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Asymptotic Stability Analysis of Discrete-Time Switched Cascade
Nonlinear Systems With Delays

Xingwen Liu , Member, IEEE, and Shouming Zhong

Abstract—This paper addresses the stability issue of a class of
delayed switched cascade nonlinear systems consisting of sepa-
rate subsystems and coupling terms between them. Some global
and local asymptotic stability sufficient conditions are proposed,
drawing stability conclusion of the overall cascade system from
those of separate systems. These results essentially rely on the fol-
lowing observation: For a general delayed switched nonlinear sys-
tem being asymptotically stable, the trajectories of the perturbed
system asymptotically approach zero if so does the perturbation.
This observation is one of the main results in this paper.

Index Terms—Asymptotic stability, cascade systems,
delays, exponential stability, switched systems.

I. INTRODUCTION

A cascade system consists of some separate subsystems and coupling
terms between them. It is known that cascade systems have broad
applications in various fields and possess many important particular
properties [1]–[4]. In recent years, switched cascade systems, a class of
more complicated cascade systems, have gained much attention from
communities of researchers and engineers [5]–[7]. Since delays and
nonlinearities are frequently encountered in diverse real systems and
may lead to very complex dynamics [8]–[11], this paper will study
switched cascade nonlinear systems (SCNSs) with delays.

To facilitate subsequent analysis, assume that a cascade system
consists of two separate systems and that the state of separate system
1 is not affected by that of separate system 2 but does affect that of
separate system 2 via a coupling term.

The well-known Lyapunov theory is widely employed when stability
of cascade systems is studied [12]–[14]. Due to particular structures
of cascade systems, the used Lyapunov functions or functionals are
usually of particular forms, say, the composite Lyapunov function [1,
Appendix C]. The key idea to construct such a function (functional)
is by constructing a separate function (functional) for each separate
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system. A more general problem naturally arises: Can we draw a
stability conclusion for SCNSs with delays if some stability properties
of separate systems are known?

The above-mentioned problem has been partially solved. For a
discrete-time SCNS, with assumptions that separate system 2 is
exponentially stable and that the coupling term has a linear growth
bound [15, p. 340], it was shown that the overall cascade system is
exponentially stable if and only if so is separate system 1, and is
asymptotically stable if so is separate system 1 [16]. Continuous-time
SCNSs with delays were discussed in [17], and parallel results have
been established. Note that the approach used in [16] and [17] is the
so-called covering method rather that Lyapunov one, and the underlying
reason is that a converse Lyapunov theorem has not been established
in corresponding contexts. The covering method will also be employed
in this paper. Note that the main results in [16] essentially rely on the
following fact: For a nominal delayed switched nonlinear system being
exponentially stable, the trajectories of the corresponding perturbed
system behave as the perturbation, i.e., the perturbed system decays at
an exponential rate if the perturbation decays at an exponential rate and
asymptotically approaches zero if so does the perturbation.

The main motivations of this paper lie in the following three aspects.
1) There exists a wide class of dynamical systems being asymptoti-

cally rather than exponentially stable. Note that the key assumption
in [16] and [17] is separate system 2 being exponentially stable.
We need to consider the case where the separate system is asymp-
totically stable.

2) The core of a covering method is to construct a covering function. In
the situation of separate system 2 being exponentially stable [16], it
is relatively easy to construct such a function, since the information
of exponentially decaying rate can be used. However, if separate
system 2 is just asymptotically stable, constructing such a function
would be more challenging.

3) The basic idea employed here is to view the coupling term of a
cascade system as a perturbation of separate system 2. In order to
establish our main results, we have to study the convergence prop-
erty of delayed switched nonlinear systems subject to perturbations,
and such a topic is also of importance [18], [19].

On this ground, asymptotic stability of delayed SCNSs is studied in
this paper. The main contribution of the paper lies in the following
aspects: 1) It is shown that, with the assumption that the nominal
delayed switched nonlinear system is asymptotically stable, trajectories
of the perturbed system asymptotically approach zero if so does the
perturbation, both global and local cases are investigated. 2) These
findings on convergence are applied to SCNSs with delays, and some
sufficient asymptotic stability conditions are presented. According to
these results, stability of SCNSs can be analyzed in a decomposition
(and, therefore, a simpler) manner.

The rest of this paper is organized as follows. Preliminaries are
presented in Section II. Convergence properties of delayed switched
nonlinear systems subject to perturbations are explored in Section III,
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cascade systems are studied in Section IV, and a numerical example is
provided in Section V. Finally, Section VI concludes this paper.

Notation: AT is the transpose of matrix A. Rn×m denotes the
set of all real matrices of n×m dimension and Rn = Rn×1. R+ =
(0,∞). N0 stands for the set of nonnegative integers and N =
N0\{0}. Nq = {q, q + 1, . . .} for q ∈ N0 and m = {1, . . . ,m} for
m ∈ N. |a| means the absolute value of real number a. ‖x‖∞ =
max{|x1|, . . . , |xn|} is the l∞ norm of vector x ∈ Rn, and for sim-
plicity, it is denoted by ‖x‖. If x(s) is defined on the set {−d, . . . , a}
with a ∈ N0, then for any k ∈ {0, . . . , a}, xk(θ) = x(k + θ)
for θ ∈ {−d, . . . , 0}, ‖xk‖ = maxs∈{k−d,...,k}{‖x(s)‖}, and ‖ϕ‖ =
maxs∈{k0−d,...,k0}{‖ϕ(s)‖}. 0 is the zero vector of dimension n.
col(x,y) = [xT yT]T, with x and y being vectors of arbitrary di-
mensions. Ba = {x ∈ Rn : ‖x‖ < a}. Throughout this paper, the di-
mensions of matrices and vectors will not be explicitly mentioned if
clear from context.

