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Feridun Tütüncüoğlu , Graduate Student Member, IEEE, Slad−ana Jošilo ,

and György Dán , Senior Member, IEEE

Abstract— We consider the interplay between latency
constrained applications and function-level resource management
in a serverless edge computing environment. We develop a game
theoretic model of the interaction between rate adaptive appli-
cations and a load balancing operator under a function-oriented
pay-as-you-go pricing model. We show that under perfect infor-
mation, the strategic interaction between the applications can be
formulated as a generalized Nash equilibrium problem, and use
variational inequality theory to prove that the game admits an
equilibrium. For the case of imperfect information, we propose
an online learning algorithm for applications to maximize their
utility through rate adaptation and resource reservation. We show
that the proposed algorithm can converge to equilibria and
achieves zero regret asymptotically, and our simulation results
show that the algorithm achieves good system performance at
equilibrium, ensures fast convergence, and enables applications
to meet their latency constraints.

Index Terms— Generalized Nash equilibrium problem, online
learning, serverless edge computing, resource allocation.

I. INTRODUCTION

EDGE computing brings computing resources close to
the network edge, and is emerging as a key enabler

for latency sensitive and bandwidth intensive applications.
Examples of applications that could benefit from edge com-
puting include augmented reality, computer vision-enabled
automation and surveillance [1], [2], [3].

Nonetheless, large scale deployment of applications in edge
computing environments will require a deployment and man-
agement interface that provides simple abstractions for the
management and maintenance of physical resources, consist-
ing of a small set of parameters that are configurable in real-
time. These parameters should be such that they allow to
control application performance, e.g., in terms of the trade-off
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between data rate and latency, while providing information
about pricing and billing. At the same time, the abstraction
should allow edge infrastructure operators to efficiently man-
age the available physical resources, subject to energy and
reliability constraints.

A promising lightweight abstraction that could potentially
suit a variety of edge applications is function as a service
(FaaS). In the case of FaaS, applications are explicitly com-
posed of the subsequent parallel or sequential invocation of
subtasks, referred to as functions [4]. Functions are managed,
i.e., instantiated, executed and shut down, by the infrastructure,
relieving the programmer from the burden of system config-
uration. Stateless FaaS has already found adoption in cloud
computing, referred to as serverless computing, as it provides
autoscaling and follows the pay-as-you-go pricing model [5].
Recently proposed solutions for stateful FaaS could extend this
offering with low-latency mutable state and communication in
the near future [4], [6].

Nonetheless, compared to a cloud computing environment,
resource management for FaaS in an edge computing envi-
ronment faces a number of novel challenges [7]. First, it has
to cater for heterogeneous hardware platforms, and has to
consider the orchestration of communication and computing
resources. Second, it should cater for the latency requirements
of applications that involve the execution of multiple functions,
and at the same time may be able to adjust their data rate
so as to maximize their utility. Third, it has to deal with
the strategic interaction between multiple applications for
constrained resources. The outcome of the resulting interaction
between infrastructure resource management and application
behavior is, however, not well understood.

Motivated by the above challenges, in this paper we con-
sider the interaction between rate control and infrastructure
resource management for latency sensitive tasks in a server-
less edge computing system, and make the following main
contributions:

• We propose a queuing network model of task graph
execution and use it for formulating a game theoretic
model of the interaction between self interested wireless
devices that can reserve communication and computing
resources, and a FaaS edge operator that allocates the
resources.

• We show pseudoconvexity of the task sojourn time with
respect to the arrival intensity in a G/G/1 queue and
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in a G/G/1 fork-join network, a result that may be of
independent interest.

• We show that under perfect information the strategic
interaction between Wireless Devices (WDs) can be
formulated as a generalized Nash equilibrium problem,
and we show the existence of Nash equilibria by using
variational inequality theory.

• For the case of imperfect information, we propose an
online algorithm called Online Adaptive Rate Reservation
and Control (OARC) for learning equilibria in a distrib-
uted manner. We show that OARC converges to equilibria
and achieves zero regret asymptotically.

• Our numerical results show that OARC outperforms the
state of the art in Online Convex Optimization (OCO) for
a variety of task graphs.

The rest of the paper is organized as follows. We present
the system model and problem formulation in Section II, and
prove pseudoconvexity and monotonicity of the sojourn time in
fork-join networks in Section III. We consider equilibria under
perfect information in Section IV, and learning equilibria
under imperfect information in Section V. Section VI presents
numerical results. Section VII discusses related work and
Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an edge computing system that consists of a
set N = {1, 2, . . . , N} of wireless devices (WDs), a set A =
{1, 2, . . . , A} of access points (APs) and an edge cloud that
hosts a set C = {1, 2, . . . , C} of computing resources (CRs),
illustrated in Figure 1. We define the set R = A ∪ C of edge
(communication and computing) resources.

Tasks and subtask graphs: We consider that WD i ∈ N
generates latency sensitive computational tasks of type i with
intensity λi. We model a type i task as a directed acyclic
graph Gi = (Vi, Ei), where each node v ∈ Vi is a subtask.
The source node vi

0 ∈ Vi represents wireless transmission of
the task’s input data via an AP a ∈ A to the edge cloud.
Nodes v ∈ Vi \ {vi

0} are computational (execution) subtasks,
and correspond to the execution of the functions that constitute
the task. The sink node vi

|Vi| is the last execution subtask, and
its completion marks the completion of the task. We denote
by T i the maximum average task completion time acceptable
to tasks of WD i. A directed edge e(vi

m, vi
o) ∈ Ei indicates that

subtask vi
m has to finish before subtask vi

o can start execution.
We refer to Gi as the task graph of WD i, and we consider that
the task graphs Gi represent fork-join type jobs, i.e, subtasks
are executed sequentially or in parallel. Finally, we define
V = ∪i∈NVi. Observe that for a task of type i the arrival rate
of each subtask v ∈ Vi is λv = λi.

Communication and Computing Resources: We denote
by Rv ⊆ R the set of resources that can be used for
performing subtask v ∈ Vi. For a wireless transmission subtask
vi
0 ∈ Vi the resources are Rvi

0
⊆ A, i.e., a subset of the

APs, while for execution subtasks v ∈ V \ {∪i∈N vi
0} they

are Rv ⊆ C, i.e., a subset of CRs. Similarly, for a resource
r ∈ R we define the set Vr = {v ∈ V|r ∈ Rv} of
subtasks that can be performed using resource r. We denote

Fig. 1. FaaS-enabled edge cloud infrastructure with N = 4 WDs, A = 2
APs and C = 9 CRs, a fork-join subtask graph Gi, and the corresponding
queuing network.

by μr,v the service rate at which resource r can process
subtask v; thus, μr,vi

0
is the achievable transmission rate of

WD i ∈ N when using communication resource r ∈ A,
while for execution subtask v ∈ V \ {∪i∈N vi

0} the service
rate is μr,v when using CR r ∈ C. Heterogeneous service
rates allow us to model infrastructures with heterogeneous
communication and computing resources. Figure 1 illustrates
the components of the considered system, including WDs,
heterogeneous communication and computing resources and
the corresponding modeling abstraction, which maps every
subtask to a corresponding G/G/1 queue, resulting in a G/G/1
queuing network as a model of data transmission and subtask
graph execution.

