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Adaptive Controller and Observer Design Using Open and Closed-Loop
Reference Models for Linear Time-Invariant Systems With

Unknown Dynamics
Sveinung Johan Ohrem , Member, IEEE, and Christian Holden

Abstract—This article presents an output feedback controller
and observer design approach for linear time-invariant systems
with unknown dynamics. The presented method uses an open-loop
reference model to generate the desired trajectory and a closed-
loop reference model as an observer. The controller only uses
the observer states. Lyapunov-based stability proofs show that
the error states converge asymptotically to zero and that all other
signals are uniformly stable. Furthermore, bounds are proven on
the transient behavior.

Index Terms—Adaptive control, linear systems, output feedback
and observers, uncertain systems.

I. INTRODUCTION

In this article, we present a novel control method for linear time-
invariant (LTI) systems with unknown dynamics. While all real systems
are to a greater or lesser extent nonlinear, many can be approximated
at least locally by LTI systems. At the same time, dynamics (or at least
system parameters) are often unknown in practice. Many traditional
control methods for LTI systems assume that the system matrix A is
known exactly so that the separation principle can be applied [1], [2].
The method presented here reduces the necessity of detailed knowledge
of the system parameters. In the future, the method may be extended to
some classes of nonlinear systems.

A widely used approach for control of unknown LTI systems is
adaptive control, more specifically model reference adaptive control
(MRAC) [3, Ch. 6] (other methods are also found in literature, e.g.,
neural-network-based [4]–[6]. This tradition is distinct from the one
considered here.) The goal of MRAC is to ensure that the plant output
tracks the output of a reference model specified by the designer. Since
the system parameters in most cases are unknown or uncertain, the
MRAC contains an adaptive law that updates the controller parameters
to ensure that the error between the reference system output and the
measured output converges to zero. Stability proofs for a standard
MRAC can be found in, e.g., [3, Ch. 6.8].

Adaptive techniques can also be used to design observers [3, Ch.
5.3], [7]. The approach is similar to that of MRAC, but the unknown
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plant parameters, the system state, and the outputs are estimated in lieu
of estimating the controller parameters. Without a persistently exciting
(PE) signal, only the system output will converge to the true value;
states and system parameters do not necessarily converge to their true
values. Ensuring a PE signal may be difficult in many systems. Recent
work on adaptive observers has, however, shown that it is possible to
achieve parameter convergence by using an initial excitation, rather
than a continuous persistent excitation [8].

In recent years, several modifications to classic MRAC have been
introduced [9]–[12]. The transient behavior, which can be poor in
MRAC as oscillations often occur in the input and output, has been
particularly addressed in those works.

One modification to MRAC known as closed-loop reference model
adaptive control (CRM) (see, e.g., [10], [13], [14]) introduces a feed-
back structure in the reference model. This feedback introduces a
new degree of freedom for tuning, and allows the reference model
dynamics to change if the system is incapable of tracking the original
dynamics [14, Ch. 3.2.2]. This reduces the oscillations in the state
and input at the cost of having the output of the reference system
deviate from the desired output specified by the reference model
[13]. The introduction of the feedback term also makes it possible to
use the reference system as an observer, and hence the reference system
state can be used in the controller instead of the actual plant state.

A comparison between standard MRAC and adaptive control with
CRM is provided in [13]. It is clear that the transient is improved
significantly when using CRM adaptive control compared to classic
MRAC. Adaptive control with CRM, however, is prone to peaking
unless the feedback gain in the observer and the adaptation gains are
chosen with care [13].

Another recent modification to MRAC is presented in [11] and [12].
In those works, the authors introduce a modification scheme through
filtering for the reference model and the control action in order to
achieve improved convergence of the estimation error. A nonlinear
compensator is introduced to reshape the closed-loop system transient.
This compensator captures the unknown system dynamics and modifies
the given nominal reference model, but the modified reference model
can approach the ideal reference model. Furthermore, a leakage term
that ensures parameter estimation is introduced. Simulation results
show that the adaptive controller with modified reference model and
the novel adaptive law of [11], [12] achieves very good tracking of the
reference signal and that the transients are suppressed.

In this article, we introduce a new method for adaptive control of
LTI systems with unknown dynamics. The proposed method requires
relatively little system knowledge, while also forcing the closed-loop
system to conform to a known and desired reference model, as well
as give estimates of the states without requiring a PE condition. While
all these features are individually achieved with other, existing meth-
ods, we are not aware of other methods that have all these features
simultaneously without further drawbacks.
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Fig. 1. Structure of the novel controller and observer method.

The existing CRM method for LTI systems is a special case of
our more general method. The CRM method has also been shown
to be applicable to a class of nonlinear and nonsquare systems. Such
generalizations of the novel method are at this stage of future work.

