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Model Reference DSMC With a Relative Degree Two Switching Variable
Paweł Latosiński and Andrzej Bartoszewicz

Abstract—Reaching-law-based discrete sliding mode con-
trollers are well known to be easy to tune and robust with respect
to disturbance. In recent years, it has been demonstrated that
their robustness can be further enhanced with the use of arbitrary
relative degree sliding variables. However, reaching laws using
such variables only ensure a good sliding mode performance of
the system when the perturbations affecting the plant are matched,
which is a very restrictive assumption. To address this issue and to
further improve robustness of the plant, in this article, we propose
a new model reference approach for strategies with relative degree
two sliding variables. In the proposed approach, the reaching law
is first used to control the evolution of a disturbance-free model of
the plant, and then, the original system state is driven toward that
of the model with a secondary controller. It will be shown that the
proposed approach ensures better system robustness compared
to the conventional reaching law approach and that it does not
require the assumption about matched uncertainties.

Index Terms—Control theory, sliding mode control, robust con-
trol, discrete-time systems.

I. INTRODUCTION

Rejection of disturbance and model uncertainties has been a topic
of extensive research in the field of the control theory. Since unpre-
dictable perturbations can significantly degrade the performance of the
controlled plant and even negatively affect its stability, development
of robust control schemes proved to be necessary. One of the most
significant developments in robust control was the introduction of
continuous-time sliding modes [1]–[3]. Sliding mode control strategies
provide complete insensitivity to a class of disturbance and model
uncertainties that satisfy the so-called matching conditions [4]. Fur-
thermore, since most modern control processes are applied digitally,
sliding mode methodology has been further applied to discrete-time
systems [5], [6]. The field of sliding mode control has been further
developed by various researches, both in the area of continuous-time
systems [7]–[11] and discrete-time ones [12]–[16].

A major development in the sliding mode control theory was
the introduction of the so-called reaching law approach for both
continuous-time [17] and discrete-time systems [18]. Rather than
analyzing the stability of the sliding motion using Lyapunov’s
theorem, this approach allows one to a priori specify the evolution of
the system representative point, and then, synthesize the control signal
that enforces this evolution. This approach has gained significant
popularity in discrete-time sliding mode control (DSMC) and various
authors have introduced new reaching laws with the aim of ensuring
favorable properties of quasi-sliding motion [19]–[28].

Manuscript received July 20, 2019; revised November 13, 2019; ac-
cepted May 14, 2020. Date of publication May 28, 2020; date of current
version March 29, 2021. The work of P. Latosiński was supported by
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Since the size of the quasi-sliding mode band to which the system
representative point is ultimately driven reflects robustness of the plant
with respect to uncertainties, it is vital for the control engineer to
ensure the smallest possible width of this band. In recent years, various
researchers have used discrete-time sliding variables with arbitrary
relative degree to improve the disturbance rejection capabilities of
reaching-law-based strategies [29]–[32]. Since such variables are not
affected by the control signal and matched perturbations from a number
of time instants ago smaller than their relative degree, it is possible
to obtain precise information about their future evolution up to r − 1
steps in advance, where r is the relative degree of the variable. This
information can then be used in the sliding mode controller design
procedure with the aim of improving robustness of the plant. However,
even though many recent works on discrete-time sliding mode control
have abandoned the classic assumption about matched uncertainties
[23], [24], this restrictive assumption is still necessary for strategies
using higher than one relative degree sliding variables.

Discrete-time reaching laws rely on a recursive function to specify
future values of the sliding variable. However, this creates a sig-
nificant and often neglected problem in practical implementation of
such strategies. Since value of the sliding variable is determined on a
step-by-step basis, it is affected by disturbance and model uncertainties
from all previous steps. As a result, the desired trajectory of the system
can become distorted at any stage of the control process. To remedy
this issue, a recent work [33] proposed the use of a disturbance-free
reference model of the plant. The new approach uses the reference
model of the plant to obtain a desired trajectory of its representative
point, and then, drives the state of the original plant alongside that
trajectory, thus eliminating the residual effect of past perturbations on
the motion of the system.