A. Edge Resource Allocation

Our model of resource allocation in the serverless edge
infrastructure allows resources to be shared dynamically
among subtasks. We denote by pr,v the fraction of resource
r allocated for processing subtask v ∈ V , and by p =
(pr,v)r∈R,v∈V the resulting resource allocation vector. Further-
more, we define the resource utilization ρr =

∑
v∈Vr

pr,v ≤ 1,
and the vector ρ ∈ [0, 1]|R|, which contains the resource
utilizations ρr in nonincreasing order. We consider that the
processing capacity not allocated at a resource is shared
among the subtasks in proportion to their allocations, thus the
perceived allocation of resource r available to subtask v is

p̃r,v =
pr,v

ρr
, (1)

We denote by μ̃r,v = p̃r,vμr,v the resulting perceived service
rate for subtask v on resource r, and we express the total
perceived service rate for subtask v,

μ̃v =
∑

r∈Rv

μ̃r,v. (2)

Similar to existing serverless offerings and to bandwidth
SLAs in 5G networks [8], we consider that users can reserve
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computing capacity and communication resources. The ability
to reserve compute capacity is akin to provisioned concurrency
in existing serverless offerings1 Nonetheless, unlike in existing
commercial offerings, for simplicity we define the reservation
in terms of processing rate (instead of processing capacity).
This formulation is reasonable, as users can know the average
service times of their subtasks. We denote by σvi the service
rate reservation made by WD i ∈ N for its subtask vi ∈ Vi.
Furthermore, we denote by σi =

∑
vi∈Vi

σvi the total rate
reservation of WD i. Throughout the paper we consider that
σvi = σi

|Vi| , ∀vi ∈ Vi, i.e., WDs make the same service rate
reservation for all of their subtasks. We make this assumption
for two reasons. First, a uniform allocation of service rates
to the servers minimizes the mean sojourn time in a tandem
network of M/M/1 queues. It may not be optimal for non
M/M/1 queues, but it is likely not too far from optimal.
Second, this model allows for a simple interaction between the
users and the infrastructure as each user can reserve resources
through a single parameter independent of the number of
subtasks in its task graph, providing ease of use for customers.
Considering non-homogeneous rate reservations could be an
interesting extension of our work.

Load-balancing Network Operator: To effectively serve
user requests, we consider that the network operator performs
load balancing periodically. It does so by minimizing ρ, i.e.,
the vector of the utilization of communication and computing
resources, in the lexicographical sense, subject to rate stability
constraints.2 Thus, the operator periodically solves the opti-
mization problem

lex min
p

ρ (3)

s.t. σv ≤
∑

r∈Rv

pr,vμr,v, ∀v ∈ V (4)

ρr =
∑
v∈Vr

pr,v, ∀r ∈ R, (5)

σv =
σi

|Vi| , ∀v ∈ Vi, (6)

pr,v = 0, ∀r ∈ R, v /∈ Vr (7)

pr,v ≥ 0, ∀r ∈ R, v ∈ Vr. (8)

Constraint (4) ensures that each subtask receives the reserved
rate and allows WD i to adjust the sojourn time for subtask
v (c.f., Kingman’s approximation of the waiting time in a
G/G/1 queue [9]), constraint (5) defines the utilization of
each resource r ∈ R under resource allocation vector p,
constraint (6) enforces resources to be allocated uniformly
among execution subtasks of a WD, and constraints (7) and (8)
ensure that the allocation of resources to the subtasks respects
assignment constraints.

The resource allocation implemented by the operator deter-
mines the perceived service rates of the subtasks, and together

1Amazon Lambda allows function instances to be kept initialized, called
provisioned concurrency.

2Let ρ, ρ′ ∈ R
|R|
≥0 . Then ρ <L ρ′ (smaller according to the lexicographical

order) if and only if there exists 1 ≤ r′ ≤ |R| such that for r < r′ we have
ρr = ρ′

r and ρr′ < ρ′
r′ . Given that ρ consists of the utilizations in non-

increasing order, lexicographical minimization results in a particular min-max
solution. The two are equivalent for |R| = 2.

with the task arrival rates it determines the average task
completion times of the users. To express this dependence,
we define the collection λ = (λi)i∈N of arrival intensities of
the WDs. Similarly, we define the collection σ = (σi)i∈N
of resource reservations of the WDs. Finally, we denote by
S̄i(λ, σ) the mean completion time of tasks generated by
WD i, which in our model equals the mean sojourn time of
customers in a G/G/1 fork-join queuing network corresponding
to the subtask graph Gi.

B. User Utility

Aligned with the pay-as-you-go billing model widely used
in serverless computing, we denote by cλ

i and cσ
i the unit cost

per arrival rate and per resource reservation, respectively, and
we define the computing cost for WD i as Ci(λi, σi) = cλ

i λi +
cσ
i σi. The term cλ

i accounts for the cost due to the number
of invocations, but it can also account for the computational
resources actually used for executing tasks, as usual in existing
serverless offerings. Furthermore, we define the utility of
WD i,

Ui(λi, σi) = fi(λi) − Ci(λi, σi), (9)

where fi(λi) is a continuously differentiable concave function
of λi, i.e., d2f

dλ2
i

< 0. Concavity of the utility is a natural
assumption for many monitoring and control applications, and
is widely used as it captures diminishing marginal gains [10],
[11], [12], [13], [14], while differentiability ensures analytical
tractability. We also make the reasonable assumptions that
fi(0) = 0 and cλ

i < df
dλi

|λi=0 ≤ Li ∈ R>0.

Since the WDs pay for the rate at which they generate tasks
and for the resource reservations they make (c.f. equation (9)),
for each WD i ∈ N there exists a maximum rate λi and
a maximum resource reservation σi, which can be obtained
as the solution to ∂Ui

∂λi
(λi, 0) = 0 and to Ui(λi, σi) = 0,

respectively. Therefore, we can consider that WD i ∈ N
chooses σi from the compact set Si = [σi, σi] and λi from
the compact set [λi, λi], for some σi ≥ 0 and λi ≥ 0.

C. Serverless Stochastic Rate Allocation Game

In the considered system the WDs are engaged in repeated
strategic interaction through the resource allocation p, which
they can influence through the resource reservations σ.
We consider that the WDs can update their resource reser-
vations σ periodically, i.e., whenever the network operator
updates the resource allocation p by solving (3)-(8). Between
subsequent updates of the resource reservation the WDs can
adjust their rates λ. We adopt the game theoretic notation σ−i

and λ−i to denote the resource reservations and the rates of
all WDs except WD i, respectively.

Each WD i ∈ N aims at maximizing its utility (9) subject
to its average task completion time constraint T i, by choosing
resource reservation σi and rate λi. Thus, each WD i aims at
solving the optimization problem

arg max
λi,σi

Ui(λi, λ−i, σi, σ−i) (10)

s.t. S̄i(λi, λ−i, σi, σ−i) ≤ T i (11)
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TABLE I

TABLE OF NOTATIONS

The resulting game played by the WDs is a dynamic game
in which not only the objective functions of WDs depend
on each others’ strategies, but also the strategy sets through
stochastic constraints. Importantly, in practice the mean task
sojourn times, and thus, the action sets are not known, but have
to be learned by the WDs. We refer to the resulting game as the
Serverless Stochastic Rate Allocation (SSRA) game. In what
follows we investigate (i) whether the SSRA game admits an
equilibrium, and (ii) whether WDs could learn an equilibrium
strategy in a distributed manner.

III. SOJOURN TIME CHARACTERIZATION

In this section we first show monotonicity and pseudocon-
vexity of the mean task completion time S̄i(λ, σ), i.e., the
sojourn time in a G/G/1 fork-join network, in the task arrival

rate λi. We then characterize the structure of the optimal
solution of the operator’s load balancing problem (3)-(8), and
finally we show monotonicity of the mean task completion
time S̄i(λ, σ) in the resource reservation σi. We use these
results in Section IV and V.

A. Monotonicity and Pseudoconvexity of the Sojourn Time in
the Arrival Rate

It is known that even in a single G/G/1 queue with FCFS
service discipline the mean sojourn time need not be a
convex function of the arrival rate [15]. Nonetheless, in what
follows we show that the mean sojourn time is a monotone,
pseudoconvex function of the arrival rate. The importance of
this result is that pseudoconvexity is a sufficient condition for
gradient-based learning algorithms to converge to the optimal
solution.

We start with showing the result for tandem queues; we
consider a set V = {1, 2, . . . , V } of G/G/1 queues in series,
and we assume that the service discipline is FCFS and
work-conserving (i.e., a server is never idle when its queue
is non-empty). We make the common assumption that the
interarrival and service time distributions satisfy the stability
criterion [16], [17]. We denote by Iv

n the time between the
arrival of customer n − 1 and customer n to queue v ∈ V .
Furthermore, we denote by sv

n, wv
n and Sv

n the service, waiting
and sojourn times of customer n in queue v ∈ V , respectively,
and we introduce the notation

Iv
l,m =

m∑
k=l

Iv
k , ΣSv

l,m =
m∑

k=l

sv
k, S1:V

n =
V∑

v=1

Sv
n, (12)

where for l > m the sums are empty and are thus 0.
Before we present our results, let us recall two fundamental
results concerning the waiting times and the sojourn times in
tandem queues, respectively. We first present the waiting time
expression for a single G/G/1 queue, and then we extend the
result to tandem queues.