In the novel method, we combine the error signal from a closed-loop
reference model with that of a classical MRAC (open-loop reference
model) in the adaptation law. The system dynamics will trend towards
that of the open-loop reference model, and hence the closed-loop
reference model trends towards an observer for the system dynamics
and can be used as an observer for the unmeasured states, allowing
output feedback (without a PE requirement). With our proposed solu-
tion, simulations show that the controller ensures improved tracking
of the original open-loop reference model output when compared to
a CRM controller (which tracks the modified reference model). This
ensures a more predictable behavior (in the sense of closer to that of
the desired reference model) of the closed-loop system. This article is a
continuation of the work found in [15], where a solution for first-order
systems is presented. Our method is referred to as a model reference
adaptive controller and observer (MRACO) and the controller structure
is depicted in Fig. 1.

We prove through Lyapunov analysis that the presented controller
and observer ensures that the tracking error and observer error converge
to zero, and that all signals are bounded. Furthermore, we also prove
bounds on the L2 and L∞ norms of the signals. An analysis of these
bounds provides insight into the transient behavior of the closed-loop
system.

A simulation comparison with the CRM method is performed, where
our proposed method achieves a lower integrated absolute error between
the system output and the reference signal.

II. PROBLEM FORMULATION

Consider the LTI system

ẋ = Ax+BΛu (1)

y = CTx (2)

where x is the state, u is the control input, and y is the measured output.
These satisfy x ∈ Rn and u, y ∈ Rm –, i.e., the system is square – with
m ≤ n. It is assumed thatA ∈ Rn×n andΛ∈ Rm×m are unknown, but
that B ∈ Rn×m and C ∈ Rn×m are known. The matrices are constant.

The open-loop (i.e., no feedback) reference model is given as

ẋm = Amxm +Br (3)

ym = CTxm (4)

where Am ∈ Rn×n is chosen by the designer, and r ∈ Rm is a piece-
wise continuous bounded reference signal. This is similar to a traditional
MRAC reference model [3, Ch. 6].

The closed-loop (i.e., with feedback) reference model is

˙̂x = Amx̂+Br + L(y − CTx̂) (5)

ŷ = CTx̂ (6)

where L = ρB ∈ Rn×m, where ρ > 0 will be determined later. This
is similar to a traditional Luenberger observer [1, Ch. 8.4], with the
difference that we use the referenceAm instead of the true but unknown
A matrix.

For the systems given by (1)–(6), the following assumptions hold.
Assumption 1: The system given by (3) and (4) is strictly positive

real (SPR).
Assumption 2: There exists aK∗ ∈ Rn×m such thatA−BΛK∗T =

Am. Furthermore, ΛK∗T ∈ D, where D is known.
Assumption 3: Λ is diagonal with strictly positive elements.
Assumption 3 simplifies the notation without loss of generality.
Assumption 1 is necessary to use the KYP lemma [16, Lemma 6.3],

on which the proof of the novel method rests (use of the KYP lemma
also precludes linear time-varying systems from being considered).

In practice, Assumption 2 places a constraint on how different A
and Am can be; D in practice represents the user’s certainty about the
nominal values of A.

The user can be expected to know a range of possible values for A,
and choose an Am that is not too different from A (the difference can
be large but not arbitrarily large).

Since A−Am = BΛK∗T, setting bounds on A−Am is equivalent
to setting bounds on ΛK∗T. This assumed known bound (Assumption
2) is the set D.

If the user has already chosen an Am, Theorem 1 (Section IV) can
be used to find the set of all values of ΛK∗T for which the origin of the
closed-loop system is provably asymptotically stable; call this set D̄.
As long as D ∈ D̄, stability can be guaranteed without the user having
to know the true value of ΛK∗T.

Verifying if D ∈ D̄ can be done numerically by iteration, due to the
convex nature of the problem (as discussed in Section IV).

III. CONTROL OBJECTIVE

The primary control objective is to ensure that y → ym (similar to
MRAC [3, Ch. 6]). The secondary control objective is to ensure that
ŷ → y (similar to an observer [1, Ch. 8.4]). Finally, uniform stability
must be guaranteed. To achieve the objectives, we apply the control
input

u = −K̂Tx̂+ L̂Tr (7)

where K̂ and L̂ are estimates of K∗ and L∗ = Λ−1, respectively. K∗

and L∗ are the “ideal” values that would ensure the best tracking.

A. Error Dynamics

We define the error states as

e1 = x− xm , e2 = x− x̂ (8)

K̃ = K̂ −K∗ , L̃ = L̂− L∗ . (9)

Adding and subtracting BΛK∗Tx and BΛL∗Tr to (1), using
Assumption 2, and inserting the input u = −K̂Tx̂+ L̂Tr gives

ẋ = Amx+Br +BΛK∗Tx−BΛK̂Tx̂+BΛL̃Tr . (10)
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The error state e1 has dynamics

ė1 = Ame1 +BΛ
(
K∗Te2 − K̃Tx̂+ L̃Tr

)
. (11)

The error state e2 has dynamics

ė2 =
(
Am − LCT

)
e2 +BΛ

(
K∗Te2 − K̃Tx̂+ L̃Tr

)
(12)

after we add and subtract the term BΛK∗Tx̂.

