w2, and w3 aligned with three chirps c1,
c2, and c3 correspondingly. We can see multiple peaks in each
window due to multiple chirp segments, leading to decoding
failure.

The key step in collision decoding is to separate those peaks
in each moving window to different packets. The main idea
of AlignTrack is to pick out the peak of the chirp aligned
with the moving window and thus separate peaks for different
packets based on those aligned chirps.

We first detect the start of each packet and align a moving
window with each packet. A chirp in each packet will appear in
three consecutive windows. And thus there will be three peaks
in those consecutive windows corresponding to the same chirp.
We find that the frequency of those three peaks is proportional
to the time offset between the chirp and the window. For
example, chirp c2 leads to three peaks in window w1, w2, and
w3 with frequency fs − kτ1, fs, and f2 + kτ2, respectively.
Therefore, we can group peaks corresponding to the same
chirp in consecutive windows by calculating the frequency
shift. Meanwhile, we find that the height of those three peaks
is proportional to the length of chirp segment in the window.
The peak of a chirp in different windows reaches its highest
when the chirp is aligned with the window. Therefore, we can
pick out which group of peaks is corresponding to the chirp
aligned with the window by comparing the height of the peaks
in a group. AlignTrack leverages the frequency and height
characteristics to determine the peak of the chirp aligned
with each window and then separate packets. For example,
AlignTrack first groups peaks at fs−kτ1, fs, and fs +kτ2 in
window w1, w2, and w3 for the same chirp, and then determine
the peak at fs corresponds to the chirp c2 aligned with window
w2 iff (if and only if) the heigh of the peak at fs is the highest
compared with the other two peaks. Then, we can separate
peaks to different packets based on the aligned chirps and
decode those packets.

Challenges. The practical implementation of AlignTrack
faces three non-trivial challenges.

(1) How to find the accurate start of each packet in the
collided signal under the impact of Central Frequency Offset
(CFO)? Intuitively, we can detect the start of a packet based on
the preamble. However, this leads to non-negligible errors due
to the impact of CFO and inter-packet interference. Moreover,
traditional CFO recovery may fail to work due to collisions.
We leverage the preamble and SFD in each packet. The
preamble contains baseline up-chirps of linearly increasing fre-
quency, while SFD contains baseline down-chirps of linearly
decreasing frequency. CFO introduces the same frequency
shifts to preamble and SFD, and we can estimate the CFO
by combining the up-chirps and down-chirps. Further, we find
the above CFO estimation method fails in collided packets due
to the challenge of finding preamble and SFD that are for the
same packet. We propose a method to identify up-chirps and
down-chirps that belong to the same packet, and thus estimate
the accurate CFO in collisions.

(2) How to accurately detect all peaks under low SNR?
The height of peak for a low SNR signal may be close to the
noise. Thus, using a pre-determined height threshold may fail
to identify all peaks. Moreover, a peak may be surrounded by
points with similar height due to the limited FFT resolution,
and these points may be mis-identified as peaks. We design
an iterative peak search method to find all peaks in each
window. In each iteration, we calculate a dynamical threshold
based on the statistic information of existing FFT results in
the window. Then we find the highest point and compare its
height with the threshold to judge whether it is a peak. For
each peak, we remove the points before/after it from the FFT
result to avoid identifying those points as peaks. The iteration
terminates when no peaks are found.

(3) How to alleviate the interference among peaks and
recover the precise peak information (position and height)?
For example, the sidelobes of one peak can distort the position
and height of other peaks. Moreover, due to the near-far
problem, sidelobes of strong signals can be higher than peak of
weak signals, leading to mis-identified peaks. Typically, a filter
(e.g., Hamming window) can be applied to the received signal
to reduce the amplitude of sidelobes. However, there are still
high sidelobes after filtering. Further, we find that sidelobes
are symmetric with the real peak and exploit this to iteratively
remove those symmetric sidelobes.

Main results and contributions. The main results and
contributions of this work are as follows.
• We propose AlignTrack to push the limit of decoding

low SNR LoRa packet collision. AlignTrack leverages the
entire chirp in LoRa, and thus introduces very small SNR
loss while existing approaches introduce non-negligible
SNR loss due to the use of partial chirp. In principle,
AlignTrack will not degrade the performance of tradi-
tional LoRa.

• We address non-trivial practical challenges such as inter-
packet interference and the impact of CFO in the practical
design of AlignTrack. We make full use of the structure
of LoRa preamble and SFD.

• We implement AlignTrack on the HackRf One platform.
AlignTrack sits at the gateway side and can decode
collisions for COTS LoRa end nodes without any hw/sw

2072 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 2. LoRa packet structure.

change. The evaluation results show that AlignTrack
improves the network throughput by 1.68× compared
with NScale [15] and 3× compared with CoLoRa [14].

The rest of the paper is organized as follows. Section II
introduces the background of LoRa. Section III discusses
key observations of our design and limitations of existing
approaches. Section IV shows the design of AlignTrack.
Section V discusses the solutions in different collision situ-
ations. Section VI presents the implementation and evaluation
results. Section VII discusses the related work and Section VIII
concludes our work.

II. BACKGROUND

A. Chirp Modulation/Demodulation
LoRa modulates signals using the Chirp Spread Spectrum

(CSS). The basic symbol is a chirp with linearly increas-
ing/decreasing frequency occupying a certain bandwidth.
Therefore, the anti-interference ability and the resistance to
the multipath and Doppler effects can be strong. A baseline
chirp is represented as C(t) = ej2π(f0+

1
2 kt)t, where |k| =

BW/Tchirp is the frequency changing rate, f0 = −BW/2 is
the start frequency at time 0, and Tchirp is the time duration.
Tchirp is usually determined by the Spreading Factor (SF) and
frequency bandwidth (BW), i.e., Tchirp = 2SF /BW . Note
that in real LoRa network, Tchirp is determined by the SF and
the frequency swing of the signal, which is usually slightly
smaller than BW. A chirp is an up-chirp when k > 0, and
otherwise is a down-chirp (k < 0). The frequency of a baseline
up-chirp linearly increases from −BW/2 to BW/2.

CSS modulates data bits by shifting the start frequency f0 to
f0 + fs, i.e.,

C(t, fs) = C(t)ej2πfst (1)

where fs is the frequency shift to encode data bits. Note that
the frequency above BW/2 is folded to −BW/2 to fit in the
range [−BW/2, BW/2].

To demodulate C(t, fs), LoRa first multiplies it with the
base line down-chirp C−1(t) (C−1(t) is the conjugate of
the C(t)). This de-chirp operation can concentrate the signal
power in the time domain to a single frequency, and we obtain

C(t, fs)C−1(t) = ej2πfst (2)

By applying FFT to the result, we can derive fs and decode
the chirp.

B. LoRa Packet Structure

As shown in Figure 2, a LoRa packet is usually comprised
of three parts: preamble, start frequency delimiter (SFD),

and payload. The preamble contains a variable preamble of
6∼65535 baseline up-chirp to determine the start of the LoRa
packet and a sync word of 2 up-chirps to differentiate the LoRa
network [16]. The SFD contains 2.25 baseline down-chirps to
indicate the start of the payload. The payload contains data
bits modulated with up-chirps.

C. LoRa Packet Collisions

When there is no collision, the de-chirp and FFT operation
in each window results in a single peak which encodes the data
bits. LoRa can demodulate chirp by piking the unique peak
and decode data according to the frequency of the peak. When
collision happens, LoRa packets are mixed together in the time
domain, and the de-chirp operation results in multiple peaks.
It is difficult to separate those peaks and decode the collided
packets. And thus there comes the problem that how can we
judge the corresponding relationship among peak, chirp signal
and LoRa packet.

III. MOTIVATION

In this section, we show the basic knowledge and main idea
of how to extract right peak from collision.

A. Traditional LoRa Decoding

The complete workflow of LoRa receiver is as follows.
When a LoRa receiver is awake in scheduled TX/RX windows
and operates in the receive mode, the LoRa receiver will
continuously samples the given channel to detect, receive and
decode the incoming signal. As for signal without collision, the
LoRa receiver aligns the chirp symbol with a moving window
(the smallest decoding unit containing the LoRa signal) that
has the same length Tchirp as a chirp signal. Every time
the moving window moves a fixed step Tchirp to match all
chirps. The LoRa receiver then multiplies a down-chirp with
the aligned chirp symbol, adopts FFT on the result to derive a
unique peak, and transforms the frequency of the peak to data.
For a single chirp symbol appeared in the moving window,
the LoRa receiver can simply choose the highest point as the
unique peak.

B. Basic Observations in Collision

For multiple collided packets, we first detect the start of
each packet. Then, we apply a moving window aligned with
each packet to the signal. We align the moving window with
all chirps in the received signal as traditional LoRa while the
moving step is determined by the time offset among collided
packets. As shown in Figure 3, we consider three consecutive
windows, each containing multiple partial chirp segments and
a particular aligned chirp (i.e., a chirp completely included in
the window). The aligned chirp in the middle window leads
to the peak with local maximum amplitude after de-chirp and
FFT. Meanwhile, a portion of this chirp is also contained in its
preceding window and the following window, leading to two
corresponding peaks. We first show the frequency constraint
of peaks for the same chirp in consecutive windows.

CHEN AND WANG: AlignTrack: PUSH THE SNR LIMIT OF LoRa COLLISION DECODING 2073

Fig. 3. The peak frequency and height in the moving window.