II. PRELIMINARIES

Consider the following switched nonlinear system:

x(k + 1) = fσ(k)

(
k,x(k),x

(
k − dσ(k)(k)

))
, k ≥ k0

x(k) = ϕ(k), k ∈ {k0 − d, . . . , k0} (1)

where k0 ∈ N0,x(k) ∈ Rn is the state, ϕ is an initial vector-valued
function, and σ : Nk0

→ m is a switching signal with m being the
number of subsystems. It is assumed that σ is with switching instant
sequence{ki}∞i=0 satisfyingki ∈ Nk0

, ki > ki−1(i ∈ N). For each l ∈
m, delay dl(k) ∈ {dl, . . . , d̄l}with dl, d̄l ∈ N0 and d = maxl∈m{d̄l}.
f l, l ∈ m, are mappings from Nk0

× Rn × Rn into Rn and satisfy the
following assumption.

Assumption 1 (f l(·,0,0) = 0): There exist two positive scalars
L and δ such that ‖f l(·,x1,y1)− f l(·,x2,y2)‖ ≤ L‖col(x1 −
x2,y1 − y2)‖ ∀xi,yi ∈ Bδ, i ∈ {1, 2}, l ∈ m. That is, f l is locally
Lipschitz at origin in the second and third arguments, uniformly in the
first one. If δ = +∞, then f l is globally Lipschitz.

There are different kinds of switching signals some of which are
defined as follows.

Definition 1 (See [20]): For switching signal σ and any T > k ≥
k0, let Nσ(T, k) be the switching numbers of σ on the open interval
(k, T ). σ is said to has an average dwell time τa and “chatter-bound”
N0 if there exist two positive numbersN0 and τa such thatNσ(T, k) ≤
N0 +

T−k
τa

. A switching signal σ is said to be periodic if there exists an
integer κ > 1 such that σ(k + κ) = σ(k) holds for any k ∈ Nk0

, and
such a minimal κ is called the period of σ. σ is constant if κ = 1.

Listed here are four classes of switching signals, which
are frequently encountered in the literature: S1 = {σ :
σ is an arbitrary switching signal}; S2(N0, τa) = {σ : σ has an
average dwell time τa and chatter bound N0}; S3(κ) = {σ :
σ has a period κ}; S4(τd) = {σ : ki+1 − ki ≥ τd ≥ 2 ∀i ∈ N0}. For
S4(τd), if τd = 1, then S4(1) is actually the set of arbitrary switching
signals, i.e., S4(1) = S1. Hereafter, it is always assumed that S is
arbitrarily chosen from {S1,S2(N0, τa),S3(κ),S4(τd)}.

A system has a certain property over a given set S of switching
signals if the property holds for all switching signals in S. In order to
avoid any ambiguity, we will explicitly point out a system has a property
“ over S′′ when the underlying set S needs to be mentioned, otherwise
“over S” will be omitted.

Definition 2 (See [15]): A continuous function α : [0, a) →
[0,∞) is said to belong to class K if it is strictly increasing and
α(0) = 0, where a is any positive real number or ∞, and it is said to
belong to class K∞ if it belongs to class K and α(r) → ∞ as r → ∞.

A continuous function β : [0, a)× [0,∞) → [0,∞) is said to belong
to class KL if, for each fixed s, the mapping β(r, s) belongs to class
K with respect to r and, for each fixed r, the mapping β(r, s) is
decreasing with respect to s and β(r, s) → 0 as s → ∞.

Definition 3 (See [21]): Consider system (1) and fix S. Denote
x(k; k0,ϕ) the solution to (1) with a starting time k0 and an ini-
tial function ϕ. System (1) is locally uniformly exponentially sta-
ble (LUES) if there exist three scalars α > 0, γ > 1, and δ > 0
such that ‖x(k; k0,ϕ)‖ ≤ αγ−(k−k0)‖ϕ‖ ∀k0 ∈ N0, k ≥ k0, ‖ϕ‖ ≤
δ, σ ∈ S; if δ can be arbitrarily large, then system (1) is globally
uniformly exponentially stable (GUES). System (1) is locally uniformly
asymptotically stable (LUAS) if there exist δ > 0 and a function
β ∈ KL such that ‖x(k; k0,ϕ)‖ ≤ β(‖ϕ‖, k − k0) ∀k0 ∈ N0, k ≥
k0, ‖ϕ‖ ≤ δ, σ ∈ S; if δ can be arbitrarily large, then system (1)
is globally uniformly asymptotically stable (GUAS). It is seen that
β(a, 0) ≥ a holds for 0 < a ≤ δ(0 < a < ∞) if the system is LUAS
(GUAS). Note that when the considered system is locally exponentially
or asymptotically stable, the scalar δ is called domain of attraction.