In this article, we introduce a new discrete-time reaching-law-based
sliding mode control strategy using a reference model of the plant and
apply it to the system subject to unmatched uncertainties. Contrary to
the approach from [33] where Gao’s classic reaching law [18] has been
applied to the model, in our article, a more sophisticated reaching law
is considered. In particular, we use generalization of Gao’s reaching
law for sliding variables with relative degree two [32]. However, even
though this reaching law has been shown to provide better dynamical
properties of the system than its relative degree one equivalent, its
application is usually not feasible when matching conditions are not sat-
isfied. Since the effect of unmatched uncertainties on a relative degree
two sliding variable is significantly amplified, one risks deteriorating
the sliding mode performance of the system. In order to overcome
this challenge, in our article, we have applied the relative degree two
reaching law to the reference model of the plant, and then, designed a
secondary, relative degree one controller for the actual plant with the
aim of driving its state alongside that of the model. As a result, favorable
properties ensured by the relative degree two strategy [32] are obtained
without the restrictive assumption about matched uncertainties, which
was not previously possible. It has been further demonstrated that the
proposed strategy confines the system representative point to a narrower
vicinity of the sliding hyperplane than the previously proposed model
reference approach [33] and the reaching law [32] applied individually.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5580-352X
https://orcid.org/0000-0002-1271-8488
mailto:pawel.latosinski@p.lodz.pl
mailto:andrzej.bartoszewicz@p.lodz.pl
https://ieeexplore.ieee.org


1750 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 4, APRIL 2021

This is a significant property, since (as shown in this article) achieving a
narrower quasi-sliding mode band directly reduces the error of all state
variables.

II. CONSIDERED CLASS OF SYSTEMS

In this article, we consider a class of discrete-time single-input and
single-output systems subject to perturbations that do not satisfy the
matching conditions. State equation of the considered plants has the
following general form:

xp(k + 1) = Axp(k) + bup(k) + pd̃(k) (1)

wherexp ∈ Rn is the system state,up ∈ R is the control signal, d̃ ∈ R
collectively represents model uncertainties and external disturbance,
and A, b,p are of appropriate dimensions. For all k uncertainties
affecting the plant are assumed to be bounded by constants

dmin ≤ d̃(k) ≤ dmax. (2)

Mean effect of these perturbations on the system and its maximum
admissible deviation from the mean are defined as

davg = 0.5(dmax + dmin), dδ = 0.5(dmax − dmin) (3)

which implies that the following inequalities hold for all k:

|d̃(k)− davg| ≤ dδ, |d̃(k)| ≤ |davg|+ dδ. (4)

Since vectors b and p are not necessarily collinear, perturbations
affecting the plant (1) are not matched. Initial conditions of the plant
are known and equal to xp(0) and the goal of the control process is
to drive the state of the plant to zero. This objective will be achieved
with a new sliding mode control strategy using a reference model of
the plant. State equation of this model has the following form:

xm(k + 1) = Axm(k) + bum(k) (5)

where the state matrix A and input distribution vector b are the same as
in (1). Furthermore, xm(0) = xp(0) and the target state of the model
is also 0. In order to design a discrete-time sliding mode controller, one
must first define an appropriate sliding variable and its corresponding
switching hyperplane. In particular, in this article, discrete-time sliding
variables with relative degrees equal to one and two will be considered.
In order to make the reaching law with a relative degree two sliding
variable applicable to the plant (1), a new approach using the reference
model (5) will be proposed. In this approach, two control signals are
designed. First, a controller based on the reaching law with a relative
degree two variable will be applied to the reference model to obtain
favorable properties of its sliding motion. Then, a dead-beat controller
with a relative degree one sliding variable will be applied to the original
plant with the aim of driving its trajectory alongside that of the model
in the presence of nonmatched uncertainties. It will be demonstrated
that this approach effectively eliminates the effect of perturbations on
the original plant’s sliding motion, save for the single most recent
disturbance term. This allows one to obtain smaller state error compared
to the conventional reaching-law-based strategy and allows one to use
sliding variables with relative degree higher than one without the need
to satisfy matching conditions.

A. Relative Degree One and Two Sliding Variables

In this section, we will specify the appropriate sliding hyperplanes
for both the original plant and its reference model. For the plant (1),
we define the conventional relative degree one sliding variable and its

corresponding switching hyperplane in the following way:

sp(k) = cT
1xp(k) = 0 (6)

where the “1” subscript signifies the relative degree and c1 is selected
to guarantee that cT

1b �= 0. Although it is sufficient for the stability of
the plant that all eigenvalues of the closed-loop system state matrix are
inside the unit circle, in this article, the eigenvalues will be placed in
zero to ensure the smallest possible error of all state variables in the
sliding phase. To that end, elements of c1 must satisfy the following
equation [27]:

det
[
λIn×n −A+ b(cT

1b)
−1cT

1A
]
= λn. (7)

DSMC strategies using a relative degree one sliding variable do not
require the assumption about matched disturbance, which makes them
applicable to the considered class of systems.

