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On Liveness Enforcing Supervisory Policies
for Arbitrary Petri Nets

Chen Chen , Arun Raman , Hesuan Hu , Senior Member, IEEE,
and Ramavarapu S. Sreenivas , Senior Member, IEEE

Abstract—Neither the existence nor the nonexistence of
a liveness enforcing supervisory policy (LESP) for an ar-
bitrary Petri net (PN) is semidecidable. In an attempt to
identify decidable instances, we explore the decidability of
certain properties of the set of initial markings for which
an LESP exists, and the decidability of the existence of a
specific class of LESPs. We first prove that for an arbitrary
PN structure, determining if there is an initial marking, or
there are no initial markings, for which there is an LESP,
is not semidecidable. Then, we characterize the class of
PN structures for which the set of all initial markings for
which an LESP exists is right-closed. We show that testing
membership, or nonmembership, of an arbitrary PN in this
class of PNs is not semidecidable. We then consider a
restricted class of LESPs, called marking monotone LESPs
(MM-LESPs). We show that the existence of an MM-LESP
for an arbitrary PN is decidable.

Index Terms—Discrete-event dynamic systems (DEDSs),
Petri nets (PNs), supervisory control.

I. INTRODUCTION

ADISCRETE-EVENT dynamic system (DEDS) is a
discrete-state, event-driven system, where the discrete

state changes at a discrete-time instant due to the occurrence
of events. Manufacturing systems and service systems, database
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systems, traffic networks, integrated command, control, commu-
nication and information systems, etc., are examples of DEDS.
Petri nets (PNs) [1] are a popular modeling formalism for DEDS
since they can provide abundant structural information about the
system, and they are amenable to mathematical analysis.

A PN model is a directed bipartite graph where the two sets
of nodes are referred to as places and transitions. The edges
connecting the places with the transitions and vice-versa are
referred to as arcs. The arcs have weights associated with them.
The initial marking m0 of the PN associates a nonnegative,
integer-valued token load to each place. A PN N(m0) is es-
sentially the PN structure N along with an initial marking m0.
A transition is said to be state enabled if the token load of each of
its input places is no less than the weight associated with the arc
from the place to the transition. A state-enabled transition could
fire, which reduces (resp., increases) the token load of each of
its input (resp., output) places according to the associated arc
weights. This process repeats at the newly created token-load
distribution (marking), as often as necessary.

A PN is said to be live if it is possible to fire any transition,
although not necessarily immediately, from any marking that is
reachable from the initial marking. If a PN model of a DEDS
is not live, it is of interest to investigate the existence of a
supervisory policy that can make the supervised PN live. The
supervisory policy enforces liveness by preventing the firing of
a subset of controllable transitions, which correspond to control-
lable activities (or events) of the DEDS. On the other hand, the
uncontrollable transitions represent activities (or events) that are
external to the DEDS, which cannot be prevented from occurring
by the supervisory policy.

A decision problem, that is posed as a “yes” or “no” question
for each input, is decidable (resp., undecidable) if there exists
(resp., does not exist) a single algorithm that correctly answers
“yes” or “no” to all possible inputs. It is semidecidable if there
exists a single algorithm that will always correctly answer “yes,”
but does not return anything when the answer is “no.” Every
decision problem has an associated complementary decision
problem. The answer to the complementary problem is “yes”
if and only if (iff) the answer to the original decision problem is
“no.” A decision problem is decidable iff the decision problem
and its complement are semidecidable (cf., [2, Sec. 1.2.2]).

In this article, we explore questions regarding what can and
cannot be done in the context of synthesizing liveness enforcing
supervisory policy (LESPs) for arbitrary PNs from a computabil-
ity viewpoint. Specifically, for a PN structure N with n places,
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we are interested in understanding the nature of the set Δ(N)
defined as follows:

Δ(N) = {m0 ∈ Nn : there exists an LESP for N(m0)} (1)

where N denotes the set of nonnegative integers. The test for
existence (resp., nonexistence) of an LESP for an initial marking
reduces to the decision problem—“Is m0 ∈ Δ(N)?” (resp., “Is
m0 /∈ Δ(N)?”). Paper [3] proved that “Is m0 ∈ Δ(N)?” is
undecidable for arbitrary PNs by reducing it to the reachability
inclusion problem [4]. This result was further refined in [5].
Although undecidable for arbitrary PNs, there are classes of
PNs, with certain structural properties, for which the existence
of an LESP is decidable [5]–[8]. TheH-class of PN structures
is the largest among the decidable classes identified in those ref-
erences [7]. TheH-class has the following structural properties:
1) for each place, the weights associated with the outgoing arcs
that terminate on uncontrollable transitions must be the smallest
of all outgoing arc weights; and 2) the set of input places to
each uncontrollable transition is no larger than the set of input
places of any transition that shares a common input place with
it. For these classes of PNs, Δ(N) is right-closed, that is, if
there exists an LESP for an initial marking, then there exists a
(possibly different) LESP for all termwise larger initial markings
as well.

If a transition is permitted to fire by a marking monotone pol-
icy (MM-policy) at a markingm ∈ Nn, then it will be permitted
to fire at any marking m̂ ≥m, as well. If an MM-policy that is an
LESP forN(m0) is also an LESP forN(m̂0) for any m̂0 ≥m0,
then we say there is a marking monotone LESP (MM-LESP) for
N(m0), that is, if there is an MM-LESP for N(m0), then there
is an MM-LESP for N(m̂0) for any m̂0 ≥m0, which means
the set

ΔM (N)={m0∈Nn : there exists an MM-LESP for N(m0)}

is right-closed, and ΔM (N) ⊆ Δ(N). Note that if Δ(N) is
right-closed, then ΔM (N) = Δ(N) (because the firing of a
transition results in a larger marking if it is fired from a larger ini-
tial marking). Coincidentally, ifN ∈ H, thenΔ(N) = ΔM (N)
[7]. These results in the literature provide pointers on a possible
approach to expand the class of PNs for which the existence of
an LESP is decidable, first, by restricting the properties of the
setΔ(N) (for example, right-closure) and second, by restricting
the nature of the LESP (for example, MM-LESPs).

With an objective of characterizing the structure and proper-
ties of PNs for which the existence and nonexistence of an LESP
are decidable, we start with investigating if it is the right-closure
of Δ(N), that is, the reason for the decidability of LESP. As the
first contribution of the article, we characterize the exhaustive
class of PNs, Ĥ, such that (N ∈ Ĥ)⇔ (Δ(N) is right-closed).

Testing membership in Ĥ-class is posed as the decision prob-
lems: “IsΔ(N) right-closed?” and “IsΔ(N)not right-closed?”.
We then observe that an empty set is right-closed by definition.
Consequently, a positive result for the decision problem “Is
Δ(N) right-closed?” would mean that there are either countably
infinite markings or no markings for which an LESP exists.

Therefore, before venturing into the decision problem of right-
closure, we investigate the decision problems: “Is Δ(N) = ∅?”
and “Is Δ(N) �= ∅?”. In addition to being associated with right-
closure, these can also be interpreted as a generalization of the
decision problems: “Is m0 ∈ Δ(N)?” and “Is m0 /∈ Δ(N)?”
studied in [3] and [5]. As the second contribution of the article,
we show that “Is Δ(N) = ∅?” and “Is Δ(N) �= ∅?” are not
semidecidable for arbitrary PNs.

Coming back to right-closure, as the third contribution, we
prove that “Is Δ(N) right-closed?” is not decidable. Following
this result, we introduce an extension to H-class of PNs, the
K-class. The decision problems: “N ∈ K?” and “N /∈ K?” are
decidable. ForN ∈ K,Δ(N) is right-closed, andK is the largest
characterized class of PNs for which Δ(N) is right-closed. We
have the following inclusion relation between the various PN
structures with a right-closed Δ(N):H ⊂ K ⊂ Ĥ.

As the fourth contribution, we further reduce the scope of the
problem and investigate a variation to right-closure. We attempt
to determine that for a given PN N , if there exists a subset of
markings, Δ̃(N) ⊆ Δ(N), that is right-closed. This relaxation
does not improve the results, and the decision problems: “Is there
a right-closed subset of Δ(N)?” and “Is there no right-closed
subset of Δ(N)?” are also not semidecidable.

As the last result in the article, we turn our attention at
restricting the nature of LESPs. We pose the decision problems:
“Is m0 ∈ ΔM (N)?” and “Is m0 /∈ ΔM (N)?” and prove that
they are decidable, that is, the existence and nonexistence of
an MM-LESP for an arbitrary PN are decidable. Moreover, the
algorithm for decidability also evaluates the largest ΔM (N), if
ΔM (N) �= ∅.