B. Observer Feedback Gain

As in [10], the choice of the observer feedback gainL is important. In
this article, we use an approach similar to that of [10] to find a suitable
observer gain. By Assumption 1 and [16, Lemma 6.3], ∃ matrices P =
P T > 0 and Q1 � LTL+ εP = QT

1 > 0 s.t.

AT
mP + PAm = −Q1 (13)

PB = C . (14)

Furthermore, we define a matrix M as

M =

[
Q1 −N

−NT S

]

where

N = CΛK∗T , S = Q1 + 2ρCCT − CΛK∗T −K∗ΛCT .

We assume that ρ > 0 can be chosen such that

M > 0 . (15)

Lemma 1 (From [10]): Choosing L = ρB ensures that the closed-
loop system (Am − LCT, B,C) is SPR.

Proof: If we add the term −ρ(CCT + CCT), where ρ > 0, to both
sides of (13) we get

AT
mP + PAm − ρPBCT − ρCBTP = −Q1 − 2ρCCT

AT
mP + PAm − PρBCT − CρBTP = −Q2

AT
mP + PAm − PLCT − CLTP = −Q2(

Am − LCT
)T

P + P
(
Am − LCT

)
= −Q2 (16)

where Q2 = Q1 + 2ρCCT > 0, implying SPR by [16, Lemma 6.3]. �
We note that, in M , S = Q2 −N −NT.

IV. STABILITY AND ASYMPTOTIC BEHAVIOR

We now state the main result of this article.
Theorem 1. (Main result): For the systems (A,B,C) and

(Am, B,C) satisfying Assumptions 1–3, also assume that ρ, P and
Q1 are chosen such that (13)–(15) hold.

Furthermore, let xm be given by (3), x̂ by (5) with L = ρB,
ε1 = CT(x− xm), ε2 = CT(x− x̂), and let Γk = ΓT

k > 0 ∈ Rn×n

and Γl = ΓT
l > 0 ∈ Rm×m be arbitrary matrices. Let the controller

be given by (7) with update laws

˙̂
K = Γkx̂

(
εT
1 + εT

2

)
(17)

˙̂
L = −Γlr

(
εT
1 + εT

2

)
. (18)

Then, the origin of the system given by e1, e2, K̃, L̃ is uniformly
stable. Furthermore, e1 and e2 converge asymptotically to zero for all
initial values of e1, e2, K̃, L̃.

Proof: Consider the function

V̄ = eT
1Pe1 + eT

2Pe2 (19)

where P is as in (13). Along the trajectories of the system

˙̄V = eT
1P ė1 + ėT

1Pe1 + eT
2P ė2 + ėT

2Pe2

= eT
1

(
PAm +AT

mP
)
e1

+ eT
2(P

[
Am − LCT

]
+

[
Am − LCT

]T
P )e2

+ eT
1CΛK∗Te2 − eT

1CΛK̃Tx̂+ eT
1CΛL̃Tr

+ eT
1K

∗ΛCTe1 − x̂K̃ΛCTe1 + rTL̃ΛCTe1

+ eT
2CΛK∗Te2 − eT

2CΛK̃Tx̂+ eT
2CΛL̃Tr

+ eT
2K

∗ΛCTe2 − x̂K̃ΛCTe2 + rTL̃ΛCTe2 . (20)

Using ε1 = CTe1, ε2 = CTe2, (13) and (16), we get

˙̄V = −eT
1Q1e1 − eT

2Q2e2

+ eT
1CΛK∗Te2 − εT

1ΛK̃
Tx̂+ εT

1ΛL̃r

+ eT
2K

∗ΛCTe1 − x̂TK̃Λε1 + rTL̃Λε1

+ eT
2CΛK∗Te2 − εT

2ΛK̃
Tx̂+ εT

2ΛL̃
Tr

+ eT
2K

∗ΛCTe2 − x̂TK̃Λε2 + rTL̃Λε2 . (21)

Being scalar, terms in (21) containing ε1 and ε2 are equal to their own
trace. Hence, we have that

˙̄V = −eT
1Q1e1 − eT

2Q2e2 + eT
1CΛK∗Te2

+ eT
2K

∗ΛCTe1 + eT
2CΛK∗Te2 + eT

2K
∗ΛCTe2

+ 2Tr
(
εT
1ΛL̃

Tr
)
+ 2Tr

(
εT
2ΛL̃

Tr
)

− 2Tr
(
εT
1ΛK̃

Tx̂
)
− 2Tr

(
εT
2ΛK̃

Tx̂
)

= −W (e) + 2Tr
(
εT
1ΛL̃

Tr
)
+ 2Tr

(
εT
2ΛL̃

Tr
)