In a similar way, one can design a sliding variable with relative
degree higher than one. Although strategies using such variables require
the assumption about matched disturbance and cannot be used for the
system (1), they can successfully be applied to the disturbance-free
model (5) in order to ensure its good dynamical properties. For the
reference model, we define the following relative degree two sliding
variable and its corresponding switching hyperplane:

sm(k) = cT
2xm(k) = 0 (8)

where cT
2 is a vector selected so that cT

2b = 0 and cT
2Ab �= 0. In

practice, this vector is commonly chosen to ensure cT
2Ab = 1 in order

to streamline the analysis of system sliding motion. Just like for the
conventional sliding variable (6), vector c2 is selected to guarantee a
finite-time performance of the closed-loop system, which means it must
satisfy [27]

det
[
λIn×n −A+ b(cT

2Ab)−1cT
2A

2
]
= λn. (9)

Sliding variables with a relative degree higher than one are only affected
by the control signal (and matched uncertainties) from a number of time
instants ago equal to or greater than their relative degree. This is a vital
property as it allows one to calculate values of such variable several
steps in advance and use this additional information when designing
a sliding mode controller. Indeed, since cT

2b = 0, substitution of the
model state equation (5) into relation (8) yields

sm(k) = cT
2Axm(k − 1)

= cT
2A

2xm(k − 2) + cT
2Abu(k − 2) (10)

which implies that a relative degree two sliding variable is not affected
by the control signal from the previous time instant. This property
is always ensured for the considered reference model since it is free
of uncertainties. In the next two sections of this article, a new model
reference sliding mode control strategy will be proposed and its design
will be divided in two stages. First, a reaching law using the relative
degree two sliding variable (8) will be applied to the reference model
(5), and then, a new controller using the sliding variable (6) will be
proposed for the original plant.

Remark 1: In formerly published literature [27], it has been demon-
strated that for vectors c1 and c2 selected according to (7) and (9),
respectively, one obtains

cT
1 = γcT

2A (11)

where γ �= 0 is an arbitrary constant. For the purpose of fair comparison
between different strategies, further in this article, vectors c1 and c2
will be chosen so that γ = 1.
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III. REACHING LAW FOR THE DISTURBANCE-FREE MODEL

In this section, the desired evolution of the disturbance-free model (5)
will be obtained with the use of a reaching-law-based control strategy.
In particular, a generalization of Gao’s seminal reaching law for the
case of relative degree two sliding variables will be used since such
a strategy has been shown to provide better dynamical properties of
the system than its relative degree one equivalent [32]. The considered
reaching law is expressed in the following way:

sm(k + 2) = q2sm(k)− qεsgn[sm(k)]

− εsgn[sm(k + 1)] (12)

where sm(k) is the relative degree two sliding variable (8) and ε > 0,
1 > q > 0 are the design parameters. The objective of this strategy is to
drive the system representative point to a narrow vicinity of the sliding
hyperplane and to ensure that the hyperplane is crossed in each step.
The control signal that satisfies these properties can be obtained by
substituting (10) into the left-hand side of the reaching law (12) and
solving the obtained equation for um(k). Then, the control signal has
the following form:

um(k) = (cT
2Ab)−1{q2sm(k)− qεsgn[sm(k)]

− εsgn[sm(k + 1)]− cT
2A

2xm(k)}. (13)

In formerly published literature [32], several advantageous properties
of the reaching law (12) have been proven. Two of those properties will
now be quoted.

Property 1: For any initial conditions of the system, its representa-
tive point will cross the sliding hyperplane in finite time and cross this
hyperplane again in each subsequent step.

Property 2: If ε > |cT
2Ab|dδ/(1− q) (where dδ is the maximum

deviation of the matched disturbance from the mean) and the represen-
tative point enters the quasi-sliding mode band{

xm : |cT
2xm| ≤ ε

1 + q
+

|cT
2Ab|dδ
1− q2

}
(14)

it will remain inside that band for all future time instants.
The first property directly applies to the model presented in this

article. However, since the disturbance-free case is considered in this
section, a stronger version of the second property can be proven for the
model (5). This extension of Property 2 will now be formulated in the
following theorem.

Theorem 1: If the control signal for the model (5) is defined ac-
cording to the relation (13), then for any initial conditions of the
system, its representative point will at least asymptotically approach
the quasi-sliding mode band{

xm : |cT
2xm| ≤ ε

1 + q

}
. (15)

Furthermore, if the representative point enters this band, it will remain
inside it for all future time instants.

