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Abstract— Boolean Network Tomography (BNT) aims at iden-
tifying failures of internal network components by means of end-
to-end monitoring paths. However, when the number of failures
is not known a priori, failure identification may require a huge
number of monitoring paths. We address this problem by design-
ing a Bayesian approach that progressively selects the next path to
probe on the basis of its expected information utility, conditioned
on prior observations. As the complexity of the computation
of posterior probabilities of node failures is exponential in the
number of failed paths, we propose a polynomial-time greedy
strategy which approximates these values. To consider aging of
information in dynamic failure scenarios where node states can
change during a monitoring period, we propose a monitoring
technique based on a sliding observation window of adaptive
length. By means of numerical experiments conducted on real
network topologies we demonstrate the practical applicability of
our approach, and the superiority of our algorithms with respect
to state of the art solutions based on classic BNT as well as
sequential group testing.

Index Terms— Fault location, computer network management,
Bayesian inference, monitoring.

I. INTRODUCTION

BOOLEAN Network Tomography (BNT) provides a series
of powerful tools to localize network failures by using

end-to-end monitoring paths. However, observations of the
outcome of the monitoring paths (working/failed) induce a sys-
tem of Boolean equations that is commonly under-determined,
hence allowing multiple solutions [1]. Exact assessment of the
state of each network component is not always achievable if
monitors can only be deployed on a given subset of nodes
and if routing is not controllable. Moreover, when the number
of possible failures is unbounded, complete identification
of failed components may require an enormous number of
monitoring paths and related probes [2], [3], [4] which severely
limits the applicability of the approach. Nonetheless, we notice
that executing the probing activity in a progressive manner,
hereafter referred to as progressive BNT, is particularly helpful
in reducing the number of required probes to assess the
network state. Thanks to the incrementally obtained informa-
tion, we can calculate the expected utility of monitoring any
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additional path, conditioned on previous observations, in terms
of additional failure localization. By applying a Bayesian
approach, we design a stochastic optimization problem which
maximizes the expected utility over a progressive monitoring
activity. However, this optimization problem is intractable
because of the large state space size and the computational
cost of calculating posterior probabilities, which is exponential
in the number of failed paths. In order to cope with the
described issues, we propose two simplified approaches. First,
to cope with the exponential size of the state representation,
we propose a greedy approach, called Posterior Probability
Greedy (PoPGreedy), that iteratively selects the path that more
likely identifies the state of the largest number of network
components. We provide an approximation factor of our
greedy strategy by applying known results for the optimization
of functions with bounded adaptive sub-modularity ratio [5].
Second, we approximate the posterior probability of a path
failure with a polynomially computable approximation metric
that we refer to as failure centrality. The failure centrality
of a node reflects the probability for a node to be broken,
conditioned on the currently available observations. Exploiting
this metric, we propose a polynomial time greedy approach
called Failure Centrality Greedy (FaCeGreedy).

We experimentally compare FaCeGreedy and PoPGreedy in
terms of novel metrics specifically designed to characterize the
failure detection performance in both static and dynamic fail-
ure scenarios where nodes may fail and be repaired during the
monitoring activity. The experiments show that FaCeGreedy
provides an excellent approximation of the exact optimization
approach in negligible time. By simulations, we evidence
the superiority of FaceGreedy with respect to classic BNT
approaches, namely Greedy for Coverage, Identifiability, and
Distiguishability (CG, GI, and GD) [6], as well as to Adap-
tiveFinder [7], a state of the art solution based on sequential
group testing, and to Adaptive Path Construction (APC) [8],
a routing-constrained algorithm also based on sequential group
testing for link failure detection.

In summary, our original contributions are the following:
• We formulate the problem of progressive network tomog-

raphy in terms of stochastic optimization and Bayesian
analysis. We discuss its complexity motivating the need
for polynomial heuristic approaches.

• We formulate a novel failure centrality metric to approx-
imate the failure probability of a node, given the
observation of the outcome of a given set of probing
paths.
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• We propose two greedy approaches, called PoPGreedy
and FaCeGreedy, based on Bayesian utility maximization
and give an optimality approximation for PoPGreedy. For
both approaches, we also provide an extended formula-
tion to work in dynamic failure scenarios.

• We formulate four novel metrics to quantitatively measure
the capability of a monitoring algorithm to properly
localize network failures and to evaluate the localization
uncertainty.

• By means of simulations conducted on real network
topologies, we compare FaCeGreedy and PoPGreedy
to classic Boolean Tomography approaches, as well as
approaches based on sequential group testing, showing
that our solutions outperform the others in all perfor-
mance metrics and in all the considered scenarios, includ-
ing static and dynamic failures.

II. RELATED WORK

Boolean network tomography aims at measuring perfor-
mance characteristics of individual network components by
means of end-to-end paths. Some works [9], [10], [11], [12]
studied how to measure additive performance metrics, for
instance, delay, by optimizing monitor placement and path
selection.

Other early works studied best effort techniques to
classify individual network components in terms of a binary
state, e.g., congested or not, failed or working, [1], [11], [12],
[13], [14], [15].

The work in [16], and more recently in [6], [17], [18]
addressed the problem of designing monitoring paths for
optimal identifiability. Other works studied the fundamental
limits to failure identifiability [2], [3], all working under the
assumption of a bounded number of failed components.

The work by Cheraghchi et al. [19], formulates the identi-
fiability problem for a graph-based group-testing framework,
where the test sets are connected topology components. With
a similar goal, the authors of [20] model the tomography
problem as a Markov Decision Process, and solve it with a
Q-learning technique. The actions of the decision process are
related to the diagnosis of the congestion state of individual
links. The work in [21] also utilizes machine learning tech-
niques based on neural networks to infer a network topology
from incrementally selected paths, with the purpose to predict
the performance of paths that are not directly probed.

The practical applicability of Boolean Network Tomography
is hindered by two important factors. First, most existing works
assume prior knowledge of an upper bound on the number of
congested or failed links. This assumption is made to limit
the size explosion of the set of possible failure scenarios. The
majority of the existing works are not designed to consider an
unbounded number of failing components. Second, the pro-
posed approaches are designed to ensure failure identifiability
more than actual failure identification. By adopting the notion
of identifiability formalized in [17], the general approach of
Boolean Network Tomography is to provide paths that are
able to uniquely identify the state of a maximum number of
nodes and links, regardless of the particular instance of failure
scenario being considered.

Our study also addresses the problem of identifying the state
of network components by means of end-to-end monitoring.
However it distinguishes itself from previous approaches in
a twofold manner. First, we do not assume any bound on
the number of failures, and we focus on actual node state
identification rather than on identifiability. Second, we adopt
a progressive approach to path selection with the purpose
of incrementally identifying the state of individual network
components.

With the same goal, the AdaptiveFinder algorithm [7] by
Karbasi et al. considers progressive monitoring of graph-based
test groups. We consider this proposal as a benchmark for
performance comparisons with respect to our own approach.
AdaptiveFinder considers a network graph and creates arbi-
trary sets of connected network components to determine the
next paths to test according to a progressive approach. Unlike
this work, we consider testing sets which are end-to-end moni-
toring paths, where pairs of monitors are connected by a series
of nodes that strictly follow the routing protocol in use by
the considered network. Similarly, Makumoto et al. proposed
Adaptive Path Construction (APC) [8], a group-testing routing-
constrained algorithm for detecting link failures by means of
BNT techniques that aims at minimizing the number of path
probes. Differently from our Bayesian approach, in APC, the
choice of the next path to probe follows a binary search-
based idea. As we will see in Section VII our approach solves
the limitation imposed by the routing algorithm and provides
superior performance to AdaptiveFinder and APC, thanks to
the incremental knowledge constructed through our Bayesian
decision support.