Assume the chirp aligned with the middle window w2 is
R(t) = A · C(t, fs), where A is the signal amplitude and fs

is the start frequency shift. The segment of R(t) contained in
window w1 can be written as

r1(t) = R(t− τ1)
= Aej2πfs(t−τ1)C(t− τ1), t ∈ [τ1, Tchirp) (3)

The time offset can be translated to the frequency shift, i.e.,
C(t− τ1) = e−j2πkτ1tC(t). Thus, we have

r1(t) = Aej2π(fs(t−τ1)−kτ1t)C(t)
= Ae−j2πfsτ1ej2π(fs−kτ1)tC(t), t ∈ [τ1, Tchirp) (4)

Thus, the frequency of the peak p1 for r1(t) in w1 is

f1 = fs − kτ1 (5)

Then we move the window distance τ1 to align with R(t) and
the frequency of p2 should be f2 = fs. Continue moving the
window distance τ2 to align with the next chirp in received
collided signal. The segment of R(t) contained in window
w3 can be written as

r2(t) = R(t + τ2)
= h ∗ ej2πfsτ2 ∗ ej2π(fs+kτ2)tC(t), t ∈ [0, τ2) (6)

And peak p3 shows at the frequency of f3 = fs + kτ2.
Frequency Constraint: The frequency shift of three peaks p1,
p2, and p3 corresponding to the same chirp, is proportional
to the time shift between the moving window and the chirp.
This indicates that based on the frequency constraint, we can
find the peaks corresponding to the same chirp in consecutive
windows.

Denote h1, h2, and h3 as the height of peaks in window
w1, w2, and w3. Thus h1 can be calculated as

h1 =
N−1∑
n=0

r1[n]e−j2π
nTchirp

N = A(Tchirp − τ1)Sr (7)

where Sr is the sampling rate and N is the total sample points
of r1(t), i.e., N = (Tchirp− τ1)Sr. Similar, h2 and h3 can be
calculated as

h2 = ATchirpSr

h3 = A(Tchirp − τ2)Sr (8)

Height Constraint: The height of the peak is proportional to
the chirp segment length, i.e.,

h1 : h2 : h3 = Tchirp − τ1 : Tchirp : Tchirp − τ2. (9)

Fig. 4. The SNR loss comparison for different methods. Our method uses
the entire chirp while existing methods use partial chirps.

The peak height reaches the highest when the chirp is aligned
with the window. This indicates that based on the height
constraint, we can find the peak of the aligned chirp by
comparing the height of peaks corresponding to the same
chirp.

C. Key Idea

In tradition, the moving step of a moving window is fixed.
Traditional LoRa receiver decodes LoRa packets by shifting a
moving window with moving step Tchirp. Similarly, existing
methods such as Choir, CoLoRa and NScale shift a moving
window with fixed step Tchirp. These methods simply use
a non-overlapped moving window and do not consider the
relationship among time offset, window offset and frequency
offset.

AlignTrack uses the moving window differently. The mov-
ing window does not move with a fixed step. AlignTrack
adopts a moving window to align with all chirps in the
received signal, which means the moving step is dynamic and
determined by the time offset among different collided packets.
When there is an m-packet collision, there will be different
moving steps in m.

D. Limitations of State-of-the-Art Methods

Existing methods such as FTrack [13] and mLoRa [12]
use time-domain signal amplitude to identify collided packets.
Their methods can mainly work for high SNR (e.g., SNR >
0 dB). This is also shown in their experiments [12], [13].

Further, CoLoRa [14] and NScale [15] propose to leverage
features in frequency domain to identify collided packets.
However, they use a portion of a chirp instead of the entire one
for collision resolution, which introduces non-negligible SNR
loss. For example, as shown in Figure 4, CoLoRa partitions a
chirp into two parts and leverages the ratio of height between
those two parts to decode collisions. It proposes a method to
guarantee that both parts are larger than 1/3 of the entire chirp.
To decode a chirp, the peak after de-chirp should be higher
than noise. The height of a peak is mainly determined by the
length of the chirp segment in a window. The longer the length
of the chirp segment, the more energy will be concentrated,
and the higher the peak will be. When the peak of an entire
chirp is higher than the noise, the peak height in CoLoRa,
which corresponds to only a portion of the chirp, can be under
the noise. Thus, the peak cannot be identified, and the collision

2074 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 5. Overall design of AlignTrack.

cannot be decoded. In such a case, CoLoRa cannot work even
when the packet has a high SNR. AlignTrack leverages the
entire chirp in aligned window for LoRa to concentrate all
the energy of a chirp to retain the peak height to the greatest
extent to resist noise, and thus only introduces very small SNR
loss with existing approaches.

E. Summary

Based on the analysis above, we can see the relationship
between chirp peak and position offset between window and
chirp.
• Collisions result in multiple peaks in a window. The key

step in collision decoding is to separate those peaks into
different packets. The state-of-the-art collision decoding
approaches in LoRa have a high SNR loss as they use
parts of a chirp to separate peaks.

• For consecutive windows on the collided signal, the
peaks for the same chirp in different windows have peak
frequency offset proportional to window offset.

• The peak height reaches the highest when the chirp is
aligned with the window. For each peak in the window,
we can determine whether it corresponds to the aligned
chirp as follows. First, we find the peaks corresponding
to the same chirp in consecutive windows. Then, the peak
corresponds to the aligned chirp iff the peak is highest
compared with the peaks in the preceding window and
following window.

In short, when collision happens, there are more than one
chirp in a sliding window. After de-chirp and FFT, we can get
more than one peak. Compared with the corresponding peak
of the same chirp in adjacent window, the peak should be the
highest when chirp is aligned with sliding window.

IV. ALIGNTRACK DESIGN

A. Overview

As shown in Figure 5, the design of AlignTrack mainly
consists of the following steps:

1) Start Position Detection: For the received collided sig-
nal, we first detect the number of collided packets by
adopting a preamble detection method [17], [18], and
then calculate the accurate start position of each packet
by calculating and eliminating the influence of CFO.

2) Aligned Chirp Detection: After knowing the start posi-
tion of each packet, we calculate the positions of all

chirps in received signal and apply a moving window
to align with these chirps in chirp partition step. Then,
by comparing the peak information (frequency and
height) with adjacent windows, we find the peak of the
chirp aligned with the window in peak detection step.

3) Packet Recovery: We first group peaks of aligned chirps
and separate them into different packets based on the
position of each chirp. Then, we eliminate the impact
of CFO to decode peaks of each packet.

Among these steps, the most basic and important part is
to extract all peaks with frequency and height information
in each window. And thus we need to adopt an accurate
peak extraction method to help calculating the start position,
demodulating the aligned chirp, and recovering packets.

B. Challenges

• How to recover all peaks in each window as the chirps for
different collided packets will interfere with each other?

• How to find the accurate start for all collided packets?
• How to find the peak of the aligned chirp in each

window?

C. Peak Extraction

When there is no collision, there is only one chirp in a
demodulation window, and we can obtain a single and accurate
peak by simply get the highest point after de-chirp and FFT.
However, when collision happens, there are multiple chirps
(suppose there are N chirps in a window) with different energy
level in a window, and there are N peaks with different height
after de-chirp and FFT. Due to the energy difference between
different packets, the height of a peak from low energy packet
can be lower than the height of a sidelobe from high energy
packet. Therefore, we cannot directly select the highest N
points as peaks. Collision brings the following challenges in
peak extraction.

1) Typically, peaks can be identified by a pre-determined
threshold. Due to the uncertainty of packet time offset
and the variation of signal strength and SNR, the height
of peaks for different packets can vary significantly.
A fixed pre-determined threshold cannot work.

2) Due to the limited resolution of FFT, the accurate
frequency of the peak is difficult to derive, and the height
for surrounding points of a peak is also high.

3) The sidelobes of a peak can distort the position and
height of other peaks. Even worse, the sidelobes of high
peaks may be mis-identified as peaks.

1) Iterative Peak Extraction: To address challenges 1 and 2,
we propose an iterative peak extraction method by adopting
a dynamic threshold. Actually, peak must be much higher
than most data points in FFT window, i.e. the height of peak
deviates from the normal height of data. we choose a dynamic
threshold according to the height of all points after de-chirp
and FFT to address the challenge 1. We first calculate a
higher threshold to extract peaks with higher energy. After
extracting this peak and removing the high points around the
peak (challenge 2), we then calculate a lower threshold to
extract peaks with lower energy.

CHEN AND WANG: AlignTrack: PUSH THE SNR LIMIT OF LoRa COLLISION DECODING 2075

Denote the result of FFT as H[i] (1 ≤ i ≤ N) where H
is the amplitude, and N is the total number of points in FFT.
In each iteration, we first find the highest peak H[im] in H[·].
Then, we need to determine whether it is a real peak based on
the combination of mean(H) and std(H), where std(H) is
the standard deviation of H . In traditional outlier detection
algorithm, data points that exceed mean(H) + k · std(H)
(k = 3) are considered as outliers. We find that a larger k leads
to more false negative peaks, and a smaller k leads to more
false positive peaks. We evaluate the performance for different
k and find that k = 6 leads to the best performance in peak
identification. Thus, we choose r = mean(H) + 6 · std(H)
as the threshold. If H[im] < r, the iteration terminates.
If H[im] ≥ r, we set the point at im as a peak and add im to
the peak array I . Due to limited frequency resolution in FFT
results, the points surrounding im may also have a high height
and can be mis-identified as peaks in following iterations.
We remove those surrounding points as follows. We find the
closest local minimum before and after im, i.e., H[im−a] and
H[im + b]. Then, we remove all points between im − a and
im + b from H . In the next iteration, we update r based on
the remaining points in H . It should be noted the threshold
r = mean(H) + 6 · std(H) is dynamic according to H .
The threshold r varies in each iteration as H varies. After
iteration, we can get a set of outliers from FFT window and
then we choose peaks from them by eliminating the influence
of sidelobes.