Lemma 1 [16]: Let mv represent the mth customer in
queue v. Lindley’s recursion has the unique solution

wv
n = max

mv≤n
(ΣSv

mv,n−1 − Iv
mv+1,n), v ∈ V .

The second result follows from Lemma 1 and provides a
closed-form expression for the sojourn time of G/G/1 tandem
queues.

Lemma 2 [17]: The total time S1:V
n that customer n spends

in a system of V ≥ 1 queues connected in series can be
expressed as

S1:V
n = max

m1≤...mV ≤mV +1=n

( V∑
v=1

ΣSv
mv ,mv+1

− I1
m1+1,n

)
.

(13)

We note that both results hold for stable queuing systems,
including the heavy traffic regime, whenever the offered load
is less than 1. In what follows we prove our first main
result concerning the sojourn time of individual tasks based
on Lemma 2.
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Theorem 1: Consider a G/G/1 tandem queue consisting of
V queues, and an arbitrary customer n. The total sojourn time
S1:V

n of customer n is an increasing pseudoconvex function of
the customer arrival rate λ.

Proof: For an arrival rate of λ, let us denote by τk−1 =
1
λ tk−1 and τk = 1

λ tk the time at which customers k − 1 and
k arrive in the system (i.e., in the first queue), respectively.
tk−1 and tk can assume any non-negative values and they can
be any realizations of random variables. Then, the interarrival
time of customer k and customer k − 1 at the first queue is
I1
k = τk − τk−1 = tk−tk−1

λ . Therefore, it follows from (12)
and Lemma 2 that the total sojourn time S1:V

n of customer n
can be expressed as

S1:V
n = max

m1≤...mV ≤mV +1=n

( V∑
v=1

ΣSv
mv ,mv+1

−
n∑

k=m1+1

tk − tk−1

λ

)
.

(14)

First observe that for two successive jobs k − 1 and k we
have that tk−tk−1 > 0. Furthermore, since ΣSv

mv ,mv+1
is not a

function of λ (c.f. equation (12)), we have that S1:V
n is defined

as the maximum of increasing functions, is continuous, but it
is not necessarily a differentiable function of λ. Therefore,
to prove pseudoconvexity of S1:V

n we need to consider the
upper Dini derivative of S1:V

n , which we denote by D+S1:V
n .

It is easy to see from (14) that S1:V
n is an increasing function

of λ such that D+S1:V
n (λ�) > 0 for any λ� > 0. To prove

pseudoconvexity, we need to show that S1:V
n is increasing

in any direction where the upper Dini derivative is positive.
Since D+S1:V

n (λ�) > 0 for any λ� > 0, we have that
D+S1:V

n (λ�)(λ�� − λ�) ≥ 0 is true only if λ� ≤ λ��. Therefore,
to check pseudoconvexity it suffices to show that λ� ≤ λ��

implies S1:V
n (λ�) ≤ S1:V

n (λ) for all λ on the line segment
connecting λ� and λ��, i.e., that S1:V

n is nondecreasing in λ,
which is clearly the case. This proves the theorem. �
Next, we extend the above result to fork-join networks.

Theorem 2: Consider a G/G/1 fork-join network G =
(V , E) of queues with FCFS and work-conserving service
discipline. Then the sojourn time Sn of customer n is an
increasing pseudoconvex function of the arrival rate λ.

Proof: Let us denote by Π = {v1, . . . , v|Π|} the set of
parallel queues and let v0 and v|V| be the first and the last
queue in the network, i.e., V = {v0} ∪ Π ∪ {v|V|}, respec-
tively. Furthermore, let us denote by Spπ

n the sojourn time of
customer n on the simple path pπ = {(v0, vπ), (vπ , v|V|)},
which connects the first queue v0 with the last queue v|V|
via parallel queue vπ ∈ Π. Then, the total sojourn time Sn

of customer n in the fork-join network G = (V , E) can be
expressed as

Sn = max
π∈Π

Spπ
n . (15)

By Theorem 1 we know that Spπ
n is an increasing pseudocon-

vex function of λ. Furthermore, it is easy to see from (14)
and (15) that Sn is also an increasing function of λ with the
upper Dini derivative D+Sn > 0. By following a similar
approach to the one used in the proof of Theorem 1 it
follows that Sn is also pseudoconvex in λ, which proves the
result. �

Finally, we extend the result to the mean sojourn times.
Theorem 3: The mean sojourn time S̄ in a G/G/1 fork-join

network G = (V , E) is an increasing pseudoconvex function
of the arrival rate λ.

Proof: Since Theorem 1 is true for any non-negative
values of tk−1 and tk (c.f., equation (14)), it is also true when
the realizations of tk−1 and tk are random variables, hence
the result. �

Using the above we can obtain a useful characterization of
the service times of the tasks generated by the WDs in the
considered serverless edge computing system.

Corollary 1: The mean sojourn time S̄i(λ, σ) of a task
generated by WD i ∈ N is an increasing pseudoconvex
function of the task arrival rate λi.

Proof: The result follows from Theorem 3. �

B. Perceived Service Rate Under Load Balancing

We now turn our attention to the perceived service rate μ̃∗
v

of the WDs. In order to obtain a characterization, we first
analyze the structure of an optimal solution of the operator’s
problem (3)-(8).

Proposition 1: Consider an optimal solution (p∗, ρ∗)
to (3)-(8), a subtask v ∈ V and a subset R�

v ⊆ Rv of resources
such that p∗r,v > 0 for every r ∈ R�

v . Then, the solution p∗ is
such that (i)

1) equality holds in each constraint (4) and
2) ρ∗r = ρ∗r′′ holds for any two resources r, r�� ∈ R�

v .
Proof: We start with proving (i). Let us assume that

there is an optimal solution p∗ to (3)-(8) such that σv <∑
r∈Rv

p∗r,vμr,v holds for some subtask v ∈ V . Next, let us
consider p� such that p�r,v < p∗r,v holds for some resource
r ∈ R�

v , p�r′′,w = p∗r′′,w holds for (r��, w) ∈ R× V \ {(r, v)},
and σv =

∑
r∈Rv

p�r,vμr,v is satisfied. Then, ρ�r < ρ∗r and
ρ�r′′ = ρ∗r′′ , r�� ∈ R\{r} hold. Since ρ contains the utilizations
of resources in nonincreasing order we obtain that ρ��Lρ∗,
which contradicts the assumption that (p∗, ρ∗) is an optimal
solution to (3)-(8), and proves (i).

We continue with proving (ii). Let us assume that there is
an optimal solution p∗ to (3)-(8) such that ρ∗r > ρ∗r′′ holds
for two resources r, r�� ∈ R�

v . Furthermore, let us consider p�

where p�r,v < p∗r,v, p�r′′,v > p∗r′′,v and p�r′,w = p∗r′,w, (r�, w) ∈
R×V \{(r, v), (r��, v)} hold, and ρ�r = ρ�r′′ is satisfied. Then,
ρ�r = ρ�r′′ ≤ ρ∗r and ρ�r′ = ρ∗r′ , r� ∈ R \ {r, r��} hold. Since
ρ contains the utilizations of resources in nonincreasing order
we obtain that ρ��Lρ∗, which contradicts the assumption that
(p∗, ρ∗) is an optimal solution to (3)-(8), and proves (ii). This
concludes the proof. �
Proposition 1 allows us to formulate the following results.

Corollary 2: Consider an optimal solution (p∗, ρ∗), a sub-
task v ∈ V , a subset R�

v ⊆ Rv of resources such that
p∗r,v > 0 for every r ∈ R�

v , and a resource r�� ∈ R�
v. Then the

perceived service rate is

μ̃∗
v =

σv

ρ∗r′′
=

σi

|Vi|ρ∗r′′
. (16)

Proof: First, from (ii) in Proposition 1 we have that
ρ∗r = ρ∗r′′ for any resource r ∈ R�

v \ {r��}, and thus the
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perceived service rate μ̃∗
v defined in (2) can be expressed as

μ̃∗
v =

∑
r∈R′

v

p∗
r,vμr,v

ρ∗
r

=
�

r∈R′
v

p∗
r,vμr,v

ρ∗
r′′

. Second, from (i) in

Proposition 1 we have that
∑

r∈R′
v
p∗r,vμr,v = σv = σi

|Vi| ,
which proves the result. �

Corollary 3: The perceived service rate μ̃∗
v of every sub-

task v ∈ Vi is a nondecreasing function of the resource
reservation σi.

