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Unified Formulation of Multiagent Coordination
With Relative Measurements

Kazunori Sakurama , Member, IEEE

Abstract—This article provides a unified solution to a
general coordination problem of multiagent systems with
relative measurements, including uncertain transforma-
tions in translation, rotation, reflection, and scale. First,
we introduce relative measurements described by a matrix
group expressing such transformations in a unified way.
Then, we derive a necessary, and sufficient condition to
achieve a coordination task by relative, distributed control
according to a network topology, and a class of measure-
ment information. Especially, a strict class of all realizable
coordination tasks is characterized with an orbit associ-
ated with the transformation matrix group on measurement.
Next, we show that the network topology required to coordi-
nation is the clique rigidity. Then, the clique rigidity for con-
crete coordination tasks is associated with conventional
connectivity, e.g., connectedness and rigidity. Moreover, an
intuitive condition is derived as a connectivity condition of
the intersection graph of the maximal cliques (i.e., complete
subgraphs). Finally, the new method is applied to formation
control with unknown, heterogeneous scale factors and its
effectiveness is demonstrated through simulations for both
2-D and 3-D spaces.

Index Terms—Distributed control, formation control, mul-
tiagent systems, relative measurement.

I. INTRODUCTION

MULTIAGENT systems have attracted a lot of attention
in the field of control engineering for decades [1]. A

multiagent system consists of a large number of components,
called agents, which interact with each other through communi-
cation and/or sensing. For multiagent systems, distributed con-
trol [2], [3], based on local information of neighboring agents, is
important due to its scalability (i.e., applicability regardless of
the scales of systems). Actually, many types of distributed con-
trollers have been designed for various coordination tasks, e.g.,
consensus [4], [5], coverage [6], flocking [7], [8], pursuit [9],
[10] attitude synchronization [11], [12], assignment [13], and
formation [14]–[21]. Formation is one of the most fundamental
coordination tasks since it is applicable to various practical
missions, including surveillance with multiple unmanned aerial
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TABLE I
EXAMPLES OF COORDINATION TASKS (T), NETWORK TOPOLOGIES (N),

MEASUREMENT INFORMATION (M), AND THEIR TRENDS

vehicles [22] and ocean sampling with multiple autonomous
underwater vehicles [23].

The coordination tasks of multiagent systems are aimed at
achieving a configuration prescribed by constraints on posi-
tional relations between agents, e.g, distances and angles. For
this purpose, we have to design a distributed controller that
provides a stable equilibrium set on which these constraints
are satisfied [21]. Whether such a distributed controller exists
or not mainly depends on the two factors: the network topol-
ogy describing interactions between agents, and measurable
information on neighbors and environments. In this respect,
coordination problems of multiagent systems can be formulated
as follows: for a given coordination task (T), find a required
network topology (N), and measurement information (M) with
which the coordination task (T) is realizable by distributed
control.

According to this formulation, multiagent coordination prob-
lems in existing results can be classified as Table I, referring
to [21], [24], and [25]. Displacement-based coordination (ii)
imposes constraints on displacements, i.e., relative positions
between agents (T), and it requires a connected network (N)
with the information on relative positions of neighbors and a
common direction (M) [5], [14]. Distance-based coordination
(iii) prescribes distances between agents (T), requiring a rigid
network (N), and relative positions of neighbors (M) [17], [18].
Bearing-based coordination (iv) imposes bearing constraints
(T), and a bearing-rigid network (N) is necessary with relative
bearings of neighbors and a common direction (M) [26], [27]. A
feature of bearing-based coordination is that the scale freedom
yields flexibility in coordination. Some research include the
scale freedom in different ways [28], [29], and others combine
several constraints [30]–[32]. Note that not all papers necessarily
obey Table I. For example, for angle-based coordination (v)
prescribing angle constraints (T), relative bearings of neighbors
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TABLE II
TYPICAL TRANSFORMATION MATRIX SETS AND INVOLVED

TRANSFORMATIONS

(M) are essentially required as [33], but relative positions (M)
are used in [34] and [35].

Let us compare the displacement- and distance-based co-
ordination (ii), (iii) in Table I. With regard to the tasks (T),
the distance-based coordination (iii) is more flexible than the
displacement-based one (ii) in the sense that the former allows
both the freedoms of rotation and translation for the coordi-
nation, while the latter does not allow the rotational freedom.
As for network topologies (N), the distance-based coordination
(iii) requires a denser network topology, say rigidity, than the
displacement-based one (ii) requires, say connectedness. As for
measurements (M), the distance-based coordination (iii) does
not need a common direction while the displacement-based
one (ii) does. Generally, the triplet (T, N, M) in multiagent
coordination problems follow these trends. Namely, to achieve
a more flexible coordination task (T), a denser network (N) is
required, but less measurement information (M) is needed, as
described in Table I.

Although various types of coordination tasks are found in
the literature, existing papers have dealt with specific tasks
individually, and there is no research that unifies these results.
Therefore, once a new coordination task (T) is given, a dis-
tributed controller has to be designed over again, and a required
network topology and measurement information (N, M) are
specified to the designed controller. Moreover, no research has
addressed the inverse problem: for a given network topology and
measurement information (N, M), find a coordination task (T)
realizable by distributed control. This is because a strict class
of realizable coordination tasks (T) has not been revealed yet;
thus, the class might be larger than expected from Table I. These
issues are essential for control problems of multiagent systems,
but are open so far.

To address the issues, this article provides a unified solution
to a general coordination problem of multiagent systems with
relative measurements, including uncertain transformations in
translation, rotation, reflection, and scale. For this purpose, we
mainly consider the relative measurements described as x[i]

j =

M−1
i (xj − xi) ∈ Rd, which denotes the measurement value of

agent j at a position xj ∈ Rd from the viewpoint of agent i at
xi ∈ Rd. The matrix Mi ∈ M, unknown to anyone, represents
a type of such linear transformations, where a transformation
matrix set M ⊂ Rd×d is determined by a type of measurement
information. For example, if there is no common direction,
M = SO(d), the special orthogonal group, is employed for un-
certain rotation transformations. See Table II for other examples.
Through M, the types of measurement information (M) can be
expressed in a unified way.

In this setting, this article provides a comprehensive answer to
the multiagent coordination problems based on the gradient-flow
approach. First, we characterize a strict class of coordination
tasks (T) realizable with the measurement information (M)
by using an orbit of M, which is a group-theoretical term
referring to a collection of elements transformed by M. Next,
we show that the network topology (N) required to achieve a
coordination task (T) is the clique rigidity, which is a general-
ized concept of rigidity for cliques (i.e., complete subgraphs).
Then, a more intuitive condition on the network topology is
derived such that an intersection graph of the maximal cliques
is connected. Here, the number of the required intersections
is determined by a free dimension of M, which is a new
concept associated with freeness, a term in group theory. Finally,
to demonstrate the effectiveness of this method, it is applied
to formation control with unknown, heterogeneous scale fac-
tors, and simulation results for both 2-D and 3-D spaces are
shown.

This unified approach brings the following advantages. Sys-
tematic methods to specify a network topology and measurement
information (N, M) and to design distributed controllers are
provided, which are applicable to a wide range of tasks because
the realizable coordination task (T) is represented in a general
form. All the achievable coordination tasks (T) are specified
from a network topology and a type of measurement information
(N, M), which indicates that a class of achievable coordination
tasks (T) is actually larger than expected in Table I. The trends
of the relations among the triplet (T, N, M), shown in Table I,
are explained in quantitative manners through the volume and
the free dimension of M.

This article is based on the author’s conference proceeding
paper [36]. Significant differences from [36] are as follows. We
newly derive a necessary and sufficient condition on the network
topology as clique rigidity, and associate it with conventional
graph conditions for concrete coordination tasks, and provide
a more intuitive condition with intersection graphs. All the
achievable coordination tasks are characterized by an orbit. A
simulation for a 3-D space is added to show the effectiveness of
the method regardless of the dimension of space. The proofs are
complete.

The rest of this article is organized as follows. Section II
provides mathematical preliminaries on group and graph the-
ories. Section III formulates the problem tackled in this article.
Section IV gives a solution to the target problem and clarifies
required network conditions. In Section V, the new method is
applied to formation control with unknown, heterogeneous scale
factors, and its effectiveness is demonstrated through simula-
tions. Section VI provides the proofs of theorems. Section VII
concludes this article.

Notation: Let R be the set of the real numbers. The d-
dimensional identity matrix is denoted as Id ∈ Rd×d. The no-
tations edj ∈ Rd and 1d ∈ Rd represent the d-dimensional unit
vector with the jth entry one and the vector of all one’s. Let
tr(·) and det(·) denote the trace and the determinant of a
square matrix, respectively. Let 〈X,Y 〉 = tr(X�Y ) be the inner
product of matrices X,Y ∈ Rd×n, and the Frobenius norm of a
matrix is defined as ‖X‖ =

√
〈X,X〉. For a matrix X ∈ Rd×n

and a set T ⊂ Rd×n, their distance is defined as

dist(X, T ) = inf
T∈T

‖X − T‖. (1)



SAKURAMA: UNIFIED FORMULATION OF MULTIAGENT COORDINATION WITH RELATIVE MEASUREMENTS 4103

For vectors x1, x2, . . . , xn ∈ Rd and a set C ⊂ N of natural
numbers, where N = {1, 2, . . . , n}, let xC ∈ Rd×|C| be the ma-
trix consisting of the columns xi for i ∈ C as

xC = [xi1 xi2 · · · xi|C| ]

where |C| is the number of the elements of C, and the ele-
ments i1, i2, . . . , i|C| ∈ C satisfy 1 ≤ i1 < i2 < · · · < i|C| ≤ n.
Let colm(·), ave(·), and cen(·) be the mth element, the average,
and the center of a collection of vectors, respectively, defined as

colm(xN ) = xm, ave(xN ) =
1

n

∑
i∈N

xi

cen(xN ) = xN − ave(xN )1�
n .

For a set C ⊂ N , let projC(·) be the projection of a set onto the
xC-space, defined for a set T ⊂ Rd×n as

projC(T ) = {xC ∈ Rd×|C| : ∃x1, x2, . . . , xn ∈ Rd

s. t. xN ∈ T }. (2)

II. MATHEMATICAL PRELIMINARIES

A. Group-Theoretical Concepts

This section provides group-theoretical concepts essential for
multiagent coordination, e.g., group, subgroup, scaled set, group
action, semidirect product, freeness, orbit, invariant subset, and
invariant functions. The terminology is based on [37]–[39].