The following lemma is key to establish main results.
Lemma 1: Assume that (1) is GUAS, i.e., there exists β ∈ KL such

that ‖x(k; k0,ϕ)‖ ≤ β(‖ϕ‖, k − k0). Fix positive scalars δ1, δ2, and
ν with δ1 ≤ δ2. There exists a scalar τ ∈ N such that ‖x(k; k0,ϕ)‖ ≤
β(‖ϕ‖, k − k0) ≤ ‖ϕ‖

ν
∀k ≥ τ + k0, δ1 ≤ ‖ϕ‖ ≤ δ2.

Proof: Suppose that the lemma does not hold. That is, for
any τ̃ ∈ N, there exists a pair (ϕ, τ) with δ1 ≤ ‖ϕ‖ ≤ δ2 and
τ ≥ τ̃ such that β(‖ϕ‖, τ) > ‖ϕ‖

ν
. Particularly, take a sequence

{τ̃i}∞i=1 with τ̃i ∈ N, τ̃i < τ̃i+1, and there correspondingly ex-
ists a sequence of pairs {(ϕi, τi)}∞i=1 satisfying δ1 ≤ ‖ϕi‖ ≤
δ2, τ̃i ≤ τi, and β(‖ϕi‖, τi) > ‖ϕi‖

ν
. Note that ‖ϕi‖ ≤ δ2, and one

has limi→∞ β(δ2, τi) ≥ limi→∞ β(‖ϕi‖, τi) > ‖ϕi‖
ν

≥ δ1
ν

> 0, con-
tradicting the fact limi→∞ β(δ2, τi) = 0. �

The following corollary immediately follows from the previous
lemma.

Corollary 1: Assume that (1) is LUAS with domain of attraction δ.
Lemma 1 holds with δ1 ≤ δ2 ≤ δ.

III. CONVERGENCE OF SWITCHED SYSTEMS WITH PERTURBATIONS

Consider the perturbed system of (1) as

y(k + 1)=fσ(k)

(
k,y(k),y

(
k − dσ(k)(k)

))
+u(k), k ≥ k0

y(k)=ϕ(k), k ∈ {k0 − d, . . . , k0} (2)

where y(k) and u(k) ∈ Rn are the state of system (2) and the pertur-
bation, respectively.

The following lemma is a simple extension of [16, Prop. 1].
Lemma 2: Let L be as in Assumption 1 and μ(s) = 1−Ls

1−L
if L 
=

1 and μ(s) = s if L = 1. Fix ı ∈ Nk0
, σ and φ(k) on the set {ı−

d, . . . , ı}. Denotex(k) andy(k) be solutions to (1) and (2) with k0 = ı
and ϕ(·) = φ(·), respectively. Let e(s; ı) = y(ı+ s)− x(ı+ s), s ∈
N0. It holds that ‖e(0; ı)‖ = 0 and

‖e(s; ı)‖ ≤ μ(s) max
j∈{0,...,s−1}

{‖u(ı+ j)‖} ∀s ∈ N. (3)

For system (2), the following assumption is always imposed onu(k).
Assumption 2: There exist scalars α > 0, γ > 1 such that

‖u(k)‖ ≤ αγ−(k−k0) ∀k ≥ k0.
By Assumption 2 and (3), one has that

‖e(k − ı; ı)‖ ≤ μ(k − ı)αγ−(ı−k0), k ≥ ı. (4)

The identity y(k; k0,ϕ) = y(k; ı,yı) clearly holds for any ı ≥
k0, k ≥ ı, where yı is the solution to system (2) on set {ı−
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d, . . . , ı}. Moreover, if (1) is GUAS, then there exists a β ∈ KL
such that ‖x(k; ı,yı)‖ ≤ β(‖yı‖, k − ı). Then, it follows from the
definition of e that ‖y(k; k0,ϕ)‖ = ‖y(k; ı,yı)‖ ≤ ‖x(k; ı,yı)‖+
‖e(k − ı; ı)‖ ≤ β(‖yı‖, k − ı) + ‖e(k − ı; ı)‖ ∀k ≥ ı. This inequal-
ity, together with (4), implies that

‖y (k; k0,ϕ)‖ ≤ β (‖yı‖ , k − ı)

+ μ(k − ı)αγ−(ı−k0), k ≥ ı ≥ k0 (5)

‖y (k; k0,ϕ)‖ ≤ β (‖yı‖ , 0)
+ μ(k − ı)αγ−(ı−k0), k ≥ ı ≥ k0. (6)

Lemma 3: Pick S and suppose that system (1) is GUAS. The
solution to system (2) is bounded, i.e., for any given ϕ, there exists
a scalar δ̄ > 0 such that ‖y(k; k0,ϕ)‖ < δ̄ ∀k ≥ k0.

Proof: According to [20, pp. 58–59], S4(τd) = S2(1, τa) if τd =
τa. Hereafter, we just discuss the general case S2(N0, τa) without
considering S4(τd) additionally. Pick S from{S1,S2(N0, τa),S3(κ)}.
If switching signal σ : Nk0

→ m belongs to S, then σ : Nk0+b → m
also belongs to S for any b ∈ N. Note that this property of S is very
important to the later reasoning. Indeed, the assumption that system (1)
is uniformly asymptotically stable over S implies the following fact:
For any fixed k0, there exists a function β ∈ KL such that ‖x(k; k0 +
b,ϕ)‖ ≤ β(‖ϕ‖, k − k0 − b) ∀b ∈ N, k ≥ k0 + b holds over S with
ϕ defined on {k0 + b− d, . . . , k0 + b}. This fact will be repeatedly
employed without explicit statement in the sequel.

