1278

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021

Distributed Newton’s Method for Network Cost Minimization

Xuanyu Cao

Abstract—In this article, we examine a novel generic network
cost minimization problem, in which every node has a local deci-
sion vector to optimize. Each node incurs a cost associated with its
decision vector, while each link incurs a cost related to the decision
vectors of its two end nodes. All nodes collaborate to minimize the
overall network cost. The formulated network cost minimization
problem has broad applications in distributed signal processing
and control, in which the notion of link costs often arises. To solve
this problem in a decentralized manner, we develop a distributed
variant of Newton’s method, which possesses faster convergence
than alternative first-order optimization methods such as gradient
descent and alternating direction method of multipliers. The pro-
posed method is based on an appropriate splitting of the Hessian
matrix and an approximation of its inverse, which is used to deter-
mine the Newton step. Global linear convergence of the proposed
algorithm is established under several standard technical assump-
tions on the local cost functions. Furthermore, analogous to clas-
sical centralized Newton’s method, a quadratic convergence phase
of the algorithm over a certain time interval is identified. Finally,
numerical simulations are conducted to validate the effectiveness
of the proposed algorithm and its superiority over other first-order
methods, especially when the cost functions are ill-conditioned.
Complexity issues of the proposed distributed Newton’s method
and alternative first-order methods are also discussed.

Index Terms—Decentralized optimization, linear convergence,
network cost minimization, network optimization, Newton’s
methodquadratic convergence.

|. INTRODUCTION

The advancement of decentralized signal processing and control in
multiagent systems relies on the development of various distributed
optimization methods. Multiagent optimization problems arise in many
applications in networked systems such as adaptive signal processing
over networks [1], distributed estimation over sensor networks [2], [3],
and wireless communication networks [4], [5]. In these scenarios, data
are inherently distributed over individual nodes across the network.
Centralized data processing relying on some central entity suffers from
prohibitively high communication overhead and is vulnerable to link
failures and network congestions. Therefore, optimizing and processing
data in a decentralized manner with only local information exchanges
among neighbors is more favorable due to its robustness to failures,
scalability to large networks, and efficiency in communications.

Manuscript received January 3, 2019; revised October 2, 2019; ac-
cepted April 17, 2020. Date of publication April 20, 2020; date of current
version February 26, 2021. Recommended for publication by Associate
Editor Prof. Fabian Wirth. (Corresponding author: Xuanyu Cao.)

Xuanyu Cao is with the Coordinated Science Lab, University of
lllinois at Urbana-Champaign, Champaign, IL 61801 USA (e-mail:
xyc@illinois.edu).

K. J. Ray Liu is with the Department of Electrical and Computer Engi-
neering, University of Maryland, College Park, MD 20742 USA (e-mail:
kjrliu@umd.edu).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2020.2989266

and K. J. Ray Liu

, Fellow, IEEE

Owing to its importance, distributed optimization over networks has
been extensively studied in the literature. One major class of distributed
optimization problems is distributed network utility maximization
(NUM), in which each agent has some utility related to its local decision
variable. Agents cooperatively maximize the total utilities of the entire
network subject to some coupling resource constraints such as the link
capacity constraints in the flow scheduling problems of communication
networks. Various optimization decomposition techniques have been
employed to solve NUM in communication networks in a decentralized
fashion and these decompositions lead to elegant architectural mod-
ularity and layering of communication systems [6]—[9]. In addition,
Wei et al. propose and analyze a distributed Newton’s method in [10],
while the effect of noisy information exchange has been studied in [11].
Recently, Niu and Li present an asynchronous decentralized algorithm
with pricing interpretations for NUM [12].

Another category of distributed optimization problems more related
to this article is consensus optimization, in which all agents share
the same decision variables but have different local cost functions.
The goal of consensus optimization is to maximize the total costs of
the whole network collaboratively. To this end, Nedic and Ozdaglar
propose a decentralized subgradient method for consensus optimization
in their seminal work [13], while a dual-averaging method is presented
in [14]. A convergence analysis of the decentralized gradient descent
algorithm for consensus optimization is provided in [15]. Moreover,
consensus optimization has been studied using the distributed Nesterov
gradient algorithm in [16] and the distributed alternating direction
method of multipliers (ADMM) in [17]. Later, variants of the distributed
ADMM have been proposed for consensus optimization, including the
quadratically approximated ADMM [18], the inexact ADMM [19], the
asynchronous ADMM [20]-[22], and the proximal dual ADMM [23].
Moreover, the second-order optimization algorithm based on Newton’s
method is proposed for consensus optimization in [24], and is further
extended to an asynchronous setting in [25]. Distributed quasi-Newton
method (BFGS) has also been proposed in [26], where second-order
information is not readily available. There, first-order information (gra-
dient) is exploited to approximate Newton’s method in a decentralized
manner.

In the aforementioned works, only costs or utilities at nodes are taken
into account, while the costs or gains of links are ignored. For instance,
in consensus optimization, the network cost, that is the objective func-
tion, is only comprised of local cost at each node while the effect of
the link is not incorporated. Nevertheless, the notion of link costs or
link utilities may arise in many practical signal processing and control
problems. For example, in distributed multitask adaptive learning [27],
each node ¢ aims at estimating its own weight vector w;, which, unlike
consensus optimization, is different from other nodes’” weight vectors.
In most cases, neighboring nodes incline to have similar weight vectors.
To incorporate this prior information into the estimator, the objective
function to be minimized should include terms promoting proximity
between neighbors such as ||w; — w; |3, where i, j are connected by
an edge. This term is tantamount to a link cost of the link (z,).

Despite its usefulness, the notion of link costs (or utilities) is not
well studied except for some specific applications such as multitask

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0190-4362
https://orcid.org/0000-0001-5469-5811
mailto:xyc@illinois.edu
mailto:kjrliu@umd.edu
https://ieeexplore.ieee.org

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021

1279

adaptive estimation [27]. The generic form of network cost minimiza-
tion problem incorporating link costs has been examined in [28] recently
and a distributed (linearized) ADMM algorithm has been proposed and
analyzed. However, as observed in centralized setting [29], first-order
optimization methods such as ADMM, gradient descent and their vari-
ants often suffer from slow convergence, especially when the problem
data are ill-conditioned, that is, when the objective function has large
condition number. We are thus motivated to invoke Newton’s method
for the network cost minimization problem in which both node costs and
link costs take place. Inspired by the recent work on network Newton
algorithm for decentralized consensus optimization [24], we develop
a distributed variant of Newton’s method for the generic network cost
minimization problem in this article. Since the formulated network
cost minimization problem encompasses consensus optimization as a
special case, the proposed distributed Newton’s method in this article
can be viewed as an extension of the network Newton algorithm
in [24] to optimization problems with link costs. Our contributions
are summarized in the following.

