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Input Estimation Over Frequency Region in Presence of Disturbances
Jovan Stefanovski and Ðani Juričić

Abstract—A new formulation of the unknown input estimation
problem in presence of unknown disturbances over a frequency
region is presented. Necessary and sufficient conditions for exis-
tence of a solution are given and three estimation filters are given.
The minimal attenuation is equal to the norm of a rational matrix
over the frequency region. As a result, the minimum can be com-
puted by solving linear matrix inequalities. An example is given, and
the estimation with the proposed filters is illustrated by a numerical
simulation and is compared with some state-of-the-art estimation
filters.

Index Terms—Generalized spectral factorization, inertia of Her-
mitian matrix, input estimation, para-Hermitian rational matrix.

I. INTRODUCTION

The estimation of inputs in dynamical systems is an important task.
For instance, if the input is a fault, the fault estimation (FE) is needed in
the design of active and passive fault tolerant control (FTC), see [12].

Consider a plant with the following output and inputs: y(t) ∈ Rn y

is the output, f (t) ∈ Rn f the fault input, d(t) ∈ Rn d the disturbance
input, and u(t) ∈ Rn u the control input. Consider also, for some given
rational matrices (RMs) Gu , Gf , and Gd , that the following identity
between the Laplace transforms of y, u, f, and d holds:

y = Gu u + Gf f + Gdd . (1)

The input estimation problem is to determine the magnitude of an
unknown input [in this note, fault f (t)] in presence of other unknown
input [in this note, disturbance d(t)], using the known y(t) and u(t).
There are two general classes of solutions in the literature: online and
offline input estimation. The online algorithms, realized as filters, can
be applied for FTC, if the estimate can be obtained in a reasonable
short time. One of the oldest online input estimation algorithms is
the well-known Wiener deconvolution filter, based on minimization of
least squares. For H∞-type online algorithms, see Problems 1 and 2
and the short review of solutions. A review of offline input estimation
algorithms is given in [15]. This class of algorithms could give reliable
estimates after a regularization, but cannot be generalized on the case
that the spectra of the input signals are bounded.

We use the same notation from “Remarks on the notation” in [17].
Consider that there exist proper stable RMs M , N u , N f , and N d ,
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such that M and [N u , N f , N d ] are left coprime and

[Gu , Gf , Gd ] = M−1 [N u , N f , N d ] . (2)

For some unknown nf × ny -dimensional FE filter transfer ma-
trix F (s), introduce the following residual vector r(t) ∈ Rn f by its
Laplace transform:

r = F (My − N u u) . (3)

Replacing (1) in (3), we obtain

r = T rf f + T rdd (4)

where T rf := F N f and T rd := F N d .
In a perfect situation, a filter F can be constructed such that F

[N f , N d ] = [In f
, 0] (see [4, Sec. 14.2.1]). In practice, the perfect

situation rarely happens; therefore, the role of a filter is to attenuate
the effect of the disturbances on the residual in respect to the faults. In
formal terms, this can be re-stated as follows:

Problem 1: Find a possibly minimal β with 0 ≤ β < ∞ and a
proper and stable filter transfer matrix F such that ‖F [N f , N d ]
− [In f

, 0]‖∞ ≤ β
Problem 1 minimizes the H∞ distance from the perfect FE. It is

elaborated in the textbooks (see [1, Sec. 6.5.2] and [2, Sec. 8.3.3]),
and it can be solved by the standard H∞-filtering theory. As shown in
Theorem 17.5 of [20], the filter can be constructed in an observer form.

Another (not equivalent) FE problem is
Problem 2: Find a possibly minimal γ with 0 ≤ γ < ∞ and a

proper and stable filter transfer matrix F such that ‖T rd‖∞ ≤ γ, and
T rf = In f

.
Problem 2 is elaborated in [10] and [13], by considering the FE filter

realization in an observer form, and formulating a matrix inequality
that includes the unknown coefficients of the observer. It can also be
solved by the algorithm of [18].

Another approach for FE is presented in [5], by considering that f is
a state variable of a descriptor system, and by constructing an observer
for the state variables of the original system and for f . This approach
has been applied in [14] on systems with disturbances d, so that the
constructed observer has an H∞ bound on the estimation error with
respect to the disturbance. In this approach, the estimation performance
depends on the structure of the observer. Indeed, it is shown by an
example in [14] that the observer of that paper has a superior estimation
performance in respect to the so called proportional observer. Also,
this approach cannot be applied directly, when the signals f and d have
bounded spectra.