Proof: Let xm(k) be the first such a state that sgn[sm(k + 1)] =
−sgn[sm(k)]. The existence of this state is ensured by the Property 1.
First, it will be shown that if xm(k) is out of the band (15), this band
will be approached at least asymptotically. Indeed, the relation (12)
gives

sm(k + 2) = q2sm(k) + (1− q)εsgn[sm(k)]

= sm(k)− (1− q2)sm(k) + (1− q)εsgn[sm(k)]

= sm(k)− (1− q) {(1 + q)sm(k)− εsgn[sm(k)]} .
(16)

Since 0 < q < 1 and |sm(k)| > ε/(1 + q), then for positive sm(k),
one gets

sm(k + 2) < sm(k)− (1− q)

(
1 + q

1 + q
ε− ε

)
= sm(k). (17)

Therefore, if sm(k) > ε/(1 + q), then the variable will always de-
crease in the next step. Thus, sm will either become smaller than
ε/(1 + q) in finite time or asymptotically converge to a certain pos-
itive value. Suppose that sm(k) tends to s+ > 0 for k → ∞. Then,
sm(k + 2) is also convergent to s+ and

s+ = lim
k→∞

sm(k + 2) ≤ q2s+ + (1− q)ε. (18)

Solving (18) for s+, one gets

s+ ≤ 1− q

1− q2
ε =

ε

1 + q
. (19)

Thus, if the sliding variable does not become smaller than ε/(1 + q) in
finite time, it must asymptotically converge to this exact value. Repeat-
ing derivations (17)–(19) for negative sliding variables, one concludes
that sm will either become bigger than −ε/(1 + q) in finite time or
approach this value asymptotically. Therefore, it has been proven that
the representative point of the model (5) will always approach the
quasi-sliding mode band (1) at least asymptotically.

The proof that the system representative point, after entering the
quasi-sliding mode band, will remain inside it in the next step follows
directly from Lemma 2 presented in [32] for r = 2 and dδ = 0. Since
the proof can be found in the existing literature [32], it will not be
repeated in this article. �

In this section, a reaching-law-based control strategy using a relative
degree two sliding variable has been applied to the disturbance-free
reference model of the plant. It has been shown that the application
of this strategy ensures a switching-type quasi-sliding motion of the
system and confines its representative point to a narrow vicinity of the
switching hyperplane. In the next section, desirable system dynamics
obtained from the disturbance-free model with the use of the reaching
law approach will be applied to design a control strategy for the original
plant (1).

IV. NEW MODEL REFERENCE DSMC STRATEGY

The objective of the control strategy for the considered plants is
to drive its output alongside the trajectory specified by the reaching
law (12) in the presence of uncertainties that do not satisfy matching
conditions. To that end, a new sliding mode control strategy will
be designed using values of sm obtained from the disturbance-free
model (5). Since the plant (1) is subject to disturbance and parameter
uncertainties that do not satisfy matching conditions, relative degree one
sliding variable (6) will be used in order to make the proposed strategy
applicable. The reaching law proposed for the plant is expressed as

sp(k + 1) = sm(k + 2) + cT
1pd̃(k)− cT

1pd
avg (20)

where sp(k) is the relative degree one sliding variable (6), sm(k)
are values obtained from the reference model (5) with the use of the
reaching law (12) and cT

1pd̃(k) represents the total effect of disturbance
and model uncertainties on the sliding variable. It is important to
highlight that even though the function (20) requires values of sm from
the time instant k + 2, it can be calculated at time k. Indeed, as shown in
relation (10), values of sm can be obtained two time instants in advance,
which means it is possible to use sm(k + 2) in the reaching law (20).
Just like in the previous section, the proposed reaching law is applied
to design the control signal. To that end, the left-hand side of the state
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equation (1) is first substituted into (20), giving

cT
1Axp(k) + cT

1bup(k) + cT
1pd̃(k)

= sm(k + 2) + cT
1pd̃(k)− cT

1pd
avg. (21)

Then, solving (21) for up, we obtain the control signal

up(k) = (cT
1b)

−1[sm(k + 2)− cT
1pd

avg − cT
1Axp(k)]. (22)

It will now be demonstrated that the proposed control scheme using
the reference model of the plant maintains favorable properties of
sliding motion ensured by the reaching law (12), and at the same time,
provides better robustness of the system with respect to disturbance.
In particular, in the following theorem, it will be shown that the
new strategy ensures a switching-type quasi-sliding motion exactly as
defined by Gao et al. [18].

Theorem 2: If the control signal for the system (1) is defined by
(22) where values of sm are obtained from the reference model (5) and

ε >
|cT

1p|dδ
(1− q)(1 + q2)

(23)

then the system representative point will cross the sliding hyperplane
in finite time and cross it again for all future steps.