Unlike all the aforementioned works, very few studies take
account of dynamic changes of the node states as we do
in our paper. The problem of detecting failures occurring
dynamically within a network attracted attention in recent
years. A large portion of the available literature focuses
on specific networks (e.g., data centres [22] and Wireless
Sensor Networks (WSNs) [23], [24], [25], [26]). In [27],
Huang et. al. highlight practical issues when tomography
techniques are used to infer link degradation within a network.
Their approach is divided into an initial offline phase (a set of
paths covering the network is selected), followed by an online
phase (where monitor nodes periodically probe measurements
along defined paths in order to track possible changes in the
performance of the links). In [28], Johnsson et. al. propose
a two-step algorithm to interpret and analyze the outcome of
path probes in order to detect and localize failures. Differently
from these works, we consider path selection to be the key part
of the online phase: we not only provide a way to interpret
probe outcomes, but we also show how to obtain the most
informative probes.

This paper extends the work presented in [29].

III. PROBLEM FORMULATION

We consider a network modeled as a graph G = (V, E),
and a set of monitor nodes VM ⊆ V (shortly called monitors).
For each ordered pair (i, j) of monitors in VM we consider
a unique monitoring path whose sequence of nodes is only
determined by the routing algorithm in use. We consider
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TABLE I

SUMMARY OF NOTATIONS

uncontrollable routing [17], i.e., monitoring paths are deter-
mined by the routing protocol used by the network, not
controllable by the monitors. Routing between monitors i and
j is not necessarily symmetric, but is assumed to be static,
deterministic, and known.

We shortly denote with m̂ the set of nodes traversed by
the monitoring path m. We refer to M as to the set of
monitoring paths available for probing the network. Without
loss of generality we assume that links always work, and only
nodes can fail. The approach can be easily extended to also
consider link failures by modelling links as virtual nodes.

By probing the paths of M it is possible to obtain indirect
information on the state of the traversed nodes. Both working
and failed paths provide helpful information for the state
assessment of the network components. In particular, if a path
works, then all its nodes are properly functioning, whereas a
non working path must contain at least a broken component.
By probing paths in a sequence, it is possible to determine the
most suitable choice for the next path to probe on the basis
of the information gathered so far.

We address the problem of designing a Progressive Moni-
toring Policy (PMP), i.e., a decision policy to select the next
paths to probe on the basis of prior observations, such that we
can identify the state of the largest number of nodes in the
minimum number of steps (number of paths). We refer to this
problem as the PMP problem.

In the following, we denote with Sv the event ’node v
works’, and S̄v the event ’node v is broken’. If no information
is available concerning the distribution of failures in the
network, it is reasonable to assume that all nodes have equal
prior probability p to be damaged, that is P (S̄i) = p for all
vi ∈ V , while we denote with P (Si) = (1 − p) the prior
probability that vi is working.

Classic approaches to Boolean Network Tomography adopt
the concept of k-identifiability [2], [3], [17], which refers to
the capability of inferring the state of individual nodes from
the state of the monitoring paths. A node v is k-identifiable in
M if any two sets of failing nodes F1 and F2 of size at most k,
which differ at least in v (i.e., one contains v and the other does
not), cause the failures of different subsets of paths inM. The
concept of k-identifiability assumes knowledge of an upper
bound k to the number of occurring failures and characterizes
nodes regardless of their state (failed or working) but only
in terms of whether their state can be uniquely inferred by
observing the outcome of the monitoring paths of M. How-
ever, our setting is characterized by (1) absence of a bound
on the number of simultaneous failures, (2) uncontrollable

position of monitor nodes and (3) given routing algorithm.
In such a setting, the PMP problem is particularly challenging
as no node is guaranteed to be identifiable according to classic
tomography.

A common practice in Network Tomography is to model the
underlying topology with a graph that has one node for each
network node and a virtual node for each network link (vi, vj).
Therefore without loss of generality, we assume that links
do not fail and model network links through logical nodes
so that a link failure corresponds to the failure of a logical
node [2]. Furthermore, we do not investigate the reason for
nodes’ malfunctioning and assume that the state of the nodes
is binary. Faulty nodes can be heavily congested or broken
nodes.

A. Bayesian Utility of Path Probing

Let Zj be the event that path mj ∈ M properly works,
and Z̄j the event that path mj fails. Under the assumption of
uniform probability of node failures, a prior estimate of the
state probability of path mi ∈ M is P (Zi) = (1−p)|m̂i|, and
P (Z̄i) = 1− P (Zi).

In our problem setting, the state of the network can only be
observed by probing monitoring paths in a sequence of mon-
itoring interventions. We denote by A � {a1, a2, . . . , a|M|}
the set of possible monitoring decisions, where decision ai

implies monitoring the network through path mi. We denote
by T ⊆ M the already monitored paths, and by F ⊆ T the
set of failed tested paths. We denote with Zo

i the outcome
of the probing activity along path mi, for any mi ∈ T .
Knowledge of the outcome of the paths in T constitutes a
source of information OT � {Zo

j |mj ∈ T } that can be
used to produce an estimate, a posteriori, of the network
state. We note that the outcome of any monitoring path is as
informative as it contributes to the identification of the state
of individual network components or decreases the size of the
identification problem instance. More specifically, we observe
that monitoring working or non-working paths contributes use-
ful information for failure identification in different manners.
In the following, we formulate the notion of path probe utility.
In words, we consider the utility of path mi equal to the
number of new node states discovered by probing mi.

• If W (T ) is the set of working nodes discovered after
paths T were tested, we observe that we can ideally
prune every path m ∈ M \ T of the already discovered
working nodes. We call the pruned path m(T ), i.e.,
m̂(T ) = m̂ \W (T ) only accounts for the nodes traversed
by m whose state is still unknown after paths T were
probed.

• If by probing path m we observe that the path fails,
we might be in two different scenarios: i. if |m̂(T )| = 1,
meaning that all nodes of m except for one have been
classified to be working nodes, we can claim with cer-
tainty that the only node left is failed. In this case,
we are discovering one new node state. ii. If |m̂(T )| > 1
(i.e., m(T ) traverses more than one node whose state is
still undiscovered), we do not know how many and which
nodes of m̂(T ) are failed.
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Fig. 1. Identification by exclusion.

• The utility of probing a working path m accounts for
two additive terms. The first is |m̂(T )|. As for the second
term, we observe that there might exist a path m� ∈ F
(i.e., a failed tested path) such that |m̂�(T ) \ m̂(T )| = 1.
In this case, we are able to determine the state of the
only unclassified node as failed by exclusion. Consider the
example of Fig. 1. Assume that the monitoring activity
starts by probing path m1 first, which is found to be non-
working; hence m1 is inserted in T . Then the monitoring
activity proceeds by considering path m2, which is prop-
erly working. Knowledge of the outcome of m2 allows
us to assess the state of the nodes vi, with i = 1, . . . , 5,
as working (green nodes). As a consequence, these nodes
are all pruned and can be removed by all the non working
paths included in T . Due to the pruning of v4 and v3, the
length of the already monitored path m1 reduces to 1 in
the logical representation of the network graph without
pruned components, which implies |m̂(T )

1 | = 1. Hence,
m

(T )
1 turns to be a failing path of one only node, v6

(in red in the figure), whose state must be failed by
exclusion.
Then the utility of probing a working path m (in the

example m2) also accounts for |Fm,(T )
1 |, where Fm,(T )

1

denotes the set of failed paths having only one node left
after pruning the nodes of m.

