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Command-Filter-Based Finite-Time Adaptive Control for
Nonlinear Systems With Quantized Input

Jiali Ma , Ju H. Park , and Shengyuan Xu

Abstract—This article considers the finite-time adaptive control
problem of nonlinear systems with quantized input signal. Com-
pared with existing results, the quantized parameters are unknown
and the bound of the disturbance is not required. By utilizing the
command filter backstepping method, an adaptive switching-type
controller is designed and a novel switching mechanism is also
proposed. By regulating the controller parameters online, practical
finite-time stability can be guaranteed for the closed-loop system.
Finally, a simulation example is given to illustrate the effectiveness
of the proposed method.

Index Terms—Command filter, finite-time control, nonlinear sys-
tems, quantized input.

I. INTRODUCTION

In recent years, nonlinear quantized systems have attracted great
attention because of the application of digital control systems and net-
worked systems [1], [2]. However, quantization may lead to undesired
system performance or even instability. Due to this practical and theo-
retical significance, the control problem of nonlinear quantized systems
has been a hot topic in the nonlinear control area and numerous results
have been reported (see [3]–[7] and references therein). However, some
challenging problems still exist.

On one hand, most results just ensured that the states of closed-loop
systems were bounded or asymptotically converged to zero [3]–[7].
Specifically, backstepping-based adaptive stabilization was considered
for strict-feedback nonlinear systems with the quantized input signal
in [3]. By choosing suitable quantization and controller parameters, the
ultimate boundedness was achieved. However, global Lipschitz condi-
tions were required for the nonlinear functions. In [4], a simple adaptive
backstepping method was proposed such that the Lipschitz conditions
required in [3] were removed. Then, the output feedback control prob-
lems were solved for nonlinear systems and interconnected nonlinear
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systems in [6] and [7], respectively. Compared with asymptotical sta-
bility, finite-time stability has unique advantages, such as faster conver-
gence, higher accuracy, and wonderful disturbance rejection [8]–[10].
Considering these factors, a finite-time control problem was solved for
strict-feedback nonlinear systems with input quantization in [11]–[13].
By using the adding a power integrator technique, the adaptive finite-
time controllers were designed in [11] and [12] to ensure the global
stability of the quantized systems. By utilizing the neural networks and
backstepping techniques, an adaptive neural network output feedback
controller was also designed in [13] where semiglobal practical finite-
time stability can be achieved. However, it should be mentioned that the
aforementioned results [3]–[7], [11]–[13] were all obtained based on
the assumption that the quantized parameters were known. When the
quantized parameters are unknown, the control problem will become
more difficult for the nonlinear systems. Recently, the adaptive control
problem was investigated for nonlinear quantized systems in [14] where
the quantized parameters were assumed to be unknown. However, only
asymptotical stability could be ensured. Therefore, it is a challenging
and difficult problem to design an adaptive finite-time controller for
nonlinear quantized systems whose quantized parameters are totally
unknown. To the author’s knowledge, there is no result reported on this
issue because of the challenging problem involved.

On the other hand, it should be pointed out that all aforementioned
papers [3]–[7], [11]–[14] utilized the backstepping technique. As we
all know, an inherent problem of backstepping is the “explosion of
complexity,” which was caused by the repeated differentiation of the
virtual controllers. To handle this problem, considerable efforts have
been devoted [15]–[18]. In [15] and [16], dynamic surface control
was proposed where first-order filters were introduced at each step
of the backstepping design procedures. However, both papers ignored
the compensation errors caused by the filter-order filters, which may
degrade the system performance. Then, a modified technique, command
filter backstepping, was first introduced in [17] where command filters
were designed to approximate the derivative of the virtual controllers.
Based on the technique in [17], fruitful results have been reported
(see [18]–[20]). Besides, command-filter-based adaptive finite-time
control has also been investigated in [21]–[25]. In [21], a neural network
finite-time adaptive controller was designed for multiagent systems by
constructing novel error compensation signals. Then, modified error
compensation systems were designed in [22] and [23] where sign
functions were utilized to eliminate the filter error in finite time. It
should be mentioned that in the aforementioned references [21]–[23],
Levant differentiator was utilized to approximate the derivative of the
virtual controller in finite time. However, a drawback of this method is
that the nth order derivative of the virtual controller should exist and
be bounded. Obviously, it is hard to check this condition in advance.
Consequently, it is also a challenging problem to design a command-
filter-based finite-time controller without the restriction in [21]–[23].