2) Sidelobe Elimination: Section IV-C.2: The sidelobes are
mainly caused by two factors. (1) The spectral leakage which
is related to the FFT operation. (2) The out of synchronization
of the received signal. The FFT operation causes the spectral
leakage [19], and thus there are sidelobes to be eliminated
after de-chirp and FFT. To improve the resolution and increase
the accuracy of demodulation, we apply the zero-padding
method on FFT, which further increase the influence of
sidelobes. Moreover, when the demodulation window aligns
with one chirp in the received signal, there are also many
unaligned chirps in the window due to the collision. The
out of synchronization of these unaligned chirps will also
cause the sidelobes [20], [21]. To address challenge 3 (the
influence of sidelobes), a straightforward method is to apply a
Hamming filter to the received signal to reduce the amplitude
for the sidelobes of each peak. However, the remaining high
sidelobes (e.g., sidelobes of very high peaks) can still be
mis-identified as peaks. We find that sidelobes are symmetric
around a certain peak in terms of frequency and height.
Based on this, we design the following method to remove
sidelobes. In practice, due to the impact of noise and limited
FFT bin resolution, the frequency (height) of two symmetric
sidelobes cannot be exactly the same. Therefore, we derive
symmetric sidelobes as follows: If two peaks have similar
height and frequency, we consider them as symmetric peaks.
We sort the peak array I in ascending order of height. For
each peak i in I , we find if there exist symmetric peaks
centered at i. If yes, we remove those symmetric peaks from I .
Finally, we use the remaining peaks in I as the extracted
peaks. The detailed algorithm of peak extraction is shown
in Algorithm 1.

Algorithm 1 Peak Extraction
Input: H: the amplitude result of FFT
Output: I: the index array for peaks after removing sidelobes

1: while true do
2: im = argimax(H);
3: r = mean(H) + 6 · std(H); //in each iteration,

recalculate im and r according to a new H
4: if H[im] > r then
5: add H[im] to I
6: find closest local minimum before and after im,

i.e.,im − a and im + b;
7: remove points between im − a and im + b from

H; //H is changed after each iteration
8: else
9: break;

10: end if
11: end while
12: sort I by ascending order of their peak height;
13: while i < I.length do
14: for j = i + 1; j++; j < I.length do
15: find k such that I[j] − I[i] == I[i] − I[k];

//frequency symmetric at i
16: if H[I[k]] == H[I[j]] //height symmetric then
17: set isSidelobe[k] and isSidelobe[j] to TRUE;
18: end if
19: end for
20: i = i + 1;
21: end while
22: I = I[isSidelobe̸= TRUE];

According to above accurate peak extraction method,
we can get all the peaks information in FFT window accu-
rately. Combined with position of the moving window, we can
use the information to detect preamble and decode chirps.

D. Start Position Detection

The key idea of AlignTrack is to align with all chirps in
the received signal, and thus we need to know the accurate
position of each chirp. We leverage the structure (preamble
and SFD) of the LoRa packet to detect the number of collided
packet and the accurate start position of each packet in a
collision. Then, we can get the position of all chirps as the
length of each chirp can be calculated by the already known
SF, BW and sampling rate.

1) Preamble Detection: The preamble of a LoRa packet
consists of Np (6∼65535) baseline up-chirps with fs = 0.
As shown in Figure 6, we apply a non-overlapped moving
window to the received signal with moving step Tchirp.
In each window, we multiply it with a baseline down-chirp
and calculate the FFT result. For the preamble, we should have
Np peaks of the same frequency in Np consecutive windows.

In Figure 6, c1, c2, and c3 are three baseline up-chirps in
a preamble. Assume the time offset between the start of the
moving window and the start of the packet is τ . Given two
windows w1 and w2, the peak for the segment of a chirp c1 in
w1 is f1 = fs − kτ , and the peak for the segment of chirp

2076 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 6. Preamble detection process: the peaks of baseline up-chirps in
preamble appear at the same frequency.

c1 in w2 is f2 = fs + k(Tchirp − τ). kTchirp = BW and the
frequency of peak varies from 0 to BW . Thus, f2 should be
f2 = fs−kτ . Similarly, the frequency of peak for the segment
of chirp c2 in w2 should be equal to the frequency of peak
for the segment of chirp c1 in w1 as they share the same start
frequency shift and time offset between moving window and
the chirp.

We can find that 1) the peaks of segments corresponding
to the same chirp in two adjacent windows has the same
frequency; 2) the peaks of two segments of two baseline up-
chirps has the same frequency in the same window, and thus
there will be only one peak after de-chirp and FFT. Thus,
there will be only one peak with frequency f = fs − kτ in
the window containing baseline up-chirps in a LoRa preamble.
We can find the preamble by finding Np consecutive peaks
at the same frequency f . When there are multiple collided
packets, we can find multiple groups of peaks, each group
corresponding to a packet. And thus we can get the number
of collided packets in the received signal. Note that the
existing works [22], [23] mention that a preamble can be
detected if at least four chirps of the preamble do not get
destroyed. However, there may be consecutive identical chirps
of unknown length in the payload of the LoRa packet. And if
we find the preamble by finding four consecutive peaks at the
same frequency, we may mistake these chirps as the preamble
and make errors in LoRa packet demodulation. By finding Np

consecutive peak, we can minimize the occurrence of such
errors. When there is no CFO, we can simply calculate the
start position of each packet after knowing the position of
moving window and the frequency fs.

2) CFO Calculation: In practice, the existence of CFO
introduces errors in packet start detection, which will influ-
ence the calculation of the accurate start position. And thus,
we need to estimate the influence of CFO under collision and
eliminate it.

Without Collision We first consider the case without col-
lision. We use both the preamble (baseline up-chirps) and
SFD (baseline down-chirps) in each LoRa packet to estimate
CFO [14]. Figure 7 shows a pair of baseline up-chirp and
down-chirp without CFO (brown line) and with CFO (blue
line). For the baseline up-chirp with CFO in the first window

Fig. 7. Calculate CFO by combining preamble and SFD.

with time offset τ , it results in a peak at position f1 = fs +
fcfo−kτ . For the baseline down-chirp with CFO in the second
window, it results in a peak at position f2 = fs + fcfo + kτ .
We can see the time offset leads to the opposite shift to the
peak frequency shift centered at CFO as fs = 0. Therefore,
CFO can be calculated as fcfo = f1+f2

2 and the time offset
can be calculated as τ = f2−f1

2k .
With Collision Then, we consider the case with collision.

Actually, the above method has already been used in other
papers (e.g., NScale [15]) to calculate CFO when collision
happens. However, They do not consider the situation of SFD
collision. When collision happens, there is more than one
peak in the demodulation window of SFD as there can be
more than one SFD collided together. The existing methods
have not given a method to pick the right peak of SFD that
corresponding to the preamble of the same packet.

The key challenge here is that there are multiple peaks in
each window, and we need to find the preamble and SFD
corresponding to the same packet to calculate CFO. Suppose
there is an N-packet collision, we first find N preambles by
finding Np peaks at the same frequency. For each preamble,
we can get the rough start position and the corresponding
frequency f1. And we need to get the frequency f2 of the
corresponding SFD to calculate the fcfo and τ .

However, as shown in Figure 8, given the peak P of the
preamble of the packet 2 with frequency f1 in w1, there are
more than one SFDs collided together in w2 when collision
happens. Suppose the rough start position of the preamble of
the packet 2 is Ppre2 , and thus the rough start position of the
SFD of the packet 2 is PSFD2 = Ppre2 + Tchirp ∗ (Np + 2),
as the preamble contains Np baseline up-chirps and two sync
word. The w1 starts at Ppre2 , and the w2 starts at PSFD2 .
Suppose the number of collided SFD is m (1 ≤ m ≤ N),
there are m peaks of these SFDs mixed together, leading to
difficulty in getting f2.

We find the right peak of the SFD of the packet 2 as
follows. For each peak pi with frequency fi in the m peaks,
we calculate the CFO fcfoi = f1+fi

2 and τi = fi−f1
2k . We then

check whether pi is the peak of SFD in the packet 2 based
on the fcfoi and τi as shown in Figure 9. We shift the
moving window w2 in Figure 8 by the time offset τi and

CHEN AND WANG: AlignTrack: PUSH THE SNR LIMIT OF LoRa COLLISION DECODING 2077

Fig. 8. Peaks for preambles and SFDs in a collision. When there are multiple
preambles collided together, there are multiple peaks corresponding to the
multiple SFDs in a demodulation window.

Fig. 9. Calculate CFO in packet collisions.

τi +2.25∗Tchirp to w22 and w23 in Figure 9. If pi is the right
peak, w22 should be aligned with the first baseline down-chirp
in the SFD of the packet 2 and w23 should terminate at the end
of the SFD and contain an entire chirp. Suppose the peaks p22

and p23 are the corresponding peaks of pi in w22 and w23. H22

and H23 are their height, respectively. Then we slightly shift
the moving window by δ to the left (w21) and right (w24), and
calculate the corresponding peak p21, p24 and their height H21

and H24. pi is the right peak iff H22 > H21 and H23 > H24.
Otherwise, pi is not the peak of the SFD of the packet 2.