• Finally, we also observe that it is not useful to probe
paths of which we can infer the outcome without actually
testing them. We know that a path m �∈ T is working
if m̂ ⊆ W (T ) (all its nodes have been pruned, and
m̂(T ) = ∅). In contrast, we know that a path m fails
when it traverses at least a failed node, which happens
when there is a path m� ∈ F such that m̂�(T ) ⊆ m̂(T ).

In summary, if we make decision ai corresponding to
monitoring path mi, the information utility is proportional to
|m̂(T )

i | + |Fmi,(T )
1 | if the path mi works, and to �1/|m̂(T )

i |�
otherwise. We can then formulate the information utility
function for each decision ai ∈ A as follows:

λ(ai|Zi) =

{
|m̂(T )

i |+ |Fmi,(T )
1 | if Zi

�1/|m̂(T )
i |� if Z̄i

(1)

Notice that by construction we only consider paths for which
|m̂(T )

i | �= 0.
Correspondingly, we calculate the following expectation of

conditional utility given the observation:

U(ai|OT )=λ(ai|Zi)P (Zi|OT )+λ(ai|Z̄i)P (Z̄i|OT ) (2)

As the available paths may give a different contribution to
the identification task, some of them may become redundant,
depending on the probing order.

IV. STOCHASTIC OPTIMIZATION OF PMP

We consider a progressive decision process, in discrete
time, which maximizes the number of nodes whose state is
identified, i.e. the cumulative utility, according to equation 2,
and which may end when one of the following conditions
occurs: (1) There are no more useful paths to monitor (each
of the remaining paths cannot add any information on the node
states); (2)A bound on the number of probing steps has been
reached.

At each step, the process makes one of the decisions in A,
whose utility depends on the outcome of the related monitoring
path. The number of steps before termination is uncertain.
An upper bound is given by the number of monitoring
paths |M|. We recall that we do not assume symmetric routing,
i.e. the upper bound on the number of monitoring paths is
given by the number of ordered pairs of monitoring nodes
|M| = VM · (VM − 1).

Considering the discussion made in Section III-A, we for-
mulate the PMP problem in terms of stochastic optimization.
At the n-th step, the state of the decision process is given
by the set OT , which reflects the observations made until
step n, provides the current knowledge of the state of network
components after having probed a set of paths T , (n = |T |)
and determines the future action utility values, according
to Equation 2.

In a static failure scenario, monitoring actions are not
repeated in consecutive monitoring steps, hence we denote the
actions available at step n, A(OT ), shortly as follows:

A(n) � A(O(n)
T ) = {ai : P (Zi|OT ) �= 0, 1}.

We look for a decision policy that maximizes the expected

sum of the utilities incurred by its decisions. Let V (O(n)
T , n)

denote the expected information (utility) that will be obtained
by the optimal decision policy starting from the observation
O

(n)
T at step n (e.g. nodes still to be assessed). In particular,

by the principle of optimality (Bellman equation) we derive:

V (O(n)
T , n) = max

ai∈A(n)

{
P (Zi|O(n)

T )
(
|m̂(T )

i |+ |Fmi,(T )
1 |

+ V (O(n)
T ∪ {Zi}, n + 1)

)
+ P (Z̄i|O(n)

T )

×
(⌊

1/|m̂(T )
i |

⌋
+ V (O(n)

T ∪ {Z̄i}, n + 1)
)}

.

While the equation suggests the use of a dynamic program-
ming approach over a finite horizon to solve the PMP problem,
we underline the following challenges: (1) The computational
complexity in the calculation of the posterior probability
P (Zi|OT ) is exponential in the number of failed paths.
(2) The combinatorial size of the state space is also prohibitive
for a large number of paths. These facts suggest looking for
polynomial approaches to the design of efficient PMP policies
and to metrics to quantitatively measure such efficiency.

A. The PoPGreedy Approach

We introduce PoPGreedy (Posterior Probability Greedy),
a Bayesian strategy that progressively selects the next path
to probe based on the current utility maximization rule, and
updates the overall observation for the next step (Algorithm 1).
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Given a graph G representing the network topology, a set of
pathsM and a prior probability of node failure p, PoPGreedy
returns the posterior probability of failure of all nodes as
is obtained after probing at most K paths in M. At each
step i, the Bayesian strategy selects the action a(i) = a∗ that
maximizes the expected utility defined in Equation 2 given
the current observation (line 6). Ties are broken by randomly
picking a path among the ones with the same maximum
utility. An action corresponds to the decision to monitor a new
path m∗ and to consequently update the current estimate of
path failure probabilities. The sets of tested paths, failed paths
and working nodes are updated accordingly. If the current
path m∗ fails, all actions corresponding to probing paths that
are supersets of m̂∗ are removed from A(i+1) (line 13), as they
would certainly fail. In particular, if path m∗ consists of only
one node after being pruned off its working nodes, then that
one node is certainly broken (line 14). If m∗ works, the set of
actions corresponding to probing paths that are subsets of m̂∗

are removed, as also in this case it is not useful to probe such
paths, since their outcome is already known without testing
them (line 17). In addition, we check whether we can localize
broken nodes by exclusion (line 18). If there are no more
useful paths to test (line 7), we compute the failure probability
of all nodes and rank them accordingly. We store the ordered
sequence in an array Vf and return it (line 8).

Algorithm 1 PoPGreedy

1: W (0), B(0) = ∅ (set of working and broken nodes)
2: T ,F = ∅ (set of tested and failed paths)
3: A(0) = {a1, . . . , a|M|}
4: O

(0)
T = ∅

5: for i = 0, . . . , K − 1 do
6: a∗ � arg max

a∈A(i)
U(a|O(i)

T ) (a∗: select path m∗)

7: if U(a∗|O(i)
T ) = 0 then

8: return list of nodes sorted by P (S̄v|O(i)
T ), Vf

9: T (i+1) ← T (i) ∪ {m∗}
10: � test m∗

11: if m∗ fails then
12: F (i+1) ← F (i) ∪ {m∗}, O

(i+1)
T = O

(i)
T ∪ (Z̄∗)

13: A(i+1) ← A(i) \ ({a∗} ∪ {aj : m̂∗(T ) ⊆ m̂
(T )
j })

14: if |m̂∗(T )| = 1 then B(i+1) ← B(i) ∪ m̂∗(T )

15: else
16: W (i+1) ←W (i) ∪ {m̂∗}, O

(i+1)
T = O

(i)
T ∪ (Z∗)

17: A(i+1) ← A(i) \ ({a∗} ∪ {aj : m̂
(T )
j ⊆ m̂∗(T ))

18: update B(i+1) with nodes failed by exclusion

19: update ranking Vf

In Appendix A, we prove the optimality approximation of
PoPGreedy.

An example of execution of PoPGreedy: We show an
example of execution on the network represented in Figure 2.
We assume priori probability p = 0.1 and let node v9 be
the only failed node in the network. Nodes v1, v2, v3 and
v4 are monitors, and consider undirected paths. We consider
the 6 monitoring paths shown in the figure.