Motivated by the aforementioned discussions, command-filter-based
adaptive finite-time control is considered for a class of nonlinear sys-
tems with the quantized input signal, unknown control direction, and
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disturbance. Based on the command filter and the modified error com-
pensation system, a novel adaptive finite-time controller is designed.
By tuning the controller parameters via the switching mechanism, the
system output can converge to a desired set in finite time. Compared
with the existing results, the contributions of this article can be listed
as follows.
1) Different from [3]–[7], [11]–[13], the quantization parameters are

not required to be known. The bounds of the control coefficient and
the disturbance are also not required.

2) Unlike the results in [21]–[23], a modified error compensation
system is constructed in this article. By regulating the system’s
parameters online, finite-time stability of the error compensation
system can be achieved.

3) Compared with the results in [14] where asymptotic stability was
achieved, finite-time stability can be obtained for closed-loop sys-
tem such that a better performance can be obtained.

The remainder of this article is organized as follows. In Section II,
the problem formulation is shown and some useful lemmas are also
provided. In Section III, command-filter-based controller is designed.
In Section IV, we provide the stability analysis. In Section V, a numer-
ical simulation example is given to illustrate the effectiveness of the
proposed method.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following nonlinear system with input quantization:⎧⎪⎪⎨
⎪⎪⎩
ẋi = xi+1 + fi(x̄i), i = 1, . . . , n− 1

ẋn = g(x)q(u) + fn(x̄n) + d(x, t)

y = x1

(1)

where x = [x1, . . . , xn] ∈ Rn denotes the system state; y is the system
output; u is the system input and q(u) represent the quantizer; g(x)
is an unknown function satisfying g(x) �= 0; fi(x̄i) are assumed to
be known where x̄i = [x1, . . . , xi]

T ; and d(x, t) denotes the external
disturbance.

In this article, the quantizer is described as [12]

q(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uisgn(u), ui
1+δ

< |u| ≤ ui, u̇ < 0, or

ui < |u| ≤ ui
1−δ

, u̇ > 0

ui(1 + δ)sgn(u), ui < |u| ≤ ui
1−δ

, u̇ < 0, or
ui
1−δ

< |u|ui(1+δ)
1−δ

, u̇ > 0

0, 0 ≤ |u| < u0
1+δ

, u̇ < 0, or
u0
1+δ

≤ |u| ≤ u0, u̇ > 0

q(u(t−)), u̇ = 0

(2)

where ui = σ1−iumin, i = 1, 2, . . ., umin > 0, 0 < σ < 1 and δ =
1−σ
1+σ

. More details about the quantizer can be found in [12]. Quantizer
(2) satisfies

q(u) = b1(t)u+ b2(t) (3)

where b1 ≥ 1− δ > 0 and |b2| ≤ umin.
The control objective of this article is to design an adaptive controller

such that all the states of the closed-loop system are bounded and
the system output y can converge to a desired set in finite time. The
following assumptions are made for the system (1).

Assumption 1: It is assumed that the sign of g(x) is known. There
exist unknown positive constants g and ḡ such that g ≤ |g(x)| ≤ ḡ.

Assumption 2: The external disturbanced(x, t) satisfies |d(x, t)| ≤
d̄, where d̄ is an unknown positive constant.

Assumption 3: The parameters of the quantizer are unknown, which
means σ and umin are unknown.