1) A distributed Newton’s method (Algorithm 1) is developed for a
novel generic network cost minimization problem, which takes
both node costs and link costs into consideration. The proposed
algorithm is based on appropriate splitting of the Hessian matrix
and a corresponding approximation of its inverse so that the com-
putation of the Newton step can be distributed to each node in
parallel.

Performance analysis of the proposed distributed Newton’s method
is presented. In particular, global linear convergence of the algo-
rithm is guaranteed under some standard assumptions on the local
cost functions (Theorem 1). Moreover, analogous to the classical
centralized Newton’s method [29], a quadratic convergence phase
of the algorithm over a certain time interval is identified (Theorem
2).

Numerical experiments on quadratic programming are imple-
mented to corroborate the effectiveness of the proposed algorithm,
which outperforms alternative first-order optimization methods
[namely, the distributed ADMM and the distributed gradient de-
scent (DGD)] significantly in terms of both convergence time and
number of per-node information exchanges. Impact of the condition
number of the cost functions and the network topology is also
investigated empirically through simulations.

The key difference between this article and existing literature is
the joint optimization of the general node/link cost functions, which
necessitates a new analysis of Newton-type algorithms. We note that the
matrix splitting based Newton-type methods has been proposed to solve
different problems in prior works, for example [10] for NUM, [30] for
network flow optimization, [24] for consensus optimization. Yet none of
these existing works consider the joint optimization of generic node/link
cost functions, which are of interest in this article. The organization
of the rest of this article is as follows. In Section II, the network
cost minimization problem is formally formulated and a distributed
Newton’s method is developed to solve it. Convergence analysis of
the proposed algorithm is conducted in Section III while numerical
results are presented in Section IV. Complexity issues of the proposed
algorithm and alternative first-order methods are discussed in Section V
and we conclude this article in Section VI.

Notations: Denote {1,2,...,n} as [n]. ||x[2 means the Eu-
clidean norm of vector x while ||A|> means the spectral norm
(maximum singular value) of matrix A. p(A) is the spectral radius
of A € R™”, thatis, p(A) = maxX;c[,] |A;(A)|, where 1;(A)’s are
the eigenvalues of A. Denote the sets of n X n symmetric matrices,
positive semidefinite matrices, and positive definite matrices as S™,

2)

3

~

S%, and S™++, respectively. For two symmetric matrices A, B € S,
A < B means B — A is positive semidefinite. For a twice differ-
entiable function ¢ : R* x R” — R and x € R%,y € R®, we define

matrix V3 ¢(x,y) € R***accordingto [V | ¢(x,y)]i; = %

and matrix V3 ¢(x,y) € R™* according to [V3 é(x,y)]i; =

8625;7(;;’]_’). Thus, we have V2, é(x,y) = Vi o(x, y)". Define
V2p(x,y) € R*® as [V2¢(x,y)]i; = %gf;). Analogous defini-

tion applies to VZ¢(x,y). Define VZ¢(x,y) € R@F)*(@b) 1o be
the complete Hessian matrix with respect to the joint vector [x", yT]T
Vio(x,y) Vi, o(x,y)

v2¢(xv y) = V;x(b(x’ y) V3¢(X7 }’)

ey

Il. PROBLEM FORMULATION AND ALGORITHM DEVELOPMENT

In this section, the network cost minimization problem is formulated
formally and its applications are discussed. Afterwards, by appropriate
splitting and approximation of the Hessian matrix of the objective
function, we develop a distributed variant of Newton’s method for the
formulated network cost minimization problem.

A. Problem Formulation

Consider a network of n nodes. Assume the network is a simple
graph, that is, the network is undirected with no self-loop and there
is at most one edge between any pair of nodes. Denote the set of
neighbors of node ¢ (those who are linked with node ¢ with an edge) as
2;. The network can be either connected or disconnected (there does
not necessarily exist a path connecting every pair of nodes). Each node
¢ has a p-dimensional local decision variable x; € RP. Given x;, the
cost of node 7 is f;(x;), where f; is the node cost function of node i.
Furthermore, for two linked nodes ¢ and j and their decision variables
x; and x;, there is a cost of g;; (x;,x;) associated with the link (g,),
where g;; is the link cost function of the link (i, 7). The goal of the
network is to solve the following network cost minimization problem
in a decentralized manner:

Do (%)

i=1jeQ;

n
Minimize Z fi(xq) +)
i=1
We note that the consensus optimization problems in [13]-[24], [31]
are special cases of the network cost minimization problem (2) here. In
fact, by setting the link costs g;;(x;,%;) to be the weighted distance
between x; and x; and letting the weights of link costs go to infinity,
we recover the consensus constraints provided that the network is con-
nected. Additionally, in [24], [25], the consensus optimization problem
is transformed into mina S fi(xi) + 3xT(X = Z)x, where o is
some positive constant; x is the concatenation of all x;’s; and Z is the
block weight matrix specifying the combination weights of neighbors.
The second term will enforce consensus and the parameter o can adjust
the consensus level. A prominent difference between this problem
and problem (2) is that the second term of the former problem is
quadratic with a particular coefficient matrix structure (identity minus
block weight matrix) to enforce consensus. In contrast, the link cost
functions g;;’s in problem (2) can be general as long as they satisfy
the standard assumptions to be specified later. Further, an average
consensus based distributed Newton’s method has been proposed in [32]
to solve consensus optimization problems with asynchronous and lossy
communications. The approach in [32] is tailored to consensus opti-
mization and cannot be readily applied to the network cost minimization
problem (2) in this article. Instead, we take an alternative approach and

1280

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021

approximate the Newton step in a distributed manner by computing a
truncation of the Taylor expansion of the inverse Hessian matrix. The
problem formulation (2) has broad applications, among which we name
two in the following.