− 2Tr
(
εT
1ΛK̃

Tx̂
)
− 2Tr

(
εT
2ΛK̃

Tx̂
)

(22)

where eT = [eT
1, e

T
2], and

W (e) = eT
1Q1e1 + eT

2Q2e2 − eT
1CΛK∗Te2

− eT
2K

∗ΛCTe1 − eT
2CΛK∗Te2 − eT

2K
∗ΛCTe2

= eTMe (23)

where M is as in (15).
Now define a Lyapunov function candidate

V = V̄ + Tr
(
ΛK̃TΓ−1

k K̃
)
+ Tr

(
ΛL̃TΓ−1

l L̃
)

(24)

with time derivative along the trajectories of the system given by

V̇ = ˙̄V + 2Tr
(
ΛK̃TΓ−1

k
˙̃K
)
+ 2Tr

(
ΛL̃TΓ−1

l
˙̃L
)

= −W (e) + 2Tr
(
εT
1ΛL̃

Tr
)
+ 2Tr

(
εT
2ΛL̃

Tr
)

− 2Tr
(
εT
1ΛK̃

Tx̂
)
− 2Tr

(
εT
2ΛK̃

Tx̂
)

+ 2Tr
(
ΛK̃TΓ−1

k
˙̃K
)
+ 2Tr

(
ΛL̃TΓ−1

l
˙̃L
)

. (25)
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Now utilizing that Tr(X + Y ) = Tr(X) + Tr(Y ) and that trace is
invariant under cyclic permutations [17], we get that

V̇ = −W (e) + 2Tr
(
ΛL̃T

(
Γ−1
l

˙̃L+ rεT
1 + rεT

2

))
+ 2Tr

(
ΛK̃T

(
Γ−1
k

˙̃K − x̂εT
1 − x̂εT

2

))
. (26)

These last two terms are zero if we choose

˙̂
K = ˙̃K = Γkx̂

(
εT
1 + εT

2

)
(27)

˙̂
L = ˙̃L = −Γlr

(
εT
1 + εT

2

)
. (28)

We are now left with

V̇ = −W (e) = −eTMe . (29)

M is positive definite by assumption, so V̇ ≤ 0. By [16, Th. 4.8], the
origin of the system e, K̃, L̃ is uniformly stable. Furthermore, by [16,
Th. 8.4],

lim
t→∞

W (e) = 0 ⇒ lim
t→∞

e = 0 (30)

for all initial values of e, K̃, L̃. �
Remark 1: Solving (13)–(15) for P and ρ is a constrained linear

matrix inequality (LMI) and can only be solved (excluding trivial cases)
by a numerical LMI solver [18].

Remark 2: The LMI problem is convex [18, Ch. 2], i.e., all feasible
solutions to the LMI lies in a convex set.

Remark 3: If the term ε1 is removed from the update laws (17), (18),
which removes the influence from system (3), (4), the resulting update
laws are identical to those used in the CRM method, i.e., our method
can be reduced to the CRM method by excluding the feedback from
the open-loop reference model.

Theorem 1 might appear to require knowledge of ΛK∗T, which is
unknown. This is not the case. It is sufficient to know bounds onBΛK∗T

(see Section II).
We will, in Section VI, illustrate through the use of an example how

exact knowledge of ΛK∗T is not necessary (as well as illustrating other
aspects of the novel method).

V. BOUNDS ON ERROR SIGNALS

The choice of control parameters (as long as they satisfy the criteria
of Theorem 1) do not affect the steady-state behavior of the closed-loop
system. However, they do affect the transient behavior.

Key aspects are the rate of convergence, the amount of oscillations
in the error signal e, and the oscillations in the adaptive gains K̂ and L̂.

We can use Theorem 1 to find an upper bound on the function norms
of the errors, which depends on the transient behavior. However, these
bounds are likely to be highly conservative.

We will use the L2 and L∞ norms; a similar procedure was used
in [13]. We use the L2 norm defined as [16, Ch. 5.1]

‖z‖2L2
=

∫ ∞

0

‖z(t)‖22dt =
∫ ∞

0

zT(t)z(t)dt (31)

for some square-integrable function z : [0,∞) → Rn, roughly analo-
gous to the energy in the signal [16, Ch. 5.3]. We use the L∞ norm,
which we take as [16, Ch. 5.1]

‖z‖L∞ = sup
t≥0

‖z(t)‖2 (32)

using the Euclidean 2-norm, for some piecewise continuous bounded
function z : [0,∞) → Rn.

To improve readability, we will slightly abuse the notation and use
V (t) = V (e(t), K̂(t), L̂(t)) and V (0) = V (e(0), K̂(0), L̂(0)). Fur-
thermore, λmin(·) and λmax(·) are the largest and smallest eigenvalues
of a matrix, respectively.