We can provide a stronger result if we restrict our attention
to the case that resources form equivalence classes, defined as
follows.

Assumption 1 A1: Consider subtasks v, v� ∈ Vi. If Rv ∩
Rv′ 
= ∅ then Rv = Rv′ .

Corollary 4: Under Assumption A1 the utilization ρ∗r′′ is
an affine function of σi. Furthermore, the perceived service
rate μ̃∗

v of every subtask v ∈ Vi is a concave nondecreasing
function of the resource reservation σi.

We proceed with providing a general result concerning the
sojourn time in a fork-join network G = (V , E). To do so,
we denote by μv the service rate in queue v ∈ V .

Theorem 4: Consider a fork-join network G = (V , E) of
G/G/1 queues with FCFS and work-conserving service disci-
pline. The sojourn time Sn of customer n and the mean sojourn
time S̄ are decreasing functions of the service rates μv .

Proof: Let us consider three customers l, n and m
such that l ≤ n ≤ m. For a service rate of μv we can
express the time required to serve customer n as sv

n =
xn,v

μv
, where xn,v is a non-negative random variable with

E[xn,v] = 1. For any realization of xn,v , it follows from the
definitions of ΣSv

l,m, S1:V
n and Sn (c.f., equations (12),(14)

and (15)) that the sojourn time Sn of customer n is a
decreasing function of service rate μv in queue v ∈ V .
Taking expectation, it follows that the mean sojourn time
S̄ in a fork-join network is also a decreasing function of
the service rate μv in queue v ∈ V , which proves the
result. �

Theorem 4 allows us to formulate the following result.
Corollary 5: The mean sojourn time S̄i(λ, σ) of a task

generated by WD i ∈ N is a decreasing function of the
perceived service rate μ̃v for each subtask v ∈ Vi.

Proof: The result follows from the proof of
Theorem 4. �

Finally, we use the above result to show that the mean
sojourn time S̄i(λ, σ) is a monotonic function of the resource
reservation σi.

Theorem 5: Consider an optimal solution to the operator’s
problem (3)-(8), and the resulting perceived service rates μ̃∗

v

of subtasks v ∈ Vi. The mean sojourn time S̄i(λ, σ) of a task
generated by WD i ∈ N is a nonincreasing function of the
resource reservation σi.

Proof: First, from Corollary 5 we have that the mean
sojourn time S̄i(λ, σ) is a decreasing function of the perceived
service rate μ̃∗

v for each subtask v ∈ Vi. Second, from
Corollary 3 we have that the perceived service rate μ̃∗

v of
each subtask v ∈ Vi is a nondecreasing function of resource
reservation σi. Hence, we have that S̄i(λ, σ) is nonincreasing
in σi, which proves the result. �

IV. EQUILIBRIA UNDER PERFECT INFORMATION

We first consider the case of perfect information, i.e.,
each WD i knows λ and σ, and can infer its mean task
completion time S̄i(λ, σ). Observe that the sets of feasible
rates and reservations of players form coupled constraints, and
hence the resulting game is a generalized Nash equilibrium
problem. In what follows we use Variational Inequality (VI)
theory to prove the existence of equilibria in the SSRA game
under perfect information. First, we recall the definition of a
VI(K, F ) problem from [18].

Definition 1: Let K ⊆ R
n be a closed convex set and F :

K → R
n a continuous function. The VI(K, F ) problem is

to find a point x∗ ∈ K such that F (x∗)T (x − x∗) ≥ 0, for
∀x ∈ K.

We are now ready to formulate one of our main results.
Theorem 6: The SSRA game under perfect information

admits a pure strategy Nash equilibrium.
Proof: First, let us recall that the WDs can update

their resource reservations periodically, and that between two
updates of the resource reservations they can adjust their rates.
In order to model the dynamics of the game played by the
WDs, we introduce two fictitious players iσ and iλ for each
WD i ∈ N , which decide about the resource reservation
σi and the rate λi, respectively. Furthermore, we denote by
Nσ, |Nσ| = N and Nλ, |Nλ| = N the sets of fictitious
players that decide about the resource reservations and rates,
respectively. Finally, we denote by Nf the set of all fictitious
players, i.e., Nf = Nλ ∪ Nσ .

In order to model how the fictitious players interact
with each other we define for each iσ ∈ Nσ the set
Kiσ (λ, σ−i) � {σi|S̄i(λ, σi, σ−i) ≤ T i} of feasible resource
reservations, and for each iλ ∈ Nλ the set Kiλ

(λ−i, σ) �
{λi|S̄i(λi, λ−i, σ) ≤ T i} of feasible rates. We can then define
the generalized Nash equilibrium problem (GNEP) Γf =<
Nf , (Kif

)if∈Nf
, (Uif

(λ, σ))if∈Nf
> in which both fictitious

players iσ and iλ aim at maximizing utility Ui(λ, σ) of WD i
with respect to the latency constraint of WD i. Therefore, Γf is
a strategic game in which each fictitious player iσ ∈ Nσ aims
at maximizing its utility Uiσ(λ, σ) = Ui(λ, σ) by solving

arg max
σi

Ui(λ, σi, σ−i) (17)

s.t. σi ∈ Kσ
i (λ, σ−i), (18)

and each fictitious player iλ ∈ Nλ aims at maximizing its
utility Uiλ

(λ, σ) = Ui(λ, σ) by solving

argmax
λi

Ui(λi, λ−i, σ) (19)

s.t. λi ∈ Kλ
i (λ−i, σ). (20)

Clearly, a pure strategy Nash equilibrium of Γf is an equi-
librium of the SSRA game in which the WDs update their
resource reservations and rates separately. We thus have to
prove that Γf has a pure strategy Nash equilibrium.

In the following we use VI to prove the result concerning the
existence of equilibria in Γf . Therefore, we need to define a
suitable VI(K, F ) problem that corresponds to game Γf . To do
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so, we have to specify the set K and the function F [18], [19],
[20]. First, we define the set

K = Πiσ∈NσKiσ (λ, σ−i)Πiλ∈Nλ
Kiλ

(λ−i, σ). (21)

Second, we define the function

F =
(∇σU(λ, σ)
∇λU(λ, σ)

)
,

where ∇σU(λ, σ) and ∇λU(λ, σ) are the gradient vectors
given by

∇σU(λ, σ) =

⎛
⎜⎜⎝

dU1(λ,σ)
dσ1

...
dUN (λ,σ)

dσN

⎞
⎟⎟⎠ , ∇λU(λ, σ) =

⎛
⎜⎜⎝

dU1(λ,σ)
dλ1

...
dUN (λ,σ)

dλN

⎞
⎟⎟⎠ .

The proof relies on showing that that set K is compact
and convex and that the utility Ui(λ, σ) of each WD i is
continuously differentiable in (λ, σ) and concave in σi and
λi [20]. We start with proving the compactness of set K.
Let us recall that WD i ∈ N can choose σi and λi from
the compact sets [σi, σi] and [λi, λi], respectively. Therefore,
it is easy to see that Kiσ (λ, σ−i) and Kiλ

(λ−i, σ) are
compact subsets of [σi, σi] and [λi, λi], respectively. Since the
Cartesian product of compact sets is compact (c.f., Tychonoff’s
theorem), we obtain that set K defined in (21) is compact.

We continue with proving the convexity of set K. From
Corollary 1 and Theorem 5 we have that S̄i(λ, σ) is an
increasing pseudoconvex function of the task arrival rate λi

and a nonincreasing function of σi, respectively. Therefore,
S̄i(λ, σ) is quasiconvex in λi and in σi, and thus sublevel
sets Kiλ

(λ−i, σ) and Kiσ (λ, σ−i) are convex [21]. Since the
Cartesian product of convex sets is a convex set [21] we obtain
that the set K defined in (21) is convex as well.