Fig. 2. Example topology with a failure in v9.

- Step 1: The paths that maximize utility at the first iteration
are m3, m5 and m6. For the tie breaking rule we choose
path m3. The path works. Hence A(1) = A(0) \ {a3},
OT = {Z3} and the set of working nodes W =
{1, 4, 7, 8}.

- Step 2: It results that a4 = arg maxa∈A(1) u(a|OT ),
u(a4|OT ) = 2.187. We test m4 and set A(2) = A(1) \
{a4}. The path fails, therefore F = {m4} and OT =
OT ∪ Z̄4.

- Step 3: It holds that a1 = arg maxa∈A(2) u(a|OT ), with
u(a1|OT ) = 1.1358. We test m1, A(3) = A(2) \ {a1}.
The path works, hence: W = W ∪ m̂

(T )
1 and OT =

OT ∪Z1. By knowing that m4 failed while node v2 works,
we can claim with certainty that m6 will also fail, as it
steps onto all the remaining nodes of m4. We set A(4) =
A(3) \ {a1, a6}.

- Step 4: At this point, it results that U(a2|OT ) =
argmaxa∈A(4) u(a|OT ) = 1.278. We test m2,
A(5) = A(4) \ {a2}. The path works, hence: W =
{1, 2, 3, 4, 5, 6, 7, 8} and OT = OT ∪ Z2. The utility of
the non visited path m5 is zero, therefore the execution
is over. The algorithm returns the failure probabilities:
P (S̄9|OT ) = 1, P (S̄10|OT ) = 0.1 and P (S̄v|OT ) = 0
for all the other nodes.

We note that the algorithm leaves some uncertainty on the
state of node v10. However, this is due to the impossibility
to obtain certain state identification for v10 with the available
paths. In fact, all the paths traversing v10 fail because of the
failure of node v9.

B. Computational Complexity

Theorem 1: The computational complexity of PoPGreedy
(Algorithm 1) is O(K · |M| · 2|F|), where K is the maximum
number of path probes.

Proof: At each of the O(K) steps of the algorithm,
expected utilities are updated (line 6). This operations requires
computing P (Z̄|OT ) for all paths that are not tested yet:

P (Z̄|OT ) = P (Z̄ ∧OT )/P (OT ). (3)

Observe that, when computing the joint probability of the
outcomes of previously tested paths, the contribution given
by working paths simply results in pruning working nodes
from non working paths. Therefore, the joint probabilities in
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equation (3) may be computed as follows:

P (OT ) = P
(∧

m∈F
Z̄o

m(T )

)
(4)

= 1 +
|F|∑
k=1

(
(−1)k

∑
S∈2F :
|S|=k

(1− p)

∣∣ �

m∈S

m̂(T )
∣∣)

. (5)

The expression in the previous equation requires a num-
ber of addends that is exponential in the number of failed
paths (2|F|). Computing node failure probabilities requires the
same number of operations. In fact:

P (S̄i|OT )=P (S̄i ∧OT )/P (OT )=p · P
( ∧

mj∈F
vi �∈m̂j

Z̄j

)
/P (OT ).

(6)

The final cost is O(K · |M| · 2|F|). �
Even considering sporadic failures, it is hard to predict how

much the exponential factor may grow. Even within the same
topology, the time required for computing the joint probability
P (OT ) is highly dependent on where failures occur: if highly
connected nodes fail, the number of failed paths may be
large, which makes the computation of the failure probabilities
extremely time consuming.

The above reasoning motivates the use of polynomially
computable metrics to approximate the nodes’ conditioned
failure probabilities. In the next section, we define a polyno-
mially computable centrality metric that captures the trend of
how node failure probabilities are influenced when conditioned
by iterative observations on test outcomes.

V. FAILURE CENTRALITY

We hereby define the failure centrality of a node v given
the observation OT , to approximate the value of P (S̄v|OT )
(Equation 6) in the calculation of the posterior estimate of path
state probabilities.

Definition 1: The failure centrality of a node v given the
observation OT is c(v|OT ) = 0 if v is traversed by some
working paths in T , it is equal to the prior probability of
failure if v is not traversed by any path in T , otherwise
c(v|OT ) = max{T1; T2}, where:

T1 =

⌈
1
|Fv|

·
∑

m∈Fv

⌊
1

|m̂(T )|

⌋⌉
, (7)

T2 = Pv + H(�Pv� − 1) ·
(

1− ε

Pv
− Pv

)
, (8)

Pv = |Fv|/|
⋃

m∈Fv

m̂(T )|, (9)

where Fv ⊆ T is the set of failed tested paths crossing node v.
H(x) is the Heaviside function (H(x) = 0, if x < 0, and
H(x) = 1 when x ≥ 0). ε > 0 is a small constant.

This approximation derives from the observation that a node
failure probability is directly proportional to the number of
paths traversing the node and inversely proportional to the
length of such paths (see Equation 6), as captured by the
term Pv in Equation 9. The term T1 in Equation 7 reflects

the fact that when a node v is traversed by a failing path m,
and all the other nodes in m̂ are known to be working, it is
possible to claim with certainty that v is broken, by exclusion.
The possible values of c(v|OT ) span in the interval [0, 1]
and, in analogy with probabilities, c(v|OT ) = 0 if the failure
probability of node v is 0, whereas if c(v|OT ) = 1 if the node
is broken.

In the following, we give some observations and proposi-
tions to characterize the values of the node failure centrality
given the observation.

Observation 1: Firstly, observe that T1 ∈ {0, 1}. Indeed,
for any failed path it holds that |m̂(T )| ≥ 1, therefore the
maximum value of the sum in equation (7) is |Fv|, proving
that T1 can not be greater than 1. When there is at least one
path m s.t. |m̂(T )| = 1, T1 = 1, otherwise T1 = 0.

Proposition 1: For all nodes v and observations OT it
holds that 0 ≤ T2 < 1.

Proof: While it is trivially true that T2 ≥ 0, we prove
that T2 cannot be greater than or equal to 1. We observe that
if Pv < 1, then T2 = Pv. When Pv = 1, T2 becomes 1 − ε,
while if Pv > 1, T2 = 1− ε

Pv
, that is a monotonically growing

function with a horizontal asymptote in 1. �
Proposition 2: Let v ∈ V be a node and OT the outcome

of some path probes. If c(v|OT ) = 1 =⇒ v is broken.
Proof: In Proposition 1 we prove that T2 < 1, hence

c(v) = 1 ⇐⇒ T1 = 1. When there is at least a failed path
m traversing v such that |m̂(T )| = 1, the numerator num of
T1 is 0 < num ≤ |Fv| and therefore T1 = c(v|OT ) = 1.
When this situation occurs, the probability of failure of node
v is indeed 1, as this means that the failure of path m is only
due to the failure of node v. �

Proposition 3: Let v ∈ V be a k-identifiable node with
respect to the set of paths T , where k is the number of failures
in the network, and let OT be the outcomes of path probes
on T . If v is broken =⇒ c(v|OT ) = 1.