Remark 1: In the existing results about finite-time control [11]–
[13], [21], a priori knowledge of the control coefficient and disturbance
is always required. As shown in Assumptions 1 and 2, these restrictions
are removed in this article. Therefore, a more general result can be
achieved. Without loss of generality, it is assumed that g(x) > 0.

Remark 2: In the existing works [3]–[7], [14], only global bounded-
ness or asymptotical stability could be obtained for quantized nonlinear
systems. Although finite-time stability was achieved in [11]–[13], the
quantized parameters were required to be known. In this article, the
finite-time control problem is studied based on the assumption that the
quantized parameters are unknown. Therefore, the proposed result is
quite different from the existing results.

Besides, the following lemma is also introduced.
Lemma 1 (see [10]): Let V (x) : Rn → R be a positive definite

Lyapunov function. There exist positive constants c1 > 0, c2 > 0, and
0 < γ < 1 such that V̇ + c1V + c2 V γ ≤ 0. Then, there exists a pos-
itive constant t̄, such that x(t) ≡ 0 for t ≥ t̄, where t̄ = 1

c1(1−γ)
ln(1 +

c1
c2
V 1−γ(x(0))).
Lemma 2 (see [25]): Consider the system ẋ = f(x). Let V (x) :

Rn → R be a positive definite Lyapunov function. There exist pos-
itive constants c1 > 0, c2 > 0, 0 < γ < 1, and 0 < δ < +∞ such
that V̇ ≤ −c1V − c2 V γ + δ. Then, the trajectory of the system is
practical finite-time stable, and the residual set of the solution of sys-
tem is given by {limt→t̄ |V γ(x) ≤ δ

(1−λ)c2
} where t̄ ≤ 1

c1(1−γ)
ln(1 +

c1
λc2

V 1−γ(x(0))), 0 < λ < 1.

III. CONTROLLER DESIGN

In this section, based on the command filter, an adaptive controller
will be designed by using the backstepping scheme. First, introduce the
following change of coordinates:{

η1 = x1

ηi = xi − ᾱi−1, i = 2, . . . , n
(4)

where ᾱi−1 is the output of the command filter with αi−1 as the input.
Here, the command filter is designed as follows:{

ζ̇i1 = βζi2

ζ̇i2 = −2γβζi2 − β(ζi1 − αi), i = 1, . . . , n− 1
(5)

where β > 0 and 0 < γ ≤ 1. ᾱi = ζi1 is the output of the command
filter. The initial condition is ζi1(0) = αi(0) and ζi2(0) = 0.

The virtual controllers αi, i = 1, . . . , n− 1 are designed as

α1 = −c1η1 − f1 − k1z
μ
1 (6)

αi = −ciηi − fi + ˙̄αi−1 − ηi−1 − kiz
μ
i (7)

where ci and ki > 0 are designed parameters, μ is a positive constant
satisfying 0 < μ = μ1

μ2
< 1, where μ1 and μ2 are odd integers. z is the

compensation error signal defined as

zi = ηi − ξi (8)

and the error compensation signal ξ is defined as

ξ̇1 = −c1ξ1 + ξ2 + (ᾱ1 − α1)− lsgn(ξ1) (9)

ξ̇i = −ciξi − ξi−1 + ξi+1 + (ᾱi − αi)− lsgn(ξi) (10)
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ξ̇n = −cnξn − ξn−1 − lsgn(ξn) (11)

where l := l(s) +
√
2
2
l0. l0 is a positive constant and l(s) is a

strictly increasing function with respect to s, which satisfies lims→+∞
l(s) = +∞.

Remark 3: Different from the existing results [21]–[23], Levant
differentiator is not utilized in this article to approximate the virtual
controller. In a different way, a novel error compensation system
with switching parameters is developed in this article. By tuning the
parameter online, the finite-time stability of ξ can also be guaranteed.