1) Group and Subgroup: A set H is called a group (with
respect to multiplication) if H1H2 ∈ H is defined for any
H1, H2 ∈ H, satisfying the following:

� (H1H2)H3 = H1(H2H3) for any H1, H2, H3 ∈ H;
� IH ∈ H, where IH is the identity element of H;
� H−1 ∈ H for any H ∈ H, where H−1 is the inverse

element of H .
A group with respect to addition is defined with the zero and

minus elements for the identity and inverse elements, respec-
tively. A subset Ȟ ⊂ H is called a subgroup of H if Ȟ itself is
a group. Typical groups are illustrated as follows.

Example 1: The following matrix sets are groups with respect
to multiplication:

i) the set of the orthogonal matrices, the orthogonal group
O(d) ⊂ Rd×d;

ii) the set of the orthogonal matrices with determinant 1, the
special orthogonal group SO(d);

iii) the set {Id}, consisting of only the identity matrix;
iv) the set {Id, Rw} with a reflection matrix Rw ∈ Rd×d,

defined as Rw = Id − 2ww� with a unit vector w ∈ Rd. All
SO(d), {Id}, and {Id, Rw} are subgroups of O(d). �

Example 2: The sets Rd and {0} ⊂ Rd are groups with
respect to addition, and {0} is a subgroup of Rd. �

2) Scaled Set: For a group H, a scaled set of H, denoted as
scaled(H), is a group consisting of the positive scalar multiples
of the elements in H, i.e.,

scaled(H) = {sH : s > 0, H ∈ H} (3)

with the product (s1H1)(s2H2) = (s1s2)(H1H2) for s1, s2 >
0 and H1, H2 ∈ H. In (3), the multiplier s is called a scale. Note
that H is a subgroup of scaled(H), and that if Ȟ is a subgroup
of H, scaled(Ȟ) is a subgroup of scaled(H).

Example 3: From the definition (3) of the scaled set, a
matrix M ∈ scaled(SO(2)) is parameterized with s > 0 and
θ ∈ [−π, π) as M = sR(θ) for the rotation matrix

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ SO(2). (4)

�
Note that scaled(O(d)) is described as

scaled(O(d)) = {M ∈ Rd×d : M�M = (det(M))
2
d Id} (5)

indicating that the scale is given by s = | det(M)| 1d from (3).
3) Group Action: For a group H and a set X , we say that H

acts on X if Hx ∈ X is defined for any H ∈ H and x ∈ X ,
satisfying the following:

� (H1H2)x = H1(H2x) for any H1, H2 ∈ H, x ∈ X ;
� IHx = x for any x ∈ X .

For a set X ⊂ Rd and a group H acting on X , H acts on
Xn ⊂ (Rd)n = Rd×n to vectors x1, x2, . . . , xn ∈ X as

H[x1 x2 · · · xn] = [Hx1 Hx2 · · · Hxn] ∈ Xn. (6)

4) Semidirect Product: For groups M and B with respect to
multiplication and addition, respectively, such that M acts on
B, the semidirect product of M and B, denoted by M� B, is a
group consisting of the pairs (M, b) of M ∈ M and b ∈ B with
the product

(M1, b1)(M2, b2) = (M1M2, b1 +M1b2) ∈ M� B
for (M1, b1), (M2, b2) ∈ M� B. Accordingly, the identity ele-
ment of M� B is (IM, 0) and the inverse element of (M, b) ∈
M� B is

(M, b)−1 = (M−1,−M−1b). (7)

For a set X such that M and B act on X with respect to
multiplication and addition, respectively, the semidirect product
M� B acts on X as

(M, b)x = Mx+ b ∈ X (8)

for (M, b) ∈ M� B and x ∈ X .
Example 4: From Example 3, the semidirect product

scaled(SO(2))� R2 consists of the pairs (sR(θ), b) for s > 0,
θ ∈ [−π, π), and b ∈ R2. From the action on multiple vectors (6)
and the action of a semidirect product (8), scaled(SO(2))� R2

acts on R2×2 as

(sR(θ), b)[x1 x2] = [sR(θ)x1 + b sR(θ)x2 + b] (9)

for x1, x2 ∈ R2. Equation (9) means that the vectors x1, x2 ∈
Rd are scaled, rotated, and translated with a scale s, angle θ, and
vector b, respectively. �

5) Freeness: For a group H and a set X such that H acts on
X , we say that H is free to X if for every x ∈ X

H1x = H2x,H1, H2 ∈ H ⇒ H1 = H2. (10)

For a group H acting on Rd, a free dimension of H is defined as

fdim(H) = min{m ∈ {0, 1, . . .} : H is free toRd×m\Sm}
(11)

where Sm ⊂ Rd×m is a set of measure zero such that H acts
on Rd×m\Sm. See Table III for the free dimensions of typical
semidirect products M� B. How to derive the free dimension
is illustrated as follows.
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TABLE III
FREE DIMENSIONS OF TYPICAL SEMIDIRECT PRODUCTS M� B

Example 5: We obtain fdim(scaled(SO(2))� R2) = 2 as
follows. For two elements (saR(θa), ba), (sbR(θb), bb) ∈
scaled(SO(2))� R2 with sa, sb > 0, θa, θb ∈ [−π, π), ba,
bb ∈ R2, and two vectors x1, x2 ∈ R2, x1 �= x2, the assumption
part in the definition (10) of freeness is reduced to

(saR(θa), ba)[x1 x2] = [saR(θa)x1+ba saR(θa)x2+ba]

= (sbR(θb), bb)[x1 x2] = [sbR(θb)x1+bb sbR(θb)x2+bb]
(12)

from (9). By multiplying (12) by [1 − 1]� from the right

saR(θa)(x1 − x2) = sbR(θb)(x1 − x2) (13)

is derived. Because x1 − x2 is not zero, taking the norms of
the both sides in (13) yields sa = sb. Then, R(θa) = R(θb) and
ba = bb are derived from (13) and (12) in order. Hence, the con-
clusion part of (10) is achieved, and thus, scaled(SO(2))� R2

is free to R2×2\S2 with S2 ⊂ R2×2 consisting of the matrices
that have equivalent columns. This discussion does not hold
for less than two vectors, and thus, the free dimension of
scaled(SO(2))� R2 is two according to (11). �

6) Orbit: For a set X , a group H acting on X , and a subset
X∗ ⊂ X , an H-orbit of X∗ is defined as

orbH(X∗) = {Hx ∈ X : H ∈ H, x ∈ X∗}. (14)

For a singleton X∗ = {x∗} of x∗ ∈ X , the H-orbit of {x∗} is
denoted just as orbH(x∗).

Example 6: For vectors x∗
1, x

∗
2, x

∗
3 ∈ R2, from (9) and (14),

the (scaled(SO(2))� R2)-orbit of {[x∗
1 x

∗
2 x

∗
3]} is given as

orbscaled(SO(2))�R2([x∗
1x

∗
2x

∗
3])

= {[sR(θ)x∗
1 + b sR(θ)x∗

2 + b sR(θ)x∗
3 + b] :

s > 0, θ ∈ [−π, π), b ∈ R2}
which is the set of the triangles in a plane similar to the original
triangle with the apexes at x∗

1, x
∗
2, x

∗
3. �

7) Invariant Subset: For a set X and a group H acting on X ,
a subset T ⊂ X is said to be H-invariant if T does not change
under the action of H, namely, Hx ∈ T holds for any H ∈ H
and x ∈ T . A typical example of an H-invariant subset is an
H-orbit. Actually, any H-invariant subset is characterized by an
H-orbit as follows.

Lemma 1: For a set X and a group H acting on X , a subset
T ⊂ X is H-invariant if and only if T is of the following form
with a subset X∗ ⊂ X :

T = orbH(X∗). (15)

Proof: For necessity, let T̄ = orbH(T ) for an H-invariant
subset T . From the definition (14) of the orbit, for x ∈ T̄ , x =
Hx∗ ∈ T holds with some H ∈ H and x∗ ∈ T . Hence, T̄ ⊂ T
is satisfied. The converse inclusion is obvious, andT = T̄ holds.

Hence, T is of the form (15) with X∗ = T . The sufficiency is
obvious. �

Two properties of the projection defined in (2) are given: the
commutativity with the orbit operation and the maintenance of
the invariance.

Lemma 2: For a group H acting on Rd, a subset X∗ ⊂ Rd×n,
and C ⊂ N = {1, 2, . . . , n}, (i) the following holds:

projC(orbH(X∗)) = orbH(projC(X∗)). (16)

(ii) If T is an H-invariant subset of Rd×n, projC(T ) is an H-
invariant subset of Rd×|C|.

Proof: (i) For vectors x1, x2, . . . , xn ∈ Rd, from the defini-
tions of the projection and the orbit, (2) and (14)

projC(orbH(X∗)) = projC({HxN : H ∈ H, xN ∈ X∗})
= {HxC : H ∈ H, xN ∈ X∗}
= {Hy : H ∈ H, y ∈ projC(X∗)} = orbH(projC(X∗))

holds, and (16) is achieved.
(ii) From the assumption, Lemma 1 guarantees that

T = orbH(X∗) holds with some X∗ ⊂ Rd×n. From (i),
projC(T ) = projC(orbH(X∗)) = orbH(projC(X∗)) holds, and
thus projC(T ) is H-invariant from Lemma 1. �

8) Invariant Functions: For a group H acting on a set X , a
function v : X → R is said to be H-invariant if v(Hx) = v(x)
holds for any H ∈ H and x ∈ X . A function v(x) is said to be
relatively H-invariant of weight μ : H → R if

v(Hx) = μ(H)v(x) ∀H ∈ H, x ∈ X . (17)

The distance function in (1) for an invariant subset T ⊂ Rd×n

is relatively invariant for a semidirect product as follows.
Lemma 3: Consider subgroups M and B of scaled(O(d))

and Rd, respectively, such that M acts on B. If a subset
T ⊂ Rd×n is (M� B)-invariant, the distance function v(X) =
dist(X, T ) of X ∈ Rd×n is relatively (M� B)-invariant of
weight | det(M)| 1d for (M, b) ∈ M� B.