Proof: Because v is k-identifiable, the set of paths crossing
v is different from the set of paths crossing any other set of
nodes of size at most k. In particular, it differs from the set of
paths crossing the other k−1 broken nodes. Hence there must
be at least one path m that passes through v and not through
any other failed node, and therefore m̂(T ) = {v}. We now
need to prove that there is some set of observations OT that
allows for disambiguating v by finding out that indeed m̂(T ) =
{v}. If |m̂(T )| = 1, then this is trivially true. By definition of
k-identifiability, the failure of node v must produce different
sets of failed paths than the ones resulting from simultaneous
failures of v and any other node in m̂\{v}. As a consequence,
there must be some working path passing through the nodes in
m̂\{v} and not through v, making it possible to verify through
end-to-end monitoring measurements that m̂(T ) = {v}, which
results in T1 = c(v|OT ) = 1. �

To conclude the discussion on the formulation of the cen-
trality, we comment on the choice of term T2 in equation (8).
This formulation is motivated by the observation that node
failure probabilities are directly proportional to the number
of failed paths traversing a node and inversely proportional
to the number of nodes w �∈ W being traversed by such
paths. This property is satisfied by both Pv and 1 − ε

Pv
.
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Furthermore, by experimental observations, we noticed that
P (S̄v|OT ) grows steeply with the number of terms Z̄i (where

v ∈ m̂
(T )
i ) in OT when P (S̄i|OT ) � 1, while it slowly

converges to 1 for P (S̄v|OT ) � 1 for increasing numbers of
negative tests on paths passing through v. Similarly, T2 = Pv

when Pv < 1, while T2 = 1− ε
Pv

for Pv ≥ 1.
In order to tune the value of ε we observe that if

q∗ = maxPv s.t.Pv < 1, then q∗ ≤ d−1
d , where d =

|
⋃

m∈Mv
m̂(T )| and Mv := {m ∈ M : v ∈ m̂}. Therefore,

for ε < 1−q∗, the growing trend of T2 would be still satisfied
when Pv exceeds 1.

A. Centrality-Based Utility

Because of the dependencies among path failures, com-
puting the joint probability P (OT ) requires the computation
of 2|F| addends. In order to reduce computational costs,
we approximate the probability that a path works, conditioned
to the set of observations OT , as follows:

P̃c(Zi|OT ) =
∏

v∈m̂
(T )
i

(1− c(v|OT )). (10)

Definition 2: The expected conditional utility based on fail-
ure node centrality is given by the formula:

Uc(ai|OT ) = λ(ai|Zi)P̃c(Zi|OT ) + λ(ai|Z̄i)P̃c(Z̄i|OT )
(11)

if � m� ∈ F : m̂�(T ) ⊆ m̂
(T )
i . Otherwise Uc(ai|OT ) = 0.

Here, λ(ai|Zi) is defined as in equation (1) and P̃c(Z̄|OT ) =
1− P̃c(Z|OT ).

The condition that equation (11) is valid if � m� ∈ F :
m̂�(T ) ⊆ m̂

(T )
i serves to recognize that super-paths of failed

paths are going to be failing, too. Thanks to prior observations,
we can assess the state of such paths and therefore, there is
no use in probing them.

B. Probing Algorithm With Centrality: FaCeGreedy

Algorithm 1 may be adapted to use the centrality metric
instead of the exact conditional probability by applying the
following modifications:

• Input: change p for c as initial node centrality.
• Lines 6 and 7: substitute U(a|OT ) with Uc(a|OT ).
• Line 8: replace P (S̄v|OT ) with c(v|OT ).
We hereby call FaCeGreedy (Failure Centrality Greedy

algorithm) the Algorithm 1 with the modifications described
above.

1) Computational Complexity: The computational com-
plexity of Algorithm 1 changes when centrality and
centrality-based utility (Definitions 1 and 2) are implemented
instead of probability and utility (equation 2).

Theorem 2: The computational complexity of FaCeGreedy
(Algorithm 1 with the changes described above) is O(K ·(|V | ·
|F|2 + |m̂max|)), where K is the maximum number of path
probes, V is the set of nodes of the network, F is the set of
failing tested paths and |m̂max| is the maximum path length.

Proof: The total number of tests is O(K). Computing
the centrality of a node v requires scrolling the failed paths

and searching for possible sub-paths in order to compute Pv

(equation (9)). This is comprehensive of computing |Mv ∩F|
(equation 7) and takes O(|F|2) operations. This is done for
all nodes v at each iteration. Computing the centrality-based
utility of a path requires a number of operations that is linear
in the number of nodes paths traverse. The overall cost of the
algorithm is O(K · (|V | · |F|2 + |m̂max|)), where |m̂max| is
the maximum path length. �

VI. DYNAMIC FAILURES

Progressive monitoring requires a series of sequential prob-
ing decisions. During its execution, it is reasonable to assume
that the state of some network components may change due
to new failures, congestion, or to recovery interventions. This
is especially true in large scale networks where congestions
can be caused by several phenomena: routers are suscep-
tible to large traffic loads [30] causing delays and packet
drops. Some Denial of Service attacks like SYN flood, ICMP
flood and DSN flood may also cause servers’ unavailability.
In this section, we show how the proposed algorithms can
be implemented in a persistent, always-on monitoring system
taking into account dynamic scenarios where nodes’ states
may change throughout the monitoring activity (working nodes
may fail because of network congestion and high bandwidth
consumption, and faulty nodes may be recovered). We do not
assume any knowledge of the time required by a node to be
fixed, nor of the nodes’ lifetime. As a consequence, the infor-
mation obtained by monitoring given paths may soon become
obsolete. To take account of the network dynamics, we propose
our algorithms in two dynamic variants Dynamic PoPGreedy
(DPoPGreedy) and Dynamic FaCeGreedy (DFaCeGreedy).
To address the dynamic scenario, we discretize time into the
intervals between path probes, and for each node v we define
a probability to transition from working to failed (pW→F ) and
from failed to working (pF→W ), at each time step. We assume
that it is more likely for a broken node to be fixed rather
than for a working node to fail (i.e., pW→F < pF→W ).
We ground our procedure on the observation that information
gained in the past progressively expires with time. Because of
the computational complexity that would result in a Bayesian
analysis where probabilities are explicitly time-dependent [28],
we consider the following simplified and easily computable
approach: we define a sliding observation window considering
only a set of the recently probed paths to account for informa-
tion obsolescence. We assume that the width of the window
�w is large enough to make it possible to cover the entire
network with path probes. The window slides progressively:
at each time step, the least recently probed path exits the
window, and a new path enters and is probed. DPoPGreedy
and DFaCeGreedy work similarly to their static counterparts
by using the only paths belonging to the sliding observation
window, until a contradiction is detected. A contradiction
inside a window occurs when the joint probability of the
last �w path probe outcomes is 0. This could happen either
because a path traversing supposedly working nodes fails,
or because a super-path of supposedly failed path works.
When this happens, it means that there has been at least
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TABLE II

METRICS FOR EVALUATING STATIC HEURISTICS. Vf IS THE VECTOR RETURNED BY ALGORITHM 1, SORTED BY NODE
FAILURE PROBABILITIES; k = |F | IS THE NUMBER OF ACTUALLY FAILED NODES; Vf [1 : k] ARE THE

FIRST k ELEMENT OF Vf ; i IS THE INDEX OF A FAILED NODE APPEARING IN Vf

a change in at least one node state. To handle this event,
we locate the most recent path that causes the contradiction.
Then we remove it from the window, together with all the older
observations, as the information they provide is considered
obsolete. If the methods reach convergence the algorithms
continue probing paths with zero utility, with tie breaking
rules aimed at ensuring network coverage and prompt anomaly
detection.