1) In distributed estimation over (sensor) networks, each node ¢ has a
local unknown vector x; to be estimated. The cost at node 7, that is,
fi(x;), may be some squared error or more generally the negative
log-likelihood with respect to the local data observed by node 4.
The link cost g;;(x;,x;) for a link (¢, j) can be used to enforce
proximity between neighboring nodes, for example, ||x; — x;||3 in
multitask adaptive networks in [27].

2) In resource allocation over networks, x; corresponds to some
resources consumed by node i and the node cost f;(x;) is the
negative of node ¢’s utility. The link cost g;;(x;,x;) for a link
(,7) may quantify the negative effect of the consumption of the
resources x; and x;. For instance, in wireless networks, x; may
be the transmission power of node ¢ and two nodes are linked if
they are within the wireless interference range. In such a case, the
link cost g;;(x;,x;) for a link (¢, 7) represents the cost incurred
by mutual interference in wireless communications.

Recently, a distributed linearized ADMM algorithm has been pro-
posed to solve the network cost minimization problem (2) in a de-
centralized and computationally efficient manner [28]. We note that
the first-order methods such as variants of ADMM and subgradient
methods generally have slower convergence than the second-order
methods (e.g., Newton’s method or quasi-Newton methods) do, es-
pecially when the objective function is ill-conditioned [29]. Motivated
by this fact and inspired by the recent work [24] on network Newton
algorithm for consensus optimization, we develop a distributed variant
of Newton’s method for the generic network cost minimization problem
(2), which takes link costs into account and encompasses consensus
optimization as a special case. Moreover, we make the following two
technical assumptions that are standard in the literature of numerical
optimization [29].

Assumption 1: There exist two positive constants 0 < m < M
such that, for any i € [n],j € Q; and x;,x; € RP

mI < V2 f;(x;) = M1 (3)

Assumption 2: There exists a positive constant L > 0 such that the
Hessian matrices of all f;’s and g;;’s are L-Lipschitz continuous, that
is, forany i € [n], j € Q; and x;,%;, x;, %)

V2 fi(x:) = V2 fi(x)l2 < Lllxi — x|

!
X

20 (v w20 (v Xi|
V=95 (xi,x5) — V=945 (X, XJ)HQ < LH |:Xj:| [x;}

2

We note that Assumption 1 is a bit strong and is not satisfied by
all applications, for example, affine functions are not strongly convex
and thus do not satisfy Assumption 1. Without Assumption 1, ADMM
can still be shown to converge [20]. Nevertheless, to guarantee global
linear convergence of ADMM, Assumption 1 (i.e., strong convexity and
Lipschitz continuous gradient) is usually needed [17]. In this article,
we will show global linear convergence of the proposed distributed
Newton’s method and thus we let Assumption 1 hold.

B. Algorithm Development

Define x € R™ as the concatenation of all the x;’s. De-
note the objective function of (2) as F(x):=> . | fi(x;)+
> ic1 2jeq, 9ij(Xi,X;). Denote the unique minimizer of F' as x*,
where the uniqueness results from the strong convexity assumption, that
is, Assumption 1. In the rest of the article, unless explicitly specified, we

use [-]; to denote the i-th p-dimensional subvector of a vector and use
[-]:,; to denote the (%, j)th p x p block of a matrix. To apply Newton’s
method to (2), we compute the gradient of F' as

[VFx)]: = V£i(x:) + Y [V, 965 (X0, X;) + Vi, 956(%, %))
JEQ,
Denote H(x) := V2F(x) the Hessian matrix of F, which can be
computed as
V2 fi(x:)+ 2 50, [V, 91 (X6, %5) + V3, 950 (%5, %:)]
if i=k

Vi o 9ik (X xi) + Vi o gri(xk,%i), if k€ Q;
0, otherwise.

Hx)]ik =

We note that H(x) is positive definite (according to Assumption 1) and
block sparse with the sparsity pattern of the network. We further define
a block diagonal matrix D(x) as

[D(x)]ix =
V2 fi(xi) + 23000, Vi, 9i5 (Xi: %) + V3, g5i (x5, %i)]
if 1=k
0, otherwise

and a block sparse matrix B(x) as

> iea, V3,91 (%i, %5) + V3, g5i(x5, ;)] ifi = k

B(x)]ik = ¢ —Vz, « 9ik(Xis Xx) — Vi, «, ri(Xk, %), ifk € Q;
0, otherwise.
Thus, we obtain a splitting of the Hessian matrix as

H(x) = D(x) — B(x). According to Assumption 1, it is easy
to see that D(x) is positive definite. So, we can write H(x) =
D(x)?[I - D(x) *B(x)D(x) ?|D(x)?. To invoke Newton’s
method, we need to calculate H(x) ' = D(x)fé I- D(x)f%
B(x)D(x)fé]*lD(x)fé. Unfortunately, H(x) " is not necessarily
block sparse so that the exact Newton’s method for minimizing F'(x)
cannot be implemented in a distributed fashion. Therefore, to obtain
a distributed algorithm, we resort to some approximated version of
H(x) . To this end, if p(D(x) ?B(x)D(x) ?) < 1 (which will be
shown later in Section III), we can rewrite H(x) ' as

1

ad k
H(x) ' =D(x) * Y [D(x)*%B(x)D(x)*f] D(x) ?. (5)
k=0
Truncating the first K + 1 (K > 0) terms of the summation in (5),
1 1 1 1
we note that D(x) ™ 2 ZkK:O [D(x) Z2B(x)D(x) Z]*D(x) 2 isstill
positive definite. As such, we can define a positive definite approxi-
mated Hessian H(x) as

H(x)

[SE
[E—
e
=4
»
N
|
[SE
——
L
~
&)
=

= {D(x)i 3 [D(x)*%B(x)D(x)*

k=0

Denote the iterate at time ¢ as x;. Define h, = VF(x;) and H, =
H(x,). Thus, the approximated Newton direction is d, = —H; 'h,
and the approximated Newton update is x; 1 = X + ed;, wheree > 0
is the step size. Next, we demonstrate that the approximated Newton
direction d; can be computed in a distributed and recursive manner.
To this end, define the kth (k > 0) order approximated Hessian matrix
H,(x):

N

H (x) = {D(x)‘ > [D<x)%B<x>D(x)éyD(x);} .