Suppose for contradiction that the conclusion of this lemma
is false, which implies that there exist some ϕ,u satisfying
‖y(k; k0,ϕ)‖ → ∞ as k → ∞. Therefore, it is always possible to pick
two increasing sequences {ri}∞i=1 and {yri

}∞i=1 satisfying ‖yri
‖ ≥

supk0−d≤k<ri
{‖y(k)‖},limi→∞ ri = ∞, and limi→∞ ‖yri

‖ = ∞.
Let εi = 0.5‖yri

‖. By Lemma 1 (with δ1 = δ2 = ‖yri
‖) and the fact

system (1) being GUAS over S, there exists a sequence {τi}∞i=1 such
that ‖x(k; ri,yri

)‖ ≤ εi for k ≥ ri + τi.
Let ri,j = ri + j(τi + d) for j ∈ N0 and Ii,j = {ri,j−1, . . . ,

ri,j}, Īi,j = {ri,j−1 + τi, . . . , ri,j}, ηi,j = α
∑

k∈Ii,j
γ−(k−k0) for

j ∈ N. For any finite set I = {ı, . . . , ı+ j} ⊂ Nk0
with j ∈ N0,

it holds that maxk∈I ‖e(k − ı; ı)‖ → 0 as
∑

k∈I ‖u(k)‖ → 0 due
to continuous dependence of e on perturbation u. Since ri →
∞, ‖yri

‖ → ∞, and ηi,1 → 0 as i → ∞, there necessarily exists some
l satisfying

∥
∥x

(
k; rl,yrl

)∥∥ ≤ εl ∀k ≥ rl + τl (7)

max
k∈Il,1

‖e(k − rl; rl)‖ < εl. (8)

It follows from (6) and (8) that ‖y(k; k0,ϕ)‖ ≤ β(‖yrl
‖, 0) + εl

for k ∈ Il,1, and follows from (7) and (8) that ‖y(k; k0,ϕ)‖ ≤
‖x(k; rl,yrl

)‖+ ‖e(k − rl; rl)‖ ≤ ‖yrl
‖ for k ∈ Īl,1, that is,

‖yrl,1
‖ ≤ ‖yrl

‖.
The fact ‖yrl,1

‖ ≤ ‖yrl
‖ implies that ‖x(k; rl,1,yrl,1

)‖ ≤
εl ∀k ≥ rl,1 + τl. Moreover, since ηl,2 < ηl,1, one has that
maxk∈Il,2

‖e(k − rl,1; rl,1)‖ < εl. These facts mean that
‖y(k; k0,ϕ)‖ ≤ ‖yrl

‖ for k ∈ Īl,2 and that ‖y(k; k0,ϕ)‖ ≤
β(‖yrl

‖, 0) + εl for k ∈ Il,2. Analogously, one may show
inductively that ‖y(k; k0,ϕ)‖ ≤ ‖yrl

‖ for k ∈ Īl,j and
‖y(k; k0,ϕ)‖ ≤ β(‖yrl,j

‖, 0) + εl for k ∈ Il,j hold for all j ∈ N,
which means that the solution to system (2) is bounded. �

Corollary 2: Pick S and suppose that system (1) is LUAS. The
solution to system (2) is locally bounded, i.e., there exist two pos-
itive scalars δ̂ and δ̄ such that ‖y(k; k0,ϕ)‖ < δ̄ ∀k ≥ k0, ‖ϕ‖ ≤ δ̂,
α ≤ δ̂.

Proof: Since system (1) is LUAS, there exist δ > 0 and a function
β ∈ KL such that ‖x(k; k0,ϕ)‖ ≤ β(‖ϕ‖, k − k0) ∀k0 ∈ N0, k ≥
k0, ‖ϕ‖ ≤ δ, σ ∈ S. Applying Corollary 1 with δ1 = δ2 = δ, one
claims that there exist positive scalars τ and r satisfying the following
properties:

β (δ, k − r) ≤ 0.5δ, ∀k ≥ r + τ (9)

‖e(s; r)‖ ≤ μ(τ + d)αγ−(r−k0) ≤ 0.5δ ∀0 ≤ s ≤ τ + d (10)

with small α. Since y(k; k0,ϕ) continuously depends on ϕ and α on
any finite set, there exists a δ̂ > 0 such that

‖y (k; k0,ϕ)‖ ≤ δ, k0 ≤ k ≤ r, ‖ϕ‖ ≤ δ̂, α ≤ δ̂. (11)

Let r0 = r, rj = r + j(τ + d), Ij = {rj−1, . . . , rj}, and Īj =
{rj−1 + τ, . . . , rj}, j ∈ N. It follows from (9)–(11) that ‖y(k;
k0,ϕ)‖ ≤ β(‖yr‖, k − r) + 0.5δ ∀k ∈ I1, which clearly implies
that ‖y(k; k0,ϕ)‖ ≤ β(δ, 0) + 0.5δ ∀k ∈ I1 and ‖y(k; k0,ϕ)‖
≤ δ ∀k ∈ Ī1.

Repeating a similar process and using mathematical induction princi-
ple, we can show that, for every j ∈ N, the inequalities‖y(k; k0,ϕ)‖ ≤
β(δ, 0) + 0.5δ ∀k ∈ Ij and ‖y(k; k0,ϕ)‖ ≤ δ ∀k ∈ Īj hold, which,
combining (11), means that solution to system (2) is locally bounded
with δ̄ = β(δ, 0) + 0.5δ. �

The following theorem shows that, if system (1) is GUAS, then
solution to system (2) asymptotically converges to zero provided that
Assumption 2 holds.