Proof: To prove the theorem, it will be shown that sgn[sp(k + 1)] =
sgn[sm(k)] for all k after a finite number of initial steps. Let k0 be
the first time instant for which the model (5) subject to control (13)
operates in the sliding mode. In other words, x(k0) is the first state for
which sgn[sm(k0 − 2)] = −sgn[sm(k0 − 1)] = sgn[sm(k0)]. Then,
the Property 1 described in Section III of this article implies that variable
sm will change its sign in each subsequent step. Thus, for any k ≥ k0,
substitution of (12) into the right-hand side of (20) yields

sp(k + 1) = q2sm(k) + (1− q)εsgn[sm(k)]

+ cT
1pd̃(k)− cT

1pd
avg. (24)

Further substituting (12) into the right-hand side of (24), we obtain

sp(k + 1) = q4sm(k − 2) + q2(1− q)εsgn[sm(k − 2)]

+ (1− q)εsgn[sm(k)] + cT
1pd̃(k)− cT

1pd
avg. (25)

Since sgn[sm(k − 2)] = sgn[sm(k)], then for a positive sm(k − 2)
relations (4) and (25) give

sp(k + 1) ≥ 0 + (1 + q2)(1− q)ε+ cT
1p[d̃(k)− davg]

>
(1 + q2)(1− q)

(1− q)(1 + q2)
|cT

1p|dδ − |cT
1p|dδ = 0. (26)

Likewise, for negative sm(k), relations (4) and (25) yield

sp(k + 1) ≤ 0− (1 + q2)(1− q)ε+ cT
1p[d̃(k)− davg]

< − (1 + q2)(1− q)

(1− q)(1 + q2)
|cT

1p|dδ + |cT
1p| = 0. (27)

In conclusion, after a finite number of initial time instants, the sign of
sp(k + 1) is always equal to that of sm(k). Thus, since variable sm is
guaranteed to change its sign in finite time and change it again in each
subsequent step, the same is true for variable sp. �

It has been demonstrated that with the right choice of parameters ε
and q, the proposed control scheme ensures a switching-type motion
of the system representative point, similarly to the reaching law (12)
applied to the disturbance-free model. In the next theorem, it will be
shown that the strategy (22) drives the representative point of the system
(1) to a specified, narrow vicinity of the sliding hyperplane.

Fig. 1. Smallest possible quasi-sliding mode band width.

Theorem 3: If the control signal for the system (1) is defined by
(22) where values of sm are obtained from the reference model (5), then
the system representative point approaches the following quasi-sliding
mode band: {

xp : |cT
1xp| ≤ B =

ε

1 + q
+ |cT

1p|dδ
}

(28)

around the sliding hyperplane at least asymptotically.
Proof: It will be demonstrated that the upper bound of |sp(k)|

converges to B as k tends to infinity. From the reaching law (20), one
obtains

|sp(k + 1)| = |sm(k + 2) + cT
1pd̃(k)− cT

1pd
avg|

≤ |sm(k + 2)|+ |cT
1p| · |d̃(k)− davg|. (29)

Theorem 1 states that the upper bound of |sm(k)| approaches ε/(1 +
q) as k tends to infinity. Naturally, the same is true for |sm(k + 2)|.
Consequently, relations (4) and (29) give

lim sup
k→∞

|sp(k+1)| ≤ lim sup
k→∞

|sm(k+2)|+ |cT
1p|dδ

≤ ε

1 + q
+ |cT

1p|dδ. (30)

Relation (30) implies that the representative point of the system
(1) will always approach the quasi-sliding mode band (28) at least
asymptotically. �

It has been proven that the proposed control scheme using the
disturbance-free reference model of the plant drives the representative
point of the original system to a specified vicinity of the sliding
hyperplane. This is an important property, since the ability to confine the
system representative point to a small area in the state space illustrates
robustness of the system with respect to disturbance. Furthermore, as
one can see from relations (23) and (28), choice of parameters q and
ε allows one to determine the convergence rate of the sliding variable
to zero as well as the quasi-sliding mode band width. The relationship
between parameter q and the smallest possible quasi-sliding mode band
width has been illustrated in Fig. 1. This width is achieved when ε
tends to its lower bound expressed by the inequality (23), assuming
that |cT

1p|dδ = 1.
It can be seen from Fig. 1 that the quasi-sliding mode band width

increases sharply for q greater than ∼0.8, which means selecting large
values of this parameter is not recommended. On the other hand, for
any values of q smaller than ∼0.8, the width of the band does not
change dramatically. Thus, one can easily adjust q and ε to obtain
the desired convergence rate of the sliding variable to zero without
significant impact on the system robustness. The robustness property
of the plant will be further elaborated upon in Section V of this article.

Remark 2: It is important to notice that the quasi-sliding mode
band (28) originating from the newly proposed strategy is strictly
narrower than the band (15) obtained from the reaching law [32]
itself when design parameters for both cases are selected to ensure
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similar properties of the system in the reaching phase. Furthermore, the
obtained band is also narrower than the one described in [33], where
Gao’s classic reaching law has been used in conjunction with a reference
model approach.