Corollary 1. (Bounds): x̂, e, ˙̂
K, and ˙̂

L satisfy

‖e‖2L2
≤ V (0)

λmin(M)
(33)

‖e‖2L∞ ≤ V (0)

λmin(P )
(34)

‖x̂‖L∞ ≤ √
c1‖x̂(0)‖2

+
c1
2
‖B‖2 (‖r‖L∞ + ρ‖C‖2‖e‖L∞)

(35)

‖ ˙̂
K‖L2

≤ 2‖C‖2‖Γk‖2‖x̂‖L∞‖e‖L2
(36)

‖ ˙̂L‖L2
≤ 2‖C‖2‖Γl‖2‖r‖L∞‖e‖L2

(37)

where V is (24), P , Q1 and M are as in (13)–(15), and

c1 =
λmax(P )

λmin(P )
> 0 , c2 =

λmin(Q1)

2λmax(P )
> 0 . (38)

Proof: We have

−
∫ t

0

V̇ (τ)dτ = V (0)− V (t) ≤ V (0) (39)

sinceV (t) ≥ 0 ∀ t. Furthermore, we have that−V̇ = eTMe (Theorem
1) and eTMe ≥ λmin(M)‖e‖22. Thus

λmin(M)

∫ t

0

‖e‖22dτ ≤
∫ t

0

eTMe dτ = −
∫ t

0

V̇ dτ ≤ V (0)

⇒
∫ t

0

‖e‖22dτ ≤ V (0)

λmin(M)
. (40)

Taking the limit of (40) when t → ∞, we get (33).
From the definition of V , we have that λmin(P )‖e‖22 ≤ eT

1Pe1 +
eT
2Pe2 = V̄ (t) ≤ V (t) ≤ V (0) since V is a nonincreasing function

(Theorem 1). Thus

‖e‖2L∞ = sup
t≥0

‖e(t)‖22 ≤ V (0)

λmin(P )
(41)

which is (34).
The L∞ norm of x̂ can be found by first noting that

˙̂x = Amx̂+Br + LCTe2 .

From the proof of [16, Th. 5.1], we have

‖x̂(t)‖2 ≤ √
c1‖x̂(0)‖2e−c2t

+
c1
2
‖B‖2

∫ t

0

e−c2(t−τ)‖r(t)‖2dτ

+
c1
2
‖L‖2‖C‖2

∫ t

0

e−c2(t−τ)‖e2(t)‖2dτ (42)

where c1, c2 are as in (38) and P , Q1 are as in (13). Using (42),
‖e2(t)‖2 ≤ ‖e(t)‖2 ≤ ‖e‖L∞ , ‖r(t)‖ ≤ ‖r‖L∞ , L = ρB, and that c2
and ρ are positive, we get

‖x̂(t)‖2 ≤ √
c1‖x̂(0)‖2 + c1

2
‖B‖2 (‖r‖L∞ + ρ‖C‖2‖e‖L∞)

which implies (35).
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TABLE I
PARAMETERS FOR THE SYSTEM (44). FROM [19]

The L2 norms of ˙̂
K and ˙̂

L can now be found. We note that

ε1 + ε2 = CT(e1 + e2) ⇒ ‖ε1 + ε2‖2 ≤ 2‖C‖2‖e‖2 .

From the above and (17), we have

‖ ˙̂
K‖22 ≤ 4‖C‖22‖Γk‖22‖x̂‖22‖e‖22 ≤ 4‖C‖22‖Γk‖22‖x̂‖2L∞‖e‖22

and thus

‖ ˙̂
K‖2L2

=

∫ ∞

0

‖ ˙̂
K‖22dt = 4‖C‖22‖Γk‖22‖x̂‖2L∞

∫ ∞

0

‖e‖22dt

= 4‖C‖22‖Γk‖22‖x̂‖2L∞‖e‖2L2
(43)

which implies (36). Starting from (18) and using the exact same
procedure, we have (37). �

It is desirable to reduce the L2 and L∞ norms listed in Corollary 1.
While we cannot choose e(0), K̃(0) or L̃(0) (which enter into V (0)),
we can choose P , Γk, and Γl, which also influence V (0).

Increasing ‖Γk‖2 and ‖Γl‖2 reduce the L2 and L∞ norms of e, but

will adversely affect the L2 norms of ˙̂
K and ˙̂

L.
Adjusting the eigenvalues ofP ,Q1, andM appropriately will reduce

all bounds on the norms discussed in Corollary 1. However, doing so
is difficult in light of also needing to satisfy the matching criterion
(13)–(15). Even so, optimizing the choice of P , Q1, and M w.r.t. the
results of Corollary 1 can be incorporated into the LMI solver that is
needed to solve (13)–(15) (Remark 1).

VI. SIMULATION EXAMPLE

We illustrate the results of the article with a simulation example. The
example (slugging) is drawn from multiphase flow.