Thus, starting from the two decision problems: “Is m0 ∈
Δ(N)?” and “Is m0 /∈ Δ(N)?” that are not semidecidable, we
present a string of results that culminate in decidable subprob-
lems: “Is m0 ∈ ΔM (N)?” and “Is m0 /∈ ΔM (N)?” These
results lead to the conclusion that extracting any kind of informa-
tion about Δ(N) for an arbitrary PN is most likely an extremely
hard problem. Besides, we can also conclude that between the
properties of the set of initial markings for which an LESP exists,
and the characteristics of the LESP, it is the characteristics of the
LESP that play a prominent role in determining decidability. To
be specific, letR(N,m,P) denote the set of reachable markings
for N(m) under the supervision of an LESPP. If a supervisory
policyP is such thatR(N,m,P) (which can have an unbounded
number of markings) can be reduced to a reachability graph with
a finite number of appropriately defined symbolic markings such
that the liveness property is preserved, then the existence of P
is likely to be decidable. We expand on this point in Section IX.

The article is organized as follows. Section II presents the
notations and definitions used in the article. We present a nec-
essary and sufficient condition for right-closure of Δ(N) for an
arbitrary PN N in Section III. In Section IV, we prove that “Is
Δ(N) = ∅?” is not decidable. Using this result, we prove that
“Is Δ(N) right-closed?” is not decidable for an arbitrary PN
N in Section V. Following this, in Section VI, we show that a
variation of the earlier decision problem: “Is there a right-closed
subset of Δ(N)?” is not decidable. After introducing K-class
of PN structures in Section VII, in Section VIII we prove that
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the existence of an MM-LESP for an arbitrary PN is decidable.
Finally, Section IX concludes this article.

II. NOTATIONS AND DEFINITIONS

We use N (N+) to denote the set of nonnegative (positive)
integers. The term card(•) denotes the cardinality of the set
argument. The symbol Σ∗ denotes the set of all possible strings
(including the empty string) that can be constructed from an
alphabet Σ.

The unit vector whose ith value is unity is represented as
1i. Given two integer-valued vectors x,y ∈ Nk, we use the
notation x ≥ y if xi ≥ yi for all i ∈ {1, 2, . . . k}. We use
the term max{x,y} to denote the vector whose ith entry is
max{xi,yi}. Suppose x1, . . . ,xk ∈ Rn and λ1, . . . , λk ∈ R,
where R denotes the set of real numbers. Then,

∑k
i=1 λixi

is a convex combination of the vectors x1, . . . ,xk ∈ Rn if
∀i, λi ≥ 0 and

∑k
i=1 λi = 1. The Minkowski sum of A ⊆ Rn

andB ⊆ Rn is the set {a+ b : a ∈ A, b ∈ B}. The convex-hull
conv({x1, . . . ,xk}) of a set of vectors {x1, . . . ,xk} is the
smallest convex set that contains it. We use the term Int(•)
to denote the set of integer-valued vectors contained in the set
argument. For instance, Int(conv({x1, . . . ,xk})) denotes the
set of integer-valued vectors in the convex hull of {x1, . . . ,xk}.

A PN structureN = (Π, T,Φ,Γ) is an ordered 4-tuple, where
Π = {p1, . . . , pn} is a set of n places, T = {t1, . . . , tm} is a
collection of m transitions, Φ ⊆ (Π× T ) ∪ (T ×Π) is a set of
arcs, and Γ : Φ→ N+ is the weight associated with each arc.
The initial marking function (or the initial marking) of a PN
structure N is a function m0 : Π → Nn, which identifies the
number of tokens in each place. The marking can be interpreted
as an integer-valued vector where the ith component represents
the token load of the ith place pi ∈ Π. For ease of exposition,
some of the symbols that we have used to denote a marking are
specific to that particular section. The meaning of a particular
symbol should be clear from the context.

We use the notationm(p) to denote the tokens in place p ∈ Π.
Let Π1 ⊆ Π2 ⊆ Π, m1 ∈ Ncard(Π1), and m ∈ Ncard(Π2). We
use the notation m(Π1) = m1 to denote m(p) = m1(p), for all
p ∈ Π1.

We use the term PN and the symbol N(m0) to denote a
PN structure N along with its initial marking m0. In graphical
representations of PNs, the places are represented by circles,
transitions by rectangles, and arcs are represented by directed
edges. For brevity, only the nonunitary arc weights are placed
alongside arcs in graphic representations of PNs in this article.
The tokens are represented by filled circles that reside in the
circles that represent places. The set of transitions in the PN
is partitioned into controllable transitions (Tc ⊆ T ) and uncon-
trollable transitions (Tu ⊆ T ). The controllable (uncontrollable)
transitions are represented as filled (unfilled) boxes in graphical
representation of PNs.

We define the sets •x = {y|(y, x) ∈ Φ} and x• = {y|(x, y) ∈
Φ}. A transition t ∈ T is said to be state enabled at a markingmi

if ∀p ∈ •t,mi(p) ≥ Γ(p, t). The set of state-enabled transitions
at marking mi is denoted by the symbol Te(N,mi).

If tj ∈ Te(N,m), then m ≥ IN•,j , which is the jth column
of the n×m input matrix IN, defined as

INi,j =

{
Γ(p, t) if pi ∈ •tj
0 otherwise.

The output matrix is an n×m matrix that encodes the firing of
an enabled transition

OUTi,j =

{
Γ(t, p) if pi ∈ t•j
0 otherwise.

The incidence matrix C of the PN N is an n×m matrix, where
C = OUT− IN.

A supervisory policyP : Nn × T → {0, 1} is a function that
returns a 0 or 1 for each marking and each transition. The
supervisory policyPpermits the firing of transition tj at marking
mi, iff P(mi, tj) = 1. If P(mi, tj) = 1 for some marking mi,
we say the transition tj is control enabled at mi. A transition
has to be state enabled and control enabled before it can fire.
To reflect the fact that the supervisory policy does not control
disable any uncontrollable transition, we assume that ∀mi ∈
Nn,P(mi, tj) = 1, if tj ∈ Tu. A state-enabled and control-
enabled transition t can fire, which changes the marking mi

to mi+1 according to mi+1(p) = mi(p)− Γ(p, t) + Γ(t, p).
A string of transitions σ = t1 . . . tk, where tj ∈ T (j ∈

{1, . . . , k}), is said to be a valid firing string starting from the
marking mi if 1) the transitions t1 ∈ Te(N,mi), P(mi, t1) =
1, and 2) for j ∈ {1, 2, . . . , k − 1}, the firing of the transition
tj produces a marking mi+j and tj+1 ∈ Te(N,mi+j) and
P(mi+j , tj+1) = 1. If mi+k results from the firing of σ ∈ T ∗

starting from the initial markingmi, we represent it symbolically
as mi σ→mi+k. If x(σ) is an m-dimensional vector whose ith
component corresponds to the number of occurrences of ti in a
valid string σ, and if mi σ−→mj , then mj = mi +Cx(σ).

Given an initial marking m0, the set of reachable markings
for m0, which is denoted by R(N , m0), is defined as the set
of markings generated by all valid firing strings starting with
marking m0 in the PN N . The set of reachable markings under
the supervision ofP inN from the initial markingm0 is denoted
by R(N , m0, P).

A PN N(m0) is said to be live if ∀t ∈ T, ∀mi ∈
R(N,m0),∃mj ∈ R(N,mi) such that t ∈ Te(N,mj) (cf.,
level 4 liveness, [1], [9]). A transition tk is live under the supervi-
sion of P, if ∀mi ∈ R(N,m0,P),∃mj ∈ R(N,mi,P) such
that tk ∈ Te(N,mj) andP(mj , tk) = 1. A policyP is an LESP
for N(m0) if all transitions in N(m0) are live under P. The
policy P is said to be minimally restrictive if for every LESP P̂
:Nn × T → {0, 1} for N(m0), the following condition holds:
∀mi ∈ Nn, ∀t ∈ T,P(mi, t) ≥ P̂(mi, t). The set

Δ(N) = {m0 : ∃ an LESP for N(m0)}
represents the set of initial markings for which there is an LESP
for a PN structure N . The set Δ(N) is control invariant with
respect to N , that is, if m1 ∈ Δ(N), tu ∈ Te(N,m1) ∩ Tu and

m1 tu→m2 in N , then m2 ∈Δ(N). Equivalently, only the firing
of a controllable transition at any marking in Δ(N) can result
in a new marking that is not in Δ(N). There is an LESP for
N(m0) iffm0 ∈ Δ(N). Ifm0 ∈ Δ(N), the LESP that prevents
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Fig. 1. PN structure N1 /∈ H.

the firing of a controllable transition at any marking when its
firing would result in a new marking that is not in Δ(N) is the
minimally restrictive LESP for N(m0) [3].