Theorem 1: Consider system (2) and pick S. Suppose that system
(1) is GUAS and that Assumption 1 holds with δ = +∞. Then, there
exists a function β̃ ∈ KL satisfying

‖y(k; k0,ϕ)‖ ≤ β̃ (θ, k − k0) ∀k ≥ k0, k0 ≥ 0

where θ = max{‖ϕ‖, α}.
Proof: As in the proof of Lemma 3, here we only consider the case

S ∈ {S1,S2(N0, τa),S3(κ)}.
Since system (1) is GUAS, there exists a β ∈ KL such that

‖x (k; k0,ϕ)‖ ≤ β (‖ϕ‖ , k − k0) ∀k0 ∈ N0, k ≥ k0

By Lemma 3, δ̄ = sup‖ϕ‖≤θ,α≤θ,k≥k0
‖y(k; k0,ϕ)‖ exists for any

given θ. Arbitrarily fix ϕ. In view of the definitions of θ and δ̄, the next
inequality naturally holds

‖y (k; k0,ϕ)‖ ≤ δ̄ ∀k ≥ k0. (12)

Pick 0 < q < 1 satisfying β(qδ̄, 0) + q2

2
δ̄ ≤ δ̄. Such a q does

exist since δ̄ > 0 and β(qδ̄, 0) + q2

2
δ̄ approaches zero as so

does q.
By Lemma 1, there exists a sequence {τi}∞i=1 with τi ∈ N such that

β (ς, k − k0) ≤ q

2
ς

∀k0 ≥ 0, k ≥ k0 + τi, q
iδ̄ ≤ ς ≤ qi−1δ̄. (13)

Denote μi = μ(τi + d), with μ being defined in Lemma 2. It is
not difficult to construct two sequences {hi}∞i=1 and {ni}∞i=1 with the
following properties:

hi ∈ N, ni ∈ N, μiθγ
−hi ≤ qi

2
δ̄

hi+1 = hi + ni (τi + d) , i ∈ N. (14)

Indeed, h1 satisfying μ1θγ
−h1 ≤ q

2
δ̄ exists. Then, one can fix

an n1 satisfying μ2θγ
−h2 ≤ q2

2
δ̄ with h2 = h1 + n1(τ1 + d). The

construction is completed by repeating a similar way for any other
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i ∈ N \ {1, 2}. Let hi and ni be the minimal integers satisfying (14).
Note that hi and ni are independent of k0.

The following symbols will be used repeatedly:

hi,j = hi + j (τi + d) , si,j = k0 + hi,j , si = k0 + hi

j ∈ {0, 1, . . . , ni}
Ii,j = {si,j−1, . . . , si,j} , Īi,j = {si,j−1 + τi, . . . , si,j}
Ii,j = {si,j−1, . . . , si,j − d} , j ∈ {1, . . . , ni} . (15)

Clearly, hi,0 = hi−1,ni−1
for i ∈ N\{1} and all hi,j’s are indepen-

dent of k0.
Note that μ(s) is increasing in s and u(k) satisfies Assumption 2. It

follows from (4) and (14) that

‖e (k − si,j−1; si,j−1)‖ ≤ qi

2
δ̄

∀k ∈ Ii,j , i ∈ N, j ∈ {1, . . . , ni} (16)

Now, prove that

‖y (k; k0,ϕ)‖ ≤ qδ̄, k ∈ Ī1,n1
. (17)

By the definition of τ1 and the fact ‖ys1
‖ ≤ δ̄, it follows from (16)

(with i = j = 1) and (5) that

‖y (k; k0,ϕ)‖ ≤ β
(∥∥ys1

∥∥ , k − s1
)
+

q

2
δ̄

≤ q

2

∥
∥ys1

∥
∥+

q

2
δ̄ ≤ qδ̄, k ∈ Ī1,1.

Then, (17) holds if n1 = 1; otherwise suppose that ‖y(k; k0,ϕ)‖ ≤
qδ̄(k ∈ Ī1,j) with j ∈ {1, . . . , n1 − 1}. (5), together with (16),
shows that ‖y(k; k0,ϕ)‖ ≤ β(‖ys1,j

‖, k − s1,j) +
q
2
δ̄ ≤ qδ̄, k ∈

Ī1,j+1, that is, ‖y(k; k0,ϕ)‖ ≤ qδ̄, k ∈ Ī1,j+1. By induction,
‖y(k; k0,ϕ)‖ ≤ qδ̄, k ∈ Ī1,j holds for any j ∈ {1, . . . , n1}.
Therefore, (17) is true.