A. Controller Design

In this part, we will give the design procedures of the controller.
Step 1: Consider the Lyapunov function candidate V1 = 1

2
z21 . Based

on (1), (4), and (9), we have

V̇1 = z1(x2 + f1 + c1ξ1 − ξ2 − (ᾱ1 − α1) + lsgn(ξ1))

= z1(z2 + α1 + f1 + c1ξ1 + lsgn(ξ1)). (12)

Substituting (6) into (12) yields

V̇1 = −c1z
2
1 − k1z

1+μ
1 + lz1sgn(ξ1) + z1z2. (13)

Step i = 2, . . . , n− 1: Consider the Lyapunov function candidate

Vi = Vi−1 +
1

2
z2i . (14)

Then, the derivative of Vi satisfies

V̇i ≤
i−1∑
j=1

(−cjz
2
j − kjz

1+μ
j + ljzjsgn(ξj)

)
+ zi(zi+1 + αi + fi − ˙̄αi−1 + ciξi

+ ηi−1 + lsgn(ξi)). (15)

Substituting (7) into (15) yields

V̇i ≤
i∑

j=1

(−cjz
2
j − kjz

1+μ
j + lzjsgn(ξj)) + zizi+1. (16)

Step n: Consider the Lyapunov function candidate

Vn = Vn−1 +
1

2
z2n. (17)

Then, we have

V̇n ≤
n−1∑
j=1

(−cjz
2
j − kjz

1+μ
j + lzjsgn(ξj)

)
+ zn(gq(u) + fn + d− ˙̄αn−1 + cnξn

+ ηn−1 + lsgn(ξn)). (18)

Substituting (3) into (18) yields

V̇n ≤
n−1∑
j=1

−(cjz
2
j − kjz

1+μ
j + lzjsgn(ξj))

+ zn(g0u+ f0 + d0 + lsgn(ξn)) (19)

where g0 = gb1, f0 = fn − ˙̄αn−1 + cnξn + ηn−1, and d0 = gb2 + d.
Then, design the controller as

u = −h(k)(cnzn + knz
μ
n + sgn(znf0)f0 + sgn(zn)) (20)

where h(k) a strictly increasing function, which satisfies
limk→+∞ h(k) = +∞.

Under the control law (20), the inequality (19) becomes

V̇n ≤
n∑

j=1

(−cjz
2
j − kjz

1+μ
j + lzjsgn(ξj))

− (g0h(k)− 1)φ− (g0h(k)− d0)|zn| (21)

where φ = cnz
2
n + knz

1+μ
n + |znf0| ≥ 0.

B. Switching Mechanism

In this section, we will propose a switching mechanism to regulate
the parameter k. Define the Lyapunov function

Vξ =
1

2

n∑
i=1

ξ2i . (22)

Let k0 = mini=1,...,n{2 1+μ
2 ki}; γv = 1+μ

2
; γξ = 1

2
; c =

mini=1,...,n{2ci}, and c0 is a positive constant. Then, design
the switching mechanism as follows.

Step 1: Initialization: Select appropriate strictly increasing func-
tions h(k) and l(s). Choose a constant δ > 0, 0 < λ < 1, and set
k = s = 0 and t0 = 0.

Step 2: Switching condition.
1) For t > tk, if V γv (x) > δ

(1−λ)k0
, and

V 1−γv
n (t) > max

{(
V 1−γv
n (tk)

+
λk0
c0

(1− e(1−γv)c0(t−tk))

)
e−c0(1−γv)(t−tk), 0

}
(23)

then k → k + 1, and reset tk = t. Otherwise, k and tk remain
unchanged.

2) For t > ts, if

V
1−γξ

ξ (t) > max

{(
V

1−γξ

ξ (ts)

+
l0
c
(1− e(1−γξ)c(t−ts))

)
e−c(1−γξ)(t−ts), 0

}
(24)

then s → s+ 1, and reset ts = t. Otherwise, s and ts remain un-
changed.