A supervisory policyP : Nn × T → {0, 1} is an MM-policy
if ∀m̂ ≥m, ∀t ∈ T,P(m̂, t) ≥ P(m, t), that is, if a transition
is permitted by an MM-policy at a marking, it will be permitted
at a larger marking as well. If an MM-policy that is an LESP for
N(m0) is also an LESP for N(m̂0), ∀m̂0 ≥m0, then it is said
to be an MM-LESP for N(m0). The set

ΔM (N) = {m0 : ∃ an MM-LESP for N(m0)}

denotes the set of initial marking for there is an MM-LESP for
the PN structure N . It follows that ΔM (N) ⊆ Δ(N).

A set of markings M⊆ Nn is said to be right-closed if
((m1 ∈M) ∧ (m2 ≥m1)⇒ (m2 ∈M)). A right-closed set
M is uniquely identified by its finite set of minimal elements
denoted bymin(M). The empty set is right-closed by definition;
and ΔM (N) ⊆ Δ(N) is right-closed for any PN structure N .

The H-class of PN structures is identified by the following
structural properties: 1) for each place, the weights associated
with the outgoing arcs that terminate on uncontrollable tran-
sitions must be the smallest of all outgoing arc weights; and
2) the set of input places to each uncontrollable transition is
no larger than the set of input places of any transition, which
shares a common input place with it. Formally stated, let Ω(t)
= {t̂ ∈ T |•t ∩• t̂ �= ∅} denote the set of transitions that share
a common input place with t ∈ T for a PN structure N =
(Π, T,Φ, F ). A PN structureN ∈ H iff∀p ∈ Π,∀tu ∈ p• ∩ Tu,
we have (Γ(p, tu) = mint∈p• Γ(p, t)) ∧ (∀t ∈ Ω(tu),

• tu ⊆• t).
For these classes of PNs, Δ(N) is right-closed [7].

III. RIGHT-CLOSURE OF Δ(N)

In Section I, we noted that the H-class of PN structures is
the largest among the classes identified in [5]–[8] for which
the existence of an LESP is decidable and for which Δ(N) is
right-closed. Consider the PN structure N1 shown in Fig. 1.
It does not belong to H-class as the outgoing arcs of place
p1 violate the H-class restriction. However, it can be ver-
ified that Δ(N1) = {m ∈ N5 : (m(p1) +m(p2) +m(p3) +
m(p4) +m(p5) ≥ 1)} is indeed right-closed. This example
illustrates that there are PN structures that do not belong to
H-class but still have a right-closed Δ(N). In this section, we

present a necessary and sufficient condition for the right-closure
of Δ(N) for an arbitrary PN structure N .

Recall that for an uncontrollable transition tu, INtu

is the smallest integer-valued vector that state enables
tu. Let P = Int(conv({INtu}tu∈Tu

)) (resp., k ×P =
Int(conv({k × INtu}tu∈Tu

)), k ∈ N) denote the set of
integer-valued vectors in the convex hull of the columns of the
input matrix IN (resp., k times the columns of the input matrix
IN) that correspond to the uncontrollable transitions in N .

Let Ĥ be a class of PN structures where for any N ∈ Ĥ

(m ∈ Δ(N))⇒ ((m+P) ⊂ Δ(N)). (2)

That is, if m ∈ Δ(N), then ∀x ∈ P, (m+ x) ∈ Δ(N). The
operator “+” in (2) denotes the Minkowski sum as defined in
Section II. Note that recursing over the expression in (2) will give
us an equivalent condition: (m ∈ Δ(N))⇒ ((m+ k ×P) ⊂
Δ(N)), k ∈ N. The following result shows that for anyN ∈ Ĥ,
the set Δ(N) is right-closed; and if Δ(N) right-closed, then

N ∈ Ĥ.
Theorem 1: (N ∈ Ĥ)⇔ (Δ(N) is right-closed).
Proof: (⇒) If Δ(N) = ∅, it is right-closed by definition. If

Δ(N) �= ∅, we establish the result by proving the contrapositive.
Assume Δ(N) is not right-closed. Particularly, assume there
exists m1 ∈ Δ(N) such that (m1 + m̂) /∈ Δ(N). Now, Δ(N)
for a fully controllable PN is right-closed. Therefore, if (m1 +
m̂) /∈ Δ(N), then the set of uncontrollable transitions of N
will be nonempty, and hence P = Int(conv({INtu}tu∈Tu

)) is
a nonempty set. Consider m1 ∈ Δ(N) and let Πc denote the set
of places connected to only controllable transitions (i.e., Π•c ∩
Tu = ∅). The initial token load of all p ∈ Πc can be increased
to an arbitrarily large value and the initial marking will still be
inside Δ(N). This is true because the supervisory policy can act
as if the extra tokens in all p ∈ Πc never existed, and enforce
liveness in the same way as for m1. Therefore, without loss of
generality we can assume that the marking (m1 + m̂) /∈ Δ(N)
has additional tokens in only those places that are connected to
at least one uncontrollable transition. This implies, as P is the
convex hull of the columns of the input matrix that correspond
to the uncontrollable transitions, that there exists an integer k
such that (m1 + m̂) ∈ (m1 + k ×P). On the other hand, we
have (m1 + m̂) /∈ Δ(N). Then by the characterization of Ĥ

class above, we have N /∈ Ĥ .
(⇐) We prove this via the contrapositive. Assume N /∈ Ĥ .

This means that there exists anm ∈ Δ(N) for which there exists
a (larger) marking inside the set m+P at which the PN is not
live. This implies Δ(N) is not right-closed. �

Coming back to the PN N1 in Fig. 1, the set P for N1 consists
of five vectors of N5, viz., {(1 0 0 0 0)T , (0 2 0 0 0)T , (0 0 1 0
0)T , (0 0 0 1 0)T , (0 0 0 0 1)T }. For any marking m ∈ Δ(N1)
(i.e., m(p1) +m(p2) +m(p3) +m(p4) +m(p5) ≥ 1), it is
easy to verify that m∗ ∈m+P satisfies m∗(p1) +m∗(p2) +
m∗(p3) +m∗(p4) +m∗(p5) ≥ 1. Thus, N1 ∈ Ĥ.

In Section V, we prove that the necessary and sufficient
condition of Theorem 1 cannot be tested for an arbitrary PN
structure. To establish this, we need the results presented in
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Fig. 2. PN structure Ñ = (Π̃, T̃ , Φ̃, Γ̃) used for deciding “Is Δ(N) =
∅?”.

the following section where we consider the decidability of “Is
Δ(N) = ∅?” and “Is Δ(N) �= ∅?” for arbitrary PN structures.

IV. “IS Δ(N) = ∅?” AND “IS Δ(N) �= ∅?” ARE

NOT SEMIDECIDABLE

From an arbitrary PN structure N = (Π, T,Φ,Γ), we con-
struct Ñ = (Π̃, T̃ , Φ̃, Γ̃) as follows.

1) Create m+ 1 places such that Π̃ = Π ∪ {πi}m+1
i=1 .

2) Create n+ 2 transitions such that T̃ ← T ∪ {tm+i}n+2
i=1 ,

where with the exception of tm+1, all other newly added
transitions are uncontrollable.

3) Create m+ 1 uncontrollable transitions: T̃ ← T̃ ∪
{τi}m+1

i=1 .
4) The arcs are as follows:

Φ̃←Φ ∪{(tm+1, pi)}ni=1∪{(ti,πi),(πi, τi),(πi, τm+1)}mi=1

∪ {(pi, tm+2+i),(πm+1, tm+2+i),(tm+2+i, πm+1)}ni=1

∪ {(tm+2, πm+1), (πm+1, tm+2), (πm+1, tm+1)}
∪ {(τm+1, πm+1)}.

5) The arc weights are: {Γ̃((tm+1, pi) =m0
i )}ni=1, Γ̃(πm+1,

tm+2) = 2. All other weights for the newly added arcs are
unitary.

The PN structure Ñ = (Π̃, T̃ , Φ̃, Γ̃) that results from this
construction is shown in Fig. 2. N is an arbitrary PN and its
structure is not drawn in the figure. The places {pi}ni=1 and
transitions {ti}mi=1 denote the places and transitions of N .

Recall from Section II that a transition tk is live under the
supervision ofP if ∀mi ∈ R(N,m0,P),∃mj ∈ R(N,mi,P)
such that tk ∈ Te(N,mj) and P(mj , tk) = 1. A policy P is an
LESP for N(m0) if all transitions in N(m0) are live under P.