V. STATE BOUNDEDNESS IN SLIDING MODE

In the previous section, it has been demonstrated that the representa-
tive point of the system (1) is confined to a specified quasi-sliding mode
band. However, this property alone does not give us sufficient informa-
tion about evolution of individual state variables. It will now be shown
that the proposed strategy ensures limited error of all state variables
in the sliding phase, which illustrates robustness of the whole system
with respect to disturbance. Furthermore, it will be demonstrated that
this error is proportional to the quasi-sliding mode band width, which
implies that a smaller band directly results in improved performance of
the system. The property describing the state error of all state variables
will be formulated in the following theorem.

Theorem 4: If the control signal for the system (1) is defined by
(22) and the system representative point belongs to the band (29) for n
consecutive time instants, then there exists k0 such that for all k ≥ k0
and for every i = 1, 2, ..., n, the ith state variable of the plant

|xp,i(k)| ≤ B · ∣∣cT
1b
∣∣−1

n−1∑
j=0

∣∣qiA
j
clb

∣∣

+ (|davg|+ dδ)

n−1∑
j=0

∣∣∣∣qiA
j
cl

(
p− b

cT
1p

cT
1b

)∣∣∣∣ (31)

where B is the width of the band (28), vector

qi = [0 . . . 0︸ ︷︷ ︸
i−1

1 0 . . . 0︸ ︷︷ ︸
n−i

] (32)

and the closed-loop system state matrix

Acl =
[
A− b(cT

1b)
−1cT

1A
]
. (33)

On the other hand, if the system representative point approaches the
quasi-sliding mode band asymptotically, absolute value of each state
variable will also asymptotically converge to its respective value on the
right-hand side of relation (31).

Proof: It will be shown that if the system representative point
belongs to the band (28), then inequality (31) is satisfied for all i. To that
end, the state vector will first be expressed as a function of the sliding
variable. We substitute control signal (22) into the state equation (1)
and obtain

xp(k + 1) = Axp(k) + b(cT
1b)

−1[sm(k + 2)

− cT
1pd

avg − cT
1Axp(k)] + pd̃(k)

=
[
A− b(cT

1b)
−1cT

1A
]
xp(k) + pd̃(k)

+ b(cT
1b)

−1[sm(k + 2)− cT
1pd

avg]. (34)

Taking into account relations (20) and (33), (34) can be rewritten in the
following way:

xp(k + 1) = Aclxp(k) + b(cT
1b)

−1[sm(k + 2)− cT
1pd

avg]

+

(
p− b

cT
1p

cT
1b

+ b
cT
1p

cT
1b

)
d̃(k)

= Aclxp(k) + b(cT
1b)

−1sp(k + 1)

+

(
p− b

cT
1p

cT
1b

)
d̃(k). (35)

Repeated substitution of the left-hand side of the relation (35) into its
right-hand side yields

xp(k) = An
clxp(k − n) +

n−1∑
j=0

Aj
clb(c

T
1b)

−1sp(k − j)

+
n−1∑
j=0

Aj
cl

(
p− b

cT
1p

cT
1b

)
d̃(k − j − 1). (36)

Since vector c1 selected according to the relation (7) ensures a dead-
beat response of the closed-loop system, then the matrix Acl specified
by (33) satisfies An

cl = 0. Furthermore, since the relation (32) gives
xp,i(k) = qixp(k) for all i = 1, 2, ..., n, the absolute value of ith state
variable is expressed as

|xp,i(k)| =
∣∣∣∣∣0 +

n−1∑
j=0

qiA
j
clb(c

T
1b)

−1sp(k − j)

+

n−1∑
j=0

qiA
j
cl

(
p− b

cT
1p

cT
1b

)
d̃(k − j − 1)

∣∣∣∣∣ . (37)

Suppose now that k ≥ k0 + n, where k0 is the first time instant for
which the system representative point has entered the band (28). Then,
Theorem 3 implies that |sp(k − j)| ≤ B for all j = 0, 1, ..., n− 1.
Consequently, the relation (37) yields

|xp,i(k)| ≤
n−1∑
j=0

∣∣qiA
j
clb

∣∣ · ∣∣cT
1b
∣∣−1 · |sp(k − j)|

+
n−1∑
j=0

∣∣∣∣qiA
j
cl

(
p− b

cT
1p

cT
1b

)∣∣∣∣ ·
∣∣∣d̃(k − j − 1)