Problem formulation, interpretation, and paper’s results. We con-
sider that the spectra of the fault and disturbance are located in some
frequency regions Bf and Bd , respectively, which are union of closed
intervals in R := R ∪ {∞}, which can include the infinity point.

If we intend to apply a pre- or post-filter to eliminate the part in
Bd\Bf of the disturbance spectrum, where by \ we denote the sub-
traction of sets, then we define B := Bf ∩ Bd , otherwise we define
B := Bd . Then we formulate the following problem.

Problem 3:B Find a possibly minimal γ with 0 < γ < ∞ and a
proper and stable filter transfer matrix F such that the poles of T rf (if
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any) are arbitrary assignable, and

T rdT #
rd ≤ γ2T rf T

#
rf , jω ∈ jB (5)

T rf (0) = In f
, (6)

where T #
rd := T rd (−s)T .

We simplify the notation Problem 3:R by writing Problem 3.
A physical interpretation of (5) can be given analogously as in

Remark 1 in [17]. The requirement on the assignability of the poles of
T rf enables us to choose them in the region �[s] ≤ −α, where α > 0
is chosen to guaranty a fast decay of the transients. Together with the
requirement (6), we have r(t) → f (t), as t → ∞, very fast, therefore,
the residual r(t) can be used as an estimate for the fault f (t).

The filter from [9] that solves the H−/H∞ problem to find a proper
stable RM F such that ‖T rd‖∞ ≤ γ and ‖T rf ‖− ≥ 1, for some min-
imal γ, could be a solution of Problem 3, if we premultiply it by an
orthogonal matrix. Indeed, the RM T rf = F N f , obtained in [9], is
inner; therefore, the matrix T rf (0) is orthogonal. The filter T rf (0)−1F
is a solution of Problem 3. However, it is not clear how to modify the
algorithm of [9] in order to adjust the poles of T rf , and how to modify
it to work over a frequency region.

The contributions of this note are three solutions to Problems 3 and
3:B, given in Theorems 1, 2, and 3. In particular, in Theorem 1, we
present necessary and sufficient conditions for Problem 3 including an
FE filter. In Corollary 1, we simplify the FE filter from Theorem 1, so
that the FE filter has an observer form. In Theorem 2, we present an FE
filter solving Problem 3:B, which can be constructed under a sufficient
condition that is close to the necessary one. The order of the filter is
slightly greater than the order of the plant. In Theorem 3, we present
a necessary and sufficient condition for Problem 3:B, and an FE filter
that is independent of γ, such that frequency region B is maximal with
respect to inclusion of subspaces, and B is specific for given γ. For that
reason, we call it universal estimator, in the sense that it works for all
feasible frequency regions and γ’s. In Corollary 2, we transform the
conditions for Problem 3:B to a solvability of certain LMIs.

The given example illustrates the FE by a comparison of six filters,
solving Problems 1, 2, deconvolution problem [15], and the filters from
the three theorems of this note.

II. MAIN RESULTS

Consider a plant given by the following descriptor system:

Eẋ = Ax + Bu u + Bf f + Bdd , x ∈ Rn

y = Cx + Du u + Df f + Ddd (7)

such that matrix pencil A − sE is regular, which satisfies
Assumption 1: The pair (C, A − sE) is finite-mode detectable and

impulse observable.
Then in formula (1), the RMs Gu , Gf and Gd are

[Gu , Gf , Gd ] =
[

A − sE Bu Bf Bd

C Du Df Dd

]
. (8)

Under Assumption 1, there is a matrix H such that (A − H C −
sE)−1 is a proper and stable RM. Then the RMs in (2) can be con-
structed as

[M , N u , N f , N d ] =
[

A − sE −H Bu Bf Bd

C In y Du Df Dd

]
(9)

where A = A − H C , Bu = Bu − H Du , Bf = Bf − H Df and
Bd = Bd − H Dd .

Now define a para-Hermitian RM Πγ (s), by

Πγ = N dN#
d − γ2N f N#

f . (10)

Introducing the matrices

Σ =
[

Bd Bf

Dd Df

]
Jγ

[
Bd Bf

Dd Df

]T

, Jγ =
[

In d
0

0 −γ2In f

]

the RM Πγ can be rewritten as

Πγ = [C(sE − A )−1 , I ]Σ
[

(−sET − A T )−1CT

I

]
. (11)

Assumption 2:{0} The RM [N d , N f ] is right-invertible at s = 0.
If the RM [N d , N f ] is right-invertible, we simply write Assump-

tion 2. Assumption 2 is not restrictive, at least in the generic case. In-
deed, if the RM [N d , N f ] is not right-invertible, it is left-invertible in
the generic case. Then f = [0, In f

][N d , N f ]†(My − N u u), where
[N d , N f ]† is a left-inverse of [N d , N f ], and therefore, the fault f (t)
can be determined without solving Problem 3.