Let m̃0 be an initial marking of Ñ . Transition τm+1 is live
iff a marking that places at least a token in each of the places
πi, for all i ∈ {1, 2, . . . ,m}, is reachable from any marking

Fig. 3. PN structure N = (Π, T,Φ,Γ) used for deciding “Is Δ(N) right-
closed?”.

that is reachable from m̃0. Firing of the uncontrollable tran-
sition τi can empty the tokens in πi, for all i ∈ {1, 2, . . . ,m}.
Therefore, τm+1 is live iff the token load of places πi for all
i ∈ {1, 2, . . . ,m} can be replenished as often as necessary.
Since transition ti is the input transition of the place πi for
all i ∈ {1, 2, . . . ,m}, τm+1 is live iff PN N can be made
live. More formally, if m0 is an initial marking of N , then
τm+1 is live iff there exists a supervisory policy P such that
∀ti ∈ T, ∀mk ∈ R(N,m0,P),∃mj ∈ R(N,mk,P) such that
ti ∈ Te(N,mj) andP(mj , t) = 1. This observation can also be
restated as: a marking that places one (or arbitrarily large number
of tokens) token in πm+1 is reachable from any marking that is
reachable from the initial marking iff N(m0) can be made live
by supervision.

Consider the place πm+1 and assume for the sake of discus-
sion that tm+1 is control disabled. If πm+1 has more than one
token, the uncontrollable transition tm+2 can fire repeatedly till
there is just one token in πm+1, that is, if a policy disables tm+1,
then a marking at which πm+1 has 1 token is always reachable
from a marking at which πm+1 has k > 0 tokens.

Besides, if πm+1 has a nonzero token load, then
the places {p1, p2, . . . , pn} in PN N can be emptied
through an appropriate number of firings of members of
the uncontrollable transition set {tm+3, tm+4, . . . , tm+n+2}.
In other words, if a policy disables tm+1 at mark-
ing m of Ñ for which m(πm+1) �= 0 and m(pi) �= 0
for some i ∈ {1, . . . , n}, then a marking at which the places
{p1, p2, . . . , pn} are all empty is reachable from m.

We usem ∈ Ncard(˜Π) to represent this marking of Ñ at which
πm+1 has one token, whereas all other places have zero tokens
in them. We use the ideas from the preceding two paragraphs
to synthesize a policy that does not control enable transition
tm+1 until the PN reaches the marking m. At m, the firing of
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the transition tm+1 places m0
i -many tokens in place pi, where

i ∈ {1, 2, . . . , n}. This is akin to initializing the PN structure
N with a marking m0, whereas the rest of the places of Ñ are
all empty. Here, we have used m0 to denote the marking for
which m0(pi) = m0

i . Following the discussion above, a token
(or arbitrarily large number of tokens) is guaranteed to be added
to place πm+1 iff m0 ∈ Δ(N). Once there is a token in πm+1,
transition tm+1 cannot be control enabled until the PN reaches
the marking m, and the sequence can be repeated, making Ñ
live. This is the main idea of the proofs given in the following.

Observation 1: (Δ(Ñ) �= ∅)⇔ (m ∈ Δ(Ñ))

Proof: (⇒) If there is a marking m1 ∈ Δ(Ñ), then fol-
lowing the introductory discussion above, there is a marking
m2 ∈ Δ(Ñ) reachable from m1 under the supervision of any
LESP for Ñ(m1), where m2(πm+1) �= 0. Additionally, ∃σu ∈
({tm+2, tm+3, . . . , tm+n+2} ∪ {τ1, τ2, . . . , τm})∗ (note, σu is
string of uncontrollable transitions) such that m2 σu→m, that is,
m is reachable from m2. Since m2 ∈ Δ(Ñ), and m2 σu→m,
where σu is a string of uncontrollable transitions, by control
invariance, it follows that m ∈ Δ(Ñ).
(⇐) If m ∈ Δ(Ñ) then Δ(Ñ) �= ∅ by definition. �
Observation 2: (m ∈ Δ(Ñ))⇔ (m0 ∈ Δ(N))

Proof: (⇒) If m ∈ Δ(Ñ), then since Te(Ñ ,m) = {tm+1},
we have m

tm+1−→ m1 under the supervision of any LESP for
Ñ(m). At m1, the PN structure N is initialized with a marking
m0, whereas the rest of the places of Ñ are all empty. Since
m1 ∈ Δ(Ñ), it follows that m0 ∈ Δ(N). If it were otherwise,
the transition τm+1 cannot be made live in Ñ(m1), and we must
conclude that m1 /∈ Δ(Ñ).
(⇐) If m0 ∈ Δ(N), there is an LESP P for N(m0). This

LESP is used to construct an LESP P̃ for Ñ(m) as follows for

m ∈ Ncard(˜Π), t̃ ∈ T̃ :

P̃(m, t̃) =

⎧⎨
⎩
P(m(Π), t̃) if t̃ ∈ T

1 if t̃ ∈ (T̃ − T − {tm+1})
1 iff (t̃ = tm+1) ∧ (m = m)

where m(Π) denotes the marking of the subnet N . The fact that
P̃ is an LESP for Ñ(m) follows directly from the construction
of Ñ and the fact that P is an LESP for N(m0). �

Theorem 2:
1) “Is Δ(N) �= ∅?” is not semidecidable.
2) “Is Δ(N) = ∅?” is not semidecidable.
Proof: By Observations 1 and 2, we have (Δ(Ñ) �= ∅)⇔

(m0 ∈ Δ(N)). This result follows directly from the fact that
neither “Is m0 ∈ Δ(N)?” nor “Is m0 /∈ Δ(N)?” is semidecid-
able [5]. �

In the following section, we use Theorem 2 to prove that “Is
Δ(N) right-closed?” is not decidable.

V. “IS Δ(N) RIGHT-CLOSED?” IS NOT DECIDABLE

In this section, we use the fact that Δ(N) = ∅ is right-
closed to prove that “Is Δ(N) right-closed?” is not decidable.
We construct a partially controlled PN N = (Π, T,Φ,Γ) from
an arbitrary partially controlled PN N = (Π1, T1,Φ1,Γ1) as
follows (cf. Fig. 3):

1) Createm+ n+ 2places such thatΠ = Π1 ∪ {πi}m+2
i=1 ∪

{βi}ni=1.
2) Create 3n+m+ 1 transitions: T = T1 ∪ {τi}m+1

i=1 ∪
{γi}ni=1 ∪ {εi}ni=1 ∪ {δi}ni=1, where {γi}ni=1 and {δi}ni=1
are controllable transitions, and {τi}m+1

i=1 and {εi}ni=1 are
uncontrollable transitions.

3) The arcs are as follows:

Φ1 = Φ ∪ {(ti, πi), (πi, τi), (πi, τm+1), (πm+2, ti),

(ti, πm+2)}mi=1

∪ {(πm+2, γi), (γi, βi), (βi, εi), (pi, εi),

(δi, pi)}ni=1

∪ {(πm+1, γi), (πm+1, δi), (δi, πm+2)}ni=1.

4) Weights for the newly added arcs are unitary.
The construction can be divided into the following five parts.
1) An arbitrary net N , which is the core of the construction.

Places {pi}ni=1 and transitions {ti}mi=1 belong to PN N
whose structure is not drawn in the construction.

2) The enable place πm+2, which is required to have a
nonzero token load if any transition in N is to be state
enabled.

3) Places {πi}mi=1 and transitions {τi}mi=1 capture the live-
ness property of subnetN as described in the introductory
discussion in Section IV.

4) Places {βi}ni=1 and transitions {γi, εi}ni=1: Each time
a (controllable) γi-transition is permitted to fire, it de-
creases (resp., increments) the token load of its input-
place set (resp., output-place set) {πm+1, πm+2} (resp.,
{βi}). The subsequent firing of the (uncontrollable) εi-
transition decrements the number of tokens in place pi
from N by unity.

5) Transitions {δi}ni=1: The firing of a (controllable) δi-
transition increments the token load of place pi. It also
replenishes the tokens in πm+2. In essence, the firing
of a δi-transition cancels the effect of permitting a γi-
transition [cf., Item 4)] on place πm+2, and the effect of
firing of εi-transition on place pi. Since the transitions
{γi, δi}ni=1 are controllable, the supervisory policy can
select which one of them is to be control enabled at any
marking.

The observation that is key to the decidability result in this
section is that there is a marking in Δ(N) iff there is a marking
in Δ(N). The main idea is as follows. Assume there exists a
marking m1 ∈ Δ(N). Let us use m1 to denote the marking of
N that initializes N under m1, with a single token in πm+2, and
zero tokens elsewhere. We argue that (m1 ∈ Δ(N))⇒ (m1 ∈
Δ(N)). Now, starting at m1 the transitions in T1 can be made
live under supervision as m1 ∈ Δ(N). This ensures that the
markings for which the place πm+1 has arbitrarily large number
of tokens are reachable from any marking that is reachable from
m1. For illustration, let us use mj to denote one such marking.