Proof: For (M, b) ∈ M� B, from the property of
scaled(O(d)) in (5), the action on multiple vectors (6),
and the action of a semidirect product (8)

v((M, b)X) = dist((M, b)X, T ) = inf
T∈T

‖(M, b)X − T‖

= inf
T̄∈T

‖(M, b)X − (M, b)T̄‖

= inf
T̄∈T

√
tr((X − T̄ )�M�M(X − T̄ ))

= | det(M)| 1d inf
T̄∈T

‖X − T̄‖ = | det(M)| 1d v(X)

is obtained, where T̄ = (M, b)−1T ∈ T holds because of the
(M� B)-invariance of T . Hence, from (17), v(X) is relatively
(M� B)-invariant of weight | det(M)| 1d . �

B. Graph-Theoretical Concepts

This section provides graph-theoretical concepts such as
neighbor set, clique, maximal clique, clique rigidity, and in-
tersection graph, based on [32], [40], and [41].

1) Neighbor Set: Consider an undirected graph G = (N , E)
with a node set N = {1, 2, . . . , n} and an edge set E consisting
of pairs {i, j} of nodes i, j ∈ N . The neighbor set of node i ∈ N
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Fig. 1. Examples of graphs.

is defined as

Ni = {j ∈ N : {i, j} ∈ E} ∪ {i}. (18)

Note that the neighbor set Ni contains node i itself.
2) Clique and Maximal Clique: For a node subset C ⊂ N ,

a subgraph is said to be induced by C and described as G|C =
(C, E|C) for the edge subset E|C ⊂ E of the pairs of the nodes
in C belonging to E . A node subset C ⊂ N is called a clique if
the subgraph induced by C is complete. A clique C is said to be
maximal if C is not contained by each of the other cliques.

Let C1, C2, . . . , Cq ⊂ N be the maximal cliques in G, and let
Q = {1, 2, . . . , q} denote the set of the indexes of the maximal
cliques. For node i ∈ N , let Qi ⊂ Q be the set of the indexes
of the maximal cliques that node i belongs to given as follows:

Qi = {k ∈ Q : i ∈ Ck}. (19)

The following lemma indicates that the neighbors of node i
can be grouped into cliques that node i belongs to. It will be
declared that a distributed controller of multiagent systems can
be decomposed into functions depending on the cliques.

Lemma 4: For the neighbor set Ni ⊂ N of node i and the
clique index set Qi ⊂ Q that node i belongs to, defined in (18)
and (19), respectively, the following holds:

Ni =
⋃
k∈Qi

Ck. (20)

Proof: For each i ∈ N , if j ∈ Ni, then i, j ∈ Ck holds with
somek ∈ Qi because any edge is contained by a maximal clique,
namely, i, j ∈ Ck holds with some k ∈ Q, and Ck contains i. The
converse relation follows from the definition of the cliques. �

The following example illustrates Lemma 4.
Example 7: For graph Ga in Fig. 1, the maximal cliques

C1 = {1, 2, 4}, C2 = {1, 5}, C3 = {2, 3, 4}, C4 = {3, 5} (21)

are given. The set of the indexes of the maximal cliques is Q =
{1, 2, 3, 4}, and those of the maximal cliques that each node
belongs to are given from the definition (19) as

Q1 = {1, 2},Q2 = Q4 = {1, 3},Q3 = {3, 4},Q5 = {2, 4}.
The neighbor set of node 1 is given as N1 = {1, 2, 4, 5}, and
N1 =

∑
k∈Q1

Ck = C1 ∪ C2 holds as Lemma 4. �
3) Intersection Graph: The r-intersection graph of the max-

imal cliques in G is defined as the graph Γr(G) = (Q, Ĕr) with
the node set Q and the edge set

Ĕr = {{k, �}, k, � ∈ Q : |Ck ∩ C�| ≥ r, k �= �} (22)

consisting of the pairs of the maximal cliques such that the
number of their intersections is more than or equal to r.

Example 8: The one- and two-intersection graphs of the
maximal cliques of Ga in Fig. 1 are illustrated as Γ1(Ga) and

Fig. 2. Examples of one- and two-intersection graphs.

Γ2(Ga) in Fig. 2 for the maximal cliques in (21). Those of Gb

in Fig. 1 are illustrated as Γ1(Gb) and Γ2(Gb) in Fig. 2 for the
maximal cliques C1 = {1, 2, 3}, C2 = {1, 3, 4}, C3 = {1, 3, 5}.

�
4) Clique Rigidity: A pair (G, T ) of a graph G and a set

T ⊂ Rd×n is called a framework. The framework (G, T ) is said
to be clique rigid if the following holds for any set of vectors
x1, x2, . . . , xn ∈ Rd:

xCk ∈ projCk(T ) ∀k ∈ Q ⇒ xN ∈ T . (23)

The framework (G, T ) is clique rigid if T is the only configura-
tion that can be constructed from the configurations projCk(T ),
the projections of T by the maximal cliques Ck.

The clique rigidity is equivalent to conventional graph condi-
tions for specific T as follows.

Proposition 1: For T = orb{Id}�Rd(x∗
N ) with x∗

1, x
∗
2, . . . ,

x∗
n ∈ Rd, framework (G, T ) is clique rigid if and only if G

is connected.
Proof: From the definition (14) of the orbit

T = orb{Id}�Rd(x∗
N ) = {(Id, b)x∗

N : b ∈ Rd} (24)

is obtained. From the action on multiple vectors in (6) and the
action of a semidirect product in (8), the conclusion part of the
clique rigidity (23) for T in (24) is equivalent to

∃b ∈ Rd s. t. xi = x∗
i + b∀i ∈ N . (25)

Additionally, by using Lemma 2 (i)

projCk(T ) = orb{Id}�Rd(projCk(x
∗
N ))

= {(Id, bk)x∗
Ck : bk ∈ Rd}

is obtained, which reduces the assumption part of (23) to

∀k ∈ Q, ∃bk ∈ Rd s. t. xi = x∗
i + bk ∀i ∈ Ck. (26)

For clique rigidity, we just have to show that (25) holds if (26)
is satisfied.

For sufficiency, assume that G is connected and that (26) is
satisfied. For a pair Ck, C�, k, � ∈ Q, k �= � of maximal cliques,
let k̂ ∈ Ck and �̂ ∈ C� be contained nodes. From the assumption,
between nodes k̂ and �̂, there is a path, i1(= k̂), i2, . . . , im(=

�̂) ∈ N , satisfying {ih, ih+1} ∈ E for h ∈ {1, 2, . . . ,m− 1}.
Each edge belongs to a maximal clique, and thus, there exists
kh ∈ Q satisfying ih, ih+1 ∈ Ckh

. Then, ih ∈ Ckh−1
∩ Ckh

holds
for h ∈ {2, 3, . . . ,m− 1}, and from (26), xih = x∗

ih
+ bkh−1

=
x∗
ih

+ bkh
, namely, bkh−1

= bkh
is obtained. Iteratively, we ob-

tain bk1
= bkm−1

, namely, bk = b�. In this way, bk agrees for all
k ∈ Q. Let b be the agreement, and (26) leads to (25). Hence,
the framework is clique rigid. �

The necessity part is obvious because if G is not connected,
the framework is not clique rigid.



4106 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 9, SEPTEMBER 2021

Next, the global rigidity is associated with the clique rigidity
as follows, where we say that framework (G, x∗

N ) is globally
rigid for a collection of vectors x∗

1, x
∗
2, . . . , x

∗
n ∈ Rd, if the

following holds for any vectors x1, x2, . . . , xn ∈ Rd:

‖xi − xj‖ = ‖x∗
i − x∗

j‖ ∀i, j ∈ N s. t. {i, j} ∈ E

⇒ ‖xi − xj‖ = ‖x∗
i − x∗

j‖ ∀i, j ∈ N . (27)

Proposition 2: For T = orbO(d)�Rd(x∗
N ) with x∗

1, x
∗
2, . . . ,

x∗
n ∈ Rd, framework (G, T ) is clique rigid if and only if frame-

work (G, x∗
N ) is globally rigid.

Proof: In the same way as (26), for this T , the assumption
part of the clique rigidity in (23) is equivalent to

∀k∈Q, ∃(Mk, bk)∈O(d)�Rd s. t. xi=Mkx
∗
i+bk ∀i∈Ck.

From [42], this is equivalent to the assumption part of the global
rigidity in (27). The conclusion parts of (23) and (27) are shown
to be equivalent in the same way. Hence, the statements (23) and
(27) are equivalent. �

III. PROBLEM SETTING

A. Agent Models and Implementable Controllers

We consider a multiagent system consisting of n agents. Let
N = {1, 2, . . . , n}be the set of the agent indexes, and letxi(t) ∈
Rd be the position coordinate of agent i ∈ N in a d-dimensional
space. We have two types of frame: the global frame Σ and the
local frame Σi(t) of agent i ∈ N . The origin of Σi(t), the local
origin, is given by a time-varying vector bi(t) ∈ Rd in Σ, and a
transformation of Σi(t) from Σ is determined by a time-varying
matrix Mi(t) ∈ Rd×d. Then, a local coordinate p[i](t) ∈ Rd in
Σi(t) is transformed into a global coordinate p(t) ∈ Rd in Σ as

p(t) = Mi(t)p
[i](t) + bi(t). (28)

We assume that the transformation matrix Mi(t) belongs to
a set M ⊂ Rd×d for any i ∈ N at each time t. The set M,
called a transformation matrix set, is determined by a type
of measurements. See Appendix A for details about how to
determineM from measurements. As shown in Table II, various
transformations of the frames including rotation, reflection, and
scale can be expressed through M. Also, we assume that the
local origin bi(t) belongs to a set B ⊂ Rd. The set B, called
a translation vector set, represents the transformation of the
frames in translation. Typically, the agent position is assigned to
the local origin as bi(t) = xi(t), yielding B = Rd. In contrast,
if there is a landmark (a common observable point to all the
agents), its position can be assigned to the global and local
origins as bi(t) = 0 to exclude the transformation in translation,
and B = {0} is obtained.