Next, we will show that for i ∈ N\{1}, it holds that

‖y (k; k0,ϕ)‖ ≤ β
(
qi−1δ̄, 0

)
+

qi

2
δ̄, si < k ≤ si+1 (18)

‖y (k; k0,ϕ)‖ ≤ qiδ̄, k ∈ Īi,ni
. (19)

Prove (18) and (19) for i = 2 first. By condition (17) and the
definition of s2, we have

‖y (k; k0,ϕ)‖ ≤ β
(∥∥ys2

∥
∥ , k − s2

)
+

q2

2
δ̄, k ∈ I2,1 (20)

which, by the definition of τ2, further implies that

‖y (k; k0,ϕ)‖ ≤ q2

2
δ̄ +

q2

2
δ̄ = q2δ̄, k ∈ Ī2,1. (21)

Following a reasoning similar to the process from (20) to (21), and
using the mathematical induction principle, it yields that

‖y (k; k0,ϕ)‖ ≤ β
(∥∥
∥ys2,j

∥
∥
∥ , k − s2,j

)
+

q2

2
δ̄ (22)

k ∈ I2,j , j ∈ {1, . . . n2}
‖y (k; k0,ϕ)‖ ≤ q2δ̄, k ∈ Ī2,j , j ∈ {1, . . . n2} . (23)

Since β is decreasing in the second argument, (22) and (23), respec-
tively, imply that (18) and (19) hold for i = 2. Moreover, following
a very similar manner proving the case i = 2, it is straightforward to
verify that (18) and (19) hold for i+ 1 provided that they hold for
some i ≥ 2. Therefore, by the mathematical induction principle, (18)
and (19) hold for any i ∈ N\{1}.

Inequality (12), together with (18) and the fact β(qδ̄, 0) + q2

2
δ̄ ≤ δ̄,

implies that

‖y (k; k0,ϕ)‖ ≤ δ̄, k0 ≤ k ≤ s2

‖y (k; k0,ϕ)‖ ≤ β
(
qi−1δ̄, 0

)
+

qi

2
δ̄

si < k ≤ si+1, i ∈ N\{1} . (24)

Pick a small positive scalar ε and introduce

β̂ (θ, k) =

⎧
⎨

⎩

δ̄ + εθ, 0 ≤ k ≤ h2

β̂i (θ, k) , hi < k ≤ hi+1, i ∈ N\{1}
(25)

where β̂i(θ, k) = β(qi−1δ̄, 0) + qi

2
(δ̄ + εθ).

It is observed from (25) that, for any fixed θ, β̂(θ, k) monotonically
decreases in k, and approaches zero as k approaches infinity, and for
fixed k, β̂(θ, k) strictly increases in θ since δ̄ is nondecreasing in θ.
Moreover, β̂ is independent of k0.

For any k ≥ 0, define β̃(θ, k) = sup0<r≤θ β̂(r, k). Then, one can
check that β̃(θ, k) strictly increases in θ for any fixed k ≥ 0, and for any
fixed θ, decreases in k and approaches zero as k approaches infinity.
That is, β̃ ∈ KL. β̃ is independent of k0 as so is β̂.

Equation (24) indicates that ‖y(k; k0,ϕ)‖ ≤ β̂(θ, k − k0). It is
clear that β̂(θ, k − k0) ≤ β̃(θ, k − k0) ∀θ ≥ 0, k ≥ k0. Therefore, it
holds that ‖y(k; k0,ϕ)‖ ≤ β̃(θ, k − k0). �

Theorem 1 has the following local version.
Corollary 3: Consider system (2) and fix S. Suppose that system (1)

is LUAS and that Assumption 1 holds. Let θ = max{‖ϕ‖, α}. There
exists a function β̃ ∈ KL and a scalar υ > 0 such that

‖y(k; k0,ϕ)‖ ≤ β̃ (θ, k − k0) ∀k ≥ k0, k0 ≥ 0

for any θ < υ.
Proof: By Corollary 2, there exist two positive scalars δ̂, δ̃ such that

‖y(k; k0,ϕ)‖ < δ̃ ∀k ≥ k0, k0 ≥ 0, ‖ϕ‖ ≤ δ̂, α ≤ δ̂, which further
means that there exists a positive scalar θ̂ < δ̂ such that the supremum
δ̄ = sup‖ϕ‖≤θ̂,α≤θ̂,k≥k0

‖y(k; k0,ϕ)‖ exists and satisfies δ̄ ≤ δ̃.

Clearly, there exists some positive scalar δ < θ̂ such that Assumption
1 holds and that, since system (1) is LUAS, there exists β ∈ KL
satisfying

‖x (k; k0,ϕ)‖ ≤ β (‖ϕ‖ , k − k0) ∀k ≥ k0, k0 ≥ 0, ‖ϕ‖ ≤ δ

Fix ϕ, α with ‖ϕ‖ < δ,α < δ, and θ = max{‖ϕ‖, α} < δ. Thus,
δ̄ = sup‖ϕ‖≤θ,α≤θ,k≥k0

‖y(k; k0,ϕ)‖ exists and satisfies δ̄ ≤ δ̃.

Pick 0 < q < 1 satisfying 0 < β(qδ̄, 0) + q2

2
δ̄ ≤ δ̄ and then deter-

mine, by applying Lemma 1, a sequence {τi}∞i=1 satisfying (13). Let
μi = μ(τi + d) and then construct two sequences {hi}∞i=1, {ni}∞i=1

satisfying condition (14). Finally, define all notations in (15). Now,
following an analogous process from (16) to the end of the proof of
Theorem 1 produces the required conclusion. �

Remark 1: All the results obtained previously can be easily ex-
tended to systems with multiple bounded delays in a similar way.

We are in a position to discuss Assumption 2. One may say that
the constraint ‖u(k)‖ ≤ αγ−(k−k0) is too restrictive. In our context,
if u(k) is upper bounded by a function asymptotically, rather than
exponentially, decaying to zero, then the perturbed system may diverge,
see Example 1 for details.