1) At mj , place πm+1 has two tokens, πm+2 has one token,
mj(Π1) ∈ Δ(N) and all other places have zero tokens.
As discussed earlier, mj is reachable from m1. At mj ,
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pick any pi that has a nonzero token load. The correspond-
ing controllable transition γi is state enabled and control
enabled at this marking. In fact, sincem1 ∈ Δ(N), mark-
ings for which γi is state enabled and control enabled are
reachable from mj for every i ∈ {1, . . . n}.

2) We have γ•i = βi and •εi = {pi, βi}. The firing of γi will
remove a token each from πm+1 and πm+2 and add one
token to place βi. Sinceπm+2 had only one token, none of
the transitions in T1 can fire and the marking of N cannot
change. Thus, a marking that state enables the uncontrol-
lable transition εi is reachable from mj . In fact, since
γ•i = βi and •εi = {pi, βi}, following the discussion in
Item 1) above, markings for which εi is state enabled
are also reachable from mj for every i ∈ {1, . . . n}. The
firing of εi will decrease the token load of pi and βi by
one.

3) Following this, the corresponding transition δi is control
enabled. The firing of δi replenishes the token load of pi
and πm+2 by one, effectively cancelling the effect of the
firing of γi and εi on them, as discussed above.

4) Since m1 ∈ Δ(N), the tokens in place πm+1 can be
replenished as often as necessary and the whole pro-
cess can be repeated for each γi, εi, and δi, for all
i ∈ {1, 2, . . . , n}. Thus, markings that state enable and
control enable each of the transitions in N are reachable
from every marking that is reachable from the initial
marking (m1). All transitions in N(m1) are live under
supervision, and Δ(N) �= ∅.

We formally define an LESP in the proof of Observation 3 that
enables the controllable transitions in the sequence discussed in
above items.

Observation 3: (Δ(N) �= ∅)⇔ (Δ(N) �= ∅)
Proof: (⇒) Assume there exists a marking m1 ∈ Δ(N).

Consider another marking m1 of the PN N that initializes a)
the places of N (i.e., {p1, . . . pn}) with token loads identified
by the marking m1, that is m1(Π1) = m1, b) a single token
in πm+2, and c) zero tokens in all other places. We show that
m1 ∈ Δ(N) by constructing an LESP P for N(m1).

Let P be a policy such that ∀tc ∈ T1

(P(m2, tc) = 0)⇔ ((m2 tc−→m3) ∧ (m3(Π1) /∈ Δ(N))).
(3)

That is, it prevents a controllable transition in T1 iff its firing
takes the marking of N outside Δ(N). Since m1 ∈ Δ(N),
all transitions in T1 are live when N(m1) is under the su-
pervision of P. Consequently, from the definition of liveness,
∀k ∈ N, ∀m4 ∈ �(N,m1,P),∃m5 ∈ �(N,m4,P) such that
m5(πm+1) ≥ k, m5(Π1) ∈ Δ(N), and m5(πm+2) = 1.

The supervisory policy P control enables a transition
γi, where i ∈ {1, . . . , n}, at a marking m6 ∈ �(N,m1,

P) iff a) m1 σ−→m6 under the supervision of P, and
#(σ, γi) = #(σ, δi), b) m6(pi) �= 0, c) m6(πm+2) = 1, and
d) m6(πm+1) ≥ 2, that is, if m6 γi−→m7 under the supervision
of P, then Te(N,m7) = {εi} and m7(πm+2) = 0. Here, we
use the notation #(σ, t) to denote the number of occurrences of
transition t in a valid firing string σ.

A transition in the set {δi}ni=1 is control enabled at
m8 ∈ �(N,m1,P) iff i) m8(πm+2) = 0, and ii) ∃m6 ∈
�(N,m1,P) such that m6 γiεi−−→m8 under the supervision of

P, that is, if m8 δi−→m9 under the supervision of P, then
m9(πm+2) = 1 and m9(Π1) ∈ Δ(N).

Thus, following the discussion in the paragraph preceding this
observation, all transitions in N(m1) are live under supervision
of P, and Δ(N) �= ∅.

(⇐) We prove this via the contrapositive. If Δ(N) = ∅, then
τm+1 cannot be made live, and Δ(N) = ∅. �

Observation 4: (Δ(N) �= ∅)⇔ (Δ(N) is not right-closed)
Proof: (⇒) Suppose Δ(N) �= ∅, consider the marking m1

from Observation 3. Next consider a marking m2 > m1, where
m2(p) = m1(p), ∀p ∈ (Π− {βi}ni=1), and m2(βi) ≥m1(pi),
for each pi ∈ Π1. At the marking m2, the uncontrollable transi-
tions in the set {εi}ni=1 can fire as often as necessary to empty all
places in the set {pi}ni=1. Consequently, there can be no LESP
for N(m2), and m2 /∈ Δ(N) while m1 ∈ Δ(N). Therefore, if
Δ(N) �= ∅, it cannot be right-closed.

(⇐) By definition, (Δ(N) = ∅) ⇒ (Δ(N) is right-
closed). �

Theorem 3: “Is Δ(N) right-closed?” is not decidable.
Proof: By Observation 4, we have that (Δ(N) �= ∅) ⇔

(Δ(N) is not right-closed). This result follows directly from
the fact that neither “Is Δ(N) = ∅?” nor “Is Δ(N) �= ∅?” is
semidecidable (by Theorem 2). �

In this section, we proved that “Is Δ(N) is right-closed?”
is not decidable. In the following section, we consider the
decidability of “Is there a (nonempty) right-closed subset of
Δ(N)?”.

VI. “IS THERE A RIGHT-CLOSED SUBSET OF Δ(N)?” AND “
IS THERE NO RIGHT-CLOSED SUBSET OF Δ(N)?” ARE

NOT SEMIDECIDABLE

In this section, we look at procedures for finding right-closed
subsets of Δ(N) for an arbitrary PN N . Every Δ(N), triv-
ially, has the empty set as its right-closed subset. Therefore,
we consider only the nonempty subsets of Δ(N). We use the
construction in Fig. 2. Recall from Section IV that at the marking
m, πm+1 has one token, whereas all other places have zero
tokens in them. In Observation 2, we noted that the supervisory
policy that enforces liveness in Ñ enables tm+1 only after Ñ
has reached the marking m. The marking m is reachable from
any marking larger than m through the firing of uncontrollable
transitions tm+2 to tm+n+2. This observation forms the basis of
the next result.

Observation 5: Let m ≥m, then (Δ(Ñ) �= ∅)⇔ (m ∈
Δ(Ñ)).

Proof: (⇒) By Observations 1 and 2, Δ(Ñ) �= ∅ iff m ∈
Δ(N). Assume Ñ is initialized with the marking m ≥m.

We define a supervisory policy P̃1
as follows. For m ∈

Ncard(˜Π), t̃ ∈ T̃

P̃1
(m, t̃) =

⎧⎨
⎩

1 if t̃ ∈ (T̃ − {tm+1})
0 iff (t̃ = tm+1) ∧ (m �= m)

P̃(m, t̃) iff (t̃ = tm+1) ∧ (m = m).
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Fig. 4. PN N1 ∈ K and N∗1 . We have min(Δ(N1)) = {(1 0 0 0 0)T , (0
1 0 0 0)T , (0 0 1 0 0)T , (0 0 0 1 0)T , (0 0 0 0 1)T }. (a) PN N1 ∈ K.
(b) Transformed PN N∗1 .

The marking m is reachable from all markings in�(Ñ ,m, P̃1
),

and m ∈ Δ(Ñ). Once the PN reaches the marking m,
we switch to the supervisory policy P̃ as defined in Ob-

servation 2. Therefore, ∀t ∈ T̃ , ∀mi ∈ R(N,m, P̃1
),∃mj ∈

R(N,mi, P̃1
) such that t ∈ Te(N,mj) and P̃1

(mj , t) = 1.
Thus, m ∈ Δ(Ñ).

(⇐) Straightforward by definition. �
Observation 6: (Δ(Ñ) �= ∅)⇔ (∃M ⊆ Δ(Ñ), such thatM

is right-closed, and min(M) = {m}).
This observation follows directly from Observation 5. The

next result follows from Observation 6 and Theorem 2.
Theorem 4: For an arbitrary PN N , the following conditions

hold.
1) “Is there a right-closed subset of Δ(N)?” is not semide-

cidable.
2) “Is there no right-closed subset ofΔ(N)?” is not semide-

cidable.
In this section, we proved that determining if there is a right-

closed subset ofΔ(N) for an arbitrary PNN is not decidable. In
the following section, we identify theK-class of PN structures,
which to the best of our knowledge is the largest characterized
class of PNs for which Δ(N) is right-closed.