Finally, it is easy to check that the utility function Ui(λ, σ)
defined in (9) is continuously differentiable in (λ, σ) and
concave in σi and λi. Hence, it follows from Theorem 2.1 and
Proposition 2.2 in [20] that the solution of VI(K, F ) exists
and it is also a Nash equilibrium of Γf , and thus of the SSRA
game. This proves the theorem. �

We have thus shown that equilibria exist in the SSRA game
under perfect information, which is a prerequisite for the study
of learning equilibria under imperfect information considered
in the following section. In the Appendix, included in the
supplementary material, we also show that rate reservation is
essential in the considered problem, as the interaction between
rate control and resource allocation may lead to starvation
otherwise. Next, we study whether equilibria can be reached
under imperfect information.

V. LEARNING TO PLAY EQUILIBRIUM USING ONLINE

OPTIMIZATION

In what follows we propose an online optimization algo-
rithm for WDs to maximize their individual utility based
on measured sojourn times of their computational tasks,
called OARC. The pseudo-code of the algorithm is shown in
Figure 2. The algorithm makes use of online gradient ascent
based on a perturbation of σi, used for estimating the gradient
of the utility function Ui, and in between perturbations it

Fig. 2. Pseudocode of the OARC algorithm.

ensures that the latency constraint is met through rate adap-
tation (RA). In each iteration, the algorithm first updates the
perturbation size (ηt), and the learning rate (αt) (Line 1).
It then computes the perturbed reservations (σ−

i (t), σ+
i (t))

and reports those to the operator (Lines 3, 4 and 6, 7). WDs
estimate the resulting arrival intensities and average response
times ((S+

i , λ+
i ), (S−

i , λ−
i )) corresponding to the rate reserva-

tions (σ−
i (t), σ+

i (t)) (Lines 5 and 8). Between Lines 9−11, the
algorithm computes the stochastic subgradient with respect to
the rate reservation. Finally, it computes the estimated arrival
rate and updates the reservation using a gradient ascent step,
based on the computed stochastic subgradient (Lines 12−13).
In what follows we first show that the proposed algorithm can
indeed ensure to meet the mean sojourn time constraint, and
that under certain assumptions it converges to an equilibrium.

Proposition 2: Let σi be fixed, and λ∗
i (σi) =

argmaxλi∈[λi,λi]
Ui(λi, λ−i, σ). Then the set of solutions of

the problem

min
λi≤λ∗

i (σi)
[S̄i(λi, λ−i, σ) − T i]2. (22)

is compact and convex.
Proof: We prove the result by first showing convex-

ity and compactness of the solution set. By Corollary 1
S̄i(λi, λ−i, σ) is increasing and pseudoconvex in λi. Thus,
the objective [S̄i(λi, λ−i, σ)−T i]2 is pseudoconvex. Pseudo-
convexity implies quasiconvexity, and every sublevel set of
a quasiconvex function is convex, which together with the
finiteness of λ∗

i (σi) proves the result. �
Observe that pseudoconvexity of the objective in (22)

implies that stochastic gradient descent algorithms, such as
stochastic approximation and the Adam algorithm [22] can be
used for finding a solution efficiently [23, Th. 4.1]. We can
thus consider that users are able to solve (22) using a rate
adaptation (RA) algorithm, which we formulate as the follow-
ing assumption.

Assumption 2 A2: Denote by λ̂i(σi(t)) the estimated
solution to (22). The arrival rate estimation error
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ζi,t = λ̂i(σi(t)) − λ∗
i (σi(t)) satisfies E[ζi,t] = 0, t = 1, 2, . . .

and E[ζ2
i,t] ≤ ci,t, limt→∞ ci,t = 0.

The assumption that the estimate is unbiased is justified
by that ηt → 0, which makes that the perturbed reservations
converge to σi(t), and hence the computed arrival rates
converge to the actual optimal arrival rate. We now turn to
the analysis of the task arrival rate and the utility under the
following assumption.

Assumption 3 A3: Consider two strategies (λi, σi) and
(λ�

i, σ
�
i), and let 0 ≤ θ ≤ 1. Then

S̄i(θλi + (1 − θ)λ�
i, λ−i, θσi + (1 − θ)σ�

i, σ−i)
≤ max(S̄i(λi, λ−i, σi, σ−i), S̄i(λ�

i, λ−i, σ
�
i, σ−i)).

(23)

In what follows we show that under Assumption 3 the max-
imum task arrival rate of each user is concave in its rate
reservation.

Proposition 3: Let us define the maximum task intensity
λi(σi) = max{λi|S̄i(λi, λ−i, σi, σ−i) ≤ T i}. If Assump-
tion 3 holds then λi(σi) is a concave function of σi.

Proof: Recall that by Corollary 1 and Theorem 5 the
mean sojourn time S̄i(λ, σ) is increasing and pseudoconvex
in λi, and is nonincreasing in σi, respectively. Assumption 3
implies that the mean sojourn time S̄i is jointly quasiconvex
in (λi, σi). Quasiconvexity implies that each sublevel set
{(λi, σi)|S̄i(λ, σ) ≤ T } is convex. Since S̄i is quasiconvex
nondecreasing in λi, convexity of the sublevel set implies that
λi(σi) is concave in σi. �

A consequence of the above result is that the utility is
concave in the rate reservation.

Corollary 6: Let Ũi(σi) = Ui(λi(σi), (σi, σ−i)). Then
Ũi(σi) is concave in σi, and there is L > 0 such that Ũi(σi)
is L-Lipschitz continuous on Si.

Proof: Concavity follows from Proposition 3, and the
concavity of fi. L-Lipschitz continuity follows from that
S̄(λi, σi, σ−i) is bounded by Ti, and λi and σi have compact
domain, thus S̄ is L-Lipschitz. Observe that for any T i < ∞,
the set Si ⊂ [0,∞) is compact, and since Ũi is concave, it is
Lipschitz continuous in the relative interior of its domain ([24],
Proposition 2.107). In addition, fi is Li-Lipschitz continuous
by assumption, thus Ui is L-Lipschitz continuous for some
L > 0. �

Our first main result about OARC establishes that if OARC
converges then it indeed converges to an equilibrium of the
SSRA game.

Theorem 7: Assume that the sequence σ(t) generated by
OARC converges to σ∗(t). Then σ∗(t) is a Nash equilibrium
of the SSRA game.

Before we present the proof, we introduce three technical
results related to the update expression and to the measured
utility under noisy rate estimates.

Lemma 3: The update expression in Line 13 of the OARC
algorithm can be written as the projected gradient update

σi(t + 1) = Pi[σi(t) − 1
2αt

∇Ûi(t)], (24)

where Pi is the Euclidean projection on Si. The projected
gradient is equivalent to

Pi(σ̃i(t)) = argmax
σi∈Si

〈σ̃i(t), σi〉 − 1
2
‖σi‖2 (25)

σ̃i(t + 1) = σ̃i(t) +
1

2αt
∇Ûi(t), (26)

where the term h(σi) = 1
2‖σi‖2 is called the penalty function,

and σ̃i(t) ∈ R is called the aggregated gradient.
Proof: The first statement follows from [25, Lemma 1].

The second statement follows from (3.7) in [26]. �
Second, we characterize the bias of the gradient estimates

used in OARC.
Lemma 4: Consider the measured central difference deriv-

ative estimate ∇Ûi(t). The estimate has a bias of

∇Ûi(t) −∇Ũi(t) = O(
η2

t

4
) +

θ(ζi,t)
ηt

, (27)

where θ(ζi,t) is the error due to the arrival rate estimation
error.