VII. EXPERIMENTAL RESULTS

In the following, we provide a performance evaluation of
both the variants PoPGreedy and FaCeGreedy of our approach
against state of the art solutions for classic BNT and sequential
graph-based group testing. In the experiments, we assume
cycle-free routing between monitor nodes. Our evaluation con-
siders the metrics described in Section VII-A. If not explicitly
stated otherwise, initial failure probability and centrality are
set to 0.1.

A. Metrics

We consider the output of any of the probing algorithms
in terms of the probability associated with each node failure.
We compare the performance of the heuristics with respect to
the results that would be obtained by using all the monitoring
paths. For the static scenario, we use the metrics that we
introduced in [29], namely accuracy over working nodes, aW ,
accuracy over broken nodes, aB , and the two ranking metrics,
R1 and R2. They are described in Table II. In addition to these
metrics, we also consider the number of probes required to
reach convergence and the execution time.

For evaluating DPoPGreedy and DFaCeGreedy, we use
metrics that capture the ability to detect node state changes and
metrics that measure the reliability of the classification results
step by step. For the first category, we compute the percentage
of detected node state changes in both ways (W → F and
F → W ) and the time for detection in terms of time steps.
For assessing the classification reliability at each time, we use
precision and recall:

P =
tp

tp + fp
, R =

tp

tp + fn

where tp (true positive) is the number of correctly classified
nodes; fp (false positive) is the number of nodes erroneously
classified either as working or as failed; fn (false negative)

is the sum of the number of real working nodes that are not
classified as working, and of the number of real failed nodes
that are not classified as failed. Note that we do not produce a
binary classification, as at each step, the state of some nodes
may be uncertain. For this reason, the binary classification
that is usually evaluated by recall and precision is calibrated
on ’correctly’ and ’incorrectly/ambiguously classified’ nodes
in our case. Furthermore, observe that a false positive may
only exist in the dynamic scenario (and not in the static
one) and occurs in the interval between a state change of an
already classified node and the detection of such state change
(i.e., when a contradiction is verified). Note that the recall is
similar to R1, except that R1 evaluates probabilistic outcomes
instead of binary classifications.

B. Benchmark Solutions

To validate our approach, we compare it with existing solu-
tions based on classical BNT as well as approaches based on
progressive graph-constrained group testing. For the first set of
benchmarks, we consider the greedy for coverage, greedy for
identifiability and greedy for distinguishability (GC, GI, GD)
heuristics defined in [6]. At each iteration, the next path to
probe among the available input paths is chosen as the one that
maximizes network coverage/identifiability/distinguishability,
respectively. When the greedy procedures meet some stopping
criteria, node failure probabilities P (S̄v|OT ) are computed,
and the outcome is evaluated in terms of the metrics described
in Section VII-A.

In addition, we compare our methods to the adaptive, graph-
constrained group testing algorithm introduced in [7], called
AdaptiveFinder, (AF). The goal of AdaptiveFinder is to detect
the set of defective items (nodes) in a graph with the least num-
ber of probes. We highlight that unlike our algorithms, AF is
simply graph-constrained, as opposed to routing-constrained.
This implies that, with a single path, AF can monitor portions
of the network topology that would otherwise require multiple
paths from our routing-constrained solutions. For instance,
AF can use a unique path to monitor a tree-shaped sub-graph.
AF can also monitor individual nodes with direct inspection.
These activities would require more path-probing decisions
from our algorithms. As a consequence, AF is apparently more
flexible and powerful in classifying the state of the network
components, but it achieves these capabilities at the expense of
requirements that are not realistic in traditional communication
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network settings. By working on a wider solution space, AF is
not susceptible to lack of identifiability, which means that,
when run until convergence, AF always manages to assess the
state of all the nodes without any uncertainty.

For this reason, when evaluating the accuracy of AF,
we consider the ground truth as a term of comparison, i.e.,
aW = WAF /W and aB = BAF /B, where W and B are
the set of the truly working and failed nodes, respectively.
The solution obtained by AF is proved to be a (2 + ε)-
approximation of the optimal solution, [7]. Nevertheless, it is
not possible to make perfect parallelism between the opti-
mality approximation of PoPGreedy and AF, as they move
in different action and solution spaces. We also stress that
AF assumes an unrealistic and expensive capability of node
detection because it requires all nodes of the network to
be provided with a monitoring system software and fully
controllable routing. Finally, we also compare our results
with the Adaptive Path Construction (APC) algorithm, [8].
Similarly to PoPGreedy and FaCeGreedy, APC assesses the
state of the network by means of end-to-end monitoring paths
whose routing is given and uncontrollable. APC acts in two
phases. In the first, it implements a greedy for coverage
algorithm. In the second, it follows an adaptive approach: at
each step it selects the path whose number of still unclassified
nodes (i.e., nodes whose state -working/failed - is unknown,
called candidate nodes) is closer to a half of the overall
number of candidate nodes. APC outputs the set of the
failed nodes and of the candidate nodes. In PoPGreedy and
FaceCeGreedy, these sets correspond to the set of nodes whose
failing probability/centrality is 1 and to the set of nodes
whose failing probability/centrality lies in (0, 1), respectively.
In order to compare APC in terms of the metrics introduced
in Section VII-A, we evaluate the failure probability of the
nodes in the candidate set considering the outcome of the paths
selected by APC, and we set the failure probability to 1 for the
nodes in the identified set, and to 0 for all remaining nodes.

C. Tests

We conduct experiments on two different networks: an
internet network in Europe, BICS [31], and a fiber network
topology in Minnesota [32]. Table III detail features of the
two topologies (left) and networks’ features (right), taking
into account monitor-to-monitor path choices. We use the
smaller network, BICS, for running a thorough study of
the behaviour of our algorithms and benchmarks, before
extending our conclusions to the case of the larger network,
Minnesota (MN). Experiments on real life dense networks
will be considered in future work. In the experiments, the
set of candidate monitors is chosen randomly, with several
paths between the same monitor pairs, to ensure broad network
coverage.

1) Experiments on BICS Network: Figures 3-4 are related to
the BICS network. All curves are averaged on 20 experiments
and show the value of the metrics defined in Section VII-A
on PoPGreedy, FaCeGreedy and all benchmarks. Shades/bars
depict standard deviations. In the experimental configurations
shown in Figure 3, all the algorithms stop when they either

TABLE III

ON THE LEFT: EXPERIMENTAL SETTINGS. δ = NODE DEGREE,
nδ=1 = NUMBER OF DANGLING NODES (DEGREE 1). ON THE

RIGHT: PATH CHARACTERISTICS. V C IS THE SET OF

COVERED NODES; EC IS THE SET OF COVERED

LINKS; δMi = NUMBER OF PATHS IN

M TRAVERSING NODE vi

Fig. 3. Tests on BICS network. Bounded.

reach convergence or a maximum number of iterations K ,
whichever the earliest. In this experiment, K is set to the
number of path probes needed by PoPGreedy to converge.
Figure 3 shows how the classification metrics discussed in
Section VII-A, as well as the processing times and the average
number of tested paths, change for a growing number of
failed nodes (from 1 to 5 failures), distributed with uniform
probability. Notice that FaCeGreedy and GC always reach
convergence before PoPGreedy (Fig. 3f), but while GC has
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Fig. 4. Metrics evolution iteration-wise (BICS network with 4 failed nodes).
Bounded.