VII. EXTENSION OF THE H-CLASS OF PNS FOR WHICH

RIGHT-CLOSURE OF Δ(N) IS TESTABLE

Recall the definition of H-class of PNs introduced earlier
in Section II. Let Ω(t) = {t̂ ∈ T |•t ∩• t̂ �= ∅} denote the set of
transitions that share a common input place with t ∈ T for a PN
structure N = (Π, T,Φ,Γ). N ∈ H iff ∀p ∈ Π, ∀tu ∈ p• ∩ Tu

Γ(p, tu) = (min
t∈p• Γ(p, t)) ∧ (∀t ∈ Ω(tu),

• tu ⊆• t). (4)

However, there are PNs that do not belong to H-class but
still have a right-closed Δ(N). As discussed at the beginning
of Section III, the PN N1 of Fig. 1, shown again in Fig. 4(a), is
one such example. We use this example as a motivation for the
procedure to extend theH-class of PNs.

For a given PN N , let T denote the collection of uncon-
trollable transitions that violate the condition in (4). We con-
struct a PN N ∗ = (Π∗, T ∗,Φ∗,Γ∗) from N by changing those

Algorithm 1: ISNINKCLASS?(N ).

1: Construct N ∗ = (Π∗, T ∗,Φ∗,Γ∗) and calculate Δ(N ∗).
2: Change all t ∈ T to uncontrollable transitions. If

Δ(N ∗) is control invariant with respect to all t ∈ T ,
then N ∈ K.

uncontrollable transitions that violate the condition of (4), to
controllable transitions, that is,Π∗ = Π,Φ∗ = Φ,Γ∗ = Γ, T ∗ =
T ∗c ∪ T ∗u, T

∗
c = Tc ∪T , and T ∗u = Tu −T . The resulting PN

N ∗ ∈ H by construction, and therefore Δ(N ∗) is right-closed.
We also have Δ(N) ⊆ Δ(N ∗) as N ∗ has more controllable
transitions as compared toN . Note that forN ∈ H, T is empty.

Observation 7: For an arbitrary PN N , if ∀t ∈ T , ∀m ∈
min(Δ(N ∗)),∃m′ ∈ min(Δ(N ∗)), such thatmax{m, INt}+
C · 1t ≥m′, then Δ(N ∗) = Δ(N).

Proof: For a marking m, the marking max{m, INt} is the
smallest marking greater than or equal to m that state en-
ables transition t. If ∀m ∈ min(Δ(N ∗)), ∃m′ ∈ min(Δ(N ∗))
such that max{m, INt}+C · 1t ≥m′, then the firing of t at
max{m, INt} will result in a marking that is in Δ(N ∗). It fol-
lows that firing of t from any marking larger thanmax{m, INt}
will also result in a marking in Δ(N ∗) (as Δ(N ∗) is right-
closed). Therefore, the minimally restrictive LESP for N ∗(m0)
will control enable t at every marking in Δ(N ∗) and t can
effectively be considered as an uncontrollable transition un-
der its supervision. Consequently, the minimally restrictive
LESP for N ∗(m0) also enforces liveness on N(m0). Thus, we
have (m0 ∈ Δ(N ∗))⇒ (m0 ∈ Δ(N)) and Δ(N ∗) ⊆ Δ(N).
Since N ∗ has more controllable transitions as compared to N ,
we already have that Δ(N) ⊆ Δ(N ∗). Therefore, Δ(N ∗) =
Δ(N). �

It follows from Observation 7 thatΔ(N ∗) = Δ(N) iffΔ(N ∗)
is control invariant with respect to all t ∈ T . Algorithm 1 uses
this observation to define a more general class of PNs, the class
K, for which Δ(N) = Δ(N ∗). It takes in the PN structure N as
input and outputs if N ∈ K or not.

We have the following inclusion relation: H ⊂ K ⊂ Ĥ,
where Ĥ is the set of all PN structures for which Δ(N) is
right-closed, as characterized in Section III. Although “N ∈
Ĥ?” is not decidable (Theorem 3), “N ∈ K?” is decidable by
Algorithm 1.

Theorem 5: Δ(N) is right-closed if N ∈ K.
Proof: Step 2 in Algorithm 1 tests if Δ(N ∗) is control

invariant with respect to the uncontrollable transitions in T . If it
is control invariant, then by Observation 7,Δ(N ∗) ⊆ Δ(N). We
know Δ(N) ⊆ Δ(N ∗) and Δ(N ∗) is right-closed. Therefore,
Δ(N) is right-closed if N ∈ K. �

Fig. 4(a) shows a PN N1 /∈ H, because t2 violates (4).
Thus, we have T = {t2}. The PN N ∗ is shown in Fig. 4(b).
Here, min(Δ(N ∗2)) = {(1 0 0 0 0)T , (0 1 0 0 0)T , (0 0 1
0 0)T , (0 0 0 1 0)T , (0 0 0 0 1)T }. Consider the element
(1 0 0 0 0)T . max{(1 0 0 0 0)T , IN2}+C× 12 = (0 1 0 0
0)T ≥m2. Similarly, ∀mi ∈ min(Δ(N ∗1)),max{mi, IN2}+
C× 12 ∈ Δ(N ∗1). Thus, N1 ∈ K and Δ(N1) = Δ(N ∗1) is
right-closed.
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Fig. 5. PN N2 /∈ K and N∗2 . Δ(N3) = {((m(p1) − m(p2))mod2 = 1)
∨ (m(p2) ≥m(p1)) ∨ (m(p3) ≥ 1)} is not right-closed. (a) PN N2 /∈ K.
(b) Transformed PN N∗2 .

Fig. 6. PN N3 /∈ K and N∗3 . We have min(Δ(N3)) = {(1 0 0 0 0)T , (0
0 1 0 0)T , (0 0 0 0 1)T }. (a) PN N3 /∈ K. (b) PN N∗3 .

The PN N2, in Fig. 5(a), is neither in H-class
nor in K-class. We have min(Δ(N ∗2)) = {(1 0 0)T , (0
1 0)T , (0 0 1)T }. For m1 and m2, we can see
that max{m1, IN2}+C× 12 = (0 0 0)T /∈ Δ(N ∗2) and
max{m2, IN2}+C× 12 = (0 0 0)T /∈ Δ(N ∗2). Thus, N2 /∈
K. It can be shown that Δ(N2) = {((m(p1)−m(p2))mod2 =
1) ∨ (m(p2) ≥m(p1)) ∨ (m(p3) ≥ 1)}. Δ(N2) is not right-
closed since (0 1 0)T ∈ Δ(N2), whereas (1 1 0)T /∈ Δ(N2).

The PN N3, in Fig. 6(a), belongs neither to H- nor
to K-class. min(Δ(N ∗3)) = {(1 0 0 0 0)T , (0 0 1 0 0)T ,
(0 0 0 1 0)T , (0 0 0 0 1)T }. We have max{(0 0 0
1 0)T , IN2}+C× 12 = (0 0 0 0 0)T /∈ Δ(N ∗3). Thus,

N3 /∈ K. In fact, (0 0 0 1 0)T
t4t2−−→ (0 0 0 0 0)T .

Since t4 is uncontrollable and (0 0 0 0 0)T /∈ Δ(N3), (0 0 0 1
0)T /∈ Δ(N3). For this example, we haveΔ(N3) = {(m(p1) ≥
1) ∨ (m(p3) ≥ 1) ∨ (m(p5) ≥ 1)}, which is right-closed, and
min(Δ(N3)) = {(1 0 0 0 0)T , (0 0 1 0 0)T , (0 0 0 0 1)T }.
The set P, introduced in Section III, for N3 consists of five
vectors in N5 in the set {(0 1 0 1 0)T , (1 0 0 0 0)T , (0 0 1
0 0)T , (0 0 0 1 0)T , (0 0 0 0 1)T }, corresponding to all un-
controllable transitions, respectively. It is not hard to verify that
(m ∈ Δ(N3))⇒ ((m+P) ∈ Δ(N3)), which in turn implies

that N3 ∈ Ĥ.
These examples illustrate that N ∈ K is only a sufficient

condition for right-closure of Δ(N). Indeed, we proved in
Theorem 3 that determining if Δ(N) is right-closed for an
arbitrary PN N is not decidable.

Till now, we showed that restricting the properties of Δ(N)
does not result in decidable instances of the problem of existence

of an LESP for N(m0). In the following section, we focus on a
restricted class of LESPs, i.e., MM-LESP, whose existence for
arbitrary PNs is proved to be decidable.

VIII. MM-LESP FOR ARBITRARY PNS

An LESP P for N(m0) is an MM-LESP if 1) ∀m̂ ≥
m, ∀t ∈ T,P(m̂, t) ≥ P(m, t), and 2) P is also an LESP
for N(m̂0) for any m̂0 ≥m0. For a PN structure N , the
set ΔM (N) := {m0 ∈ Nn : ∃ an MM-LESP for N(m0)} is a
right-closed subset ofΔ(N). As an example, for the PN structure
N1 shown in Fig. 1, Δ(N1) = {m ∈ N5 : (m(p1) +m(p2) +
m(p3) +m(p4) +m(p5) ≥ 1)}, andΔM (N1) = Δ(N1). The
trivial policy of enabling all transitions is an MM-LESP for
N(m0) for any m0 ∈ Δ(N). There are some known classes
of PNs for which ΔM (N) = Δ(N), and the existence of the
minimally restrictive LESP, which is also an MM-policy, for
N(m0) is decidable [5]–[8].