1=0

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021

1281

Furthermore, define D, = D(x;), B, =B(x;), H; = H(x,),
H;.. = Hi(x;),andd;, ; = —H;}tht.Thus, d; = dx ;. The approx-
imated Newton direction can be calculated recursively as

1 ktl 1 AN 1
dipre=-D, % [T+ (Dt ’B,D, 2) D, ?h,. (7)
=1
=-D;'h, + D;'B,dy ®)
=D, (Bidk: — hy) ©)

Algorithm 1 Distributed Newton’s Method for Network Cost Mini-
mization: Procedures at Node 7.

1: Initialize xo,; and step size €
2: fort =0,1,2,... do
3: Exchange the iterate x, with neighbors j € ;.
4: Compute:
D:ii = szi(xt,i)

+2 Z [viigij (xt,5, %t,5) + Viigji(xt,jvxt,i)})

JEQ,
Brii = [Vi,9i (Xt Xe) + Vi, gji (x5, xe.4)], (10)
JEQ;
Biij = =V, x; 965 (Xt,, Xt.3) = Vi, e, 956 (X35 %0,0),

Vi €, an
h:; = Vfi(xe,)
+) [V 90 (Xt,5Xt5) + Vi, 05 (2,5, %2,)] 5 (12)
JEQ;

do,ti = —D;iliht,i~ (13)

5: fork=0,1,..., K —1do

6: Exchange the iterate dg,.; with neighbors j € ;.

7: Compute:

diti,,: = D;ZIZ Z Byijdre,; —hey (14)
JEQ;U{i}

8: end for

9: Set dt,i = dK,t,i~

10: Update x¢41,; = X¢,i + eds ;.

11: end for

Noting that D, is block diagonal, we have

diyie,i = D;i, Z By ijdie,; —hy; (15)

JEQ;U{d}

Equation (15) indicates that the approximated Newton direction d;
can be computed in a distributed and recursive way. Thus, a distributed
Newton’s method for the network cost minimization problem (2) can
be developed and the proposed algorithm is detailed in Algorithm 1
from the perspective of node .

The overall framework of the analysis of Algorithm 1 will follow
a path analogous to that of [24]. The main distinction of this article
is the introduction of general link cost functions as opposed to the
quadratic link cost functions used in [24] to enforce consensus. Al-
gorithmically, the expressions of D, B;, h; take more general forms
in Algorithm 1 as they depend on the general link cost functions.
Therefore, some structural properties of the algorithm in [24] no longer
hold for Algorithm 1 in this article. For instance, the submatrices B, ;;
and By ;; (7,7 are neighbors) are scalar multiples of identity matrix
in [24], while these submatrices can be general symmetric matrices

in Algorithm 1. These differences and generalizations in algorithms
require new analysis, which is a nontrivial extension of the analysis
in [24] and leads to new features of the convergence results. For
instance, the proof of Proposition 2 in [24] has exploited the special
form of the quadratic link cost functions (the double stochasticity of the
combination weight matrix W in particular) and the Gershgorin circle
theorem (cf. equations (58), (59) in [24]) to bound the eigenvalues.
Such a technique no longer works in the proof of Lemma 2 in this
article (the counterpart of Proposition 2 in [24]), since the link cost
functions are generally nonquadratic. To show Lemma 2, we have to
adopt other techniques to bound the eigenvalues of the involved matrices
and the details of the proof are different from that of Proposition 2
in [24]. Further, the convergence results in [24] do not depend on the
network connectivity, while the convergence results (e.g., the value of
& in Theorem 1) in this article depend on the network connectivity
explicitly through the maximum node degree C.

In [30], matrix splitting based Newton’s method has also been pro-
posed for network flow optimization problem, which only involves link
costs and the link rates need to satisfy the flow conservation constraints.
Though Algorithm 1 in this article shares similar spirit with that in [30],
the specific algorithmic implementations are very different due to the
different optimization problems. As such, new convergence analysis is
required for the proposed Algorithm 1.

IIl. CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of the pro-
posed distributed Newton’s method for network cost minimization, that
is, Algorithm 1. Specifically, we demonstrate global linear convergence
of the objective function value F'(x;) to the optimal value F'(x*). Fur-
thermore, we show that Algorithm 1 possesses a quadratic convergence
phase, which is a generic theoretical advantage of the second-order
optimization methods over first-order ones [29], [33]. The proofs of all
the lemmas and theorems are relegated to the supplementary material
due to space limitation.

A. The Global Linear Convergence

In this subsection, we demonstrate global linear convergence of
Algorithm 1. We first establish bounds on the matrices B(x), H(x),
D(x) in the following lemma. Define C' = max;c[,) [€2;] to be the
maximum node degree.

Lemma 1: For any x € R"P:

0 < B(x) < 2MCI (16)
mI < H(x) < M(1+ 20)I (17)
mI < D(x) < (14 4C)MT. (18)

In order to ensure that the series in (5) are convergent, we need to
guarantee that the spectral radius of D(x)féB(x)D(x)f% is strictly
smaller than 1, as shown in the following lemma.

Lemma 2: For any x € R"P:

0 < D(x) ?B(x)D(x) " <11, (19)

wheren =1 — W € (0,1) is a constant. Therefore, we have

p (D) *BH)D(x) *) <n<1. 20)

Lemma 2 guarantees the convergence of the series in (5) and justifies
the truncated approximation of Hessian in (6). Then, a natural question
is about the approximation accuracy of the approximated Hessian
H(x). To quantify this accuracy, we define the error matrix E(x) € S™?

1282

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021

as

L1 L1

E(x):=1-H(x) *"H(x)H(x) °.

Define E; = E(x;
matrix E(x).

Lemma 3: For any x € R"P

@n

). Then, we have the following bound for the error

0 =< E(x) < nf+L. (22)

In accordance with one’s intuition, Lemma 3 indicates that the larger
the order of approximation K, the smaller the approximation error of
the Hessian matrix. This benefit comes at the expense of higher commu-
nication and computation overhead of Algorithm 1 when calculating the
approximated Newton step d, recursively by (14), that is, there exists
an accuracy-complexity tradeoff. Furthermore, analogous to Lemma 1,
we can also bound the inverse of the approximated Hessian matrix

I:I(x)71 as follows.
Lemma 4: For any x € R"P

N

nI=2Hx) =1l (23)

where the two positive constants v, and vy, are given as y; = m
and 1opiFt
V2 = (i)

Moreover, we can translate the Lipschitz continuity of the Hessian
matrices of the local functions in Assumption 2 to Lipschitz continuity
of the global Hessian matrix H(x).