The value of δ should be carefully set. We need to guarantee
that only the SFD of the packet 2 can be aligned with the
moving window, i.e., δ should be smaller than the minimum
time offset among the m collided SFDs. This is because the
frequency of a peak for an SFD is determined by the time
offset between the SFD and a window. Therefore, in the same
moving window, the frequency offset of peaks among different
SFDs is determined by the time offset among those SFDs.
Thus, the minimum time offset of SFDs can be calculated by
the minimum frequency offset of peaks. As shown in Figure 8,
assume the frequency of the closest peak to pi is fclosest. The
shift δ should be smaller than abs(fclosest − fi)/k where fi

is the frequency of pi and k is the frequency changing rate of
a chirp. Based on δ, we can guarantee that there is no other
aligned SFD while shifting the window by δ.

Note that many methods have been proposed to calculate
the CFO and the time offset with great performance [20],
[24], [25]. However, the models build by these methods apply

only to the case of single LoRa packet, and are not applicable
in the case of packet collisions. We make full use of the
structure of LoRa preamble and SFD and can calculate the
CFO and the time offset under collisions.

E. Aligned Chirp Detection

After detecting the exact start of each packet in the received
signal, the positions of all chirps are known. We use a collision
moving window to align all chirps in the received signal.
In each window, we extract all peaks after de-chirp and FFT.
Then, we identify the peak of the chirp aligned with the
window. When there is no collision, the only peak in the
window is the peak of the chirp aligned with the window.

Then, we consider the case with collision. Given a window
wi aligned with chirp ci in the payload of packet A, assume
wi−1 and wi+1 are the preceding and following window in
the moving window sequence. We extract all peaks in those
three windows. There should be 2N − 1 peaks for N collided
packets in each window.

We first group peaks belonging to the same chirp based on
the frequency constraint. For all groups of peaks, we need to
identify the peak corresponding to the aligned chirp (i.e., ci)
based on the height constraint. For example, assume pi−1, pi

and pi+1 are three peaks in the same group and Hi−1, Hi and
Hi+1 are their height, respectively. The peak pi corresponds
to the aligned chirp ci iff the height constraint is satisfied, i.e.,
Hi−1 ≤ Hi and Hi ≥ Hi+1.

Height Revision. In practice, the height of the peak is
influenced by various factors and sometimes cannot reach its
highest even aligned with the demodulation window. To pre-
vent errors in height comparison caused by these factors,
we first calculate the SNR and get the influence of noise on
peak height according to the SNR. Then we give a certain error
tolerance during height comparison. For example, assume the
influence of noise on peak height is H . We revise the height
of these peaks to Hi−1−H , Hi +H , and Hi+1−H and then
comparing the revised height.

Concurrent Transmission. This aligned chirp detection
method mainly works for collisions with a time offset among
packets. In practice, the probability for concurrent transmis-
sion with no time offset should be very low. Thus, our method
can address most of the cases in practice. Even in the case
of concurrent transmission, we can extend our method by
leveraging existing techniques. First, the height of the peak
is influenced by the signal strength and the length of chirp
segment in a window. The height of the entire chirps should
be similar for the same packet, and should be different for
different packets. Thus, we can compare the height of peaks
of different packets and divide these peaks to different groups.
Second, as introduced in Choir, there is a small frequency
distortion due to hardware imperfection. Thus, we can divide
these peaks according to the fractional part of the frequency
as mentioned in Choir [26]. Thus, we can divide those peaks
according to the height of the peak or the fractional part of the
frequency distortion and then separate into different packets.

We start decoding from the first window to the last win-
dow in the collision moving window sequence based on the

2078 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

above process. For the first (last) window in the sequence,
there is no preceding (following) window. Thus, we should
find the aligned chirp only based on two windows.

F. Packet Recovery

Till now, we have detected 1) the aligned chirp in each
window and 2) the exact start position of each packet. Then,
we can group chirps into different packets, decode these
packets and identify the LoRa network of each packet.

Packet Separation. According to LoRa physical layer
structure and the position of chirp, we can group chirps into
the same packet by

Pchirp = Pstart + (n + 0.25) ∗ Tchirp (10)

where Pchirp and Pstart means the start position of n-th
chirp signal and LoRa packet in time domain. And we can
obtain the length of different collided packets. When there
is no peak satisfying the frequency and height constraint,
it means there is no chirp aligned with the window. Thus, the
corresponding collided packet ends in the last window aligned
with the packet. And we can obtain the length of this packet
by calculating the position of the last window.

CFO Elimination CFO brings the frequency offset to the
chirp, and there is a frequency offset between the demodulated
chirp signal and the actual modulated chirp signal. For chirps
belong to the same packet, we first correct the demodulated
chirp by compensating the frequency offset caused by CFO
and then decode the packet. Assume the demodulated fre-
quency for a chirp fs

∗, then the real modulated data after
removing CFO (calculated in Start Position Detection step) is

fs = (fs
∗ − fcfo) mod 2SF (11)

Network Identify For each demodulated packet, we use the
sync word in the preamble to identify the LoRa transmitter it
comes from. And we can communicate with the transmitter
successfully as the traditional LoRa network.

V. DETAIL EMPHASIS

A. Consecutive Identical Chirps

In addition to preamble, there may also be multiple consec-
utive identical chirps in a payload. These consecutive identical
chirps may influence the calculation of the number of collided
chirps as these chirps will also appear in the same frequency
after de-chirp and FFT in a non-overlapped moving window.
And when the position of the moving window is after the start
of these consecutive identical chirps (whether in a preamble
or a payload), there will be a least two peaks satisfying
the frequency and height constraint. One is the peak of the
aligned chirp, and the other is the peak of multiple consecutive
identical chirps. AlignTrack proposes a Consecutive-Identical-
Chirp-Correct (CICC) method to solve the above problems.

Packets Number Calculation: We find the LoRa pream-
ble [17], [18] by finding Np (the number of baseline up-chirp
in a preamble) consecutive peaks at the same frequency.
However, when there is a LoRa payload consisting more
than Np consecutive identical chirps, there will also be Np

Fig. 10. Aligned chirp detection when there are multiple consecutive identical
chirps in a LoRa payload.

consecutive peaks at the same frequency. And thus the number
of collided packets will be larger. We suppose the coarse
start position of this payload is Ppl, and the length of a
preamble is Lpb. The reason for miscalculating the number
of collided packets is we mistake the payload as a preamble.
We can remove the wrong calculation about payload in the
CFO calculation step. Note that all the positions that contains
Np consecutive peaks are regarded as the preamble positions.
And we believe the position of SFD must be behind the
preamble positions as the LoRa physical structure shows.
When calculating CFO, we first need to estimate the position
of SFD Ppl + Lpb according to the coarse start position of
preamble Ppl. And then we need to pick out the peak of SFD
corresponding to the same packet. However, because there is
no SFD in the calculated position Ppl + Lpb, we cannot get
any peak that satisfying the height constraint when shifting
the moving window to the left and the right. And thus we
can know the signal in Ppl is not a preamble and can remove
it from the preamble candidates to get the right number of
collided packets.

Aligned Chirp Detection: There will be at least two peaks
satisfying the frequency and height constraint when there are
multiple consecutive identical chirps in a LoRa payload. One
is the peak Pa of the aligned chirp, and the other is the peak
Pm of multiple consecutive identical chirps. However, we have
already find the peak Pm in the last window. And thus we can
remove Pm in the current window and correctly find the peak
of the aligned chirp.

For example, as shown in Figure 10, there are three consec-
utive identical chirps in packet 2 and the peaks of these chirps
have the same frequency and height from w1 to w4, which
means that these four peaks can always satisfy the frequency
constraint and height constraint. However, p2 and p3 are not
the peaks corresponding to the aligned chirps in w2 and w3. In
w2 and w3, there are two peaks can be considered as the peak
to be detected. And we need to remove the wrong one. When
the moving window aligns with the consecutive identical
chirps at the first time (w1 aligns with c1), there will be only
one peak p1 satisfying the frequency and height constraint and
we can get the frequency of p1. Then we move the moving
window to align with c1 in packet 3, there are two peaks p2,
p1 satisfying the frequency and height constraint. As we know

CHEN AND WANG: AlignTrack: PUSH THE SNR LIMIT OF LoRa COLLISION DECODING 2079

Fig. 11. Aligned chirp detection when peaks of chirp segments cannot be
detected: we can remove the peaks of unaligned chirps to derive the right one.

the frequency of p1 and the time offset between w1 and w2,
we can calculate the frequency of peak corresponding to the
same chirps as p1 in w2. And thus we can remove p2 in w2 and
can find the correct peak p1 corresponding to c1. The same
method can also be used in the following windows (w3) when
the moving window contains the consecutive identical chirps
but not aligns with these chirps.