We are interested in determining whether there is an MM-
LESP for an arbitrary PN N(m0) (i.e., “Is m0 ∈ ΔM (N)?”
and “Is m0 /∈ ΔM (N)?”). We present a (decidable) neces-
sary and sufficient condition for the existence of an MM-
LESP for N(m0). This result involves the coverability graph
G(N(m0),P) = G(V,A,Ψ), which is essentially the Karp–
Miller tree, where the duplicate nodes are merged as one (cf., [5,
Fig. 1]). More formally, the coverability graph of a PN N(m0)
under the supervision of an MM-policy P is a directed graph
G(N(m0),P) = (V,A,Ψ), where V is the set of vertices, A is
the set of directed edges, and Ψ : A→ V × V is the incidence
function. For each a ∈ A, if Ψ(a) = (vi, vj), then the directed
edge a is said to originate (terminate) at vi (vj) (cf., [5, Figs. 1
and 2]). Since each vertex in the coverability graph has at most
one outgoing edge labeled by each transition inT , directed paths
in the coverability graph can be unambiguously identified by
strings in T ∗. If there is a path from vi ∈ V to vj ∈ V with label

σ∗ ∈ T ∗ in G(N(m0),P), we denote it as vi
σ∗−→ vj . Following

[5], we say G(N(m0),P) satisfies the path requirement if
∃v1, v2 ∈ V,∃σ1, σ2 ∈ T ∗, such that 1) v1

σ1−→ v2
σ2−→ v2, 2)

x(σ2) ≥ 1, that is, all transitions in T appear at least once in σ2,
and 3) Cx(σ2) ≥ 0, where x(•) ∈ Nm is an m-dimensional
vector, which represents the number of occurrences of each
t ∈ T in the string argument.

Theorem 6: There is an MM-LESP forN(m0) iff∃Δ̂(N) ⊆
Δ(N), such that the following conditions hold:

1) m0 ∈ Δ̂(N);
2) Δ̂(N) is control invariant with respect to N ;
3) Δ̂(N) is right-closed;
4) ∀mi ∈ min(Δ̂(N)), G(N(mi), P) satisfies the

path requirement, that is, ∀mi ∈ min(Δ̂(N)), there
is a path v0

σ1→ v1
σ2→ v1, in the coverability graph

G(N(mi),P) = (V,A), such that x(σ2) ≥ 1 and
Cx(σ2) ≥ 0, where 1 is the m-dimensional vector of
all ones, P ensures the reachable markings never leaves
Δ̂(N).

Proof: (Only If) Let Δ̂(N) = ΔM (N). Since there is an
MM-LESP for N(m0), it follows that m0 ∈ Δ̂(N). By defini-
tion, Δ̂(N) (= ΔM (N)) is right-closed. Suppose m1 ∈ Δ̂(N)
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and m1 tu−→m2 for some tu ∈ Tu, then it must be that m2 ∈
Δ̂(N) (= ΔM (N)), as well. Otherwise, the supervisory policy
will not be an MM-LESP for m2. Therefore, Δ̂(N) is control
invariant with respect to N . In fact, using the same argument, it
must be true that the supervisory policy disables any controllable
transitions that result in a marking that is not in the set Δ̂(N).
The supervisory policy P that ensures the reachable marking
never leaves Δ̂(N) = ΔM (N) is an MM-LESP for N(m0).
From [5, Lemma 5.13], we note that the path requirement of
Theorem 6 is satisfied, as well.

(If) Suppose there is a right-closed, control invariant subset
Δ̂(N) ⊆ Δ(N), such that m0 ∈ Δ̂(N) and each minimal el-
ement in min(Δ̂(N)) satisfies the path requirement addressed
in Theorem 6. We consider a supervisory policy P for N(m0),
which prevents any controllable transition whose firing will take
the marking outside Δ̂(N), and show that P is a MM-LESP.

Suppose there exists an m ∈ R(N,m0,P) and t ∈ T such
that P(m, t) = 1. Since this supervisory policy prevents a con-
trollable transition iff its firing takes the marking outside Δ̂(N),
it implies that ∃mj ∈ min(Δ̂(N)) such that max{m, INt}+
C× 1t ≥mj . Now consider all markings larger than m.
For all m̂ ≥m,max{m̂, INt}+C× 1t ≥ max{m, INt}+
C× 1t ≥mj . Since the markings are in Δ̂(N) after the firing of
t from all m̂ ≥m, we haveP(m̂, t) = 1. Hence the supervisory
policy is MM.

Since Δ̂(N) is control invariant with respect to N , and its
minimal elements satisfy the path requirement, there exists an
LESP for all markings in Δ̂(N) [3, Th. 5.1]. On the other
hand, the right-closure property of Δ̂(N) indicates that if m0 ∈
Δ̂(N) then ∀m̂0 ≥m0, m̂0 ∈ Δ̂(N), as well. Thus,P enforces
liveness for N(m̂0), for any m̂0 ≥m0. Therefore, the policy is
an MM-LESP. �

Algorithm 4, which strongly parallels the procedure in [5,
Fig. 8], is a procedure for determining the largest set Δ̂(N) that
satisfies the properties listed in Theorem 6. LetΔf (N) ⊇ Δ(N)
denote the set of all initial markings for which an LESP exists for
N when all transitions are assumed to be controllable. Paper [3]
proved that Δf (N) is right-closed and is computable. Δf (N)
is the initial estimate of Δ(N). Algorithm 4 finds, if it exists, by
brute force, the largest right-closed control invariant subset of
Δf (N), whose minimal elements satisfy the path requirement.
The current estimate of Δ(N) at any point in the algorithm is
denoted by Υ̂. If any of the two properties—control invariance
or the path requirement on the coverability graph—is violated
then the minimal element that violated the condition is replaced
by the smallest set of elements larger than that element, and
Υ̂ is appropriately modified. This process is repeated till we
find ΔM (N) or till m0 drops out of Υ̂. Algorithms 2 and 3,
respectively, present procedures for “bumping-up” the minimal
elements when the control invariance and path requirement are
violated. They take the PN structure N and the current estimate
Υ̂ as inputs and, respectively, output the largest subset of Υ̂
that satisfies the control invariance and path requirement. In
Algorithm 4, the PN structure N is the input and the subset
Δ̂(N) for N(m0) is the output.

Algorithm 2: BUMPUPFORCONTROLINVARIANCE(N, Υ̂).

1: while ∃tu ∈ Tu, ∃m̃i ∈ min(Υ̂) such that
(max{INtu , m̃

i}+C× 1tu) /∈ Υ̂ do
2: Replace m̃i by a set of k − 1 vectors {m̂l}k−1l=1

where for each j ∈ {1, 2, . . . , k} − {i}, create a new
marking m̂l, given by the expression m̂l = m̃i +
max{0, m̃j − (max{IN× 1tu , m̃

i}+C× 1tu)}.
3: Replace the resulting set of {m̃i}i vectors by their

minimal elements, and modify the value of k to
equal the size of the minimal set of vectors. Υ̂ is the
right-closed set identified by this minimal set of
vectors.

4: end while

Algorithm 3: BUMPUPFORPATHREQUIREMENT(N, Υ̂).

1: for m̃i ∈ min(Υ̂) where G(N(m̃i), P̃
̂Υ) does not have

the path do
2: Define a right-closed set Υ, where

min(Υ) = (min(Υ̂)− {m̃i}) ∪ {m̃i + ω × 1j |j ∈
{1, 2, . . . , n}}, where 1j the unit-vector where the
j-th component is unity.

3: Replace m̃i by the set:

{m̃i+1j |j ∈ {1, 2, . . . , n}, G(N(m̃i+ω×1j), P̃Υ)

satisfies the path requirement} (5)

4: end for
5: Replace the resulting set of {m̃i}i vectors by their

minimal elements, and modify the value of k to equal
the size of the minimal set of vectors. Υ̂ is the
right-closed set identified by this minimal set of vectors.

Algorithm 2 aims to compute the supremal controllable subset
of the right closed set Υ̂ with respect to the PN structure N . This
supremal controllable subset is also right-closed. Consequently,
when there is an element m̃i that violates the control invariance
requirement, it is elevated by an appropriate minimal amount, as
stated in Step 2. During this elevation process, it might happen
that we get some minimal elements that are ordered (that is,
m̃i ≥ m̃j for some i, j). Step 3 trims the set of minimal elements
of the current version of Υ̂ to ensure that only the smallest
elements are retained. This process proceeds until (the current
version of) Υ̂ is control invariant.