Step 3: Repeat Step 2.

IV. STABILITY ANALYSIS

By the work in Section III, we can obtain the following results, as
shown in Theorem 1.

Theorem 1: Consider the nonlinear system (1), which satisfies
Assumptions 1–3. Under the adaptive control law (20) and the switching
mechanism, all the signals of the closed-loop system are bounded and
finite-time stability can be achieved.

Proof: As shown in [8] and [9], for any fixed k and s, the solution
of the closed-loop system exists until the state escapes to the infinity or
time t tends to infinity. Define the maximum internal of the solution as
[0, tm). In the following part, we will first prove that the closed-loop
system states are bounded and tm = +∞. The details are as follows.

During every switch of k, for t ∈ [tk, tk+1), we have V γv (x) ≤
δ

(1−λ)k0
or

V 1−γv
n (t) ≤ max

{(
V 1−γv
n (tk)

+
λk0
c0

(1− e(1−γv)c0(t−tk))

)
e−c0(1−γv)(t−tk), 0

}

≤ V 1−γv
n (tk) +

k0
c0

. (25)
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According to (25), it is obvious that z is uniformly bounded on
[tk, tk+1). Then, we assume that the last switching occurs at time tk∗ .
For t ≥ tk∗ , we also have V γv (x) ≤ δ

(1−λ)k0
or

V 1−γv
n (t) ≤ max

{(
V 1−γv
n (tk∗)

+
λk0
c0

(1− e(1−γv)c0(t−tk∗ ))

)
e−c0(1−γv)(t−tk∗ ), 0

}

≤ V 1−γv
n (tk∗) +

k0
c0

(26)

which also implies the boundedness of z. Based on these facts, we
have that closed-loop system states are bounded on [0, tm). Since no
finite-time escape phenomenon occurs, we have tm = +∞.

Next, we can prove that the switching times are finite. The reason
is: define g

0
= inft≥0 g0 and d̄0 = supt≥0 |d0|. According to Assump-

tions 1 and 2, it is easy to prove that g
0
> 0 and d̄0 is bounded. Since

h(k) is a strictly increasing function with respect to k, there exists a
switching number k̄ such that

g
0
h(k̄)− 1 ≥ 0, g

0
h(k̄)− d̄0 ≥ 0. (27)

Substituting (27) into (21) yields

V̇n ≤
n∑

j=1

(−cjz
2
j − kjz

1+μ
j + lzjsgn(ξj)

)

≤
n∑

j=1

(
−
(
cj − l2

4ω

)
z2j − kjz

1+μ
j

)
+ nω (28)

where ω > 0 is a design parameter satisfying nω ≤ δ.
Select cj = c0

2
+ l2

4ω
. Then, we have

V̇n ≤
n∑

j=1

(
− c0

2
z2j − kjz

1+μ
j

)
+ nω

≤ − c0Vn − k0 V γv + nω. (29)

If V γv (x) ≤ δ
(1−λ)k0

, it is obvious that switching condition is not

satisfied. If V γv (x) > δ
(1−λ)k0

, based on (29), we have

V̇n ≤ − c0Vn − λk0 V γv . (30)

Based on (30) and Lemma 2, it is easy to prove

V 1−γv
n (t) ≤ max

{(
V 1−γv
n (tk̄)

+
λk0
c0

(
1− e(1−γv)c0(t−tk̄)

))
e−c0(1−γv)(t−tk̄), 0

}
(31)

which also implies that switching condition (23) will also never be
satisfied. Therefore, the switching times are finite. Besides, we also have
k∗ ≤ k̄. Finally, finite-time stability can be obtained for z. The reason
is: if V γv (x) > δ

(1−λ)k0
, ∃t ≥ tk∗ + 1

c0(1−γv)
ln(1 + c0

λk0
V 1−γv (t∗)),

then we have

0 ≤ V 1−γv
n (t) ≤ max

{(
V 1−γv
n (tt∗) +

λk0
c0

× (
1− e(1−γv)c0(t−tt∗ )

))
e−c0(1−γv)(t−tt∗ ), 0

}
= 0 (32)

which results in a contradiction. Thus, the finite-time stability is proved.
Since (32) hold for t ≥ tk∗ , based on the results in [18], [19], [22],

and [25], we have |ᾱi − αi| ≤ ςi, where ςi is unknown but bounded.