B. Extremely Low SNR

Ideally, we assume that peaks of segments in the three
consecutive windows wi−1, wi, wi+1 should be higher than
noise. However, when the SNR is low, or the length of chirp
segments in wi−1 or wi+1 is short, the peak height can be
lower than the noise. In this case, existing approaches such as
CoLoRa and NScale cannot work as they require to identify
all peaks. AlignTrack can deal with this case as follows. For
an N-packet collision with chirp ci aligned with wi, assume
we can extract pi but cannot extract pi−1 and pi+1 in wi−1

and wi+1, as pi−1 and pi+1 corresponds to a segment of ci.
There should be 2N − 1 chirp segments in wi. The peak
pi corresponds to ci, and other 2N − 2 peaks correspond to
segments of the other 2N − 2 chirps, of which N − 1 chirps
cb
l (1 ≤ l ≤ N − 1) are before ci and N − 1 chirps ca

l (1 ≤
l ≤ N − 1) are after ci. Assume pb′

l and pb
l (1 ≤ l ≤ N − 1)

are peaks of cb
l in wi−1 and wi, and Hb′

l and Hb
l are their

height. As the length of the chirp segment of cb
l in wi−1 must

be longer than that in wi, we have Hb′

l > Hb
l . If pb

l can
be extracted in wi, pb′

l can be extracted in wi−1. However,
Hb′

l and Hb
l do not satisfy the height constraint. Thus, pb

l

are not the peak corresponding to the aligned chirp ci and
can be removed. Similarly, We can remove peaks of ca

l . After
removing peaks of those unaligned chirps, the remaining peak
is one corresponding to aligned chirp ci.

Example. Figure 11 shows a 3-packet collision, and
w1,w2 and w3 are three windows aligned with three chirps.
Chirp c2 is aligned with w2 and we can derive p2 from w2. p1,
p2 and p3 are peaks of c2 in w1, w2 and w3. Suppose p1 and
p3 can not be extracted in w1 and w3 due to the impact of
noise. In w2, there are five chirp segments from three LoRa
packets and assume we can extract all those five peaks, where
p2 corresponds to c2, pb

1 and pb
2 correspond to cb

1 from packet
1 and cb

2 from packet 3, pa
1 and pa

2 correspond to ca
1 from

packet 1 and ca
2 from packet 3. cb

1 and cb
2 are before c2 while

ca
1 and ca

2 are after c2.
pb′

1 and pb
1 are peaks corresponding to cb

1 in w1 and w2.
Hb′

1 and Hb
1 denote their height. The segment of cb

1 in w1 is
longer than that in w2, i.e.,Hb′

1 > Hb
1 . pb

1 can be extracted
in w2. Thus, pb′

1 can be extracted in w1. However, Hb′

1 and
Hb

1 do not satisfy the height constraint. Thus, we can identify
pb
1 as a peak for unaligned chirp and then remove it. Similarly,

pb
2, pa

1 , and pa
2 can be removed.

pa
1 and pa∗

1 are peaks corresponding to ca
1 in w2 and w3.

pa∗

1 can also be extracted in w3. The height of pa
1 and pa∗

1 does
not satisfy the height constraint. Thus, we can identify pa

1 as
a peak for unaligned chirp and then remove it.

Therefore, we can remove all peaks for unaligned chirps
from w2, and the remaining peak is the one for the aligned
chirp. Note that in a very low SNR, the peak height of a
complete chirp is close to noise amplitude. The peak height
of any chirp segment (i.e., a portion of a chirp) can be lower
than noise. Thus, only pi corresponding to ci in wi can be
extracted. AlignTrack can work in this scenario by removing
unaligned chirps. Thus it can work at the same SNR as that
of LoRa.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

Hardware: We implement our gateway on the HackRF
One platform. The HackRF One can run at a frequency
range of 30 MHz-6 GHz, and supports the use of GNU-
Radio. The maximum sampling rate is 20 M samples per
second (Msps), and we only use 1 Msps due to the limited
bandwidth. We use commercial LoRa end notes each with
an SX1278 chip. In order to better control the LoRa nodes,
we also implement the function of LoRa nodes on HackRF
one. Therefore, we can use GNURadio+HackRF One as a
LoRa transceiver to create packet collisions. HY samples.
We implement the LoRa encoder and decoder using Matlab.
In our experiment, each LoRa packet consists of a preamble
with 10 up-chirps, of which eight are baseline up-chirps,
an SFD with 2.25 baseline down-chirps, and a payload with
36 up-chirps. We use SF = 12 and BW = 125 kHz. The
sampling rate is set to 1 MHz, and the central frequency is set
to 471.3 MHz.

Software: The HackRF One can provide PHY layer samples
of the received signal. We implement AlignTrack in MATLAB
on a PC to process LoRa PD with 2.25 baseline down-chirps,
and a payload with 36 up-chirps. We use SF = 12 and
BW = 125 kHz in most evaluations. The sampling rate is
set to 1 MHz, and the central frequency is set to 471.3 MHz.

Scenario: We use a HackRF One as the receiver, multiple
HackRF One nodes as transmitters in the laboratory environ-
ment, and LoRa commercial end nodes in the outdoor envi-
ronment. We evaluate the performance of AlignTrack in two
different scenarios. (1) Laboratory environment. We deploy a
HackRF One as the receiver, multiple (1-12) HackRF Ones as
transmitters within a laboratory environment. We connect all
the transmitters to the same laptop through the USB interface
(as shown in Figure 12) and use the GNURadio to control

2080 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 12. Experiment setup.

the transmit time of transmitters to control the number of
collided packets. (2) Outdoor real LoRa network. As shown
in Figure 21, we evaluate the performance of AlignTrack in
two real outdoor LoRa networks: a park of 127m × 100m
with many cars and a playground of 230m × 140m with many
people. We place 12 COTS LoRa end nodes with chip SX1278
as transmitters in different places and use a HackRF One as
the receiver. we control the number of collided packets by
controlling the number of nodes in the transmitting state in
the network.

Note that AlignTrack does not depend on the specific
hardware platform. It can decode collided packets as long as
the PHY samples of a received signal are provided. Align-
Track sits at the gateway for collision decoding. It can work
for existing COTS LoRa nodes without any modification in
software and hardware.

B. Evaluation

We mainly measure the following metrics: (1) symbol error
rate (SER), the error rate of decoding a chirp, (2) bit error rate
(BER), the error rate after translating symbols to bits, and
(3) throughput, the total receiving symbol rate (symbols/
second) at the receiver. Note that, in LoRa the BER is usually
lower than SER as it uses error correcting codes at the symbol
level.

Based on those metrics, we mainly evaluate the performance
of AlignTrack under (1) different number of overlapping pack-
ets, (2) different SNR, (6) different time offset, and (4) dif-
ferent spreading factors among packets. Further, we compare
AlignTrack with the mLoRa, FTrack, CoLoRa, NScale and
Choir. Packets sent by each transmitter are known in advance
to calculate the SER, BER, and throughput. In order to show
the collision decoding performance in real LoRa environments,
our experiments are conducted in the scenario of SNR < 0 dB
and the collision can appear at different positions, such as
preamble-preamble, preamble-SFD, preamble-payload, etc.

1) Time Consumption: AlignTrack adopts a moving win-
dow to align with all chirps in the received signal, which
means the time consumption is influenced by the number of
chirps. We create different SFs and number of overlapping
packets using MATLAB. Each packet consists of 36 chirps
in the payload. The total number of chirp to be decoded is
linearly related to the number of overlapping packets, which
means the time consumption should also be linearly related
to the number of overlapping packets. Figure 13 shows the
normalized time consumption of AlignTrack under differ-
ent SF and number of overlapping packets. The normalized

Fig. 13. Normalized time consumption under different number of overlapping
packets.

Fig. 14. SER and BER under different number of overlapping packets:
(a) SER and BER when SF = 12. (b) SER under different SFs.

time consumption increases when the number of overlapping
packets increases. The normalized time consumption of decod-
ing 12 packets is 12× and 15× of decoding 1 packet when
SF = 10 and SF = 12. The time consumption increases
faster when the SF increases. This is due to the reason that
when the SF increases, the chirp length increases, and it will
spend more time on Peak Extraction. In the future, we will
further work on how to reduce time consumption.

2) Impact of the Number of Packets: We evaluate the per-
formance of AlignTrack at the different number of overlapping
packets in a laboratory environment. We use a HackRF One as
the receiver and use 12 HackRF Ones as transmitters. We use
GNURadio to control the transmit time of each transmitter to
create collisions.

Figure 14(a) shows the averaged SER and BER with the
different number of overlapping packets when SF = 12.
We can see that the overall SER is under 4% and BER is
under 2% when the overlapping number is under 6, the SER
is under 10% and the BER is under 6% when the overlapping
number is under 10. The maximum number of overlapping
packets is 12 with BER < 6.5%, which is acceptable in the
LoRa network. Both SER and BER increase as the overlap-
ping number increases from 1 to 12. It is because the time
offset among packets decreases when the overlapping number
increases. A smaller time offset leads to less height change
among different windows and thus degrades the decoding
performance. Nevertheless, most existing approaches such as
FTrack, CoLoRa, and NScale cannot work well under a small
time offset.

Figure 14(b) shows the averaged SER with difference SFs
in different number of overlapping packets. We can see that
the overall SER is under 10% when the overlapping number is
under 7, the SER is under 20% when the overlapping number
is 12 for all three SFs. The SER increases with the increase
of overlapping number and the SER is lower with higher SF.

CHEN AND WANG: AlignTrack: PUSH THE SNR LIMIT OF LoRa COLLISION DECODING 2081

Fig. 15. SER and Throughput comparison in different number of overlapping
packets: (a) Averaged SER. (b) Network Throughput.

This is because the symbol length increases with the SF
increases and the longer symbol can concentrates more power
to resist interference.