Example 1: Consider the following scalar system:

x(k + 1) = −x(k) + 0.5x (k − d(k)) + u(k), k ∈ N0. (26)

Define Λ0 = {0} and associate each i ∈ N with a finite set Λi =
{2i − 1, . . . , 2i+1 − 2}. Let d(0) = 0. For k ∈ Λi(i ∈ N), d(k) is
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Fig. 1. Trajectory of (26) with x(0) = 0.8, u0 = 1.

defined in this way: d(2i − 1) = d(2i) = 0, d(k) = 0 for even k ∈
Λi\{2i − 1, 2i}, and d(k) = 1 for odd k ∈ Λi\{2i − 1, 2i}. It is
shown that (26) with u(k) = 0 is asymptotically stable, but not ex-
ponentially stable [22].

Now define a sequence of perturbation {u(k)}∞k=0 with the prop-
erty: u(0) = u0 being given, u(1) = 0.9

2
u0 and u(2) = −0.9u0. For

k ≥ 3, u(k) is defined in the following manner: u(k) = 0.9i

2
u0 for odd

k ∈ Λi\{2i+1 − 2}, u(k) = − 0.9i

2
u0 for even k ∈ Λi\{2i+1 − 2},

and u(2i+1 − 2) = −0.9iu0. With this asymptotically decaying per-
turbation, the perturbed system diverges, as shown in Fig. 1.

IV. STABILITY OF DELAYED SCNSS

In this section, we will apply the proposed results in the previous
section to SCNSs with delays.

Consider the following delayed SCNS:

x̂(k + 1) = f̂σ(k)

(
k, x̂(k), x̂

(
k − d1σ(k)(k)

))
, k ≥ k0 (27a)

x̄(k + 1) = f̄σ(k)

(
k, x̄(k), x̄

(
k − d2σ(k)(k)

))

+ gσ(k)

(
k, x̂(k), x̂

(
k − d3σ(k)(k)

))
, k ≥ k0

x(k) = ϕ(k), k ∈ {k0 − d, . . . , k0} (27b)

where x(k) = col(x̂(k), x̄(k)) with x̂(k) ∈ Rn1 , x̄(k) ∈ Rn2 ,
σ : Nk0

→ m, 0 ≤ d1l(k), d2l(k), d3l(k) ≤ d, and ϕ = col(ϕ̂, ϕ̄),
which means that for each k ∈ {k0 − d, . . . , k0}, ϕ(k) =
col(ϕ̂(k), ϕ̄(k)) with ϕ̂(k) ∈ Rn1 , ϕ̄(k) ∈ Rn2 . The separate
systems of (27) are (27a) and the following equation:

x̃(k + 1) = f̄σ(k)

(
k, x̃(k), x̃

(
k − d2σ(k)(k)

))
, k ≥ k0

x̃(k) = ϕ̃(k), k ∈ {k0 − d, . . . , k0} . (28)

Deleting gσ(k)(k, x̂(k), x̂(k − d3σ(k)(k))) from (27b), one gets
x̄(k + 1) = f̄σ(k)(k, x̄(k), x̄(k − d2σ(k)(k))), which is in fact the
same as (28) except with different notations for states in order to
distinguish the separate and overall systems, respectively.

Assumption 3: gl, l ∈ m, have a linear growth bound, that is, there
exist two positive scalars L and δ such that

‖gl (·,x,y)‖ ≤ L ‖col (x,y)‖ ∀x,y ∈ Bδ, l ∈ m. (29)

Theorem 2: Consider system (27) and fix S. Suppose that As-
sumption 3 holds with δ = ∞ and that f̂ l, f̄ l are globally Lipschitz,

f̂ l(·,0,0) = 0, f̄ l(·,0,0) = 0, l ∈ m. System (27) is GUAS if sys-
tem (27a) is GUES and system (28) is GUAS.

Proof: Fix ϕ = col(ϕ̂, ϕ̄). Since (27a) is GUES, there exist
α > 0, γ > 1 such that ‖x̂(k)‖ ≤ αγ−(k−k0)‖ϕ̂‖ ∀k ≥ k0. Clearly,
‖x̂(k − d1σ(k)(k))‖ ≤ max{α, 1}γd−(k−k0)‖ϕ̂‖ ∀k ≥ k0.

Let u(k) = gσ(k)(k, x̂(k), x̂(k − d3σ(k)(k))). By Assumption 3,
we have

‖u(k)‖
≤ Lmax

{‖x̂(k)‖ ,∥∥x̂(k − d3σ(k)(k))
∥
∥}

≤ Lmax
{
αγ−(k−k0) ‖ϕ̂‖ ,max {α, 1} γd−(k−k0) ‖ϕ̂‖}

≤ Lmax {α, 1} γd−(k−k0) ‖ϕ̂‖
= α̂γ−(k−k0) ‖ϕ̂‖

with α̂ = Lmax{α, 1}γd.
Note that (28) is GUAS. Let ϕ̃ = ϕ̄. By Theorem 1, there exists a

function β ∈ KL satisfying

‖x̄(k; k0, ϕ̄)‖ ≤ β (max {‖ϕ̄‖ , α̂ ‖ϕ̂‖} , k − k0) , ∀k ≥ k0

where x̄(k; k0, ϕ̄) is the solution to (27b). Hence,

‖x(k; k0,ϕ)‖
≤ ‖x̂(k; k0, ϕ̂)‖+ ‖x̄(k; k0, ϕ̄)‖
≤ αγ−(k−k0) ‖ϕ̂‖+ β (max {‖ϕ̄‖ , α̂ ‖ϕ̂‖} , k − k0)

≤ αγ−(k−k0) ‖ϕ‖+ β (max {1, α̂} ‖ϕ‖ , k − k0) .