Example 9: Suppose that cameras are available with un-
known, heterogeneous scale factors, and neither common di-
rection nor landmark is available. Then, M = scaled(SO(d))
is adopted from Example 13 in Appendix A with B = Rd.
From Example 3, for d = 2, the relation between global
and local coordinates p(t), p[i](t) ∈ R2 is expressed as (28)
for Mi(t) = si(t)R(θi(t)) ∈ scaled(SO(2)) and bi(t) = xi(t),
where si(t) > 0 and θi(t) ∈ [−π, π) represent the scale and the
rotation angle of Σi(t) from Σ, as shown in Fig. 3. �

Note that Mi(t) ∈ M and bi(t) ∈ B are generally hetero-
geneous and cannot be specified by anyone including agent i
itself. We assume that M and B are subgroups of scaled(O(d))

Fig. 3. Relation between global and local coordinates p, p[i] ∈ R2 for
M = scaled(SO(2)) and B = R2.

and Rd with respect to multiplication and addition, respectively,
such that M acts on B. This condition is satisfied by the
typical M and B listed in Table II. According to the action
of the semidirect product M� B in (8), (28) is rewritten by
(Mi(t), bi(t)) ∈ M� B as

p(t) = (Mi(t), bi(t))p
[i](t). (29)

Let ui(t) ∈ Rd be the velocity driving agent i over Σi(t),
and assume that it can be directly controlled. Then, from the
transformation (28), for the state xi(t) and the control input
ui(t), the kinematic model of agent i is represented as

ẋi(t) = Mi(t)ui(t). (30)

When M = SO(d), (30) is a common kinematic model of a
rigid body, except that the rotation matrix Mi(t) ∈ M is not a
state but is an uncertain parameter. Hence, even though ui(t) is
determined by agent i, in which direction of Σ the agent moves
is uncertain.

Assume that each agent can bilaterally obtain the relative
measurements on its neighboring agents by sensing in the local
frame. Let Ni ⊂ N be the set of the neighbors of agent i, and let
E ⊂ N be the set of the pairs of the agents observing each other,
satisfying the relation (18). Then, the topology of the sensing
network is represented by an undirected graph G = (N , E). Let
x
[i]
j (t) be the local coordinate of a neighbor j ∈ Ni observed

from agent i over Σi(t), which is given from (28) and (29) as

x
[i]
j (t) = M−1

i (t)(xj(t)− bi(t))

= (Mi(t), bi(t))
−1xj(t) (31)

from the inverse of a semidirect product in (7). We assume that
only the states x

[i]
j (t) of the neighbors j ∈ Ni are available to

agent i as relative measurements, and the control input ui(t) has
to be generated as

ui(t) = fi(x
[i]
Ni
(t)) (32)

with a function fi : Rd×|Ni| → Rd. We say that the control input
of the form (32) is relative and distributed.

Remark 1: The control input (32) is available in practical
situations. If the local origin is assigned as bi(t) = xi(t), (32)
requires the relative positions x

[i]
j (t) of neighbors except i

because the own position satisfies x[i]
i (t) = 0 from (31). If the

local origin is assigned as bi(t) = 0 for a landmark, (32) requires
the relative positions x

[i]
j (t) of neighbors including i from the
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landmark, obtainable with the measurements x[i]
j (t)− x

[i]
i (t) of

the relative positions from agent i. �

B. Control Objective and Gradient-Flow Approach

In this article, we consider the following control objective:

lim
t→∞

dist(xN (t), T ) = 0 (33)

where T ⊂ Rd×n, called a target configuration set, represents
various coordination tasks in a unified way, including those in
Table I. See [43] for typical examples of T .

To achieve the control objective (33), the gradient-flow ap-
proach is employed. Let v : Rd×n → R be an objective function
of xN with zero as a global minimum, evaluating the achieve-
ment of a given task. Under the gradient flow of v(xN ), agent i
is controlled according to

ẋi(t) = − ∂v

∂xi
(xN (t)). (34)

Then, v(xN (t)) is monotonically nonincreasing, and xN (t)
locally converges to the zero set v−1(0) of v(xN ). Hence, to
achieve (33) by (34), we need to find a function v(xN ) taking
zero exactly in T , i.e., v−1(0) = T . A nonnegative function
v(xN ) satisfying this equation is called an indicator of T . Let
Find(T ) ⊂ Fcon be the set of the indicators, i.e.,

Find(T ) = {v(xN ) ∈ Fcon : v−1(0) = T , v(xN ) ≥ 0} (35)

where Fcon is the set of the continuous scalar functions contin-
uously differentiable almost everywhere.

For the system (30), the gradient flow in (34) of v(xN ) is
generated by the control input

ui(t) = −M−1
i (t)

∂v

∂xi
(xN (t)). (36)

For a relative, distributed controller (32) to be of the form (36),
v(xN ) has to satisfy

fi(x
[i]
Ni
) = −M−1

i

∂v

∂xi
(xN ) (37)

with a function fi(·) for any (Mi, bi) ∈ M� B, where x
[i]
j =

(Mi, bi)
−1xj for j ∈ Ni according to the local coordinate (31).

Whether v(xN ) can satisfy (37) or not depends on M, B, and
G. A set of the functions v(xN ) satisfying (37) is defined as

Frd(M� B, G) ={
v(xN ) ∈ Fcon : ∀i ∈ N , ∃fi : Rd×|Ni| → Rd

s. t. −M−1
i

∂v

∂xi
(xN ) = fi(x

[i]
Ni
)

∀xN ∈ Rd×n\Sv, (Mi, bi) ∈ M� B
}

(38)

where Sv ⊂ Rd×n is a set of measure zero.
Remark 2: The gradient of a function v(xN ) ∈ Fcon contin-

uously differentiable almost everywhere is defined except for a
set Sv of measure zero in (38), and can be discontinuous. The
solution of the discontinuous gradient flow (34) is defined as an
absolutely continuous function xN (t) satisfying the differential

inclusion

ẋN (t) ∈ K
[
− ∂v

∂xN

]
(xN (t)).

Here, for a function F : Rd×n → Rd×n continuous almost ev-
erywhere, the set-valued map K[F ] : Rd×n → pow(Rd×n) is
defined as

K[F ](X) = co

{
Y ∈ Rd×n : ∃Xh ∈ Rd×n\S, h = 1, 2, . . .

s.t. lim
h→∞

Xh = X, lim
h→∞

F (Xh) = Y

}

where pow(·) is the power set of a set, co(·) is the closure of
the convex hull of a set, and S ⊂ Rd×n is a set of measure zero.
The convergence of this solution is discussed in [32]. �

C. Target Problem

To realize the control objective (33) by relative, distributed
control, we have to design a function v(xN ) belonging to the
set Find(T ) ∩ Frd(M� B, G). However, this set is possibly
empty, depending on T , M, B, and G. Our goal is to spec-
ify T , M, B, and G for which Find(T ) ∩ Frd(M� B, G) is
nonempty to design a relative, distributed controller. The main
problem tackled in this article is summarized as follows.

Problem 1: First, derive strict conditions on T , M, B, and G
under which the set Find(T ) ∩ Frd(M� B, G) is nonempty.
Next, characterize all the functions v(xN ) belonging to this set.
Finally, design a relative, distributed controller fi(x

[i]
Ni
) by using

one of the functions as (37). �

IV. MAIN RESULTS

A. Solutions to Problem 1

As a solution to the first part of Problem 1, strict conditions
on T , M, B, and G for nonemptiness of Find(T ) ∩ Frd(M�

B, G) are derived as follows.
Theorem 1: For a set T ⊂ Rd×n, subgroups M and B of

scaled(O(d)) and Rd, respectively, such that M acts on B, and
a graph G, the set Find(T ) ∩ Frd(M� B, G) is nonempty if
and only if the following two conditions are satisfied: (A) T is
of the following form with some X∗ ⊂ Rd×n:

T = orbM�B(X∗). (39)

(B) Framework (G, T ) is clique rigid.
Proof: The necessity is proved in Section VI-A, while the

sufficiency follows from Theorem 2 given as follows. �
As for condition (A), T in (39), the (M� B)-orbit of X∗,

specifies all the target configuration sets realizable with the
measurements transformed by M� B, indicating that such T
contains the freedoms in M� B, e.g., translation, rotation,
reflection, and scale. The trend between the coordination task
and the measurement information in Table I is explained in
a quantitative way: as the volume of M� B increases [less
measurement information is available (M)], the realizable set T
becomes larger [the task becomes more flexible (T)].

Furthermore, X∗ ⊂ Rd×n in (39) is selected by the designer,
which broadens the class of realizable coordination tasks from
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Table I (because a singleton X∗ = {x∗
N } for a desired con-

figuration x∗
N ∈ Rd×n is employed). For example, by assign-

ing X∗ = ∪p{x∗p
N } of multiple points, a formation selection

task [43] is expressed such that agents select and form one of
multiple configurations x∗1

N , x∗2
N , . . . ∈ Rd×n.

Next, as a solution to the second part of Problem 1, a condition
for v(xN ) to belong to the set Find(T ) ∩ Frd(M� B, G) is
derived. Let Q = {1, 2, . . . , q} be the set of the indexes of the
maximal cliques C1, C2, . . . , Cq ⊂ N in G, and the following
theorem is obtained.

Theorem 2: For a set T ⊂ Rd×n, subgroups M and B
of scaled(O(d)) and Rd, respectively, such that M acts on
B, and a graph G, assume that conditions (A) and (B) in
Theorem 1 hold. Then, a function v : Rd×n → R belongs to
Find(T ) ∩ Frd(M� B, G) if and only if it is of the form

v(xN ) =
∑
k∈Q

vk(xCk) (40)

with some indicators vk : Rd×|Ck| → R of projCk(T ), relatively

(M� B)-invariant of weight (det(M))
2
d for (M, b) ∈ M� B

for k ∈ Q.
Proof: See Section VI-B. �
Theorem 2 characterizes the function v(xN ) with the param-

eters vk(xCk) of indicators of projCk(T ), relatively (M� B)-
invariant of weight (det(M))

2
d for (M, b) ∈ M� B. An exam-

ple of such vk(xCk) is given as follows.
Lemma 5: Assume that condition (A) in Theorem 1 holds.

Then, the following function is an indicator of projCk(T ), rel-

atively (M� B)-invariant of weight (det(M))
2
d for (M, b) ∈

M� B:

vk(xCk) =
1

2
(dist(xCk , projCk(T )))2. (41)

Proof: The part of the indicator follows from the distance
function (1). From (A), T is an (M� B)-orbit as (39). Then,
Lemmas 1 and 2 (ii) guarantee that projCk(T ) is an (M� B)-
invariant subset of Rd×|Ck |. Hence, Lemma 3 leads to the relative
(M� B)-invariance of (41) of weight (det(M))

2
d . �

A meaning of the objective function (40) with (41) is ex-
plained as follows. From (1), achieving the control objective
(33) is equivalent to solving the optimization problem

dist(xN , T ) = min
T∈T

‖xN − T‖. (42)

Note that (42) depends on all the states x1, x2, . . . , xn, and can
be solved in a centralized way. To overcome this issue, (42) is
divided into cliquewise problems as

dist(xCk , projCk(T )) = min
Tk∈projCk (T )

‖xCk − Tk‖ (43)

by projecting xN and T onto the state space of xCk for each
maximal clique Ck. Because (43) depends only on the states
of the agents belonging to a clique Ck, it can be solved in a
distributed way. The cliquewise problem (43) corresponds to
(41), and combining it for all the maximal cliques yields (40).
The solution of the combined problem is equal to the solution
to (42) under conditions (A) and (B) in Theorem 1.