Slugging is a phenomenon that often occurs in pipeline-riser systems
carrying multiple phases, e.g., gas and liquid. It is characterized by the
liquid blocking the pipe until the gas pressure has built up enough to
dislodge the mass of liquid (the “slug”) at great speeds. Slugging is quite
common in offshore oil and gas production. It is highly undesired, as
it is characterized by large variations in pressure and flow rate which
may cause damage to equipment and nonoptimal production. [19]

One way to suppress the slugs and hence enable operation in a
desirable but unstable operating region, is to actively control the pres-
sure at the riser bottom with the topside choke valve [19]. In [19], a
second-order linear approximation of the dynamics between the topside
choke-valve (input) and the riser-bottom pressure (output), linearized
around a given valve-opening, is identified as

G(s) = λ
β1 s+ β0

s2 + α1 s+ α0

. (44)

The parameters of this transfer function are not truly constant, but
change based on the operating point and the valve opening. Hence,
designing a static controller with guaranteed stability properties for
this system is challenging.

Experimentally obtained system parameters from a laboratory-scale
system (from [19]) are in Table I, taken at an operating point of ap-
proximately 20% valve opening and pressure 26 kPa. Input is deviation

from 20% and output is deviation from 26 kPa; time is in seconds. Note
that this system is open-loop unstable.

The transfer function (44) can be realized as a second-order state-
space model, e.g.,

A =

[
−α1 −α0

1 0

]
, BΛ =

[
λ

0

]
, C = [β1, β0]

T (45)

where we assume that β0, β1 are known and constant, and α1, α0,Λ =
λ ∈ R are constant unknowns, but satisfying

α1 ≤ α1 ≤ ᾱ1 , aα1 + b ≤ α0 ≤ āα1 + b̄ (46)

where α1, ᾱ1, a, b, ā and b̄ are known. Here, the values chosen are

α1 = −1 , ᾱ1 = 0.2 , a = ā = 0.3 , b = 0.15 , b̄ = 0.35.

A. Reference System

For this system, we choose

Am =

[
−αm,1 −αm,0

1 0

]
(47)

so that ΛK∗T = [λk1, λk2], λk1 = α1 − αm,1, λk2 = α0 − αm,0.
While we can choose αm,1 and αm,0, the true values of ΛK∗T are

unknown since α1, α2 are unknown. Regardless, (46) can be converted
to an equivalent bound on ΛK∗T, i.e.,

D = {λk1 ≤ λk1 ≤ λk1 ,

aλk1 + bk ≤ λk2 ≤ āλk1 + b̄k} (48)

where bk = b+ aαm,1 − αm,0 and b̄k = b̄+ āαm,1 − αm,0.
We choose

Am =

[
−1 −0.05

1 0

]
, Bm =

[
1

0

]
, Cm = C . (49)

Note that this reference system does not have a stead-state gain of 1,
hence we will premultiply the reference signal r with a constant kg =
αm,0/β0 ≈ 12.20 to ensure correct steady-state values at the output
of the reference model. With (49), the true value of ΛK∗T is given
by ΛK∗T = [1.0019, 0.0412]. Note that while A and Am have very
different parameters, ΛK∗T is not particularly large.

It is now possible to find all P, ρ that satisfy (13)–(15) for any ΛK∗T

in some set numerically, as the solutions to the LMI problem is a convex
set (Remark 2).

B. SPR Condition

For Am of (47), all solutions to (13) and (14) are given by

P =

[
β1 β0

β0 p

]

Q1 =

[
2(αm,1β1 − β0) αm,0β1 + αm,1β0 − p

αm,0β1 + αm,1β0 − p 2αm,0β0

]

where p is chosen so that P and Q1 are positive definite. Inserted the
values from Table I and (49), we have

P =

[
0.012 0.0041

0.0041 p

]
(50)

Q1 =

[
0.0158 0.0047− p

0.0047− p 0.00 041

]
. (51)
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Fig. 2. Controller will stabilize the system if the possible values for α1 and α2 as defined by (46) (red) are completely within the set of α1, α2

values where M > 0 (blue). (a) ρ = 9131, p = 0.0046. The system is stable for all desired parameter values. (b) ρ = 23, p = 0.0055. The system is
not stable for all desired parameter values. (c) ρ = 203, p = 0.0039. The system is stable for all desired parameter values.

Choosing, e.g., p = 0.0047 makes P and Q1 positive definite, but this
is not the only allowable value.

C. Solutions to the LMI

To verify if (15) has a solution, we now do a two-step procedure.
The first step is to find candidate ρ and p that satisfies (13)–(15), for
values of ΛK∗T on some domain D̄. The second step is to verify that
the candidates are suitable for the desired range of values of ΛK∗T [D
of (48)]. Since the LMI is convex, doing these steps numerically on a
discrete grid is sufficient.

Step 1: For each point in a uniformly spaced grid in the range
ΛK∗T = [−1,−0.5]T to ΛK∗T = [2, 0.5]T (20 points), we find values
ρ, p so that (13)–(15) has a solution (one pair ρ, p per point).

Step 1 was done using CVX in Matlab. For some grid points, the
LMI does as expected not have a solution.