Proof: Consider the Taylor expansion of Ũi at σi(t),

Ũi(σi(t) ± ηt

2
) = Ũi(σi(t)) ± ηt

2
∂Ũi(σi(t))

∂σi(t)

+
η2

t

8
∂2Ũi(σi(t))

∂σ2
i (t)

±O(
η3

t

8
), (28)

and use it to express the true gradient at σi(t) as a function
of the central difference derivative estimate,

∇Ũi(t) =
Ũi(σi(t) + ηt

2 ) − Ũi(σi(t) − ηt

2 )
ηt

−O(
η2

t

4
). (29)

Consider now the measured utility based on (9),

Û+
i (t) = fi(λi(σi(t) +

ηt

2
) + ζi,t)

− cλ
i λi(σi(t) +

ηt

2
) − cλ

i ζi,t − cσ
i (σi(t) +

ηt

2
),

(30)

Û−
i (t) = fi(λi(σi(t) − ηt

2
) + ζi,t)

− cλ
i λi(σi − ηt

2
) − cλ

i ζi,t − cσ
i (σi(t) − ηt

2
),

(31)

where λi(σi(t)) is the arrival intensity at σi(t). We can
perform a Taylor series expansion of (30) and (31)
at λi(σi(t) + ηt

2 ), and λi(σi(t) − ηt

2 ) respectively, to
obtain

Û+
i (t) = Ũi(σi(t) +

ηt

2
) +

+ ζi,t(f �
i(λi(σi(t) +

ηt

2
)) − cλ

i )

+
ζ2
i,t

2
f ��

i (λi(σi(t) +
ηt

2
)) + O(ζ3

i,t),

= Ũi(σi(t) +
ηt

2
) + θ+(ζi,t) (32)

Û−
i (t) = Ũi(σi(t) − ηt

2
)

+ ζi,t(f �
i(λi(σi(t) − ηt

2
)) − cλ

i )
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+
ζ2
i,t

2
f ��

i (λi(σi(t) − ηt

2
)) + O(ζ3

i,t)

= Ũi(σi(t) − ηt

2
) + θ−(ζi,t), (33)

where θ+(ζi,t) and θ−(ζi,t) are the utility estimation error due
to the arrival rate estimation error. Let us subtract (33) from
(32) and divide it by ηt, we then obtain

∇Ûi(t) =
Ũi(σi(t) + ηt

2 ) − Ũi(σi(t) − ηt

2 )
ηt

+
θ+(ζi,t) − θ−(ζi,t)

ηt
, (34)

which together with (29) and using θ(ζi,t) = θ+(ζi,t) −
θ−(ζi,t) concludes the proof. �

We note that the above result may be extended to non-
differentiable functions following the analysis in [27] Third,
we show that the utility estimation error due to the arrival rate
estimate vanishes.

Lemma 5: Assume that fi is smooth and Assumption 2
holds. Then

lim
t→∞E

[θ(ζi,t)
ηt

]
→ 0. (35)

Proof: Recall that θ(ζi,t) = θ+(ζi,t) − θ−(ζi,t), and
consider the Taylor series expansion, similar to (32) and (33),

θ(ζi,t)
ηt

=
ζi,t(f �(λi(σi(t)+ ηt

2 )−f �(λi(σi(t)− ηt

2 ))
ηt

+
ζ2

i,t

2 (f ��(λi(σi(t)+ ηt

2 )−f ��(λi(σi(t)− ηt

2 ))
ηt

+ · · ·
(36)

Consider now (36) and the limit of its expectation, recalling
that the denominator is deterministic, the difference of the
first order derivatives in the first term of (36) is equal to
the second order derivative by definition. Following the same
logic, the difference in the second term is equal to the third
order derivative by definition. This holds for all higher order
derivatives in (36) as ηt → 0. Now, by assumption fi

is a smooth and L-Lipschitz continuous function, hence its
derivatives are bounded. Furthermore, by Assumption 2 we
have E[ζ2

i,t] → 0 as t → ∞, hence higher moments do so too
with probability 1, which concludes the proof. �

Using the above results we are now ready to prove
Theorem 7.

Proof of Theorem 7: Let g∗ = g(σ∗) = ∇Ũ(σ∗) and
assume that σ∗ is not a Nash equilibrium. By the charac-
terization of Nash equilibria (see [26] for details), there exists
a player i ∈ N and a deviation qi ∈ [σi, σ̄i] = Si ⊆ R and
〈g∗i , qi − σ∗

i 〉 > 0. By continuity, there exist some c > 0 and
neighborhoods U and G of σ∗ and g∗ respectively such that

〈g�i, qi − σ�
i〉 ≥ c (37)

whenever σ� ∈ U and g� ∈ G. Now, let Ω be the event
that σ(t) converges to σ∗, so P(Ω) > 0 by assumption.
Within Ω we can also assume for simplicity that σ(t) ∈ U

and g(σ(t)) ∈ G for all t. Recall that in OARC the learning
rate αt satisfies

∞∑
t=1

( 1
αtτt

)2

<

∞∑
t=1

1
αt

= ∞, (38)

where τt =
∑t

t′=1
1

αt′
. By using the update rule given in

Lemma 3, and Assumption 2, we can rewrite the update rule
in terms of the bias and the error term

σ̃i(t) = σ̃i(1) +
t∑

t′=1

1
αt′

∇Ûi(t�)

= σ̃i(1) +
t∑

t′=1

1
αt′

(
gi(t�) + O

(η2
t′

4

)
+

θ(ζt′ )
ηt′

)
= σ̃i(1) + τtḡi(t), (39)

where ḡi(t) = τ−1
t

∑t
t′=1

1
αt′

(
gi(t�) + O

(
η2

t′
4

)
+ θ(ζi,t′ )

ηt′

)
.

By Lemma 5, the term due to the arrival intensity estimation
error satisfies τ−1

t

∑t
t′=1

1
αt′

θ(ζi,t′ )
ηt′

→ 0 (a.s). Let us define
some positive constant M > 0, we can then rewrite the latter
term as

τ−1
t

t∑
t′=1

1
αt′

O
(η2

t′

4

)
= τ−1

t

t∑
t′=1

1
(t�)γ1

O
( 1

4(t�)γ2

)

≤ τ−1
t

t∑
t′=1

1
(t�)γ1

1
4(t�)γ2

M

≤
∑t

t′=1
1

(t′)γ1
1

4(t′)γ2∑t
t′=1

1
(t′)γ1

M → 0 (a.s.).

(40)

Consequently, g(σ(t)) → g∗ in Ω and P(Ω) > 0, and hence
by (40) we can conclude that P(ḡ(t) → g∗|Ω) = 1. Consider
now the penalty function h defined in Lemma 3, and define
its subdifferential

∂h(x) = {y ∈ R : h(x�) ≥ h(x) + 〈y, x� − x〉, ∀x� ∈ R}.
(41)

Function h is called subdifferentiable at x ∈ R when-
ever ∂h(x) is nonempty, and by ([28, Th. 12.60(b)] and
[29 Th. 23.5]) for the subdifferential ∂h it holds that σ̃i(t) ∈
∂h(σi(t)) ⇐⇒ σi(t) = Pi(σ̃i(t)). Thus using the definition
of the subdifferential and (39) we have

h(qi) − h(σi(t)) ≥ 〈σ̃i(t), qi − σi(t)〉
≥ 〈σ̃i(1), qi − σi(t)〉

+ τt〈ḡi(t), qi − σi(t)〉. (42)

Since ḡ(t) → g∗ almost surely on Ω, (37) yields 〈ḡi(t), qi −
σi(t)〉 ≥ c > 0 for all sufficiently large t. We find that
|〈σ̃i(1), qi−σi(t)〉| ≤ ‖σ̃i(1)‖∗‖qi−σi(t)‖ ≤ ‖σ̃i(1)‖∗‖Si‖ =
O(1). By substituting this into (42), we obtain h(qi) −
h(σi(t)) > cτt → ∞ with positive probability. This is a
contradiction since h is continuous and 1-strongly convex, and
Si is compact. Thus we conclude that σ∗(t) is a NE, which
proves the result. �

We have so far shown that if OARC converges then it
converges to an equilibrim of the SSRA game. In what follows
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we also show that OARC achieves zero regret asymptotically.
For simplicity we present the proof for the case of noiseless
rate estimates, but the proof can be easily extended to noisy
rate estimates for the expected regret.