Lemma 5: For any x,x’ € R"P

[H(x) —

That is, H(-) is Lipschitz continuous with modulus L(1 + 2C').

We are now ready to show the first main theorem regarding the global
linear convergence of Algorithm 1.

Theorem 1: If the stepsize e > 0 of Algorithm 1 is chosen such that

F(x*)}

(25)

H(X)[2 < L(1 +20)|x = x||2. 24)

e <min« 1 2my
"V L +20)3(2M (1 +2C))3 \/F(xo) —

then F'(x;), that is, the objective function values generated by Al-
gorithm 1, converges linearly to the optimal objective function value
F(x*), or more specifically, for any t € N

) < ¢F(x
where 0 < £ < 1 is some constant specified as

E=1—mv(2c—¢€?)

3
+%L(1+20)7§(2M +20))3/F(xo) — F(x). (27)

In practice, we seldom use the upper bound in (25) to determine
the stepsize e since this upper bound is difficult to compute in most
applications and satisfying this upper bound is only a sufficient (not
necessary) condition for linear convergence. In fact, a practically good
choice of € can be larger than the theoretical bound in (25). What
this bound shows is that, as long as e is sufficiently small, the global
linear convergence of the proposed distributed Newton’s method can be
guaranteed. In practice, we usually determine e empirically by trial and
error so that it is neither too large (to avoid divergence) nor too small
(to avoid very slow convergence). We note that this empirical choice of
stepsize is common in many existing optimization methods.

Further, we note that the upper bound on € in (25) depends on the
connectivity of the network. This dependence is through the maximum
node degree C' and 1, 72 (71 relies on C'; 5 relies on 7, which further
depends on C').

0<F(x¢)— F(x o) — F(x")] (26)

B. The Quadratic Convergence Phase

A classical theoretical explanation of the advantage of the second-
order optimization methods (e.g., Newton’s method) over the first-order
alternatives (e.g., gradient descent method) is that the former possesses
a quadratic convergence region [29], [33], in which the algorithms
converge very fast. In this subsection, we also identify a quadratic
convergence phase of Algorithm 1 as a theoretical justification of its
superiority over other the first-order methods. To this end, we first
present a lemma regarding the Lipschitz continuity of D(x).

Lemma 6: For any x,x" € R"?:

[D(x) = D(x')[[2 < L(1 +4C)[x — x[|2 (28)
that is, D(-) is Lipschitz continuous with modulus L(1 + 4C').
Define two constants 1 > 0 and po > 0:
= mleL(1 +4C)y72]? (2M (1 4 20))3 [F(x0) — F(x")] ¥

€ L(1+2C)W1’Y2
2

M1
H2
Define a sequence 1 = (1 — € + en®X+1)(1 + 1, £T°). Suppose €
satisfies the condition (25) in Theorem 1. Then, we have 0 < £ < 1
and thus v, is a decreasing sequence with limit lim; . ¥y =1 — e+
en®+1 € (0,1). So, for large enough, we have ¥, < 1. Define ¢y :=
arg min{t|y, < 1}. We state our main theorem regarding the quadratic
convergence phase of Algorithm 1 in the following theorem.
Theorem 2: Let € be chosen in accordance with the condition (25).

Suppose there exists a time interval [¢;, t2] with ¢; > ¢, such that, for
any te [tl, tz]

Vi (1 —+/ ~1 11—/
7/%(¢t) < HDt—21hf < wt. (29)
M2 2 M2
Then, for ¢ € [tq,ts + 1], we have
ot—tq
F(x;) - F(x") < X — X" (30)
(x¢) — F(x") uzﬁ” t =Xz
_1 .
where § := ﬁHDtl{lhtl lo€[0,1) and lim, . ||x, —
x*[]2 = 0. In other words, Algorithm 1 converges quadratically
over the time interval [ti,¢2 + 1]. Furthermore, we have
_1
lim, . [|D,%h,|2 =0.
Remark 1: From lim,_,, |D, 2h,|>=0, hmeW
= \/1—€+€7IK+1(;\/1—6+677K“) 0 and lim; 11\2% =

17 Viseten®TE 0, we know that [|D,° 1ht |l will eventually
be smaller than both bounds in (29) for large enough t. Typically, as ¢

increases, | D, ht |l2 will first become smaller than the right bound of
(29), but still remain larger than the left bound of (29), i.e., (29) holds.
Theorem (2) says, in such a case, Algorithm 1 converges quadratically.

After that, as ¢ further increases, HD;%1 h,||> becomes even smaller
than the left bound of (29) so that (29) does not hold any more and
the quadratic convergence phase is terminated. In such a case, we can
only guarantee linear convergence rate, which is a global property of
Algorithm 1 (Theorem 1).

IV. NUMERICAL TESTS

In this section, we empirically investigate the performance of the
proposed distributed Newton’s method (DNM, i.e., Algorithm 1) on
the following quadratic program:

MIHZ xAxZ—I—Qb X; +ZZBIJ”XZ XJH2

i=1 jeQ,;