poor, non-improvable performance in terms of node classi-
fication, FaCeGreedy, together with PoPGreedy, achieve the
same performance that would be obtained by probing all the
available monitoring paths, M. For readability, we omit GC
from the plots of the following experiments since they do
not show any qualitative difference in the behavior of GC
with respect to those of Figure 3. GI and GD probe the
same number of paths, K , as does PoPGreedy (set as an
upper bound for this experiment) because they are unable
to reach their respective convergence criterion with fewer
paths. In fact, to converge, both GI and GD would require an
enormous amount of paths, as they aim at ensuring complete
failure identifiability and distinguishability for any failure
scenario, regardless of the progressively available informa-
tion. AF manages to converge with a very small number of
paths only when a single failure occurs in the network. For
higher numbers of failures, AF requires many more steps
to converge, as is shown in the next set of experiments.
In contrast, APC performs similarly to FaCeGreedy. This is
because the number of failures considered in this experimental
scenario is small, and the initial coverage phase implemented
by APC helps with the detection of many working nodes.
In Figure 4, we analyse the growth of the evaluation metrics
step-wise when four failures occur in the network, and the
number of tests is bounded by the number of tests used by
PoPGreedy to converge. We can observe that within the same
experiments, aW and aB have a monotone growing trend
(Figures 4a and 4b), whereas R1 and R2 may oscillate as
a consequence of the fact that during intermediate probes,
working nodes may gain a high failure probability that
goes abruptly to 0 when a working path traverse them
(Figures 4c and 4d). We can also observe that aW curves
are concave and grow steeply with the very first path tests.
aB instead has a convex trend, and in the first steps it might

Fig. 5. Tests on BICS network. Unbounded.

be 0. This is because it takes a number of tests before a
node can be classified as failed, whereas working paths give
immediate node classification.

Figure 5 considers the scenario where all the algorithms
are allowed to use all the monitoring paths or run until they
reach convergence according to their respective criteria. The
latter condition does not hold for AF since it is not limited to
moving along given paths between monitors. AdaptiveFinder
requires a greater number of tests than those used by Pop-
Greedy and FaCeGreedy to converge (see Figure 5b), while
GI and GD always probe all available paths. When we do not
impose constraints on the maximum number of paths to probe,
AF converges to the ground truth, i.e., it correctly classifies all
nodes. We stress that this is due to its possibility to monitor
single nodes directly and to its freedom to route through
the network without the restriction of moving along given
paths. Once again, PoPGreedy and FaCeGreedy test small por-
tions of the available monitoring paths to reach convergence
(Figure 5b). This also holds for APC in this failure scenario.
As expected, the average elapsed time required by PoPGreedy
considerably increases with the number of failed nodes, even
on a small network (see Figures 3e and 5a). The high variance
is due to its exponential dependence on the number of failed
paths, which amplifies the discrepancy between the situations
in which central or non central nodes fail. Because of its
computational complexity, we do not include PoPGreedy in
the next experiments conducted on the larger graph of the
Minnesota network.

2) Minnesota: Figures 6 and 7 show our experiments on the
Minnesota network. In Figure 6, tests are run until convergence
or until a maximum number of tests K has been reached,
whichever occurs earlier. In this case, the bound K is given
by the number of path probes needed by FaCeGreedy to
converge. In contrast, the experiments of Figure 7 are run until
convergence or until all available paths are probed. Also in this
setting, GI and GD need to test all available paths and are still
unable to converge because of their inability to take account of
the progressively available information which can be obtained
by probing the paths in a sequence. In fact, in Figure 6,
GI and GD use the same number of paths as FaCeGreedy
but with very poor classification performance, whereas for the
unbounded tests in Figure 7, they reach the same performance
as FaCeGreedy by probing all available paths. On the other
hand, FaCeGreedy is able to obtain full network information
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Fig. 6. Tests on the minnesota topology. Bounded.

Fig. 7. Tests on the minnesota topology. Unbounded.

by converging with less than 9% of all the available paths.
Once again, in this configuration, in the unbounded case of
Figure 6, AF is able to correctly detect all the failures within
the maximum number of tests K only when the failure set
is very small. Despite the good performance of APC in the
BICS network, when APC is applied to a larger network
and when many failures occur, it uses many more paths to
reach convergence than FaCeGreedy (Figure 7a) and performs
poorly in the bounded tests (Figure 6). Indeed, performing a
greedy for coverage (as APC does in its preliminary phase) is
a convenient way to discover many working nodes only when
very few failures occur. Similarly, the approach implemented
in APC and summarized in Section VII-B is beneficial only
when the failed nodes do not lay on the same paths and are
few.

Together with the aforementioned metrics, we also study
how different choices of prior centrality values (c) may affect
the performance of FaCeGreedy in terms of aB . Figure 7b
depicts how the accuracy of detection of broken nodes changes
at each iteration of FaCeGreedy for c = 0.05, 0.08, 0.1. For
each experiment, 35 failed nodes ( 8% of the total number of

Fig. 8. Number of tests required by all heuristics to converge in the
geographically distributed failure scenario.

Fig. 9. Precision and recall of DFaCeGreedy and DPoPGreedy.

TABLE IV

AVERAGE PERCENTAGES OF DETECTED STATE CHANGES AND AVERAGE

TIME FOR CHANGE DETECTION, AND THEIR STANDARD DEVIATION

covered nodes) are generated. Despite curves varying through-
out intermediate iterations, and despite small differences in
the final number of tested paths, FaCeGreedy is able to reach
maximal accuracy (i.e., aB = 1) also for under and over
estimated choices of c (that is, c = 0.05 and c = 0.1),
proving its consistency and robustness against potentially
wrong settings of the prior probability or centrality of a node.

3) Geographically-Distributed Failures: Differently from
the previous tests, which considered a uniform failure distrib-
ution, we now let failures occur more likely in the proximity
of specific geographic spots to simulate realistic failure sce-
narios, including blackouts and natural disasters. We choose
a geographic point in the network to represent the epicenter
of a catastrophic event and let all nodes fail according to a
normal bi-variate geographic distribution around the selected
point. In Figure 8, we show the number of tests required by all
heuristics to converge. The figure highlights that PoPGreedy
and FaceGreedy have consistent performance in this failure
scenario, whereas APC is more sensitive to the concentration
of failed nodes. GI, GD and AF perform similarly to previous
tests (Figures 5b and 7a).

4) Experiments on Dynamic Failures: Figure 9 shows the
average precision and recall of DPoPGreedy and DFaCe-
Greedy on the BICS network. Once again, shades represent
standard deviations. We run the algorithms for 200 steps, and
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we consider the window size �w to be 12 to ensure coverage
within each window slot. Each working node may fail with
probability pW→F = 0.1. Failed nodes remain failed for
a fixed number of steps, and then they may be fixed with
probability pF→W = 0.7 at each successive step. We compute
the evaluation metrics at each time step, from step 13 to
step 200. In Table IV, we show the percentage of detected node
state changes and the average time for change detection. The
experiments are averaged on 50 runs, and standard deviations
are provided between parenthesis.