Proposition 4: Let U i(σi(t)) = 1
2 (Ũi(σ+

i (t))+Ũi(σ−
i (t))),

and let αt =
√

t. Also, let ‖Si‖2 = σi−σi. If every WD i can
find the minimizer of [Si(λi, λ−i, σ)−T i]2 then the regret of
the OARC algorithm is

Ri(T ) =
T∑

t=1

Ũi(σ
opt
i ) − U i(σi(t)) (43)

≤ ‖Si‖2
√

T +
(‖L‖2

4
+ L

)
(2
√

T − 1) (44)

Thus, lim supT→∞ Ri(T )/T = 0.
Proof: Since Ũi is concave and L-Lipschitz, for any σi(t)

we have

Ũi(σi) ≤ U i(σi(t)) + ∇U i(t)(σi − σi(t)) + Lηt (45)

for any σi, including for σopt
i . Thus,

Ũi(σ
opt
i ) − U i(σi(t)) ≤ ∇U i(t)(σ

opt
i − σi(t)) + Lηt. (46)

At the same time we can use the update equation and Lemma 3
for obtaining the bound

(σi(t + 1) − σi(t))2

≤ (σi(t) − σopt
i )2

− 1
αt

(σi(t) − σopt
i )∇U i(t) +

1
4α2

t

‖∇U i(t)‖2
, (47)

where the inequality is due to the projection Pi. Re-arranging
the inequality we obtain

(σi(t) − σopt
i )∇U i(t) ≤ αt((σi(t) − σopt

i )2

− (σi(t + 1) − σopt
i )2) +

1
4α2

t

‖∇U i(t)‖2
. (48)

We can combine (46) and (48) to obtain

Ri(T ) ≤
T∑

t=1

{(σopt
i − σi(t))∇U t + Lηt} (49)

≤
T∑

t=1

αt((σi(t) − σopt
i )2 − (σi(t + 1) − σopt

i )2)

+
T∑

t=1

{ 1
4αt

‖∇U t‖2
+ Lηt} (50)

≤ α1(σi(1) − σopt
i )2 − αT (σi(T + 1) − σopt

i )2

+
T∑

t=2

(αt − αt−1)(σi(t) − σopt
i )2

+‖L‖2
T∑

t=1

1
4αt

+ L

T∑
t=1

ηt (51)

≤ ‖Si‖2

(
α1 +

T∑
t=2

(αt − αt−1)

)

+‖L‖2
T∑

t=1

1
4αt

+ L

T∑
t=1

ηt (52)

≤ ‖Si‖2αT + ‖L‖2
T∑

t=1

1
4αt

+ L
T∑

t=1

ηt. (53)

Using αt = tγ1 , ηt = 1
tγ2 , and the bound

∑T
t=1 t−γ ≤ 1 +∫ T

1
t−γdt, we obtain

Ri(T ) ≤ ‖Si‖2T γ1 +
‖L‖2

4
T 1−γ1 − γ1

1 − γ1
+ L

T 1−γ2 − γ2

1 − γ2
.

(54)

For 0 < γ1, γ2 ≤ 1 we obtain lim supT→∞ Ri(T )/T = 0.
Furthermore, using γ1 = γ2 = 0.5 we obtain (44), which
proves the result. �

Thus, the OARC algorithm can compute a solution that is
asymptotically optimal in hindsight.

VI. NUMERICAL RESULTS

We performed extensive simulations in order to assess
equilibrium behavior and to validate the proposed OARC
algorithm. For the evaluation we consider three scenarios with
different task graphs and queue types. In Scenario 1 the task
graph consists of two subtasks in series corresponding to a
wireless transmission subtask followed by one computational
subtask executed in series. Scenario 2 consists of three sub-
tasks in series, corresponding to wireless transmission subtask
followed by two computational subtasks executed in series.
Scenario 3 is a fork-join queuing system in which a wire-
less transmission subtask is followed by two computational
subtasks executed in parallel, followed by a computational
subtask. For all of the scenarios, we have |A| = 4 APs and
|C| = 8 servers. We assigned up to �|N |/|A|� users at random
to each AP.

We set the WDs’ latency constraints T i uniform at random
on [0.1, 0.01] s, which is reasonable for a variety of low latency
applications envisioned for 5G systems [30]. We choose the
service rate of each resource and subtask μr,v to be uni-
formly distributed on [ 2

T i
, 3

T i
] for Scenario 1. For Scenario 2

and Scenario 3 we set the service rate to be 50% higher,
on average. Finally, as an example of a non-negative concave
function we use fi(λi) = log(1+λi) for computing the WD’s
utility [31], and set cλ = cσ = 0.02. Note that with these
parameters λi = 49, and we set λi = 0. For the evaluation
we consider Poisson arrival processes, the service times are
exponentially distributed (M) or deterministic (D), allowing
us to validate our results under significantly different service
processes.

We used two algorithms as baselines for comparison. The
first algorithm is the OCO proposed in [32]. OCO is an
extension of the Zinkevich algorithm, meant to satisfy convex
stochastic constraints, and maximizes the expected utility by
adjusting (λi, σi) simultaneously. We used perturbations to
estimate the local gradients, as those are assumed to be known
by OCO. The second baseline is obtained by applying Online
Adaptive Rate Reservation and Control - Sum of Utilization
(OARC-SUM) using the sum utility of all users as objective
function, i.e., considering that users cooperate for maximizing
their sum utility instead of competing. We refer to this baseline
as the OARC-SUM algorithm. In addition, to be able to assess
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Fig. 3. Utility vs. number of WDs for Scenario 1.

Fig. 4. CDF of normalized sojourn times for N = 12 in Scenario 1.

the impact of Stochastic Approximation (SA) on the perfor-
mance of OARC, we consider a baseline for Scenario 1 where
we compute the optimal arrival rates λi analytically instead of
using SA. We refer to this as OARC-Model. The results shown
are the averages and the 95% confidence intervals computed
based on 30 simulations.

A. Utility Performance

Fig. 3 shows the total utility as a function of the number
of WDs for Scenario 1 with exponential service times, for
OARC, OCO, OARC-SUM and OARC-Model. Surprisingly,
the total utility for OARC is not monotonically increasing. The
reason for this is that above N = 4 the WDs can no longer
achieve their maximum rate λi and thus they contend for the
communication and computing resources. Contention in turn
decreases the maximum service capacity of the system due to
the latency constraints (c.f., the achievable rate in an M/M/1
queue with service rate μ under latency constraint T , vs the
sum of the achievable rates in two M/M/1 queues with service
rate μ/2 under latency constraint T ).

The figure also shows that OARC-SUM outperforms OARC
which is justified by that OARC-SUM aims at maximizing the
sum utility of all WDs, i.e., WDs do not act independently.
The figure also allows us to assess the effect of rate adaptation
on the utility obtained by OARC. Comparing the curves for
OARC and OARC-Model, we can observe that the impact of
stochastic rate adaptation is negligible.

Fig. 5. Utility vs. number of WDs for Scenarios 2 and 3, M/D queue.

Comparing the results for OARC and OCO, it may be
surprising that OCO achieves higher utility than OARC for
N > 4. To explain why this is possible, Fig. 4 shows the
empirical CDF of the normalized sojourn times of the WDs for
the two algorithms for N = 12. We compute the normalized
sojourn time as the ratio of the average sojourn time of a
WD divided by its latency constraint. The figure shows that
OCO leads to a significant violation of the latency constraint
for the majority of WDs. On the contrary, OARC-Model does
not lead to a violation of the latency bound, while OARC
leads to minor violations of the latency constraint due to SGD-
based rate adaptation. Another observation that can be drawn
from Fig. 4 is that in the heavy traffic regime OARC enables
WDs to adjust their rates and prevents latency violations with
high probability. On the contrary, OCO fails to keep the mean
sojourn time of the WDs under their latency constraints: when
there are many WDs, OCO might lead to unstable queues
whereas OARC ensures queue stability by keeping the mean
sojourn time of the WDs at their latency constraints. We can
thus conclude that OCO does not solve the SSRA problem,
mainly due to that the utility is not jointly convex in the
arrival rate and in the rate reservation, which highlights the
importance of the approach followed by OARC.

Corresponding results for deterministic service times,
included in the Appendix, show that the utility for determinis-
tic service times is slightly higher than for exponential service
times, but the curves show similar characteristics. In what
follows we will show results for deterministic service times
for clarity of exposition.