Finally, a solution to the last part of Problem 1 is given by
partially differentiating v(xN ) in (40) with (41). Let Qi ⊂ Q be
the set of the indexes of the maximal cliques that agent i belongs
to, defined as (19), and the following is obtained.

Theorem 3: For a set T ⊂ Rd×n, subgroups M and B of
scaled(O(d)) and Rd, respectively, such that M acts on B, and
a graph G, assume that condition (A) in Theorem 1 holds. Then,
the gradient-based controller (36) of v(xN ) in (40) with (41) is
reduced to a relative, distributed controller (32) with

fi(x
[i]
Ni
) = −

∑
k∈Qi

(x
[i]
i − colnki

(T̂ki(x
[i]
Ck))) (44)

where nki ∈ {1, 2, . . . , |Ck|} is the place of i ∈ N in Ck such

that xCk = [· · · nki
xi · · · ], and

T̂ki(x
[i]
Ck) = (M̂ki(x

[i]
Ck), b̂ki(x

[i]
Ck))Ξ̂ki(x

[i]
Ck) (45)

for

((M̂ki(x
[i]
Ck), b̂ki(x

[i]
Ck)), Ξ̂ki(x

[i]
Ck)) ∈

argmin
((Mki,bki),Ξki)∈(M�B)×projCk (X

∗)
‖x[i]

Ck − (Mki, bki)Ξki‖.

(46)

Proof: See Section VI-C. �
The function in (44) depends only on the states x

[i]
j of the

agents j ∈ Ck for k ∈ Qi. Lemma 4 guarantees that these agents
are only the neighbors j ∈ Ni and, thus, (44) is relative and
distributed from (32). To implement this controller, agents need
to solve the optimization problem (46). See Section V for how
to solve a specific case. Note that (46) corresponds to the
optimization problem (43) for the projection of T in (39), the
(M� B)-orbit of X∗, regarding a maximal clique Ck.

Remark 3: Theorem 3 does not require condition (B) in
Theorem 1, namely, clique rigidity. Even when it is not satisfied,
the relative, distributed controller (44) is guaranteed to provide
the best performance in terms of minimizing the difference
between the target configuration set T and the equilibrium set
derived by the controller [43]. Hence, we can use this controller
regardless of the graph topology. �

B. Graph Conditions

From condition (A) in Theorem 1, the target configuration
set T has to be an (M� B)-orbit of X∗ as (39). Here, we
assume that X∗ = {x∗

N } is a singleton for x∗
1, x

∗
2, . . . , x

∗
n ∈ Rd.

Then, for a specific M� B, the control objective (33) of this
T is associated with a conventional task, and a familiar graph
condition is derived from condition (B).

First, for the (M� B)-orbit T in (39) withM� B = {Id}�
Rd, the control objective (33) is equivalent to the displacement-
based coordination in Table I (ii). Actually, from the definition
(14) of the orbit, (33) is reduced to

∃b ∈ Rd s. t. lim
t→∞

‖xi(t)− (x∗
i + b)‖ = 0∀i ∈ N

where b provides the freedom of translation. From Proposition 1,
the clique rigidity is equivalent to connectedness.

Next, for M� B = O(d)� Rd, we can show that the con-
trol objective (33) is equivalent to the distance-based coordi-
nation in Table I (iii), in the same way as the displacement-
based one. In this case, Proposition 2 guarantees that frame-
work (G, T ) is clique rigid if and only if (G, x∗

N ) is globally
rigid.

As for M� B = SO(d)� Rd, the control objective (33) is
the distance-based coordination without reflection. In this case, a
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clique rigid framework is rigid, but the converse relation does not
necessarily hold. Actually, we have no equivalent, conventional
graph condition as discussed in [32].

Generally, the clique rigidity is difficult to check in a direct
way. A more intuitive, easily checkable condition is provided by
using the intersection graph as follows.

Theorem 4: For a set T ⊂ Rd×n, subgroups M and B of
scaled(O(d)) and Rd, respectively, such that M acts on B, and
a graph G, assume that condition (A) in Theorem 1 holds for
X∗ = {x∗

N } with reference vectors x∗
1, x

∗
2, . . . , x

∗
n ∈ Rd. Then,

if the fdim(M� B)-intersection graph of the maximal cliques,
say Γfdim(M�B)(G), is connected, framework (G, T ) is clique
rigid for almost every x∗

N ∈ Rd×n.
Proof: See Section VI-D. �
Example 10: Consider graphs Ga, Gb in Fig. 1, and the

space of dimension d = 2. For M = scaled({I2}), SO(2), and
scaled(SO(2)), fdim(M� R2) = 2 is derived from Table III.
The two-intersection graphs of the maximal cliques in Ga and
Gb are given as Γ2(Ga) and Γ2(Gb), respectively, in Fig. 2. The
intersection graph Γ2(Gb) is connected, and, thus, framework
(Gb, T ) is clique rigid for T in (39) from Theorem 4. �

Theorem 4 characterizes a topology of G from the connectiv-
ity of the maximal cliques, associated with the free dimension
fdim(M� B). This result indicates the trend of the relation
between the measurement information and the network topology
(M, N) in Table I in a quantitative manner. Namely, as the volume
of M� B increases [less measurement information is available
(M)], the required number fdim(M� B) of the intersections
between maximal cliques becomes larger [a required network
becomes denser (N)].

The reason why the number fdim(M� B) is required to
intersections is explained as follows. Over the r-intersection
graph of the maximal cliques, information on r variables can
be conveyed between maximal cliques through their r inter-
sections. In contrast, each maximal clique has to determine
fdim(M� B) variables, associated with the degree of freedom
in T = orbM�B(x

∗
N ), to achieve the control objective (33).

To agree the variables between maximal cliques, the number
r = fdim(M� B) of intersections is required.

Remark 4: Theorem 4 guarantees that framework (G, T ) is
clique rigid for almost every x∗

N ∈ Rd×n. This means that the
vectors x∗

1, x
∗
2, . . . , x

∗
n should be scattered enough to determine

the degree fdim(M� B) of the freedoms in T = orbM�B(x
∗
N )

by avoiding the set Sm of measure zero in the definition of the
free dimension (11). For example, the pairs (resp. trios) of the
vectors associated over G cannot be the same (resp. collinear)
for fdim(M� B) ≥ 2 (resp. 3). See Section VI-D for more
details. �

Remark 5: Constructing the intersection graph of the maxi-
mal cliques and verifying its connectedness can be done with
polynomial running time with respect to the number n of the
agents if the numbers |Ni| of neighbors are limited. LetNmax =
maxi∈N |Ni|. First, list the maximal cliques with running time
O(n3Nmax) [13], [44]. Next, construct the r-intersection graph
by checking the intersections of the maximal cliques, which
takes running time O(n2N2

max) because for each of the q(q −
1)/2 pairs of the maximal cliques, at most (maxk∈Q |Ck|)2-
times matching is required, |Ck| ≤ Nmax holds from (4), and
q ≤ n. Finally, check its connectedness as a normal graph with
running time O(q|Ĕr|) [45], less than or equal to O(n3) from
|Ĕr| ≤ q(q − 1)/2 and q ≤ n. �

V. NUMERICAL EXAMPLES

A. Controller Design

A way of applying this method is illustrated to the situation of
Example 9, i.e., cameras are available with unknown, heteroge-
neous scale factors, and neither common direction nor landmark
is available. Then, M� B = scaled(SO(d))� Rd is adopted.
Following conditions (A) and (B) in Theorem 1, let us consider
a target configuration set T in (39), namely, an (M� B)-orbit
of X∗ = {x∗

N } for reference vectors x∗
1, x

∗
2, . . . , x

∗
n ∈ Rd, and

assume that (G, T ) is clique rigid. Then, Theorem 2 guarantees
that v(X) in (40) with (41) belongs to Find(T ) ∩ Frd(M�

B, G), and Theorem 3 guarantees that its gradient-based con-
troller consists of (44)–(46), which is relative and distributed.

The optimization problem (46) is a Procrustes problem [46]
and is analytically solvable as follows.

Proposition 3: For M� B = scaled(SO(d))� Rd, a solu-
tion to the optimization problem (46) with X∗ = {x∗

N } is given
by Ξ̂ki = x∗

Ck and

(M̂ki, b̂ki) = (ŝkiÛkiD̂kiV̂
�
ki , ave(x

[i]
Ck − M̂kiΞ̂ki)) (47)

where the variables x[i]
Ck are dropped in the functions. Here

ŝki =
〈Ŝki, D̂ki〉
‖cen(x∗

Ck)‖2

D̂ki = diag(1, 1, . . . , 1, det(ÛkiV̂
�
ki)) ∈ Rd×d

with Ŝki = diag(σ1, σ2, . . . , σd) (σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0)
and Ûki, V̂ki ∈ O(d) satisfying

ÛkiŜkiV̂
�
ki = cen(x

[i]
Ck)cen(x

∗
Ck)

�. (48)

Proof: See [46]. �
Equation (48) indicates that the singular values in Ŝki evaluate

the correlation between cen(x
[i]
Ck) and cen(x∗

Ck), the centers of
the current relative positions and desired ones of the agents
belonging to a maximal clique Ck. The resultant matrix M̂ki in
(47) consists of the scale ŝki > 0 and the matrix ÛkiD̂kiV̂

�
ki ∈

SO(d). Thus, M̂ki ∈ scaled(SO(d)) holds.

B. Simulation Results

Simulations are carried out for multiagent systems in d = 2,
3-D spaces for the kinematic model (30) with the local coordi-
nates (31) for bi(t) = xi(t) ∈ Rd and Mi(t) ∈ scaled(SO(d))
randomly chosen for each agent. The relative, distributed control
input (32) with the controller designed in the previous section is
employed with gain 5.