(€29}

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021 1283
Ogy ORADAAA - " S A AANA
10 ‘ﬁfgtég = 10 AAAANAL AL 10 \ﬁ:g:&%ﬂ*ﬂ 10 A-Aoa_a_,
‘O\‘Ekﬂ“&eé:;"A A, ¥ RN *s_o:é:g. A o
O o 10° ¢ Ta Rk A
o L) . . D = ¢
S 10° DS g 10° Q) N . s 10° A%
& % S 5 %e & ®ee 8< & ¢
19 = o 'y 10 @ < 8 o A Y
2 L o 2 & 210 -0-DNM-0 ¢ LY 2 ¢
- © ~ © - -
2 ol [o-DNM0 9 L] 5 ol [ooNM0 ® s DML IR Sl [oDNm0 Y
o 10 -0-DNM-1 o 10 -0-DNM-1 9, i o-DNM-2 & o 10 -0-DNM-1 ¢
-0-DNM-2 "* -0-DNM-2 A 1018 DGD ~o -0-DNM-2 ¥
3 Y ¢
DGD \0 DGD N -A-DADMM DGD ®
-A-DADMM -A-DADMM @ i -A-DADMM| 7y
105 1075 1020 1075 8
0 200 400 600 0 500 1000 1500 2000 0 100 200 300 400 500 0 500 1000 1500
Number of iterations Number of per-node information exchanges Number of iterations Number of per-node information exchanges
(@ () (a) (b)
.) o 10% 100 = <A = ax = %=
Fig. 1. Comparison between the proposed distributed Newton’s ‘s'gﬁée: G\ %5% A--aC
method (K =0,1,2), the DGD, and the distributed ADMM (d = 2). Vi TO AL A o
(a) Relative error versus number of iterations. (b) Relative error versus 5 105 & . hal 5 105 \‘n
number of per-node information exchanges. = SN - g s S
2 To. m, g Y
K] o-DNM-0 N S K] -0-DNM-0 S
& 1071} |-o-DNM-1 AN e & 10710} [0-DNM-1 o
-0-DNM-2 ¢ -0-DNM-2 .~
DGD . N DGD ®
where A; € S%__issome positive definite matrix and b; € R?. 3;; > 0 - %-DADMM \» . DADMM
is some positive constant controlling the proximity between neighbors’ 1% 500 1000 10 500 1000 1500 2000 2500
variables. Problem (31) has broad applications in many signal process- Number of iterations Number of per-node information exchange
ing scenarios. For instance, consider a sensor network in which each © @
node ¢ uses linear regression to estimate some unknown vector x;. If) .
& ’ Fig. 2. Impact of the condition number on the performance of the

we want to enforce the prior knowledge that neighboring nodes have
similar unknown vectors, the corresponding optimization problem will
be in the form of (31). In fact, as real-time dynamic variants of problem
(31), multitask adaptive learning has been studied extensively in the
recent literature [27].

Problem (31) is in the form of generic network cost minimization
problem (2) by setting f;(x;) = x] A;x; + 2blx; and g;; (x;,%x;) =
Bijllxi — x;|3, Vi, j € Q;. In the following experiments, we set A; to
be a diagonal matrix with the first £ diagonal entries uniformly and
randomly chosen from {1,107%,...,107%} and the last £ diagonal
entries uniformly and randomly chosen from {1, 10, ..., 10¢}. Here, d
is a positive integer controlling the condition number of the node cost
function f;: the larger the d, the more ill-conditioned the cost functions.
In addition, entries of b; are uniformly and randomly chosen from the
interval [0,1], while 3;; are uniformly and randomly selected from the
interval [0.5, 1.5]. We set the network topology to be a random graph
(links are uniformly and randomly generated) with n = 100 nodes and
average degree of 4. The dimension of the decision variables is p = 20.
The stepsize € is chosen to be 1 unless otherwise noted. This values
of € is chosen empirically to roughly optimize the performance of the
distributed Newton’s method. For comparison purposes, we also apply
the DGD [13], [34] and the distributed ADMM (DADMM) [28], [35] to
the quadratic program (31). When implementing the DADMM for the
quadratic program (31), we use direct closed-form solutions to compute
the iterates instead of using numerical solvers. The ADMM parameter
p is chosen to be 9 to empirically optimize the performance of the
DADMM. The performance of the proposed DNM-K (K = 0,1, 2),
the DGD, and the DADMM is shown in Fig. 1 for d = 2. The relative
errors W versus the number of iterations and the number of
per-node information exchanges are shown in Fig. 1(a) and (b), respec-
tively. Here, one unit of information exchange is the transmission of one
p-dimensional vector. The numbers of per-node (node 7) information
exchanges for the proposed DNM, the DGD, and the DADMM are
K 41, 1, and 2|€;| + 1, respectively. In our network topology, the
average node degree is 4 so that the average number of per-node
information exchanges for the DADMM is 9.

From the results in Fig. 1, we can first see the effect of K, i.e.,
the approximation order of the Hessian matrix, on the performance of
the DNM. From Fig. 1(a), we observe that the DNM converges faster
with respect to the number of iterations for larger values of K. This

proposed distributed Newton’s method (K = 0, 1, 2), the DGD, and the
distributed ADMM. (a) Relative error versus number of iterations for d =
1. (b) Relative error versus number of per-node information exchanges
for d =1. (c) Relative error versus number of iterations for d = 3.
(d) Relative error versus number of per-node information exchanges for
d=3.

is reasonable as larger K implies more accurate approximation of the
Hessian matrix in the DNM (cf. Lemma 3). From Fig. 1(b), an interest-
ing observation is that DNM-K"s (K = 0, 1, 2) have virtually the same
convergence curve with respect to the number of per-node information
exchanges. This suggests that K does not affect the performance of
DNM much as far as communication complexity is concerned. Second,
we remark that the DNM outperforms the DGD significantly in terms of
both the number of iterations and the number of information exchanges.
Specifically, to achieve the same relative error, the number of iterations
and the number of information exchanges needed by the DGD is larger
than those needed by the DNM-2 by an order of magnitude. Third, the
DNM also outperforms the DADMM remarkably, especially in terms
of number of information exchanges. In particular, to achieve the same
relative error, the number of per-node information exchanges needed
by the DADMM is larger than those needed by the DNM by almost two
orders of magnitude. These comparisons demonstrate the advantage of
the DNM, a second-order optimization method, over other first-order
primal or primal/dual optimization methods such as the DGD and the
DADMM.

Next, we examine the impact of the condition number (controlled by
d) on the performance of the DNM, the DGD, and the DADMM. The
performance of these algorithms with respect to the number of iterations
and the number of per-node information exchanges is shown in Fig. 2
for both d = 1 and d = 3. First, we remark that for either value of d,
the DNM always remarkably outperforms the DGD and the DADMM
in terms of both the number of iterations and the number of information
exchanges. Second, we observe that the DNM is much more robust to
large condition number than the DGD. In particular, when the condition
number increases, i.e., when d increases from 1 to 3, to achieve the same
relative error, the number of iterations or information exchanges needed
by the DNM increases by twice while that needed by the DGD increases
by around 15 times. This observation is analogous to the classical one
for centralized Newton’s method and gradient descent stating that the

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021

1284
10° 100
107! 10"
102
102
10°
10° —DNM, o= 1.5
104H—DADMM, a = 1.5]
—DNM DGD, a =15
10t | —~DADMM f- -DNM, a =3
DGD 1070~ -DADMM, a = 3
DGD, a =3
10° 10°
0 100 200 300 400 500 0 100 200 300 400 500
(@ (b)
Fig. 3. Problems with nonquadratic cost functions. (a) Problem (32).