The largest value ρ found for all the data points where the LMI had
a solution is ρ ≈ 9131, and the p corresponding to it was p ≈ 0.0046.
These are chosen as the initial candidate values.

Step 2: Using the same uniformly spaced grid as before (but now
using 100 points) and fixed values of ρ = 9131 and p = 0.0046, we
verified for which values ofΛK∗T the matrixM > 0. The set where the
LMI has a solution is significantly larger than the setD of (48). However,
this implies an unnecessarily aggressive choice of ρ. The choice, e.g.,
ρ ≈ 25 and p ≈ 0.0055 does not guarantee stability for parameters in
D. The choice ρ ≈ 203, p = 0.0039, however, does, although the range
parameters for which the controller works is smaller than with the first
ρ, p pair.

The results of the tuning are illustrated in Fig. 2.
The area where M > 0 with the chosen values of ρ and p is in blue.

This is the domain D̄, i.e., the range of parameter values where the
system is guaranteed to be stabilized. As long as the unknown system
parameters are in this set, the controller works.

In red in Fig. 2 is the domain D, i.e., the range of parameter
values for which we want the system to be stable. As we can see
from the figure, D ∈ D̄ for appropriate choices of ρ, p. Therefore,
for the system (45) with (46), the MRACO method will work on this
system with parameters anywhere in the allowable range, withρ = 203,
p = 0.0039.

D. Simulation Parameters

We implemented the system in Simulink with the parameters given
in Table I, i.e., the open-loop system is unstable. The control objective
is to have the output of the system track a rectangular pulse reference
signal varying between −0.5 and 1 with a period of 800 s. The system
is linearized around a choke-valve opening of 20%, hence we saturated
the calculated input between –20% and 80% to respect the limits of the
actual choke-valve. We used ρ = 9131 and the adaptation gains were

chosen as

Γl = 2 , Γk = diag (1, 0.004) . (52)

While the proof of Theorem 1 only holds for LTI systems, we tested
the robustness of the system by performing two changes in system
parameters. At t = 600 s, the parameters α1 and α0 increased by 0.6
and 0.1, respectively. At t = 1000 s they returned to their original
values.

E. Simulation Using MRACO

The proposed controller and observer were implemented in Simulink
on the system presented above. The initial states of the system are set to
x1(0) = −20.83, x2(0) = −60.98, i.e., the initial output of the system
is y(0) = 0.5while the initial states of the observer and reference model
are all set to zero. The results of the simulation are shown in Fig. 3.
Note that the plot shows actual pressure and valve position; y = 0
corresponds to 26 kPa, u = 0 corresponds to 20%.

F. Simulation Using Closed-Loop Reference Model
Adaptive Control

For comparison, we also simulated an output feedback CRM con-
troller for the same system. Other traditional methods such as MRAC
or PID are either not applicable to this scenario, or outperformed
by CRM [13]. We followed the CRM procedure presented in [10],
summarized here.

In this example, parameters with the same name as with MRACO
take the same numerical values.

CRM assumes an open-loop system on the same form as in (1)
and (2), but the reference model and observer are combined in the
form of an observer

ẋm,c = Amxm,c +Br + Lc(y − ym,c) (53)

ym,c = CTxm,c . (54)

The controller and update laws have the forms

u = K̂T
cxm,c + L̂T

cr (55)

˙̂
Kc = −Γk,cxm,ce

T
yC

TB (56)

˙̂
Lc = −Γl,cre

T
yC

TB (57)

where ey = y − ym,c.
A feedback gain Ls is chosen such that the transfer function

CT
(
sI −Am + LsC

T
)−1

B =
a

s+ ρc
(58)

is SPR, where a = CTB and ρc > 0 can be chosen freely; Ls and
ρc will be used to compute Lc per [10]. Since the pair (Am, C) is
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Fig. 3. Simulation results using the proposed MRACO and the CRM
method.

observable and the system is minimum phase, we can place the poles
of Am − LsC

T freely. We can now find a Pc = P T
c > 0 and a Qs =

QT
s > 0 such that(

Am − LsC
T
)T

Pc + Pc

(
Am − LsC

T
)
= −Qs (59)

PcB = CCTB . (60)

Choosing Lc = Ls + ρcBBTC and ensuring that

ρc > ρ∗c =
λ̌2ǩ2

2λmin(Qs)
(61)

where λ̌ ≥ sup ||Λ|| and ǩ ≥ sup ||K∗|| are known, ensures that the
error signal ec = x− xm,c is globally bounded and that limt→∞ e = 0
[10].

Finding ρ is an iterative process. First, a candidate value must be cho-
sen and (59)–(61) must be solved and satisfied. We chooseρc = 85. The
reference system dynamics is as in (49), hence Ls ≈ [−7000,−83.3]T

Fig. 4. Comparison during setpoint change.

ensures a pole-zero cancellation in the left half plane and places the pole
of the resulting closed-loop transfer function in −ρc. The bounds for Λ
and K∗ are set to λ̌ = 1 and ǩ = 2 which implies similar uncertainty
on the true system parameters as with the MRACO example.