First, in d = 2-D space, we consider n = 11 agents with
the reference vectors x∗

1, x
∗
2, . . . , x

∗
11 ∈ R2 and the edges of G

given by the squares and lines in Fig. 4(a), respectively. The
two-intersection graph Γ2(G) of the maximal cliques is con-
nected, and fdim(scaled(SO(2))� R2) = 2 is obtained from
Table III. Therefore, Theorem 4 guarantees that (G, T ) is clique
rigid for the (M� B)-orbit T of X∗ = {x∗

N }. Fig. 4(b)–(d)
shows simulation results from different initial positions, where
the circles and squares with numbers describe the agent positions
at t = 0 and t = 10, respectively. Notice that the scales of
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Fig. 4. Simulation results from different initial positions: the circles
and squares with numbers describe the agent positions at t = 0 and
t = 10, respectively. (a) Desired configuration and edges. (b) Simulation
result 1. (c) Simulation result 2. (d) Simulation result 3.

Fig. 4(a)–(d) are different, and we can see that the desired
configuration in Fig. 4(a) is obtained in every case with dif-
ferent translation, rotation, and scale. This is because the target
configuration set T in (39) has the corresponding freedoms in
M� B = scaled(SO(2))� R2.

Next, ind = 3-D space,n = 22 agents are considered with the
reference vectors and the edges of G given in Fig. 4(a). Because
the three-intersection graph of the maximal cliques Γ3(G),
is connected and fdim(scaled(SO(3))� R3) = 3 holds from
Table III, framework (G, T ) is clique rigid for T in (39) from
Theorem 4. Fig. 5 depicts a simulation result, where the circles
and squares with numbers describe the positions at t = 0 and
t = 10, respectively. We can see that the desired configuration
is achieved at the terminal time.

These results demonstrate the effectiveness of the method
regardless of the dimension of space.

VI. PROOFS OF THEOREMS

A. Proof of the Necessity of Theorem 1

We investigate the structure of Frd(M� B, G) defined in
(38) via the two requirements to gradients: (i) relativeness with
respect to M� B, (ii) distributedness over G, characterized by
the sets Fr(M� B) and Fd(G), respectively, defined as

Fr(M� B)

=

{
v(xN ) ∈ Fcon :

∂v

∂xi
((Mi, bi)xN ) = Mi

∂v

∂xi
(xN )

∀xN ∈ Rd×n\Sv, (Mi, bi) ∈ M� B, i ∈ N
}

(49)

Fig. 5. Simulation result in 3-D space: the circles and squares with
numbers describe the positions at t = 0 and t = 10, respectively.
(a) Desired configuration and edges. (b) Simulation result.

Fd(G)

=
{
v(xN ) ∈ Fcon : ∀i ∈ N , ∃fi : Rd×|Ni| → Rd

s. t.
∂v

∂xi
(xN ) = −fi(xNi

) ∀xN ∈ Rd×n\Sv

}
(50)

with sets Sv ⊂ Rd×n of measure zero. See Table IV for the
summary of the sets of functions. Actually, the following relation
holds:

Frd(M� B, G) = Fr(M� B) ∩ Fd(G) (51)
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TABLE IV
SUMMARY OF SETS OF FUNCTIONS

which is verified by substituting∂v/∂xi(xN ) as (50) andxj with

x
[i]
j = (Mi, bi)

−1xj in (49) to yield Frd(M� B, G) defined in
(38), and vice versa.

For preliminaries, the functions belonging toFr(M� B) and
Fd(G) are individually characterized as follows.

Lemma 6: For subgroups M and B of scaled(O(d)) and Rd,
respectively, such that M acts on B, a nonnegative function v :
Rd×n → R with zero as a global minimum belongs to Fr(M�

B) if and only if it is relatively (M� B)-invariant of weight
(det(M))

2
d for (M, b) ∈ M� B.

Proof: From the chain rule, the action on multiple vectors (6),
and the action of a semidirect product (8), the following holds
for any (M, b) ∈ M� B with y1, y2, . . . , yn ∈ Rd:

∂v((M, b)xN )

∂xi
=

∂((M, b)xi)
�

∂xi

∂v(yN )

∂yi

∣∣∣∣
yN=(M,b)xN

= M� ∂v

∂xi
((M, b)xN ). (52)

For sufficiency, assume that v(xN ) is relatively (M� B)-
invariant of weight (det(M))

2
d for (M, b) ∈ M� B. By par-

tially differentiating the definition (17) of the relative invariance
with respect to xi, we obtain

∂v(HxN )

∂xi
=

∂μ(H)v(xN )

∂xi
= μ(H)

∂v(xN )

∂xi
.

Apply H = (Mi, bi) ∈ M� B and μ(H) = (det(Mi))
2
d to

this equation, and from the property of scaled(O(d)) in (5)

(det(Mi))
2
dMi

∂v(xN )

∂xi
= Mi

∂v((Mi, bi)xN )

∂xi

= MiM
�
i

∂v

∂xi
((Mi, bi)xN ) = (det(Mi))

2
d
∂v

∂xi
((Mi, bi)xN )

(53)

is obtained with (52). From (53) and det(Mi) �= 0, v(xN ) ∈
Fr(M� B), defined in (49), holds.

For necessity, assume that v(xN ) ∈ Fr(M� B) is nonneg-
ative with zero as a global minimum. From the property of
scaled(O(d)) in (5), (49), and (52)

∂v((M, b)xN )

∂xi
= M� ∂v

∂xi
((M, b)xN ) = M�M

∂v

∂xi
(xN )

= (det(M))
2
d
∂v(xN )

∂xi

holds for any (M, b) ∈ M� B, which leads to

∂(v((M, b)xN )− (det(M))
2
d v(xN ))

∂xN
= 0. (54)

From the gradient theorem, integrating (54) with respect to xN
yields

v((M, b)xN ) = (det(M))
2
d v(xN ) + γ(M, b) (55)

with a function γ : M� B → R independent of xN . Let x̃N ∈
Rd×n be a global minimum point of v(xN ). Then, from (55)

v((M, b)x̃N ) = (det(M))
2
d v(x̃N ) + γ(M, b)

= γ(M, b) (56)

0 = v(x̃N ) = v((M, b)(M, b)−1x̃N )

= (det(M))
2
d v((M, b)−1x̃N ) + γ(M, b) (57)

are obtained. From (56) and (57)

γ(M, b) = v((M, b)x̃N ) = −(det(M))
2
d v((M, b)−1x̃N )

is obtained, which leads to γ(M, b) = 0 for any (M, b) ∈ M�

B because of the non-negativeness of v(xN ). Hence, from (55),
v(xN ) satisfies the definition (17) of the relative invariance with
weight (det(M))

2
d for (M, b) ∈ M� B. �

Lemma 7: For a graphG, a nonnegative function v : Rd×n →
R belongs to Fd(G) if and only if it is decomposable as (40)
with non-negative functions vk : Rd×|Ck| → R for k ∈ Q.

Proof: See [43]. �
To prove the necessity of Theorem 1, assume that Find(T ) ∩

Frd(M� B, G) is nonempty, which implies that both
Find(T ) ∩ Fr(M� B) and Find(T ) ∩ Fd(G) are nonempty
from the relation of these sets in (51). The nonemptiness of
the two sets leads to conditions (A) and (B) as follows.

First, from the nonemptiness of Find(T ) ∩ Fr(M� B), we
prove condition (A), equivalent to the (M� B)-invariance of
T from Lemma 1. To do so, consider x̃N ∈ T and (M̃, b̃) ∈
M� B, and we show (M̃, b̃)x̃N ∈ T . From the assumption,
there exists a function v(xN ) ∈ Find(T ) ∩ Fr(M� B), and
from the definition of Find(T ) in (35), v(x̃N ) = 0 holds. Be-
cause v(xN ) ∈ Find(T ) is nonnegative and takes zero as a
global minimum, from Lemma 6, v(xN ) ∈ Fr(M� B) is rel-
atively (M� B)-invariant of weight (det(M))

2
d for (M, b) ∈

M� B. Thus, from the definition (17) of the relative invariance,
v((M̃, b̃)x̃N ) = (det(M̃))

2
d v(x̃N ) = 0 holds, and (M̃, b̃)x̃N ∈

v−1(0) = T is obtained from (35).
Second, from the nonemptiness of Find(T ) ∩ Fd(G), we

derive condition (B), the clique rigidity of (G, T ). From the
assumption, there exists a function v(xN ) ∈ Find(T ) ∩ Fd(G).
Then, from the definition ofFind(T ) in (35), v−1(0) = T holds,
and from Lemma 7, v(xN ) is decomposable as (40) with non-
negative functions vk(xCk), which lead to

T = v−1(0) =
⋂
k∈Q

{xN ∈ Rd×n : xCk ∈ v−1
k (0)}. (58)

From (58), for each k ∈ Q
projCk(T ) ⊂ projCk({xN ∈ Rd×n : xCk ∈ v−1

k (0)})

= v−1
k (0) (59)

holds. From (58) and (59), we obtain

xCk ∈ projCk(T ) ∀k ∈ Q ⇒ xCk ∈ v−1
k (0)∀k ∈ Q

⇒ xN ∈ T
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and the definition (23) of the clique rigidity is derived.

B. Proof of Theorem 2

Assume conditions (A) and (B) in Theorem 1.
For sufficiency, consider a function v(xN ) in (40), decom-

posed with indicators vk(xCk) of projCk(T ), relatively (M�

B)-invariant of weight (det(M))
2
d for (M, b) ∈ M� B. Note

that such vk(xCk) exists under condition (A) from Lemma 5.
To show that v(X) ∈ Find(T ) ∩ Frd(M� B, G), we just have
to prove that it belongs to each of Find(T ), Fr(M� B), and
Fd(G) from (51). First,v(xN ) ∈ Find(T ), defined in (35), holds
because v(xN ) is nonnegative and v−1(0) = T holds as follows:
from condition (B), the definition (23) of the clique rigidity, we
obtain the relation

v(xN ) = 0 ⇒ vk(xCk) = 0∀k ∈ Q
⇒ xCk ∈ projCk(T ) ∀k ∈ Q ⇒ xN ∈ T

for indicators vk(xCk) of projCk(T ), and the converse relation
is obvious. Next, v(xN ) ∈ Fr(M� B) holds from Lemma 6
because v(xN ) ∈ Find(T ) is nonnegative and takes zero as a
global minimum, v(xN ) in (40) satisfies the definition of the
relative invariance (17) with weight (det(M))

2
d as

v((M, b)xN ) =
∑
k∈Q

vk((M, b)xCk) =
∑
k∈Q

(det(M))
2
d vk(xCk)

= (det(M))
2
d v(xN )

where the relative (M� B)-invariance of vk(xCk) is used. Fi-
nally, Lemma 7 guarantees v(xN ) ∈ Fd(G).