3) Comparison With State-of-the-Arts Under Different Num-
bers: We compare AlignTrack with NScale and CoLoRa.
Figure 15 shows the averaged SER and throughput when
the number of overlapping packets varies from 1 to 12.
Figure 15(a) shows the averaged SER. The SER increases for
all three methods with the increasing number of overlapping
packets. The SER of AlignTrack is much lower than that
of NScale and CoLoRa. The SER of CoLoRa and NScale
is more than 40%, while that of AlignTrack is still lower
than 12% in a 12-packet collision. This is because CoLoRa
and NScale partition a chirp to segments and use the height
difference among packets to decode collisions. NScale uses
a non-stationary scaled down-chirp which should be carefully
designed. When the number of overlapping packets increases,
the height difference among chirps in different LoRa packets
decreases, and the features of different packets are more likely
to be similar, i.e., not distinguishable enough to separate
packets. For AlignTrack, we only focus on the peak frequency
and height change of the aligned chirp at the current moving
window. Thus, our approach introduces more robust features
to distinguish packets.

Figure 15(b) shows the network throughput. The network
throughput increases, and the throughput of AlignTrack is
always higher than that of NScale and CoLoRa. When the
number of overlapping packets reaches 12, the throughput of
AlignTrack is 322 sps, which is 1.61× of NScale (200sps)
and 1.68× of CoLoRa (192sps).

4) Impact of SNR: We evaluate the impact of the signal-
to-noise ratio (SNR) on the performance of AlignTrack. Due
to the collisions of multiple packets, the actual interference
intensity is higher than the ambient noise intensity. We use
3 ∼ 5 HackRF Ones, of which one is the receiver and the
others are transmitters. To accurately control the SNR, we add
additive white Gaussian noise (AWGN) to the received signal.

AlignTrack multiplies the entire up-chirp with baseline
down-chirp in each moving window, which is the same as
traditional LoRa. Figure 16 shows the averaged SER and
BER of AlignTrack when SNR varies from −20 to 0. The
SER and BER decrease with the increase of SNR. When
SNR ≈ −20 dB, the SER of 2-packet collision is 1.76%,
and the BER is 0.74%, i.e., AlignTrack can decode most
2-packets collision successfully at an extremely low SNR.
When SNR = 0 dB, the SER and BER of 2-packet collision

Fig. 16. SER and BER under different SNR: (a) SER under different SNR.
(b) BER under different SNR.

Fig. 17. SER and throughput comparison under different SNR: (a) Averaged
SER. (b) Network Throughput.

are 0.25% and 0.022%. For 4-packet collisions, the SER is
still lower than 10%, and BER is lower than 6% even at
SNR ≈ −15 dB. In all, AlignTrack can decode packets
collision in an extremely low SNR as traditional LoRa.

5) Comparison With State-of-the-Arts Under Different SNR:
Figure 17 shows averaged SER and throughput of different
methods with the SNR varies from −20 to 0. We compare
AlignTrack with mLoRa, FTrack, CoLoRa, NScale, and Choir.
Figure 17(a) shows that the SER of AlignTrack is much lower
than that of the other methods. When SNR ≈ 0 dB, the
SER of mLoRa reaches 77.8%, and the SER of FTrack and
Choir is about 50%, while that of AlignTrack is even lower
than 0.3%. When SNR ≈ −20 dB, the SER of AlignTrack
is still lower than 7%, while the SER of NScale is 44.25%
and the SER of CoLoRa and Choir is about 70%. This is
because AlignTrack transforms time domain information to
frequency domain information and uses the entire up-chirp
to demodulate. AlignTrack can concentrate the energy of the
entire chirp to resist interference from other packets and noise.
mLoRa and FTrack only use time-domain information and
cannot work at a low SNR. The hardware offset in Choir
is also hard to find in a low SNR. CoLoRa and NScale
separate the entire chirp into two segments, which reduces the
concentration of energy. Thus, AlignTrack introduces much
less SNR loss than other approaches that are using parts of a
chirp.

Figure 17(b) shows the network throughput. When SNR ≈
−20 dB, the network throughput of AlignTrack is 57 sps,
which is 1.68× of NScale (34sps), 3.35× of Choir (17sps)
and 3× of CoLoRa (19sps).

6) Impact of Symbol Time Offset: The height of a peak
is impacted by chirp segment length in the current window.
A small symbol time offset among packets leads to a small
difference of segment length between two windows. This leads

2082 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

Fig. 18. SER and BER under different symbol time offsets in collisions:
(a) SER. (b) BER.

Fig. 19. SER and BER under different SFs:(a) SNR = 0. (b) SNR = −5.

to a very small height change of a peak. Thus, we evaluate how
symbol time offset can impact the performance of AlignTrack.

We receive non-collided packets from two transmitters
respectively and add a segment of noise with different lengths
before the start of these packets to create signals of which the
start of the LoRa signal is different. We then mix the signals
from different transmitters in pairs to create many 2-packet
collisions with different symbol time offsets. Figure 18 shows
the averaged SER and BER under the impact of symbol time
offset and SNR. The SER and BER decrease with the increase
of the symbol time offset, which coincides with our analysis.
When the time offset is larger, it is easier for AlignTrack
to find the unique peak corresponding to the aligned chirp.
The smallest symbol time offset is 10% of symbol duration
when SER < 0.3%, BER < 0.2% and SNR = −10 dB.
This means that AlignTrack can decode almost all overlapping
packets under a very small time offset. The collision packets
that cannot be decoded when the time offset is too small can
be retransmitted.

7) Impact of Spreading Factor: In this experiment, we eval-
uate the impact of the spreading factor(SF) on the performance
of AlignTrack. Figure 19 shows the averaged SER and BER
of AlignTrack when SF varies from 7 to 12 under different
SNR. Both the SER and BER decrease with the increase of
SF. When SF = 7, the BER of 2-packet collision is 2.86%
and 3.46% when SNR = 0 and SNR = −5, i.e., AlignTrack
can decode most 2-packet collision successfully at a low SF.
When SNR = −5, the SER is lower than 2% and the BER
is lower than 1% when SF > 8. The BER is lower than 1%
when SF > 7 and SNR = 0. In all, this experiment indicates
that AlignTrack can work in all SFs that can be used in LoRa.

8) Impact of Consecutive Identical Chirp: As mentioned in
Section V-A, the consecutive identical chirps can bring errors
in the Preamble Detection and the Aligned Chirp Detection
module in the overall demodulation process of AlignTrack in

Fig. 20. SER and BER with/without CICC method: (a) SER. (b) BER.

Section IV. And AlignTrack propose a Consecutive-Identical-
Chirp-Correct method (CICC) to estimate the influence of
the consecutive identical chirps. We evaluate the performance
of the CICC under different number of overlapping packets.
The packets sent by each transmit contains a payload with
36 up-chirps, of which there are three consecutive identical
up-chirps.

Figure 20 shows the averaged SER and BER when demod-
ulating the collided packets with/without the CICC. Figure 20
shows that the SER and BER with the CICC are always lower
than that without CICC. When the number of overlapping
packets is larger than 5, the SER without CICC is larger than
10% while the SER with CICC is lower than 6%. When the
number of overlapping packets is 12, the BER without CICC
is 11.04% and the BER with CICC is still lower than 10%
(8.26%) when the number of overlapping packets is 12, which
is acceptable in LoRa demodulation. Therefore, CICC can help
find out the right aligned chirp and improve the accuracy of
the collided-packet demodulation when there are consecutive
identical chirps collided together.

9) Performance in an Outdoor Network: We evaluate the
performance of AlignTrack in two real outdoor LoRa net-
works: a park and a playground. We use COTS LoRa nodes
with chip SX1278 as transmitters and a HackRF One as the
receiver. As shown in Figure 21, we deploy LoRa nodes in
12 different places.

Figure 22 shows the averaged SER under different outdoor
networks. The SER increases with the increasing number of
overlapping packets. The overall SER is under 10% when
the overlapping number is under 7, the SER is under 15%
when the overlapping number is 12 in these two networks. The
increase of SER shows the same pattern in a playground and in
a park. This indicates the capability of AlignTrack to resist to
environment noise and achieve stable performances in different
environments. However, the SER in a park in usually larger
than the SER in a playground. This is because the environment
of a park is more complex than that of a playground.

Figure 23 shows the averaged SER and throughput of
four methods when the number of overlapping packets varies
from 1 to 12. Figure 23(a) shows the averaged SER. The SER
of NScale, CoLoRa, and Choir increase faster than that of
AlignTrack, and the SER of Choir increases the fastest. This
is because Choir uses hardware imperfection which is difficult
to find under low SNR, and NScale and CoLoRa partition
a chirp to segments and use the height difference among
packets to decode collisions. When the number of overlapping

CHEN AND WANG: AlignTrack: PUSH THE SNR LIMIT OF LoRa COLLISION DECODING 2083

Fig. 21. Outdoor LoRa Network: LoRa nodes with radio chip SX1278 as transmitters and HackRF One as the receiver (gateway) in a park and a playground.

Fig. 22. SER under different outdoor environments.

Fig. 23. Performance in real outdoor deployed LoRa networks:(a) Averaged
SER. (b) Network throughput.

packets reaches 7, the SER of Choir is more than 40%, the
SER of NScale and CoLoRa are almost 30% while the SER
of AlignTrack is still lower than 10%. When the number of
overlapping packets reaches 12, the SER of NScale is more
than 40%, which is 3.1× of AlignTrack (12.9%). And the
SER of CoLoRa (48%) and Choir (60%) are 3.72× and 4.65×
of AlignTrack. Figure 23(b) shows the network throughput of
AlignTrack, NScale, CoLoRa and Choir. When the number of
overlapping packets reaches 12, the throughput of AlignTrack
is 320 sps, which is 1.52× of NScale (210 sps), 1.68× of
CoLoRa (190 sps), and 2.16× of Choir (148 sps).