(b) Problem (33).

latter is much more sensitive to the condition number of the objective
function than the former [29]. Our observation extends this property to
the distributed network cost minimization problem (2).

We further consider another network cost minimization problem as
follows:

Min — E": 2”: a; log(zy)

=1 l=1
n P

Sy (Tesain) o
i=1 jef; =1

where x;; is the [th entry of x;, and {a;;, b;; } are nonnegative constants.
Problem (32) can be used to model the resource allocation problem in
a communication network, in which each user has p types of resources
(e.g., power and bandwidth) to consume. The term log(x;;) is the utility
of user ¢ if she consumes x;; amount of resource [and the link cost
log(3=7_, (ebit®it + ebit®it)) can model the cost of mutual interfer-
ence between the neighbors 7, 5. Unlike Problem (31), the node cost and
link cost functions of Problem (32) are not quadratic. The performance
of distributed Newton’s method (K = 2,¢ = 0.5) on Problem (32) is
shown in Fig. 3(a), in which the network is a random graph with average
degree equal to 3. For comparison, we also show the performance of
DADMM and DGD. It can be observed that the convergence for Prob-
lem (32) is slower than that of the quadratic program (31). This is the
consequence of the more complicated objective function (logarithms
and exponentials) in (32) than the quadratic functions in (31). The
proposed distributed Newton’s method still outperforms DADMM and
DGD for the nonquadratic problem (32). Additionally, we consider
another network cost minimization problem with a different form of
link cost functions as follows:

n P n P
NEH - Z Z ay log(xy) + Z Z Z(bi]’,zxu +bjix5)”
i=1 =1 i=1 jeq; =1

(33)

where {a;;, b;;,, } are positive constants and o > 1 is constant. The link
cost functions are not quadratic as long as o # 2 and can be used to
model the cost of mutual interference in different scenarios by tuning
a. For a = 1.5 and o = 3, we show the performance of the distributed
Newton’s method, DADMM, and DGD in Fig. 3(b). It can be observed
that the distributed Newton’s method still outperforms DADMM and
DGD consistently. These experiments corroborate the advantage of
distributed Newton’s method for problems with nonquadratic cost
functions.

V. COMMUNICATION AND COMPUTATIONAL COMPLEXITY

In this section, we discuss about the communication and com-
putational complexity of the proposed distributed Newton’s method
(DNM) and alternative first-order optimization methods including the
DGD, the distributed ADMM (DADMM), and the distributed linearized
ADMM (DLADMM) [28] for solving the network cost minimization
problem (2).

A. Communication Complexity

At each iteration of the DNM, each node 7 needs to broadcast
K + 1 vectors of p dimension, namely x; ;,do ¢, ..., dx_1,,i, tOits
neighbors. Therefore, the per-iteration communication complexity of
the DNM increases linearly with the approximation order K. This ob-
servation suggests a complexity-accuracy tradeoff for the choice of K
in the DNM. In particular, increasing the value of K will enhance the ap-
proximation accuracy (and thus per-iteration performance) of the DNM
and incur higher communication burden simultaneously. This tradeoff
for choices of K has been studied empirically through simulations in
Section IV. It is observed that though the per-iteration performance of
the DNM enhances with increasing K, its per-information-exchange
performance is insensitive to K for K =0,1,2. As a comparison,
in the DGD for problem (2), each node only needs to broadcast
one p-dimensional vector at each iteration. Moreover, in DADMM
or DLADMM for problem (2), each node ¢ broadcasts 2|2;| 4 1
p-dimensional vectors at each iteration [28]. We note that the number
of information exchanges for the DADMM or DLADMM depends
on the degree of the node since there are primal/dual link variables
in the reformulated problem of (2) suitable for application of the
ADMM (cf. Algorithm 1 in [28]). To achieve the same performance,
the advantage of the DNM over the aforementioned first-order opti-
mization methods (DGD and DADMM) in terms of communication
complexity has been highlighted through numerical experiments in
Section IV.

B. Computational Complexity

In the DNM, each node needs to evaluate not only the gradients but
also the Hessian matrices of the local node/link cost functions. Besides,
each node needs to compute the inversion of a p X p matrix (i.e., D;L
in (13) and (14)) at each iteration. In contrast, in the DGD and the
DLADMM [28], every node only needs to evaluate the gradients of the
local cost functions and is free of any matrix inversion. Furthermore,
the computational burden of the DADMM can be very high in general
because, in each iteration, each node needs to solve a nonlinear op-
timization problem numerically. In contrast, the proposed distributed
Newton’s method is free of solving any optimization subproblems and
thus enjoys lower computational complexity or shorter execution time
than DADMM generally. Nevertheless, in some special cases such as
the quadratic program (31), the DADMM iterates can be computed
in closed form and do not need to resort to numerical solvers. In
such cases, the computational complexity or the execution time of
the DADMM is also low, similar to the distributed Newton’s method.
These comparisons suggest that, relative to the first-order optimization
methods, the superior convergence performance of the DNM comes
at the expense of moderately high computational complexity. This
is analogous to the complexity-accuracy tradeoff between classical
Newton’s method and gradient descent algorithm in the centralized
setting [29].

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 3, MARCH 2021

1285

VI. CONCLUSION

In this article, a novel generic network cost minimization problem
incorporating both node costs and link costs is studied. A distributed
Newton’s method (Algorithm 1) is proposed to solve the network
cost minimization problem in a decentralized manner by splitting
and approximating the Hessian matrix of the objective function ap-
propriately. Under some standard technical assumptions, we theoret-
ically establish the global linear convergence of Algorithm 1 to the
optimal point (Theorem 1). Furthermore, we show that Algorithm 1
possesses a quadratic convergence phase over a certain time interval
(Theorem 2). Numerical experiments are carried out to corroborate
the effectiveness of Algorithm 1, which outperforms other first-order
primal or primal/dual optimization methods remarkably and is robust
to ill-conditioned cost functions. Complexity issues of the proposed
distributed Newton’s method and alternative first-order methods are
also discussed.