For necessity, consider a function v(xN ) ∈ Find(T ) ∩
Frd(M� B, G). Lemma 7 guarantees that the nonnegative
function v(xN ) ∈ Fd(G) is decomposable as (40) with non-
negative vk(xCk) for k ∈ Q. Additionally, we have to show
that each vk(xCk) is an indicator of projCk(T ) and is relatively

(M� B)-invariant of weight (det(M))
2
d for (M, b) ∈ M� B.

This can be done by using the following lemma.
Lemma 8: If a pair i, j ∈ N satisfies {i, j} �∈ E , i �= j,

v(xN ) ∈ Find(T ) ∩ Frd(M� B, G) is decomposable as

v(xN ) = w1(xN\{i}) + w2(xN\{j}) (60)

with some indicators w1(xN\{i}) and w2(xN\{j}) of
projN\{i}(T ) and projN\{j}(T ), respectively, relatively

(M� B)-invariant of weight (det(M))
2
d for (M, b) ∈ M� B.

Proof: See Appendix B. �
According to Lemma 8, any function in v(xN ) can be de-

composed into two relatively invariant indicators as long as it
depends on the states xi, xj satisfying {i, j} �∈ E . Repeating this
operation results in the sum of relatively invariant indicators
vk(xCk) depending only on the states xCk for maximal cliques
Ck to obtain the decomposed form (40).

C. Proof of Theorem 3

We show that (37) holds for v(xN ) in (40) with (39), (41) and
for fi(x

[i]
Ni
) in (44) with (45), (46). To do so, we just have to

show the following for each k ∈ Qi:

M−1
i

∂vk
∂xi

(xCk) = x
[i]
i − colnki

(T̂ki(x
[i]
Ck)). (61)

For a preliminary, the following lemma gives the gradient of
the distance function in (1) without assumptions on T .

Lemma 9: For a set T ⊂ Rd×n and vectors x1, x2, . . . , xn ∈
Rd

1

2

∂(dist(xN , T ))2

∂xi
= xi − coli(T̂ (xN )) (62)

holds for a matrix-valued function T̂ : Rd×n → T satisfying

T̂ (xN ) ∈ argmin
T∈T

‖xN − T‖. (63)

Proof: See Appendix C. �
From condition (A) in Theorem 1, Lemma 5 guarantees

that vk(xCk) in (41) is relatively (M� B)-invariant of weight
(det(M))

2
d for (M, b) ∈ M� B. This function is nonnegative

and takes zero as a global minimum. Thus, from Lemma 6,
vk(xCk) ∈ Fr(M� B) holds. From the inverse of a semidirect
product in (7), the definition (49) of Fr(M� B), and Lemma 9

M−1
i

∂vk
∂xi

(xCk) =
∂vk
∂xi

((Mi, bi)
−1xCk) =

∂vk
∂xi

(x
[i]
Ck)

= x
[i]
i − colnki

(T̂ki(x
[i]
Ck)) (64)

is obtained, where x
[i]
j = (Mi, bi)

−1xj according to the local

coordinate (31) and T̂ki : Rd×|Ck | → projCk(T ) satisfies

T̂ki(x
[i]
Ck) ∈ argmin

Tki∈projCk (T )

‖x[i]
Ck − Tki‖. (65)

From the definitions of projection and orbit in (2) and (14), and
Lemma 2 (i),Tki ∈ projCk(T ) holds for the orbitT in (39) if and
only if Tki = (Mki, bki)Ξki holds for some ((Mki, bki),Ξki) ∈
(M� B)× projCk(X∗). Hence, (65) is equivalent to (45) with
(46). Then, from (64), (61) is satisfied.

D. Proof of Theorem 4

Assume that condition (A) in Theorem 1 holds and that
the fdim(M� B)-intersection graph of the maximal cliques
is connected. Let x1, x2, . . . , xn ∈ Rd be vectors satisfying the
assumption part of the definition (23) of the clique rigidity, and
consider k, � ∈ Q, k �= �, satisfying {k, �} ∈ Ĕfdim(M�B). From

the definition of Ĕr in (22)

|Ck ∩ C�| ≥ fdim(M� B) (66)

holds. From the assumption part of (23), xCk ∈ projCk(T ) and
xC� ∈ projC�(T ) hold, which leads to

xCk = (Mk, bk)x
∗
Ck , xC� = (M�, b�)x

∗
C� (67)

with some (Mk, bk), (M�, b�) ∈ M� B from the definitions of
projection and orbit in (2) and (14), respectively, and Lemma 2
(i) for the (M� B)-orbit T in (39). From (67)

xCk∩C� = (Mk, bk)x
∗
Ck∩C� = (M�, b�)x

∗
Ck∩C� (68)

is obtained. From (66), M� B is free to Rd×|Ck∩C�|\Sk� with
a set Sk� of measure zero, and from (68), (Mk, bk) = (M�, b�)
is obtained for x∗

Ck∩C� ∈ Rd×|Ck∩C�|\Sk�, according to the def-
initions of the free dimension in (11) and the freeness in
(10) in order. Due to the assumption of the connectedness
of Γfdim(M�B)(G), (Mk, bk) agree for all k ∈ Q as long as
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x∗
Ck∩C� ∈ Rd×|Ck∩C�|\Sk� hold for any such k, � ∈ Q. Let (M, b)

be the agreement. Because every node belongs to a maximal
clique, xN = (M, b)x∗

N is obtained from (67), which belongs
to T in (39) with X∗ = {x∗

N } from the definition (14) of the
orbit. Hence, the conclusion part of (23) is fulfilled, and (G, T )
is clique rigid.

VII. CONCLUSION

This article provided a unified solution to a general multiagent
coordination problem with relative measurements, including
transformations in translation, rotation, reflection, and scale.
First, we described relative measurements with transformation
matrix and translation vector sets, defined by subgroups M and
B, respectively. This formulation enabled us to describe various
types of measurement information in a unified way. Next, as
the main result, we derived a necessary and sufficient condi-
tion for a network topology and measurement information with
which a given coordination task is achievable by relative, dis-
tributed control. By employing the semidirect product M� B
to describe relative measurements, sophisticated tools of group
theory could be utilized. Actually, the class of the realizable
coordination tasks was specified with the target configuration
sets expressed by (M� B)-orbits. Then, the gradient-based
controllers to achieve these tasks were characterized by rela-
tively (M� B)-invariant functions. Moreover, we showed that
a required network topology is clique rigidity and derived a
more intuitive condition such that the intersection graph of the
maximal cliques is connected, where the required number of
the intersections is more than or equal to the free dimension
of M� B. Finally, the new method was applied to formation
control with unknown, heterogeneous scale factors, and its ef-
fectiveness was demonstrated through simulations for both 2-D
and 3-D spaces.

These results indicate the trends of the relations between co-
ordination tasks, required network topologies, and measurement
information (T, N, M) shown in Table I in quantitative ways as
follows: a realizable set T is larger [a coordination task is more
flexible (T)] for larger volume of M� B [less measurement
information (M)], and then the number of intersections required
to G increases according to fdim(M� B) [a denser network
topology is necessary (N)]. This article is the first that strictly
shows these trends. Moreover, this method is applicable to a
wide range of coordination tasks due to its unified approach.
Actually, this approach covers coordination tasks (i), (ii), and
(iii) in Table I by employingM� B = {Id}� {0}, {Id}� Rd,
andO(d)� Rd, respectively. Additionally, various other coordi-
nation tasks can be attained by employingM andB from Table II
and others. For example, formation control with unknown scale
factors is achieved with M� B = scaled(SO(d))� Rd, and
target enclosure is with M� B = SO(d)� {0}. Nevertheless,
coordination tasks (iv) and (v) in Table I are not covered because
measurements in terms of only bearings cannot be expressed as
(31). Future work includes more comprehensive generalization
including all these tasks.

APPENDIX A
EXAMPLES OF TRANSFORMATION MATRIX SETS

We derive the four transformation matrix sets M = SO(d),
{Id}, scaled(SO(d)), and O(d) in Table II according to types of

Fig. 6. Global and local coordinates for M = SO(2). (a) Global coor-
dinate p. (b) Corresponding local coordinate p[i].

measurement information with the translation vector setB = Rd

for d = 2.
Example 11: Consider a situation where each agent is

equipped with a camera or laser-range-finder to measure the
distance and relative bearing of an object. Then, M = SO(2)
is adopted, which is explained from Fig. 6 as follows. Suppose
that agent i is at a position coordinate xi ∈ R2 with facing to
the direction of an angle θi ∈ [−π, π) from the X-axis of the
global frame Σ, and that an object is set at a position coordinate
p ∈ R2. Let dpi ≥ 0 and φpi ∈ [−π, π) be the distance and
relative bearing of the object from agent i, and only dpi and
φpi are assumed to be measurable. Then, from Fig. 6(a), the
global coordinate p satisfies

p = xi + dpi

[
cos(θi + φpi)
sin(θi + φpi)

]
. (69)

Suppose that the X [i]-axis of the local frame Σi is set to the face
of agent i, as illustrated in Fig. 6(b). Then, the local coordinate
p[i] ∈ R2 of the object satisfies

p[i] = dpi

[
cosφpi

sinφpi

]
. (70)

From (69) and (70), the relation between global and local co-
ordinates (28) holds with Mi = R(θi) ∈ SO(2) and bi = xi for
the rotation matrix R(·) defined in (4). Hence, M = SO(2) is
obtained. �

Example 12: When each agent carries a compass in addition
to the equipment in Example 11, a common direction is available.
Then, M = {I2} is adopted. Actually, set the X-axis of Σ to
this direction, and the angle θi of the face of agent i from the
X-axis is obtainable as Fig. 6(a). Then, the local coordinate p[i]

can be transformed from (70) to

p[i] = dpi

[
cos(θi + φpi)
sin(θi + φpi)

]
. (71)

From (69) and (71), (28) holds with Mi = I2 and bi = xi.
Hence, M = {I2} is achieved. �

Example 13: Suppose that the distance from the object
is measured with an unknown scale factor. Then, M =
scaled(SO(2)) is adopted as explained as follows. Let d̂pi ≥ 0
be the value obtained by the measurement of the distance, and
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Fig. 7. Global and local coordinates for M = O(2). (a) Global coordi-
nate p. (b) Corresponding local coordinate p[i].

the relative coordinate p[i] of the object is described as

p[i] = d̂pi

[
cosφpi

sinφpi

]
(72)

instead of (70). Let si > 0 be the unknown scale factor and
d̂pi = sidi holds. Then, from (69) and (72), (28) holds with
Mi = siR(θi) ∈ scaled(SO(2)) and bi = xi, as illustrated in
Fig. 3. Thus, M = scaled(SO(2)) is achieved. �

Example 14: Suppose that each agent detects a beacon on the
object by two receivers. Then, M = O(2) is adopted. In this
case, as shown in Fig. 7(a), the distances dpi1, dpi2 ≥ 0 of the
beacon from the receivers are measurable. Without the loss of
generality, let [1 0]� and −[1 0]� be the local coordinates of the
receivers. Then, the relative coordinate p[i] of the object satisfies

‖p[i] − [1 0]�‖ = dpi1, ‖p[i] + [1 0]�‖ = dpi2. (73)

As shown in Fig. 7(b), (73) allows the two possible coordinates
p
[i]
A , p

[i]
B ∈ R2 for p[i], where

p
[i]
A = dpi

[
cos φ̂pi

sin φ̂pi

]
, p

[i]
B = dpi

[
cos φ̂pi

− sin φ̂pi

]
(74)

with

dpi =

√
d2pi1 + d2pi2

2
− 1, φ̂pi = cos−1

d2pi2 − d2pi1
4dpi

∈ [0, π].