VII. RELATED WORK

Collision resolution in LoRa. There are many works
to decode collisions for LoRa. mLoRa [12] adopts SIC to
separate packets and can decode collision from three nodes.
FTrack [13] separates collided packets by calculating the
continuity of instantaneous frequency and concentrates on
the time domain features. Choir [26] exploits the frequency

shift of imperfect hardware to separate packets. CoLoRa [14]
considers the height relationship of peaks in adjacent windows.
NScale [15] multiples the chirp segment with a non-stationary
scaled down-chirp and leverages peaks of different segments
to distinguish different packets. SCLoRa [27] leverages mul-
tidimensional information and utilizes cumulative spectral
coefficient to separate symbols in the overlapped signal. Pyra-
mid [28] utilizes a sliding window to translate the time offsets
of collided chirps to frequency and power feature for chirp
decoding. PCube [29] designs a phase-based parallel decoder
that can scale the concurrent transmissions of LoRa nodes
with reception diversities of multiple receiving antennas of a
gateway. CIC [30] adopts a spectral intersection operation to
demodulate symbols via canceling out all interfering symbols.
AlignTrack leverages the entire chirp in LoRa and introduces
a very small SNR loss and does not need to do any redundant
operations.

General methods for collision resolution. There are many
traditional methods for collision resolution. One is to use
multiple antennas, such as Multi Input Multi Output(MIMO)
[31], [32]. MIMO uses multiple antennas to form a transceiver
system with multiple channels. However, MIMO is not suitable
for a single antenna device like the LoRa node. The other
is to perform channel detection to avoid collision, such as
CSMA/CA [33], [34] and RTS-CTS [35], [36]. However,
CSMA/CA needs to detect the channel status, and RSSI based
channel detect method does not work in a very low SNR like
the LoRa network. The impact of the hidden/exposed terminal
problems is exacerbated and will significantly reduce the
network efficiency. Channel Activity Detection (CAD) method
introduced by LoRa needs to detect the LoRa preamble, which
introduces a high overhead and power consumption. SIC [37]
iteratively finds and reconstructs coding information based on
different signal strengths and some known coding information.
However, it does not utilize the features of LoRa.

Improvement on IoTs. A variety of works have been
proposed to improve the performance of IoTs. OPR [38] uses
multiple gateways to recover packets subject to CRC and/or
FEC errors. Chime [39] analyzes the path signals traverse
from the client to distributed and coordinated gateways to
choose the optimal frequency of the LPWAN client. Lite-
Nap [40] enables sub-Nyquist sampling and packet decoding
to improve energy efficiency. EF-LoRa [41] allocates different
network resources to achieve fair energy consumption among

2084 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 5, OCTOBER 2023

end devices. The work [42] conducts a series of experiments
to verify the claims made by Semtech. L2X [43] provides
long-range CTC to diverse receivers with LoRa transmitters.
NELoRa [44] exploits the feature abstraction ability of deep
learning to support ultra-low SNR LoRa communication.
Falcon [45] addresses the link dynamics by enabling data
transmission for every low SNR or even disconnected LoRa
links. P2LoRa [46] is the first ambient LoRa backscatter
system with parallel decoding and long-range communication.
This work [47] proposes a new energy harvesting mechanism
to support continuous communication. Mourade et al. [48]
propose an enhanced authentication protocol for IoT.
Jiehong et al. [49] proposes a Hierarchical Adaptive Energy-
efficient Clustering Routing strategy to reduce and balance
network energy consumption.

Analyzes on LoRa. Many methods have been pro-
posed to analyze the whole process of LoRa demodulation.
Augustin et al. [16] provides an overview of LoRa and an
in-depth analysis of its functional components. Kang et al. [17]
thoroughly analyzes the performance of the preamble detection
model in the LoRa demodulation process and develops a
optimal preamble detection scheme to maximum the detection
probability. FlipLoRa [50] encodes packets with interleaved
upchirps and downchirps instead of only using upchirps as in
LoRa. This work [51] presents a comprehensive understanding
of LoRa PHY (physical layer protocol) and reveals the funda-
mental reasons for the performance gap. Ameloot et al. [21]
presents an independently developed packet reception algo-
rithm, which drastically improves the physical performance of
LoRa communication links. Edward et al. [22] investigates
different preamble detection schemes to refrain from the
consecutive constraint. Xhonneux et al. [20] builds a low-
complexity, yet efficient synchronization algorithm capable of
correcting the sampling time offsets and the carrier frequency
offsets. Ostinato [52] enables communication for weak links
and enhances the coverage for real deployments of COTS
LoRa.

VIII. CONCLUSION

LoRa has been one of the key technologies to connect
millions of devices in the Internet of Things. However, the col-
lision of LoRa packets significantly degrades its performance
in practice. Existing collision decoding approaches introduce
non-negligible SNR loss in collision decoding. We present
AlignTrack, the first LoRa collision decoding approach that
incurs negligible SNR loss and can decode collisions under
a very low SNR. Unlike state-of-the-arts that leverage partial
chirps to separate collided packets, AlignTrack aligns windows
to each packet and leverages the aligned chirps in each window
to separate packets. We address practical challenges in the
implementation. We propose a method to accurately find the
start of each packet under interference and CFO. We show
how to accurately find the aligned chirps in each window and
recover accurate peak information. We implement AlignTrack
on the HackRF One platform and evaluate its performance
extensively. AlignTrack totally sits at the server side without
any modification to the LoRa end nodes and can be applied

to existing LoRa networks. The evaluation results show that
AlignTrack improves network throughput by 1.68× compared
with NScale and 3× compared with CoLoRa.

REFERENCES

[1] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of cellular
LPWAN technologies for IoT deployment: Sigfox, LoRaWAN, and NB-
IoT,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops
(PerCom Workshops), Mar. 2018, pp. 197–202.

[2] O. Khutsoane, B. Isong, and A. M. Abu-Mahfouz, “IoT devices and
applications based on LoRa/LoRaWAN,” in Proc. 43rd Annu. Conf.
IEEE Ind. Electron. Soc. (IECON), Oct. 2017, pp. 6107–6112.

[3] A. Mdhaffar, T. Chaari, K. Larbi, M. Jmaiel, and B. Freisleben, “IoT-
based health monitoring via LoRaWAN,” in Proc. IEEE EUROCON 17th
Int. Conf. Smart Technol., Jul. 2017, pp. 519–524.

[4] D. Davcev, K. Mitreski, S. Trajkovic, V. Nikolovski, and N. Koteli,
“IoT agriculture system based on LoRaWAN,” in Proc. 14th
IEEE Int. Workshop Factory Commun. Syst. (WFCS), Jun. 2018,
pp. 1–4.

[5] R. F. A. M. Nor, F. H. K. Zaman, and S. Mubdi, “Smart traffic light
for congestion monitoring using LoRaWAN,” in Proc. IEEE 8th Control
Syst. Graduate Res. Colloq. (ICSGRC), Aug. 2017, pp. 132–137.

[6] S. A. A’ssri, F. H. K. Zaman, and S. Mubdi, “The efficient parking
bay allocation and management system using LoRaWAN,” in Proc.
IEEE 8th Control Syst. Graduate Res. Colloq. (ICSGRC), Aug. 2017,
pp. 127–131.

[7] Y. Peng et al., “PLoRa: A passive long-range data network from ambient
LoRa transmissions,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2018, pp. 147–160.

[8] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota,
“LoRa backscatter: Enabling the vision of ubiquitous connectivity,”
Proc. ACM Interact., Mobile, Wearable Ubiquitous Technol., vol. 1,
no. 3, pp. 1–24, 2017.

[9] N. Abramson, “The ALOHA system: Another alternative for com-
puter communications,” in Proc. Fall Joint Comput. Conf., 1970,
pp. 281–285.

[10] J. D. C. Silva, J. J. Rodrigues, A. M. Alberti, P. Solic, and A. L. Aquino,
“LoRaWAN—A low power wan protocol for Internet of Things: A
review and opportunities,” in Proc. 2nd Int. Multidisciplinary Conf.
Comput. Energy Sci. (SpliTech), Jul. 2017, pp. 1–6.

[11] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez,
J. Melia-Segui, and T. Watteyne, “Understanding the limits of
LoRaWAN,” IEEE Commun. Mag., vol. 55, no. 9, pp. 34–40,
Sep. 2017.

[12] X. Wang, L. Kong, L. He, and G. Chen, “MLoRa: A multi-packet
reception protocol in LoRa networks,” in Proc. IEEE 27th Int. Conf.
Netw. Protocols (ICNP), Oct. 2019, pp. 1–11.

[13] X. Xia, Y. Zheng, and T. Gu, “FTrack: Parallel decoding for LoRa
transmissions,” in Proc. 17th Conf. Embedded Networked Sensor Syst.,
Nov. 2019, pp. 192–204.

[14] S. Tong, Z. Xu, and J. Wang, “CoLoRa: Enabling multi-packet reception
in LoRa,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Jul. 2020,
pp. 2303–2311.

[15] S. Tong, J. Wang, and Y. Liu, “Combating packet collisions using non-
stationary signal scaling in LPWANs,” in Proc. 18th Int. Conf. Mobile
Syst., Appl., Services, Jun. 2020, pp. 234–246.

[16] A. Augustin, J. Yi, T. Clausen, and W. Townsley, “A study of LoRa:
Long range & low power networks for the Internet of Things,” Sensors,
vol. 16, no. 9, p. 1466, Sep. 2016.