∣∣∣

≤ B · ∣∣cT
1b
∣∣−1

n−1∑
j=0

∣∣qiA
j
clb

∣∣

+ (|davg|+ dδ)

n−1∑
j=0

∣∣∣∣qiA
j
cl

(
p− b

cT
1p

cT
1b

)∣∣∣∣ (38)

which means that the ith state variable satisfies the inequality (31). On
the other hand, if the absolute value of sp(k) asymptotically approaches
B as k tends to infinity, the relation (38) gives

lim sup
k→∞

|xp,i(k)| ≤ B · ∣∣cT
1b
∣∣−1

n−1∑
j=0

∣∣qiA
j
clb

∣∣

+ (|davg|+ dδ)
n−1∑
j=0

∣∣∣∣qiA
j
cl

(
p− b

cT
1p

cT
1b

)∣∣∣∣ . (39)

In other words, if the system representative point approaches the quasi-
sliding mode band asymptotically, each state variable converges to the
interval specified by (31). �

Although Theorem 4 is true for all systems, it proves to be too
conservative in many practical cases. Indeed, a better estimation of state
variables can often be obtained due to the nature of the switching-type
quasi-sliding motion, or in systems subject to matched disturbance.
These cases will be discussed in the following two remarks.

Remark 3: From Theorem 2, it is known that variable sp changes its
sign in each step in the sliding phase. Thus, if assumptions of Theorem
4 are satisfied, and for a given i, elements qiA

j
clb have the same sign

for j = 0, 1, ..., n− 1, then the absolute value of state variable xp,i has
a smaller upper bound than the one shown in the relation (31). Indeed,



1754 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 4, APRIL 2021

in this case, relation (37) implies

|xp,i(k)| ≤ B · ∣∣cT
1b
∣∣−1

max{αeven,i, αodd,i}

+ (|davg|+ dδ)
n−1∑
j=0

∣∣∣∣qiA
j
cl

(
p− b

cT
1p

cT
1b

)∣∣∣∣ (40)

where

αeven,i =

	(n−1)/2
∑
j=0

∣∣qiA
2j
cl b

∣∣

αodd,i =

�(n−1)/2−1�∑
j=1

∣∣qiA
2j+1
cl b

∣∣ (41)

and 	·
 and �·� are the floor and ceiling function, respectively.
Remark 4: The formula describing the upper bound of each state

variable can be greatly simplified if the disturbance affecting the system
is matched. Indeed, if matching conditions for the system (1) are satis-
fied, then b = κp for a certain constant κ �= 0. As a result, the second
line of the relation (31) is reduced to zero and for all i = 1, 2, ..., n

|xp,i(k)| ≤ B · ∣∣cT
1b
∣∣−1

n−1∑
j=0

∣∣qiA
j
clb

∣∣ . (42)

Furthermore, it is worth noticing that if the disturbance affecting the
plant can be divided into a matched part dm(k) and an unmatched one
du(k), only the latter will appear in the second line of the relation (31).
One can conclude that the unmatched disturbance has a significantly
larger effect on the state error than uncertainties that satisfy the matching
conditions. The relation (40) presented in Remark 3 can be simplified
in the same way if the disturbance affecting the system is matched.

It has been demonstrated that the proposed control scheme limits
the error of all state variables in the sliding mode. Furthermore, since
the obtained upper bounds of all state variables are proportional to
the quasi-sliding mode band width B, Remark 2 implies that the new
strategy ensures smaller state error than either the relative degree
two reaching law (12) or the reference model scheme using Gao’s
conventional reaching law [33]. The advantage of the new approach
will be further highlighted in the simulation example in the next section.

VI. SIMULATION EXAMPLES

The effectiveness of the proposed method will now be verified by
means of a simulation example. In particular, we will conduct compar-
ison of the proposed model reference scheme using the reaching law
(12) with the one introduced in [33] where Gao’s classic reaching law
is used instead. It will be shown that the new strategy can successfully
be applied to a plant with unmatched disturbance and that it ensures
better system robustness than its relative degree one equivalent. The
considered control strategies will be applied to a fourth-order discrete
time system (1), where

A =

⎡
⎢⎢⎢⎣
1 1 0.5 0.167

0 1 1 0.5

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣
0.04167

0.167

0.5

1

⎤
⎥⎥⎥⎦ , p =

⎡
⎢⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎥⎦ (43)

the initial state is xp(0) = [40 0 0 0]T and total perturbations af-
fecting the plant are expressed as

d̃(k) = (−1)	k/20
 (44)

Fig. 2. Sliding variable.