The proof is completed. �
Theorem 2 proposes a global stability result for system (27). The

next local version also holds, whose proof is based on Corollary 3 and
is similar to that of Theorem 2.

Corollary 4: Consider system (27) and fix S. Suppose that As-
sumption 3 holds with δ ∈ R+ and that f̂ l, f̄ l are local Lipschitz,
f̂ l(·,0,0) = 0, f̄ l(·,0,0) = 0, l ∈ m. System (27) is LUES if (27a)
is LUES and (28) is LUAS.

Remark 2: Both Theorem 2 and Corollary 4 assume that system
(28) is asymptotically stable. Note that (28) serves as the nominal
system (1) in Theorem 1 and Corollary 3, and gσ(k)(k, x̂(k), x̂(k −
d3σ(k)(k))) in system (27) can be viewed as the perturbation u(k) in
(2). This is the key idea to establish Theorem 2 and Corollary 4.

Remark 3: This section proposes several results drawing stability
of the cascade system from that of separate systems. Since separate
systems have lower dimensions and can be handled more flexibly, these
results provide an effective way for analyzing stability of the overall
cascade system.

V. EXAMPLE

Consider the following SCNS:

x̂(k + 1) = f̂σ(k) (x̂(k), x̂ (k − d1(k))) , k ≥ 0

x̄(k + 1) = f̄σ(k) (x̄(k), x̄ (k − d2(k)))

+ g (x̂(k), x̂ (k − d3(k))) , k ≥ 0

x(k) = ϕ(k), k ∈ {−d, . . . , 0} (30)

where x̂ = col(x̂1, x̂2) ∈ R2, x̄ = col(x̄1, x̄2) ∈ R2,x = col(x̂, x̄),
and

f̂1 (x,y) =

[
0.75 0.24

0.78 0.21

][√
x1x2

√
y1y2

]
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Fig. 2. Trajectory of (30) with ϕ(·) = col(5, 3,−6,−7).

f̂2 (x,y) =

[
0.8 0.19

0.81 0.18

][√
x1x2

√
y1y2

]

f̄1 (x,y) =

[
0.33 0.38− 0.02 cos y2

0.1 0.28 + 0.02 cosx2

]

x

+

[
0.36− 0.04 sinx2 0.14

0.08 sin y2 0.06

]

y

f̄2 (x,y) =

[
0.3 + 0.02 cosx2 0.13

0.1− 0.08 cosx2 0.04

]

x

+

[
0.41 0.38 + 0.01 sin y2

0.15 −0.28 sin y2

]

y

g (x,y) =

[
y2 sinx1

y1 cosx2

]

x = col (x1, x2) ∈ R2,y = col (y1, y2) ∈ R2.

Using [23, Th. 4], it is not difficult to show that the system

x̂(k + 1) = f̂σ(k) (x̂(k), x̂ (k − d1(k)))

is exponentially stable under the switching law with the dwell time
greater than or equal to 3 for any delay d1(k) ≤ 2.

Observe that the system

x̃(k + 1) = Aσ(k)x̃(k) +Bσ(k)x̃ (k − d2(k)) (31)

with A1 = [ 0.33
0.1

0.4
0.3

], B1 = [ 0.4
0.08

0.14
0.06

], A2 = [ 0.32
0.18

0.13
0.04

], and B2 =
[ 0.41
0.15

0.39
0.28

]. By [24, Th. 1], system (31) is asymptotically stable for an
arbitrary switching signal and any finite delay d2(k) since there exists
a vector λ = col(139.68, 69.2) such that (Ai +Bi − I)λ, i = 1, 2,
are strictly negative vectors. Hence, system (31) is asymptotically
stable under the switching signal with the dwell time greater than
or equal to 3 and any finite delay d2(k). Applying [25, Th. 3] with
domain of attraction being infinity, one can claim that x̃(k + 1) =
f̄σ(k)(x̃(k), x̃(k − d2(k))) is asymptotically stable under the switch-
ing signal with the dwell time greater than or equal to 3 and any finite
delayd2(k). According to Theorem 1, system (30) is asymptotically sta-
ble under the same switching signal with d1(k), d2(k), and d3(k) ≤ 2,
as shown in Fig. 2. Fig. 3 shows the corresponding switching signal.

Fig. 3. Switching signal.

VI. CONCLUSION

The convergence properties of switched nonlinear systems with
bounded delays and perturbations have been investigated. It was re-
vealed that if the nominal switched system is asymptotically stable and
if the perturbation decays exponentially to zero, then trajectories of
the perturbed system asymptotically converge to zero. Based on these
results, some sufficient asymptotic stability conditions were established
for SCNSs with delays. Note that admissible delays in this paper are
required to be bounded and that the method in this paper is inapplicable
to the case of unbounded delays. Some numerical experiments show
that our main results are also true even if the delays are unbounded.
Therefore, one of the challenging studies in the future is to investigate
the case of unbounded delays.
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