VIII. CONCLUSION

Boolean Network Tomography (BNT) provides the design
of end-to-end monitoring paths to ensure network failure
localization. However, when the number of concurrent failures
is unknown, BNT techniques hit the snag of the huge dimen-
sion and intractability of the solution space. In this paper,
we propose a progressive approach to failure localization in the
challenging scenario where an unknown and unbounded num-
ber of failures may occur. A set of monitoring paths is probed
in a progressive manner, and decisions on which path to probe
are made on the basis of a Bayesian approach which optimizes
the expected value of the failure related information that can
be obtained by incrementally monitoring new paths. To tackle
the complexity of calculating posterior failure probabilities at
each monitoring step, we propose a failure centrality metric,
computable in polynomial time, which reflects the likelihood
of a node to be the site of a failure. We use such a metric to
guide decision making and provide a conclusive assessment
of the state of network components. We extend the study
to an online scenario where node states change dynamically
throughout the experimental period. The dynamic extensions
of our algorithms are based on a sliding observation window
technique which adaptively considers information obsoles-
cence. The experiments show that our approach outperforms
state of the art solutions based on classic Boolean Network
Tomography as well as approaches based on progressive group
testing in all the considered scenarios.

APPENDIX

OPTIMALITY APPROXIMATION

In this section, we provide the formulation of the approx-
imation with respect to the optimal solution of the policy
implemented by PoPGreedy. We refer the interested readers
to [33] for a more detailed analysis with examples and
detailed proofs. It is well-known that greedy algorithms for
solving deterministic optimization problems whose objective
functions have properties of monotonicity and submodularity
provide a solution that is a constant approximation of the
optimal solution [34]. More recently, the concept of adaptive
monotonicity and submodularity, originally introduced in [35]
and lately revised in [36], extended such properties to the
context of stochastic optimization problems. In such problems,
the function to be maximized depends on a set of observations
OT on the state of the elements of the ground set (in our case,
the state of paths M). The problem envisioned in this paper

falls into the definition of stochastic maximization problem
and can be formulated as follows:

max
A(T )⊆A

λ(A(T )|OT )

s.t. |T | ≤ K (12)

where λ(A(T )|OT ) is the utility of the set of actions A(T ) =
{a(1), . . . , a(|T |)}. In the context of stochastic maximization
problems, at each step, greedy policies choose the action that
maximizes the expected value of the utility, whose actual value
is known with certainty only after tests take place. Notice
that PoPGreedy in Algorithm 1 follows the Adaptive Greedy
Algorithm structure shown in [35]. To evaluate the optimality
approximation of PoPGreedy, we use the results recently
proven in [5], according to which it is possible to study the
approximation of the solution obtained by a greedy policy
with respect to the optimal one by bounding the adaptive
submodularity ratio γOT ,k(λ, p) of its utility, with a scalar
α ∈ (0, 1]. The resulting approximation is:

λavg(πG) ≥
(

1− exp
(
−αK

h

))
λavg(π∗) (13)

where λavg(πG) and λavg(π∗) are the average quantity of
information gained by the greedy and the optimal policies
πG and π∗, respectively. The parameters K and h are the
constraint to the maximum number of tests and the height of
the decision tree of the optimal policy π∗, respectively.

1) Bounds of the Adaptive Submodularity Ratio: The goal
of this section is to exhibit a scalar α > 0 such that

γOT ,k(λ, p) �

∑
m∈M

P (m ∈ T π)Δ(a|OT )

Δ(π|OT )
≥ α. (14)

The adaptive submodularity ratio is upper-bounded by 1 and
it is equal to 1 if and only if λ is adaptive submodular. The
term Δ(∗|OT ) is called conditional expected marginal benefit
(of an action or of a policy) and was introduced in [35].
We report its formal definition hereunder:

Definition 3: Let Y ⊂ X , |X | < ∞, and let x ∈ X \ Y .
The conditional expected marginal benefit of x with respect to
a function f , having observed OY is:

Δ(x|OY ) := E[f(Y ∪ {x}, OY )− f(Y, OY )]. (15)

It is easy to prove that the definition of conditional expected
marginal benefit corresponds to the definition of expected util-
ity given in Equation 2, Δ(a|OT ) ≡ U(a|OT ). In particular,
in our scenario the ground set X is the set of all possible
actions A on pathsM, and the state of a path is either normal
or defective (or equivalently, 0 or 1).

The inequality 14 can be equivalently expressed as
follows [5]: ∑

m∈M
P (m ∈ T π)da(α) ≥ 0. (16)

where da(α) := U(a|OT ) − αU(a|OT ′); OT ′ is the set of
observations such that the next path chosen by policy π is m,
and T ⊂ T �. To prove the previous relation, we want to
show that for every a ∈ A (i.e., for every action corre-
sponding to probing path m such that m �∈ T �) it holds that
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da(α) = U(a|OT )−αU(a|OT ′) ≥ 0. Among all path choices,
we just need to study the contribution of those such that
da(1) < 0. Therefore, we exclude all actions corresponding to
probing the following sets of paths: i. already tested paths;
ii. Paths m such that P (Z|OT ) = 0 or 1 or such that
P (Z|OT ′) = 0 or 1; iii. paths m such that U(a|OT ) ≥
U(a|OT ′). For all these, it holds that da(1) ≥ 0.

We study the maximum difference (i.e., the maximum value
of |da(α)| with da(α) < 0) that may occur between U(a|OT )
and U(a|OT ′) for all other paths. To do so, we study the small-
est non-zero value of U(a|OT ), Δmin, and the greatest value
of U(a|OT ′), Δ�

max. By choosing α = Δmin

Δ′
max

, Equation 16 is
always satisfied.

a) Smallest value of U(a|OT ) ≡ Δmin: By means of
algebraic and analytic steps detailed in [33], we show that the
minimum value of U(a|OT ) strictly depends on the minimum
value of P (Z|OT ) such that P (Z|OT ) > 0, to which we refer
to as Pmin, and prove that:

Pmin ≥
[
1− p

1 + (1 − p)(p∂max − 1)

]|m̂max|
≡ LB(Pmin),

where ∂max is the maximum number of failing paths traversing
a single node and |m̂max| is the length of the longest path.
Consequently:

Δmin ≥ (|m̂(T )|+ |Fm,(T )
1 |) · LB(Pmin). (17)

b) Greatest value of U(a|OT ′) ≡ Δ�
max: The greatest

value of U(a|OT ′) with P (Z|OT ′) < 1 results in two
occasions: when path m does not intersect any failed paths;
when it is possible to localize failed nodes traversed by
failing paths intersecting m, and none of these nodes is
traversed by path m. In these cases, U(a|OT ′) = |m̂(T ′)|(1−
p)|m̂

(T ′)| + �1/|m̂(T ′)|�. This function has a global maximum
in −� 1

ln(1−p)�, where n = �x� is the nearest integer of x.

It follows that Δ�
max = −� 1

ln(1−p)�(1− p)−� 1
ln(1−p) 	.

c) Solution approximation: By choosing α = Δmin

Δ′
max

as

discussed in the previous sections, it holds that for all paths m
and observations OT and OT ′ , da(α) ≥ 0, implying soundness
of Equation 14.

Proposition 4: If πG is the policy representing the adaptive
greedy algorithm using K steps, and λ : 2M × OM → R≥0

is the utility function defined in Equation 12, then:

λavg(πG) ≥
(

1− exp
(
−αK

k

))
λavg(π∗)

where π∗ is the optimal policy, k is the number of steps that
π∗ takes to reach convergence and α = Δmin

Δ′
max

.
Proof: The statement is a direct consequence of the

following facts: i. λ is adaptive monotone. ii. Theorem 1 in [5],
reported in Equation 13. iii. PoPGreedy is an Adaptive Greedy
Algorithm. �

Notice that α is dependent on controllable parameters ∂max

and |m̂max| that do not depend on the network topology but
only on the routing paths choice.
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