Because the relative bearing φpi ∈ (−π, π] of the object is
equivalent to either φ̂pi or −φ̂pi, from (74)

p[i] ∈ {p[i]A , p
[i]
B } =

{
dpi

[
cosφpi

sinφpi

]
, dpiRw

[
cosφpi

sinφpi

]}
(75)

is obtained with the reflection matrix Rw ∈ R2×2 for w =
[0 1]�. From (69) and (75), (28) holds for Mi = R(θi) or
R(θi)Rw, and bi = xi. The duality of the possible positions
is called a flip ambiguity in distance-based localization [47]. We
can match the ambiguity to either Mi = R(θi) or R(θi)Rw for
all neighbors by using a landmark beacon. Then

M = {R(θ) : θ ∈ [−π, π)} ∪ {R(θ)Rw : θ ∈ [−π, π)}
= O(2)

is obtained. �

APPENDIX B
PROOF OF LEMMA 8

From (51), we can assume that v(xN ) belongs to Find(T ),
Fr(M� B), andFd(G). For functions ηi, ηj : Rd×(n−2) → Rd

defined later, we let:

w1(xN\{i}) = v(xN )|xi=ηi(xN\{i,j})

− 1

2
v(xN )|xij=ηij(xN\{i,j}) (76)

w2(xN\{j}) = v(xN )|xj=ηj(xN\{i,j})

− 1

2
v(xN )|xij=ηij(xN\{i,j}) (77)

where v(xN )|xi=ηi
= v([x1 · · · xi−1 ηi xi+1 · · · xn]) and

v(xN )|xij=ηij
= v(xN )|xi=ηi

|xj=ηj
for xij = [xi xj ] and

ηij = [ηi ηj ]. We just have to show that (i) the decomposed
form (60) is obtained, that (ii) w1(xN\{i}) is an indicator of
projN\{i}, and that (iii) it is relatively (M� B)-invariant

of weight (det(M))
2
d for (M, b) ∈ M� B. The properties

of w2(xN\{j}) can be shown in the same way.
(i) For v(xN ) ∈ Fd(G), defined in (50), and a vector y ∈ Rd,

from the gradient theorem

v(xN )− v(xN )|xi=y =

∫ xi

y

∂v

∂xi
(xN )dxi

= −
∫ xi

y

fi(xNi
)dxi = ṽi(xNi

, y) (78)

is obtained with a function ṽi : Rd×|Ni| × Rd → R. Let y =
ηi(xN\{i,j}) in (78), and

v(xN )− v(xN )|xi=ηi(xN\{i,j}) = ṽi(xNi
, ηi(xN\{i,j})) (79)

is obtained. From the assumption {i, j} �∈ E , j �∈ Ni holds, and
thus, ṽi(·) in (79) does not depend on xj , and

v(xN )− v(xN )|xi=ηi(xN\{i,j})

= (v(xN )− v(xN )|xi=ηi(xN\{i,j}))|xj=ηj(xN\{i,j})

is obtained, which leads to the decomposed form (60) with
w1(xN\{i}) and w2(xN\{j}) in (76) and (77).

(ii) We choose ηij(xN\{i,j}) as a function satisfying

ηij(xN\{i,j}) ∈ argmin
xij∈Rd×2

v(xN ) (80)

which is well-defined because v(xN ) ∈ Find(T ) has a global
minimum. From (80)

v(xN )|xi=ηi(xN\{i,j}) ≥ v(xN )|xij=ηij(xN\{i,j}) (81)

holds. From (81) and the nonnegativeness of v(xN ) ∈ Find(T ),
w1(xN\{i}) in (76) is nonnegative. Also, w2(xN\{i}) in (77)
is shown to be nonnegative. Let x̄N\{i} ∈ projN\{i}(T ), and
from the definition (2) of the projection, x̄N ∈ T holds for
some x̄i ∈ Rd. From v(xN ) ∈ Find(T ), defined in (35), and
the decomposed form (60), 0 = w1(x̄N\{i}) + w2(x̄N\{j}) is
obtained. Therefore, w1(x̄N\{i}) = w2(x̄N\{j}) = 0 holds from
their nonnegativeness. Let x̃N\{i} �∈ projN\{i}(T ), and from (2),
x̃N �∈ T holds for any x̃i ∈ Rd. Let x̃i = ηi(x̃N\{i,j}), and from
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(76), (77), and (81), w1(x̃N\{j}) ≥ w2(x̃N\{j}) holds. From
v(xN ) ∈ Find(T ), 0 < v(x̃N ) = w1(x̃N\{i}) + w2(x̃N\{j}) is
obtained, and thus w1(x̃N\{j}) > 0 holds. Hence, w1(xN\{i}) is
an indicator of projN\{i}(T ).

(iii) From Lemma 6, v(xN ) ∈ Fr(M� B) is relatively
(M� B)-invariant of weight (det(M))

2
d for (M, b) ∈ M� B.

Hence, from (80) and the definition (17) of relative invariance

ηij((M, b)xN\{i,j}) ∈ (M, b) argmin
xij∈Rd×2

v((M, b)xN )

= (M, b) argmin
xij∈Rd×2

(det(M))
2
d v(xN )

= (M, b) argmin
xij∈Rd×2

v(xN ) (82)

holds, where (M, b) argmin(·) is the set of the elements in
argmin(·) multiplied by (M, b). From (80) and (82)

ηij((M, b)xN\{i,j}) = (M, b)ηij(xN\{i,j}) (83)

is obtained. From (76), (83), and the relative (M� B)-
invariance of v(xN )

w1((M, b)xN\{i})

= v((M, b)xN )|xi=(M,b)−1ηi((M,b)xN\{i,j})

− 1

2
v((M, b)xN )|xij=(M,b)−1ηij((M,b)xN\{i,j})

= (det(M))
2
d v(xN )|xi=ηi(xN\{i,j})

− 1

2
(det(M))

2
d v(xN )|xij=ηij(xN\{i,j})

= (det(M))
2
dw1(xN\{i})

holds. Thus, w1(xN\{i}) satisfies the definition (17) of relative

invariance with weight (det(M))
2
d for (M, b) ∈ M� B.

APPENDIX C
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For a preliminary, the directional derivative of a matrix-valued
functionF : Rd×n → Rd×n atxN ∈ Rd×n in the directionW ∈
Rd×n is defined as

∇WF (xN ) = lim
h→0

1

h
(F (xN + hW )− F (xN )). (84)

Then, we obtain the following lemma.
Lemma 10: For a set T ⊂ Rd×n, let T̂ : Rd×n → T be

a solution to the optimization problem (63). Then, for any
xN ,W ∈ Rd×n, the following holds:

〈∇W T̂ (xN ), xN − T̂ (xN )〉 = 0. (85)

Proof: From (63)

‖xN − T̂ (xN )‖ ≤ ‖xN − T̃‖ ∀T̃ ∈ T

holds, and by applying T̃ = T̂ (xN + hW ), we obtain

〈T̂ (xN + hW )− T̂ (xN ), xN − T̂ (xN )〉

= 〈T̂ (xN + hW )− xN , xN − T̂ (xN )〉+ ‖xN − T̂ (xN )‖2

≤ 〈T̂ (xN + hW )− xN , xN − T̂ (xN )〉

+
1

2
‖xN − T̂ (xN )‖2 + 1

2
‖T̂ (xN + hW )− xN‖2

=
1

2
‖T̂ (xN + hW )− xN + (xN − T̂ (xN ))‖2

=
1

2
‖T̂ (xN + hW )− T̂ (xN ))‖2. (86)

From (86), for h > 0, we obtain

1

h
〈T̂ (xN + hW )− T̂ (xN ), xN − T̂ (xN )〉

≤ h

2

∥∥∥∥ 1h (T̂ (xN + hW )− T̂ (xN ))

∥∥∥∥
2

. (87)

From (84), as h → 0+, the left-hand side of (87) converges as

lim
h→0+

〈
1

h
(T̂ (xN + hW )− T̂ (xN )), xN − T̂ (xN )

〉

= 〈∇W T̂ (xN ), xN − T̂ (xN )〉

while the right-hand side of (87) converges to 0. Hence

〈∇W T̂ (xN ), xN − T̂ (xN )〉 ≤ 0

holds. By consideringh < 0, the converse inequality is obtained.
Thus, (85) is achieved. �

From (1) and (63), (dist(xN , T ))2 = ‖xN − T̂ (xN )‖2 holds.
Partially differentiate both the sides of this equation with respect
to xji, the jth entry of xi, and we obtain

1

2

∂(dist(xN , T ))2

∂xji
=

1

2

∂

∂xji
〈xN − T̂ (xN ), xN − T̂ (xN )〉

=

〈
edje

�
ni −

∂T̂

∂xji
(xN ), xN − T̂ (xN )

〉

=
〈
edje

�
ni−∇edje�ni

T̂ (xN ), xN −T̂ (xN )
〉

= 〈edje�ni, xN − T̂ (xN )〉 = tr(enie
�
dj(xN − T̂ (xN )))

= e�dj(xN − T̂ (xN ))eni = e�dj(xi − coli(T̂ (xN ))) (88)

from (84) and Lemma 10 for W = edje
�
ni. By collecting (88)

for all j ∈ {1, 2, . . . , d}, (62) is achieved.
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