Then, consider the Lyapunov function Vξ . According to (9)–(11), we
have

V̇ξ = −
n∑

j=1

ciξ
2
i −

n∑
j=1

l|ξi| −
n−1∑
j=1

ξi(ᾱi − αi)

≤ −
n∑

j=1

ciξ
2
i −

n∑
j=1

√
2

2
l0|ξi| −

n−1∑
j=1

(l(s)− ςi)|ξi|. (33)

Now, we will prove the finite-time stability of ξ. First of all, we can
prove that s can just be switched a finite number of times. Then, we
can prove that ξ can converge to zero in finite time. Then, reasons are
shown as follows.
1) It is claimed that the switching number of s is finite. The reason is:

since l(s) is a strictly increasing function, there exists a switching
number s1 such that l(s1)− ς̄ ≥ 0, where ς̄ = maxj=1,...,n{ςj}.
Hence, for t ≥ ts1 , we have

V̇ξ ≤ −
n∑

j=1

ciξ
2
i −

n∑
j=1

√
2

2
l0|ξi| ≤ −cVξ − l0V

1
2

ξ . (34)

By using Lemma 1 and the results in [10], we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Vξ(t) ≤

(
V

1−γξ

ξ (ts1) +
l0
c(

1 − e(1−γξ)xc(t−ts1 )
)) 1

1−γξ e−c(t−ts1 ), t ∈ [ts1 , T̄ )

Vξ(t) = 0, t ∈ [T̄ ,+∞)

(35)

where T̄ = 1
c(1−γξ)

ln(1 + c
l0
V 1−γξ (ts1)).

Hence, the following inequality can be obtained:

V
1−γξ

ξ (t) ≤ max

{(
+
l0
c
(1− e(1−γξ)c(t−ts1 ))V

1−γξ

ξ (ts1)

+
l0
c
(1− e(1−γξ)c(t−ts1 ))

)
e−c(1−γξ)(t−ts1 ), 0

}
(36)

which means the switching condition (24) can never be satisfied
for t ≥ ts1 . Therefore, the switching times for s are finite.

2) Let s̄ be the last switching number of s. Then, we have s̄ ≤ s1. For
t ≥ ts̄, we have

V
1−γξ

ξ (t) ≤ max

{(
V

1−γξ

ξ (ts̄)

+
l0
c

(
1− e(1−γξ)c(t−ts̄)

))
e−c(1−γξ)(t−ts̄), 0

}
. (37)

From (37), we can conclude that ξ can converge to zero in finite
time. The reason is: if ξ �= 0, ∃t ≥ ts̄ +

1
c(1−γξ)

ln(1 + c
l0
V (ts̄)

1−γξ ),
we have

0 �= V 1−μ
ξ (x(t)) ≤ max

{(
V 1−μ
ξ (ts̄)

+
l0
c
(1− e(1−γξ)c(t−ts̄))

)
e−c(1−γξ)(t−ts̄), 0

}
= 0 (38)

which results in a contradiction. Therefore, ξ = 0 for t ≥ ts̄ +
1

c(1−γξ)
ln(1 + c

l0
V (ts̄)

1−γξ ).