REFERENCES
(1]
[2]

A. H. Sayed, “Adaptive networks,” Proc. IEEE, vol. 102, no. 4, pp. 460—
497, Apr. 2014.

A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. IEEE, vol. 98,
no. 11, pp. 1847-1864, Nov. 2010.

J. B. Predd, S. R. Kulkarni, and H. V. Poor, “A collaborative training
algorithm for distributed learning,” IEEE Trans. Inf. Theory, vol. 55, no. 4,
pp. 1856-1871, Apr. 2009.

C. Shen, T.-H. Chang, K.-Y. Wang, Z. Qiu, and C.-Y. Chi, “Distributed
robust multicell coordinated beamforming with imperfect CSI: An ADMM
approach,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2988-3003,
Jun. 2012.

J. Huang, R. A. Berry, and M. L. Honig, “Distributed interference com-
pensation for wireless networks,” IEEE J. Sel. Areas Commun., vol. 24,
no. 5, pp. 1074-1084, May 2006.

M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition: A mathematical theory of network architec-
tures,” Proc. IEEE, vol. 95, no. 1, pp. 255-312, Jan. 2007.

D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for
network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24, no. 8,
pp. 1439-1451, Aug. 2006.

M. Chiang, “Balancing transport and physical layers in wireless multihop
networks: Jointly optimal congestion control and power control,” IEEE J.
Sel. Areas Commun., vol. 23, no. 1, pp. 104-116, Jan. 2005.

D. P. Palomar and M. Chiang, “Alternative distributed algorithms for
network utility maximization: Framework and applications,” /[EEE Trans.
Autom. Control, vol. 52, no. 12, pp. 2254-2269, Dec. 2007.

E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed newton method for
network utility maximization—i: Algorithm,” IEEE Trans. Autom. Control,
vol. 58, no. 9, pp. 2162-2175, Sep. 2013.

J. Zhang, D. Zheng, and M. Chiang, “The impact of stochastic noisy
feedback on distributed network utility maximization,” IEEE Trans. Inf.
Theory, vol. 54, no. 2, pp. 645-665, Feb. 2008.

D. Niu and B. Li, “An asynchronous fixed-point algorithm for resource
sharing with coupled objectives,” IEEE/ACM Trans. Netw., vol. 24, no. 5,
pp- 2593-2606, Oct. 2016.

A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” I[EEE Trans. Autom. Control, vol. 54,no. 1, pp. 4861,
Jan. 2009.

J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for dis-
tributed optimization: Convergence analysis and network scaling,” IEEE
Trans. Autom. control, vol. 57, no. 3, pp. 592-606, Mar. 2012.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM J. Optim., vol. 26, no. 3, pp. 1835-1854, 2016.
D. Jakovetic, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1131-1146,
May 2014.

W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of
the ADMM in decentralized consensus optimization,” IEEE Trans. Signal
Process., vol. 62, no. 7, pp. 1750-1761, Apr. 2014.

A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized
quadratically approximated alternating direction method of multipliers,”
IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5158-5173, Oct. 2016.
T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimiza-
tion via inexact consensus ADMM,” IEEE Trans. Signal Process., vol. 63,
no. 2, pp. 482-497, Jan. 2015.

E. Wei and A. Ozdaglar, “On the O(1/k) convergence of asynchronous
distributed alternating direction method of multipliers,” in Proc. IEEE
Global Conf. Signal Inf. Process., Austin, TX, 2013, pp. 551-554.

T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous dis-
tributed ADMM for large-scale optimization—Part I: Algorithm and
convergence analysis,” IEEE Trans. Signal Process., vol. 64, no. 12,
pp- 3118-3130, Jun. 2016.

T.-H. Chang, W.-C. Liao, M. Hong, and X. Wang, “Asynchronous dis-
tributed ADMM for large-scale optimization—Part II: Linear conver-
gence analysis and numerical performance,” IEEE Trans. Signal Process.,
vol. 64, no. 12, pp. 3131-3144, Jun. 2016.

T.-H. Chang, “A proximal dual consensus ADMM method for multi-agent
constrained optimization,” IEEE Trans. Signal Process., vol. 64, no. 14,
pp. 3719-3734, Jul. 2014.

A. Mokhtari, Q. Ling, and A. Ribeiro, “Network newton distributed
optimization methods,” IEEE Trans. Signal Process., vol. 65, no. 1,
pp. 146-161, Jan. 2017.

F. Mansoori and E. Wei, “Superlinearly convergent asynchronous dis-
tributed network Newton method,” in Proc. IEEE 56th Annu. Conf. Decis.
Control, Melbourne, Australia 2017, pp. 2874-2879.

M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized quasi-Newton
methods,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2613-2628,
May 2017.

J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation over
networks,” IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4129-4144,
Aug. 2014.

X. Cao and K. J. R. Liu, “Distributed linearized ADMM for network cost
minimization,” IEEE Trans. Signal Inf. Process. Over Netw., vol. 4, no. 3,
pp- 626-638, Sep. 2018.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated
dual descent for network flow optimization,” IEEE Trans. Autom. Control,
vol. 59, no. 4, pp. 905-920, Apr. 2014.

M. Hong and T.-H. Chang, “Stochastic proximal gradient consensus over
random networks,” IEEE Trans. Signal Process., vol. 65,no. 11, pp. 2933—
2948, Jun. 2017.

R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo, “Analysis of
Newton-Raphson consensus for multi-agent convex optimization under
asynchronous and lossy communications,” in Proc. 54th IEEE Conf. Decis.
Control, Osaka, Japan 2015, pp. 418-424.

A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “A decentralized second-
order method with exact linear convergence rate for consensus optimiza-
tion,” IEEE Trans. Signal Inf. Process. Netw., vol. 2, no. 4, pp. 507-522,
Dec. 2016.

S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” Lecture
Notes of EE3920, Stanford University, Autumn Quarter, vol. 2004,
2003.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method of
multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122, 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