Fig. 3. Control signal.

with dmax = −dmin = 1, which further implies davg = 0 and dδ = 1.
Furthermore, since b �= p, this disturbance does not satisfy the match-
ing conditions. According to relations (7) and (9), vectors c1 and c2
for the considered system are selected as

c1 = [1 1.5 0.9167 0.25]T

c2 = [1 0.5 − 0.0833 − 0.0833]T. (45)

With this in mind, sliding variables with relative degree one and two
are defined as in relations (6) and (8), respectively. The following two
control strategies are applied to such a system.
a) Our model reference strategy, where the reaching law (12) for the

disturbance-free model has parameters q = 0.6 and ε = 1.84.
b) Model reference strategy proposed in [33], using Gao’s classic

reaching law with q = 0.6 and ε = 2.51.
Results of this comparison are illustrated by the following three

figures depicting the sliding variable, control signal, and the first state
variable. Additionally, a numerical comparison of these three variables
for both strategies has been conducted using the following two criteria:
integral absolute error (IAE) and integral time-weighted absolute error
(ITAE). Results of the comparison are shown in the figures.

Fig. 2 demonstrates that our approach drives the sliding variable
closer to zero than the strategy B in the sliding phase while ensuring
a faster convergence rate to the vicinity of zero in the reaching phase.
In particular, the width of the quasi-sliding mode band equals 2.15
for the strategy A and 2.64 for the strategy B. Fig. 3 shows that,
despite generating greater values of the control signal in a few initial
steps, our strategy requires significantly less control effort in the sliding
phase. Finally, we can see from Fig. 4 that both strategies result in a
similar error of the first state variable, but our method guarantees faster
convergence of this variable to zero. Our strategy drives the variable
below 1.5 in finite time, while the strategy B makes it approach this value
asymptotically. In conclusion, the approach proposed in this article
ensures similar dynamical properties to the method presented in [33],
but requires significantly less control effort in the sliding mode.
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Fig. 4. First state variable.

VII. CONCLUSION

In this article, we have proposed a new discrete-time sliding mode
control strategy using a reference model of the plant. In order to mitigate
the effect of past perturbations on the system, a reaching law has first
been applied to a disturbance-free model of the plant, and then, a
secondary control signal has been used to drive the state of the original
system toward that of the model. The reaching law applied to the model
uses a relative degree two sliding variable, which ordinarily would make
it difficult to apply when matching conditions are not satisfied. However,
the proposed model reference scheme allows one to keep the favorable
properties of this reaching law without the need for matched perturba-
tions. It has been proven that the proposed approach ensures a switching
type quasi-sliding motion of the system and limits the error of all state
variables in the sliding phase. Furthermore, simulation examples have
shown that the proposed method ensures better dynamical properties
of the system than a formerly published model reference strategy using
Gao’s classic reaching law.
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[7] R. A. DeCarlo, S. Żak, and G. Matthews, “Variable structure control of
nonlinear multivariable systems: A tutorial,” Proc. IEEE, vol. 76, no. 3,
pp. 212–232, Mar. 1988.

[8] C. Edwards and S. Spurgeon, Sliding Mode Control: Theory and Applica-
tions. New York, NY, USA: Taylor & Francis, 1998.

[9] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s guide to
sliding mode control,” IEEE Trans. Control Syst. Technol., vol. 7, no. 3,
pp. 328–342, May 1999.

[10] A. Sabanovic, “Variable structure systems with sliding modes in motion
control—A survey,” IEEE Trans. Ind. Inform., vol. 7, no. 2, pp. 212–223,
May 2011.

[11] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control
and Observation. New York, NY, USA: Springer, 2014.

[12] K. Furuta, “Sliding mode control of a discrete system,” Syst. Control Lett.,
vol. 14, no. 2, pp. 145–152, 1990.

[13] G. Bartolini, A. Ferrara, and V. Utkin, “Adaptive sliding mode control in
discrete-time systems,” Automatica, vol. 31, no. 5, pp. 769–773, 1995.

[14] M. Corradini and G. Orlando, “Variable structure control of discretized
continuous-time systems,” IEEE Trans. Autom. Control, vol. 43, no. 9,
pp. 1329–1334, Sep. 1998.

[15] B. Bandyopadhyay and S. Janardhanan, Discrete-Time Sliding Mode Con-
trol. A Multirate Output Feedback Approach. Berlin, Germany: Springer-
Verlag, 2006.

[16] X. Yu, B. Wang, and X. Li, “Computer-controlled variable structure
systems: The state of the art,” IEEE Trans. Ind. Inform., vol. 8, no. 2,
pp. 197–205, May 2012.

[17] W. Gao and J. Hung, “Variable structure control of nonlinear systems:
A new approach,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 45–55,
Feb. 1993.

[18] W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure
control systems,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 117–122,
Apr. 1995.
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