We start by deriving necessary conditions for Problem 3:B. Let F
be a solution of Problem 3:B, and denote Θ := F N f . The matrix
N f (0) has full column rank, as a consequence of the requirement
(6). With a possible renumeration of the indices of y, the following
partition [N d , N f ] = [ N d 1

N d 2

N f 1
N f 2

] such that the RM N f 1 is square

and nonsingular, is well defined. Compatibly partition RM F as F =
[F 1 , F 2 ].

We have F 1 = ΘN−1
f 1 − F 2N f 2N

−1
f 1 , and

F N d = F 1N d1 + F 2N d2 = ΘH 1 + F 2H 2

where H 1 = N−1
f 1 N d1 and H 2 = N d2 − N f 2N

−1
f 1 N d1 .

Next we prove that the RM H 2 is right-invertible, under the right-
invertibility of [N d , N f ], which is a consequence of Assumption
2:{0}. Indeed, let xH 2 = 0, for some rational vector x �= 0. Then,
xN d2 + yN d1 = 0, where y = −xN f 2N

−1
f 1 . Combining the latter

two equations, we obtain [y, x][N d , N f ] = 0, hence [y, x] = 0.
The inequality (5) is equivalent with the inequality

Q := (H 1 + F 3H 2 )(H 1 + F 3H 2 )# ≤ γ2In f
(12)

õn jB,1 where F 3 := Θ−1F 2 . We have[
N−1

f 1 0
−N f 2N

−1
f 1 In y −n f

][
N f 1

N f 2

]
=

[
In f

0

]
(13)

[
N−1

f 1 0
−N f 2N

−1
f 1 In y −n f

][
N d1

N d2

]
=

[
H 1

H 2

]
. (14)

Using the identities (13) and (14), we obtain
[

I F 3

0 I

][
N−1

f 1 0
−N f 2N

−1
f 1 I

]
Πγ

[
N−1

f 1 0
−N f 2N

−1
f 1 I

]# [
I F 3

0 I

]#

=
[

Q − γ2I (H 1 + F 3H 2 )H
#
2

H 2 (H 1 + F 3H 2 )# H 2H
#
2

]

∼=
[

Q − γ2I − P 0
0 H 2H

#
2

]
(15)

õn jB, where by ∼= we denote the congruence of Hermitian matrices,
and where

P := (H 1 + F 3H 2 )H
#
2 (H 2H

#
2 )−1H 2 (H 1 + F 3H 2 )# .

The congruence in (15) has been obtained using the Schur complement.
Having in mind the inequalities (12) and P ≥ 0 õn jB, we obtain that

1We say that a RM has a property õn jB if it has the same property everywhere
on jB, except a finite number of points.
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Q − γ2I − P ≤ 0, and from (15), that In(Πγ ) = (nf , 0, ny − nf )
õn jB.2

We have

Q − P = H 1 [I − H#
2 (H 2H

#
2 )−1H 2 ]H

#
1 =: Z (16)

because H 2 [I − H#
2 (H 2H

#
2 )−1H 2 ] = 0. In (16), we have intro-

duced the new symbol Z , instead of Q − P , because the RMs Q and
P depend on the unknown filter F (although their difference does not
depend on F ).

Since I − H#
2 (H 2H

#
2 )−1H 2 ≥ 0, õn the EIA, there is a full col-

umn normal rank RM Ξ such that

Z = Ξ · Ξ# . (17)

We see by inspecting the relations (15) that the inequality

Ξ · Ξ# ≤ γ2I õn jB (18)

is a necessary and sufficient condition for In(Πγ ) = (nf , 0, ny − nf )
õn jB.

Using Lemma 1 in [16], a 2nth order Hamiltonian realization of
the RM Z(s−1 ), which is suitable for the factorization (17), can be
derived. Then, Ξ has a realization order n.

Assumption 3: The RM Πγ is nonsingular.
Theorem 1: Under Assumptions 1, 2:{0} and 3, Problem 3 admits

a solution if and only if N f (0) is a full column rank matrix and the
RM Πγ has a constant inertia õn the EIA, equal to (nf , 0, ny − nf ).