Proceeding under the stipulation that (the current version of)
Υ̂ is control invariant with respect to N , for any m0 ∈ Υ̂, there
is a supervisory policy P̃

̂Υ that ensures R(N,m0, P̃
̂Υ) ⊆ Υ̂. If

∀m̃i ∈ min(Υ̂), the required path condition in G(N(m̃i), P̃
̂Υ)

is satisfied, then P̃
̂Υ is an LESP for N(m0) for any m0 ∈ Υ̂

(cf., [5]).
In Algorithm 3, when there exists an element m̃i ∈ Nn where

G(N(m̃i), P̃
̂Υ) does not have the required path, it should be

elevated by an appropriate set of unit vectors. Step 2 identifies
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Algorithm 4: Test for Existence of the Subset Δ̂(N ) for
N(m0).

1: Υ̂ = Δf (N), and let {m̃i}ki=1 = min(Υ̂).
2: while ((∃tu ∈ Tu,∃m̃i ∈ min(Υ̂), such that

max{m̃i, INu}+C · 1u /∈ Υ̂) ∨ (∃m̃i ∈ min(Υ̂)

such that G(N(m̃i), P̃
̂Υ) does not have the path

requirement)) ∧ (m0 ∈ Υ̂) do
3: BUMPFORCONTROLINVARIANCE(N, Υ̂)
4: BUMPFORPATHCONDITION(N, Υ̂)
5: end while
6: if m0 /∈ Υ̂ then
7: return (“no solution”);
8: else
9: return Υ̂

10: end if

those among then-many unit vectors that are to be used to elevate
the minimal element m̃i. Specifically, if the placement of an
unbounded number of tokens (i.e., ω-many tokens) in just the
jth place does not result in a coverability graph with the required
path, then the jth unit vector is not used to elevate the minimal
element m̃i. Otherwise, the corresponding vector m̃i + 1j is
retained in the current set Υ, as shown in Step 3. This process
proceeds until all elements satisfy the path requirement.

Theorem 7: The existence of an MM-LESP for an arbitrary
PN N(m0) is decidable.

Proof: The existence (nonexistence) of an MM-LESP for
N(m0) is subject to the existence (resp., nonexistence) of a
proper subset Δ̂(N) which is right-closed, control invariant,
satisfies the path requirement, and contains m0. In Algorithm 4,
we seek a sequence of proper subsets Υ̂ (where Δ̂(N) ⊆ Υ̂ ⊆
Δ(N) ⊆ Δf (N)) using exhaustive search until we find such a
Δ̂(N) or until m0 /∈ Υ̂.

If there is an MM-LESP inN(m0), from [5, Lemma 5.13] we
know that there is a finite set of minimal elements {m̃i}ki=1 that
define a control invariant, right-closed set and satisfy the path
requirement. The k-many, n-dimensional, minimal elements
{m̃i}ki=1 are determined using brute force by Algorithm 4,
in finite time. On the other hand, this process will terminate
when m0 /∈ Υ̂, thus certifying the nonexistence of a candidate
Υ = Δ̂(N) with m0 ∈ Δ̂(N), in finite time; thus proving the
semidecidability of the existence (nonexistence) of a MM-policy
that enforces liveness in an arbitrary partially controllable PN
N(m0). �

Fig. 7(a) presents an example N4(m
0) where Δ(N4) is not

right-closed, but there is an MM-LESP forN(m0). Specifically,
Δ(N4) = {m0 ∈ N5 | (m0(p1) +m0(p3) +m0(p5) ≥ 1) ∨
((m0(p2) +m0(p4))mod2 = 1)}. Here, ΔM (N4) = {m0 ∈
N5 |m0(p1) +m0(p3) +m0(p5) ≥ 1}. The MM-LESP, P ,
will ensure at least one token in {p1, p3, p5}. However, it is to
be noted that P is not the minimally restrictive for N4(m

0)
since ΔM (N4) ⊂ Δ(N5).

On the other hand, the existence of a right-closed subset of
Δ(N)does not guarantee the existence of a MM-LESP. Consider
N5 with initial marking (0 1 0 0 1)T . Following the procedures

Fig. 7. Examples to illustrate features of MM-LESP. (a) PN N4. (b) PN
N5.

explicated in Algorithm 4, we end up with the control invariant
Υ̂ represented by min(Υ̂) = {m̃i}7i=1 = {(1 0 0 0 0)T , (0 2
0 0 0)T , (0 1 1 0 0)T , (0 1 0 1 0)T , (0 0 2 0 0)T , (0 0 1
1 0)T , (0 0 0 2 0)T }. Since the initial marking m0 is not in
Υ̂, there is no MM LESP for N5(m

0). However, there is an
LESP for N5(m

0). Note that Δ(N5) = {m0 ∈ N5|m0(p1) +
m0(p2) +m0(p3) +m0(p4) ≥ 1 or m0(p5)mod2 = 1}. A su-
pervisory policy that ensures that there is at least one token
in {p1, p2, p3, p4} or there are odd tokens in p5 is an LESP.
This example also shows that even if there is no MM-LESP for
arbitrary PN N(m0), there may be an LESP for N(m0).

IX. CONCLUSION

This article is about the existence of an LESP for an arbitrary
PN N(m0), where N = (Π, T,Φ,Γ), and m0 : Π→ N is the
initial marking. The set

Δ(N) := {m0 | ∃ an LESP for N(m0)}
is control invariant with respect to N and plays a critical role
in deciding if there is an LESP for the PN N(m0). Specifically,
there is an LESP for N(m0) iff m0 ∈ Δ(N).

In prior work, we proved that neither the membership nor
the nonmembership of a marking in Δ(N) is semidecidable for
an arbitrary PN structure. In this article, we generalized this
decision problem and showed that neither “Is Δ(N) = ∅?” nor
“Is Δ(N) �= ∅?” is semidecidable.

An integer-valued set of vectors is said to be right-closed
if the presence of a vector in the set implies that all termwise
larger vectors are also in the set. We presented a necessary and
sufficient condition for Δ(N) to be right-closed for an arbitrary
PN. Following this, we showed that “Is Δ(N) right-closed?”
is undecidable for arbitrary PN structures. We also showed that
for arbitrary PN structures the decision problems: “Is there a
right-closed subset of Δ(N)?” and “Is there no right-closed
subset of Δ(N)?” are not semidecidable.

If a transition is control-enabled at some marking under the
supervision of an MM-policy, then it is control enabled at all
larger markings as well. An MM-policy P is an MM-LESP for
N(m0) if it is an LESP for N(m̂0) for all m̂0 ≥ m0 as well.
The set

ΔM (N) := {m0 | ∃ an MM-LESP for N(m0)}
is a right-closed subset of Δ(N) for any PN structure N . After
introducing a class of PN structures for which the set Δ(N) is
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known to be right-closed, we showed that the existence of an
MM-LESP for an arbitrary PN N(m0) is decidable, that is, “Is
m0 ∈ ΔM (N)?” is decidable for any PN structure N . Thus,
starting from the two decision problems: “Is m0 ∈ Δ(N)?”
and “Is m0 /∈ Δ(N)?” that are not semidecidable, we present a
string of results that culminates in decidable subproblems: “Is
m0 ∈ ΔM (N)?” and “Is m0 /∈ ΔM (N)?”.

These results lead to the conclusion that extracting any kind
of information about Δ(N) for an arbitrary PN is most likely
an extremely hard problem. Besides, we can also conclude
that between the properties of the set of initial markings for
which an LESP exists, and the characteristics of the LESP, it
is the characteristics of the LESP that play a prominent role in
determining decidability, that is, if a supervisory policy P is
such that R(N,m,P) (which can have an unbounded number
of markings) can be reduced to a reachability graph with a finite
number of appropriately defined symbolic markings such that
the liveness property is preserved, then the existence of P is
likely to be decidable. MM-LESPs are one instance of such
an LESP in which a reachability graph with possibly infinite
number of markings is reduced to a coverability graph with
finite number of nodes while preserving liveness. The idea is
as follows. Recall that for an MM-LESP ((P(m, t) = 1)⇒
(P(m̂, t) = 1)) ∀m̂ ≥m. Intuitively, from the perspective of
the supervisory policy, every marking larger than m is the same
as m (as the supervisory action is the same). Therefore, all
markings larger than a minimal element (at which the super-
visory policy permits a transition) in the reachability graph can
be replaced by the minimal element itself; thereby reducing an
unbounded number of markings to a single marking. That said, it
might not be the only such class of LESPs. The results presented
in the article open up new avenues of research and provides a
guideline for future research aimed at identifying classes of PNs
for which the existence of an LESP is decidable.
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