In conclusion, finite-time stability of z and ξ is ensured. According
to the definition of z and η, we can easily prove the finite-time stability
of x. �

Remark 4: In [14], parameter updating laws were developed to
handle the unknown quantized parameters where two estimates were
introduced in the adaptive controller. However, once introducing the
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Fig. 1. Response of the system state x.

adaptive estimates, the finite-time stability cannot be achieved. Dif-
ferent from the result in [14], switching parameters are introduced
in the adaptive controller and error compensation systems. By tun-
ing the switching parameters in a finite number of times, the effect
of the unknown quantized parameters can be eliminated such that the
finite-time convergence can be achieved.

Remark 5: Our proposed method can also be utilized to solve the
finite-time control problem of nonlinear systems with actuator fault{

ẋi = xi+1 + fi(x̄i), i = 1, . . . , n− 1

ẋn = g(x)f(u) + fn(x̄n) + d(x, t)
(39)

where f(u) denotes the actuator fault, which can be modeled as [12]

f(u) = b(t)u+ ud(t) (40)

where b(t) > 0 and ud(t) is a bounded signal. Obviously, system (39)
has similar form with system (1). Therefore, our proposed method can
be applied to system (39).

Remark 6: The finite-time fault-tolerant control has been investi-
gated in [25] where the error signal can converge to a residual set in
finite time. Compared with Li [25], the advantages of all papers are:
first, the unknown system parameters are compensated by regulating the
controller parameters; and second, the bound knowledge of |ᾱi − αi|
is not required to be known in this article.

V. SIMULATION EXAMPLE

In this section, to show the effectiveness of the proposed approach,
the pendulum system in [26] is considered

mlθ̈ = −mgsinθ − klθ̇ +
T

l
+ d. (41)

The detailed physical descriptions about the parameters m, l, g, and k
can be found in [26]. d is the unknown disturbance. Let x1 = θ and
x2 = θ̇, then we have

ẋ1 = x2

ẋ2 =
1

ml2
q(u)− g

l
sinx1 − k

m
x2 + d. (42)

According to the results in Section III, we can design the command
filter and the error compensation system first. Then, the system con-
troller can be designed as follows:

u = −h(k)(c2z2 + k2z
μ
2 + sgn(z2f0)f0 + sgn(z2)).

The design parameters are chosen as: c0 = 2, k = 1, l0 =
√
2, β =

1000, γ = 0.75,h(k) = 0.8 k, and l(s) = 0.3s+ 1. In the simulation,
the initial conditions are chosen as: [x1(0) x2(0)]

T = [1 − 0.5]T ,

Fig. 2. Response of error compensation system ξ.

Fig. 3. Switching number k and s.

Fig. 4. Response of system input u.

[ζ1(0) ζ2(0)]
T = [−3 0]T , and [ξ1(0) ξ2(0)]

T = [1 − 1]T . The sys-
tem parameters are chosen as m = 0.02 kg, l = 9.8 m, and k = 0.02.
The unknown disturbance is chosen as d = sin(5t). The parameters
for the quantizer is chosen as umin = 0.02 and σ = 0.2. Then, the
simulation results are shown in Figs. 1–4. Fig. 1 provides the response
of the system state x. The response of the compensation system signal
ξ is shown in Fig. 2. Figs. 3 and 4 provide the response of switching
parameters k, s and system input u. From Fig. 1, it can be seen that the
finite-time stability can be obtained for the considered system, and we
can also find that the compensation system ξ is finite-time stable from
Fig. 2.

VI. CONCLUSION

In this article, the command-filter-based finite-time adaptive control
problem has been investigated for a class of nonlinear systems with
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quantized input signal and disturbance. Unlike the existing results, the
quantized parameters and the bound of the disturbance are not required
in this article. By introducing the novel command filter and the error
compensation system, the “explosion of complexity” problem can be
solved. By tuning the control parameters online, the designed controller
can ensure that the finite-time stability can be guaranteed for the closed-
loop system. Moreover, in the future, we will focus on the command-
filter-based finite-time control problem for nonlinear systems whose
functions are unknown.
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