[17] J.-M. Kang, D.-W. Lim, and K.-M. Kang, “On the LoRa modulation for
IoT: Optimal preamble detection and its performance analysis,” IEEE
Internet Things J., vol. 9, no. 7, pp. 4973–4986, Apr. 2022.

[18] N. E. Rachkidy, A. Guitton, and M. Kaneko, “Decoding superposed
LoRa signals,” in Proc. IEEE 43rd Conf. Local Comput. Netw. (LCN),
Oct. 2018, pp. 184–190.

[19] Spectral leakage. (2015). [Online]. Available:
https://en.wikipedia.org/wiki/Spectral_leakage

[20] M. Xhonneux, O. Afisiadis, D. Bol, and J. Louveaux, “A low-complexity
LoRa synchronization algorithm robust to sampling time offsets,” IEEE
Internet Things J., vol. 9, no. 5, pp. 3756–3769, Mar. 2022.

[21] T. Ameloot, H. Rogier, M. Moeneclaey, and P. Van Torre, “LoRa signal
synchronization and detection at extremely low signal-to-noise ratios,”
IEEE Internet Things J., vol. 9, no. 11, pp. 8869–8882, Jun. 2022.

CHEN AND WANG: AlignTrack: PUSH THE SNR LIMIT OF LoRa COLLISION DECODING 2085

[22] P. Edward, A. Muhammad, S. Elzeiny, M. Ashour, T. Elshabrawy, and
J. Robert, “Enhancing the capture capabilities of LoRa receivers,” in
Proc. Int. Conf. Smart Appl., Commun. Netw. (SmartNets), Dec. 2019,
pp. 1–6.

[23] A. Rahmadhani and F. Kuipers, “When LoRaWAN frames collide,” in
Proc. 12th Int. Workshop Wireless Netw. Testbeds, Exp. Eval. Charac-
terization, Oct. 2018, pp. 89–97.

[24] C. Bernier, F. Dehmas, and N. Deparis, “Low complexity LoRa frame
synchronization for ultra-low power software-defined radios,” IEEE
Trans. Commun., vol. 68, no. 5, pp. 3140–3152, May 2020.

[25] R. Ghanaatian, O. Afisiadis, M. Cotting, and A. Burg, “LoRa digital
receiver analysis and implementation,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2019, pp. 1498–1502.

[26] R. Eletreby, D. Zhang, S. Kumar, and O. Yağan, “Empowering low-
power wide area networks in urban settings,” in Proc. Conf. ACM Special
Interest Group Data Commun., Aug. 2017, pp. 309–321.

[27] B. Hu, Z. Yin, S. Wang, Z. Xu, and T. He, “SCLoRa: Leveraging multi-
dimensionality in decoding collided LoRa transmissions,” in Proc. IEEE
28th Int. Conf. Netw. Protocols (ICNP), Oct. 2020.

[28] Z. Xu, P. Xie, and J. Wang, “Pyramid: Real-time LoRa collision
decoding with peak tracking,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., May 2021, pp. 1–9.

[29] X. Xia, N. Hou, Y. Zheng, and T. Gu, “PCube: Scaling LoRa concurrent
transmissions with reception diversities,” in Proc. 27th Annu. Int. Conf.
Mobile Comput. Netw., Oct. 2021, pp. 670–683.

[30] M. O. Shahid, M. Philipose, K. Chintalapudi, S. Banerjee, and
B. Krishnaswamy, “Concurrent interference cancellation: Decoding
multi-packet collisions in LoRa,” in Proc. ACM SIGCOMM Conf.,
Aug. 2021, pp. 503–515.

[31] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang,
“An overview of massive MIMO: Benefits and challenges,” IEEE J. Sel.
Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[32] D. Gesbert, M. Shafi, D. Shiu, P. J. Smith, and A. Naguib, “From theory
to practice: An overview of MIMO space-time coded wireless systems,”
IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281–302, Apr. 2003.

[33] R. Laufer and L. Kleinrock, “The capacity of wireless CSMA/CA
networks,” IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1518–1532,
Jun. 2016.

[34] E. Ziouva and T. Antonakopoulos, “CSMA/CA performance under high
traffic conditions: Throughput and delay analysis,” Comput. Commun.,
vol. 25, no. 3, pp. 313–321, Feb. 2002.

[35] P. Lin and L. Zhang, “Full-duplex RTS/CTS aided CSMA/CA mecha-
nism for visible light communication network with hidden nodes under
saturated traffic,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2018,
pp. 1–6.

[36] K. Xu, M. Gerla, and S. Bae, “Effectiveness of RTS/CTS handshake
in IEEE 802.11 based ad hoc networks,” Ad Hoc Netw., vol. 1, no. 1,
pp. 107–123, Jul. 2003.

[37] P. Patel and J. Holtzman, “Analysis of a simple successive interference
cancellation scheme in a DS/CDMA system,” IEEE J. Sel. Areas
Commun., vol. 12, no. 5, pp. 796–807, Jun. 1994.

[38] A. Balanuta, N. Pereira, S. Kumar, and A. Rowe, “A cloud-optimized
link layer for low-power wide-area networks,” in Proc. 18th Int. Conf.
Mobile Syst., Appl., Services, Jun. 2020, pp. 247–259.

[39] A. Gadre, R. Narayanan, A. Luong, A. Rowe, B. Iannucci, and
S. Kumar, “Frequency configuration for low-power wide-area networks
in a heartbeat,” in Proc. 17th USENIX Symp. Networked Syst. Design
Implement. (NSDI), 2020, pp. 339–352.

[40] X. Xia, Y. Zheng, and T. Gu, “LiteNap: Downclocking LoRa recep-
tion,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Jul. 2020,
pp. 2632–2645.

[41] W. Gao, W. Du, Z. Zhao, G. Min, and M. Singhal, “Towards energy-
fairness in LoRa networks,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jul. 2019, pp. 788–798.

[42] J. C. Liando, A. Gamage, A. W. Tengourtius, and M. Li, “Known and
unknown facts of LoRa: Experiences from a large-scale measurement
study,” ACM Trans. Sen. Netw., vol. 15, no. 2, pp. 1–35, Feb. 2019.

[43] S. Tong, Y. He, Y. Liu, and J. Wang, “De-spreading over the air: Long-
range CTC for diverse receivers with LoRa,” in Proc. 28th Annu. Int.
Conf. Mobile Comput. Netw., Oct. 2022, pp. 42–54.

[44] C. Li et al., “NELoRa: Towards ultra-low SNR LoRa communication
with neural-enhanced demodulation,” in Proc. 19th ACM Conf. Embed-
ded Networked Sensor Syst., Nov. 2021, pp. 56–68.

[45] S. Tong, Z. Shen, Y. Liu, and J. Wang, “Combating link dynamics for
reliable LoRa connection in urban settings,” in Proc. 27th Annu. Int.
Conf. Mobile Comput. Netw., Oct. 2021, pp. 642–655.

[46] J. Jiang, Z. Xu, F. Dang, and J. Wang, “Long-range ambient LoRa
backscatter with parallel decoding,” in Proc. 27th Annu. Int. Conf.
Mobile Comput. Netw., Oct. 2021, pp. 684–696.

[47] B. Pavani, L. N. Devi, and K. V. Subbareddy, “Energy enhancement
and efficient route selection mechanism using H-SWIPT for multi-hop
IoT networks,” Intell. Converged Netw., vol. 3, no. 2, pp. 173–189,
Jun. 2022.

[48] M. Azrour, J. Mabrouki, A. Guezzaz, and Y. Farhaoui, “New enhanced
authentication protocol for Internet of Things,” Big Data Mining Ana-
lytics, vol. 4, no. 1, pp. 1–9, Mar. 2021.

[49] J. Wu, X. Sun, J. Wu, and G. Han, “Routing strategy of reducing energy
consumption for underwater data collection,” Intell. Converged Netw.,
vol. 2, no. 3, pp. 163–176, Sep. 2021.

[50] Z. Xu, S. Tong, P. Xie, and J. Wang, “FlipLoRa: Resolving collisions
with up-down quasi-orthogonality,” in Proc. 17th Annu. IEEE Int. Conf.
Sens., Commun., Netw. (SECON), Jun. 2020, pp. 1–9.

[51] Z. Xu, P. Xie, S. Tong, and J. Wang, “From demodulation to decoding:
Towards complete LoRa PHY understanding and implementation,” ACM
Trans. Sensor Netw., Jul. 2022, doi: 10.1145/3546869.

[52] Z. Xu, P. Xie, J. Wang, and Y. Liu, “Ostinato: Combating LoRa weak
links in real deployments,” in Proc. IEEE 30th Int. Conf. Netw. Protocols
(ICNP), Oct. 2022, pp. 1–11.

Qian Chen (Graduate Student Member, IEEE)
received the B.E. degree from the School of
Software, Tsinghua University, in 2020, where
she is currently pursuing the Ph.D. degree. Her
research interests include low-power wide-area net-
works, the Internet of Things, and wireless network
localization.

Jiliang Wang (Senior Member, IEEE) received the
B.E. degree in computer science and technology
from the University of Science and Technology
of China and the Ph.D. degree in computer sci-
ence and engineering from The Hong Kong Uni-
versity of Science and Technology. He is currently
an Associate Professor with the School of Soft-
ware, Tsinghua University. His research interests
include wireless networks, the Internet of Things,
and mobile computing.

http://dx.doi.org/10.1145/3546869