Fig. 5 shows the total utility as a function of the number
of WDs for Scenario 2 and Scenario 3 with deterministic
service times. The results show that OARC performs close
to OARC-SUM for more complex subtasks graphs as well,
including a fork-join task graph (Scenario 3). Importantly,
it also shows that the shapes of the curves are not affected
by the subtask graph topology, i.e., the utility decreases due
to contention for resources. The superior performance of OCO
in Scenario 2 and Scenario 3 is again due to that OCO results
in significant latency constraint violations (we omit the figure
for brevity).

Fig. 6 shows the total arrival intensity as a function of
the number of WDs for Scenario 2 and Scenario 3 with
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Fig. 6. Arrival intensity vs. number of WDs for Scenarios 2 and 3, M/D
queue.

Fig. 7. Reservation vs. number of WDs for Scenarios 2 and 3, M/D queue.

deterministic service times. The results show that the utility is
to a large extend determined by the arrival intensity, both for
OARC and for OCO. It is interesting to note that OARC-SUM
has lower total arrival intensity (particularly for N < 4) even
though it has higher total utility compared to OARC. This
is due to that OARC-SUM prevents that a few users achieve
a very high arrival intensity, harming the rest of the users.
We also note that the total utility and arrival rate are far from
the social optimum for N > 4, as the utility obtained for
N = 4 would be achievable for N > 4 by assigning zero rate
to all but 4 users, this is, however, not an equilibrium.

B. Operator Revenue

Fig. 7 shows the total reservation as a function of the
number of WDs for Scenario 2 and Scenario 3 with deter-
ministic service times. Surprisingly, the total reservation for
OARC does not increase linearly with the number of users
beyond N > 4, which can be explained by that WDs learn
that they cannot increase their utility by increasing their
reservation parameter due to the congestion on the resources.
Interestingly, OCO results in significantly higher resource
reservations compared to OARC and OARC-SUM, which is
due to that the latency constraint is not met by the WDs,
allowing significantly higher rates.

Fig. 8. Revenue vs. number of WDs for Scenarios 2 and 3, M/D queue.

Fig. 8 shows the total revenue of the edge cloud operator
as a function of the number of WDs for Scenario 2 and
Scenario 3 with deterministic service times. Since the revenue
is a linear function of the reservation parameter and the arrival
intensity, its shape is similar to that of the curves shown in
Figs. 7 and 6. Somewhat surprisingly, the results in Fig. 8
show that the total revenue decreases beyond N > 4 when
using OARC and OARC-SUM, i.e, the edge cloud operator
looses revenue due that the WDs contend for the resources,
and consequently reduce their arrival rates so as to meet
their latency constraints. This observation leads us to conclude
that operators would need to implement admission control to
maximize their revenue in a serverless computing environment
with latency constrained tasks.

C. Computation Time of Problem (3)-(8)

Fig. 9 shows the average computation time for solving
problem (3)-(8) for all scenarios, based on a Python imple-
mentation executed on an Intel i9-10900 CPU. Recall that the
task graphs in Scenario 1, Scenario 2 and Scenario 3 contain
2, 3 and 4 subtasks for each user, respectively, which is
why the computation time is highest for Scenario 3. Overall,
we observe that the computation time increases approximately
linearly as the number of WDs increases. This is because as the
number of WDs (N ) increases, so does the number of subtasks
|V| = |∪i∈N Vi|, indicating that the average complexity of the
problem (3)-(8) is linear in the number of subtasks.

D. Sensitivity Analysis

Fig. 10 shows the total utility as a function of the number of
computing resources for Scenarios 1, 2 and 3 with exponential
service times for |A| = 4 APs. The figure shows that the
utility is a monotonically increasing concave function with
respect to the number of computing resources for all scenarios,
and indicates that the proposed algorithm utilize the available
computing resources. We note that the concavity of the curves
is due to the concavity of the utility functions.

VII. RELATED WORK

Our problem is related to network utility maximization
introduced in [33], later extended to, e.g., packet losses [34],
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Fig. 9. Average computation time vs. number of rounds for solving
Problem (3)-(8).

Fig. 10. Total utility vs. number of computing resources for Scenario 1, 2,
and 3 with M/M queue where |A| = 4 APs, OARC.

and to queuing networks subject to a stability constraint [35].
Unlike in the case of network utility maximization, in the
problem we consider the objective of the network is not
aligned with that of the users, which makes the two problems
fundamentally different.

Related to ours are recent works on rate control in queuing
networks. In [36] authors considered distributed rate con-
trol for a fork-join processing network under a static server
assignment, and proposed a solution akin to the back-pressure
algorithm. The focus of this work was on rate stability, and
thus the issue of utilities and latency constraints was not
considered. Authors in [37] analyze the convexity of the
system time in queuing networks, and authors in [38] consider
constrained stochastic approximation and provide unbiased
estimators that can be used for GI/G/1 queues. The results
hold as long as the cost function is strictly unimodal, including
convex.

There are few works focusing on resource management for
serverless computing [5]. Authors in [5] use Bayesian opti-
mization for learning the execution time and cost of serverless
functions on Amazon AWS. Their approach does not consider
server side resource allocation and the interaction among users
explicitly, and the solution requires the repeated solution of
an integer linear program based on estimated parameters for
choosing parameters for service chains.

Our work is related to recent work on online learning.
Closely related to our algorithm is the Zinkevich algorithm

for unconstrained online convex optimization [32]. The algo-
rithm was extended in [32] to online convex optimization
with stochastic constraints. These works focus on a single
decision maker, and assume that the cost and the constraint
functions are revealed after every round. Similarly, authors
in [39] and [40] propose algorithms for nested stochastic
approximation, but the problem formulations do not consider
stochastic constraints.

In the area of computation offloading, authors in [41]
propose an offline policy for a dynamic computation offload-
ing and resource scheduling problem under task completion
constraints, consider that both wireless devices and the net-
work operator are decision makers, and assume that the task
of each device can be modeled as a DAG with the same
number of subtasks. Authors in [42] model an application as
a directed acyclic data flow graph, consider a system with
limited wireless and abundant computing resources shared by
multiple applications, and address the problem of deciding
which components in the data flow graph should be offloaded
onto the cloud such that the throughput of the applications is
maximized. Authors in [43] model a computational task as a
DAG, consider the congestion on computing resources only,
and propose a heuristic for solving an offline task placement
problem in which the objective is to minimize the sum cost
of the devices under constraints on the dependency among
subtasks, the task completion time deadlines and the amount
of available computing resources. Finally, authors in [44]
consider a task graph with loops, cycles and branches, under
the assumption of deterministic service and waiting times.
They present heuristic algorithms for solving two related
optimization problems, minimizing the response time under
a budget constraint, and minimizing the cost under a response
time constraint.

These works do not consider, however, the interaction
between application rate control, server side resource manage-
ment and the stochastic service processes. To the best of our
knowledge, ours is the first work that considers this interaction,
analyzes the existence of equilibria and proposes an online
optimization algorithm for learning equilibria in a distributed
manner.

VIII. CONCLUSION

In this paper, we proposed a modeling abstraction and a
problem formulation for investigating the interaction between
latency constrained services and resource management for
serverless edge computing. The proposed abstraction is based
on a queuing network model of task graph execution and
allows the analysis of the interaction between selfish WDs that
reserve edge resources and a serverless operator that allocates
resources among WDs, formulated as a non-cooperative game.
Our analytical results show that rate reservation plays an
essential role for latency sensitive services, at the same time
a simple abstraction for rate reservation allows conceptually
simple algorithms, like the proposed OARC, to converge
to equilibria with good performance. Our numerical results
confirm the analytical findings and also reveal that current
practice of serverless service rate allocation leads to a loss
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of service capacity under latency constraints, and to a loss of
operator revenue at the same time. Consequently, solutions
for admission control complemented with new abstractions
and related scheduling policies would be desirable for latency
constrained computing tasks in a serverless edge computing
infrastructure. Our model could be extended to consider that
the computing price is dependent on the total reservation,
i.e., increasing with the contention for computing resources,
it could be used to study the impact of different forms of
signaling between the WDs and the operator on convergence
speed and the resulting utility, and it could be extended to
consider more complex models of task graphs. We leave these
to be subject of our future work.
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