The corresponding solution for Pc and Qs is

Pc =

[
1.4E − 4 4.9E − 5

4.9E − 5 4.58E3

]
, Qs =

[
0.0245 0.0083

0.0083 3.14E3

]

where PcB = CCTB. The lower bound

ρ∗c =
λ̌2ǩ2

λmin(Qs)
= 81.7 < ρc

and hence the condition for stability is satisfied.
The adaptive controller was implemented in Simulink, with adap-

tation gains Γk,c = diag(200 200) and Γl,c = 50. The system and the
reference model are initialized as in the simulation with the proposed
method. The results of the simulation are also shown in Fig. 3.

G. Discussion

From Fig. 3 we see that the proposed method is able to track the
output of the reference model ym and that the errors e1 and e2 both
converge to zero. The initial deviation, the setpoint changes and both
parameter changes (600 and 1000 s) are handled very well, and we see
only very minor and short-lived deviations from the desired reference
model trajectory.

The simulation results using the CRM method are also shown in
Fig. 3. The CRM method is also able to track the output of the combined
observer and reference model, but we note that the output of this closed-
loop reference model significantly deviates from the original reference
model trajectory at t ∼ 810 s (highlighted in Fig. 4), i.e., the reference
model is acting more as an observer than a reference trajectory. This
behavior, which is not present with the proposed MRACO method, is
described in [14] as having a potential negative impact if the open-loop
plant is unstable (as is the case here), as the reference model is then
tracking a divergent plant. The behavior is caused by the error signal
driving the update laws (56) and (57) being very small, i.e., larger
adaptation gains are necessary [14].

There is a clear difference between the observer feedback gains used
in the two methods. Increasing the observer feedback ρ for the MRACO
increases the convergence rate of the observer and does not cause any
deviation of the reference model from its expected trajectory, as this is
decoupled from the observer. It is, however, recommended to choose a
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TABLE II
NUMERICAL COMPARISON. INTEGRATED ABSOLUTE ERROR

TABLE III
THEORETICAL AND MEASURED BOUNDS OF SIGNALS

small ρ, especially if the measured signal is contaminated with noise. A
very large ρ would lead to bad noise filtering properties of the observer.

In order to provide a fair comparison of the two methods, we can com-
pare the deviation between the reference signal r and the system output
y. Another interesting comparison would be the deviation between the
output of the system, y, and the output of the reference model without
the injection term, i.e., ym. This signal is the actual desired trajectory
and any deviation from this can be considered an error. The CRM
method allows deviations from ym in order to decrease oscillations.
Whether deviation from the expected trajectory or oscillations in the
input and output signals are least desirable largely depends on the
use-case.

Table II shows the integrated absolute error (IAE) between the signals
of interest in the two simulations. The proposed method (MRACO) has
a significantly lower IAE between the system output (y) and the original
reference model output (ym). MRACO also has a slightly lower IAE
between the system output (y) and the reference (r). We see that the
error signals which are specific for each method (y − ŷ for MRACO
and y − ym,c for CRM) are very low. These results are as expected.

Table III shows the theoretical bounds based on (33)–(37) and the
actual values of the signals from the simulation (note that the bounds
are of e, not ε1 = CTe1, ε2 = CTe2). The actual values are clearly
substantially lower than the theoretical bounds.

VII. CONCLUSION

In this article, we presented a novel method (MRACO) for designing
an output feedback controller and an observer for linear time-invariant
systems with unknown dynamics. The controller is a standard model
reference adaptive controller, but the adaptation laws include the ob-
server error as well as the tracking error, and the observer states are used
in the controller so that the method does not require full-state feedback.
The observer dynamics are the same as those in the reference model.
A procedure for finding the observer feedback gain and the reference
model, which is based on solving a linear matrix inequality, is also
presented.

The presented method has some similarities with what is known as
adaptive control with closed-loop reference model (CRM), but the key
difference is that in our method the reference model and observer are
separated; in CRM they are combined. This means that with MRACO,
unlike with CRM, the output of the reference model, at all times, is
as specified. Furthermore, the adaptation laws are different in the two
methods.

Through Lyapunov analysis, we proved that the differences between
the system state, reference model state, and observer state all converge
to zero. A transient analysis was performed and upper bounds on error
signal and adaptation gain oscillations derived.

Our method was compared to a CRM controller in simulation. Our
method has lower tracking error and more closely tracks the output of
the reference model, but at the cost of slightly higher oscillations. A
method that combines the benefits of both methods with none of the
drawbacks has not yet been developed.

Simulations using our method imply that it is capable of stabilizing
systems not encompassed by our mathematical proof. This implies that
our proof may be somewhat conservative. Also, extending the method
to classes of nonlinear systems is considered future work.
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