Proof: The necessity is proved. To prove the sufficiency, consider
that In(Πγ ) = (nf , 0, ny − nf ) õn the EIA. By Theorem 1.1 of [3],
there is the following factorization of Πγ :

Πγ = ΨJΨ# , J = diag{In y −n f
,−In f

} (19)

where the RM Ψ is a nonsingular factor, and both Ψ and Ψ−1 are
possibly improper and possibly unstable, respectively.

Define the RM F̃ = [0, In f
]Ψ−1 , and let F̃ be given by the descrip-

tor realization F̃ = D̃ + C̃(sẼ − Ã)−1 B̃ that is finite mode observ-
able, impulse observable, and finite mode controllable at s = 0 (the
latter property means that [Ã, B̃] is a full row rank matrix).

Using the realizations (9) of N f and N d , we obtain

F̃ N f =

⎡
⎢⎣

Ã − sẼ B̃C B̃Df

0 A − sE Bf

C̃ D̃C D̃Df

⎤
⎥⎦ =:

[
A − sE Bf

C Df

]
.

Using the fact that A − sE is stable and impulse-free matrix pencil,
and that the pair (C̃, Ã − sẼ) is finite mode observable and impulse
observable, it can be proved that the pair (C,A − sE ) is finite mode
observable and impulse observable. (The proof of impulse observability
uses Theorems 1 and 2 of [7].)

By those properties of (C,A − sE ), there exists a matrix K such
that matrix pencil A −KC − sE is regular, stable, impulse-free, and
its finite zeros are arbitrary assignable.

Define the RM R := I + C (sE −A)−1K . Its finite zeros are the
finite zeros of matrix pencilA −KC − sE , and R−1 is proper. Define
the RM F̂ := R−1 F̃ .

By (19), we have the following identity:

F̂ N dN#
d F̂

# − γ2 F̂ N f N#
f F̂

#
= −R−1R−# . (20)

2By In(H ) = (m−, m0 , m+ ), we denote the inertia of Hermitian matrix
H , where m−, m0 , and m+ are the numbers of its negative, zero and positive
eigenvalues.

Using the following (nonminimal) realization of F̃

F̃ = D̃ + C (sE −A)−1 B̃1 , B̃1 =
[

B̃
0

]

and the algebra of transfer matrices, we obtain

F̂ = R−1 F̃ = [0, In f
]
[
A − sE K

C In f

]−1
[

B̃1

D̃

]
(1)

=

⎡
⎢⎣

Ã − K1 C̃ − sẼ (B̃ − K1 D̃)C B̃ − K1 D̃

−K2 C̃ A − K2 D̃C − sE −K2 D̃

C̃ D̃C D̃

⎤
⎥⎦ (21)

[
F̂ N d , F̂ N f , R−1

]
=

[0, In f
]
[
A − sE K

C I

]−1[
Bf Bd 0
Df Dd In f

]
(22)

where Bd := [ B̃ D d
Bd

], Dd := D̃Dd and K =: [ K 1
K 2

].
In order to construct a solution F to Problem 3, we put

F = Y F̂ (23)

for some nonsingular matrix Y , chosen to satisfy the requirement (6)
of Problem 3. For that purpose, we shall prove that F̂ (0)N f (0) is a
nonsingular matrix. Then, we can take Y = (F̂ (0)N f (0))−1 .

Let xF̂ (0)N f (0) = 0, for some vector-row x. By (20), we obtain
xF̂ (0)N d (0) = 0 and xR−1 (0) = 0. By (22) we obtain

[z, y]
[

Bf Bd 0
Df Dd In f

]
= 0 where

[z, y] = x[0, In f
]
[

A K

C I

]−1

.

From these equations we obtain y = 0, z[A, Bf , Bd ] = 0. Putting
z = [z1 , z2 ], the latter identity becomes

[z1 , z2 ]
[

Ã B̃C B̃Df B̃Dd

0 A Bf Bd

]
= 0 , i.e.,

z1 Ã = 0 , z1 B̃[C, Df , Dd ] + z2 [A , Bf , Bd ] = 0 . (24)

Right-multiplying the latter identity by the matrix [−A−1 [Bf , Bd ]
I

],
we obtain z1 B̃[N f (0), N d (0)] = 0, and z1 = 0, as a consequence of
the full row ranks of the matrices [N f (0), N d (0)] and [Ã, B̃]. From
z2 = −z1 B̃CA −1 , which is included in the second equation in (24),
it follows z2 = 0. �

The filter realization given by (21) and (23) in the sufficiency part of
the proof of Theorem 1 is of a theoretical importance, as it is constructed
under a minimal set of assumptions. However, the realization is of order
2n. In Corollary 1, we reduce this realization to an nth order observer
realization, which exists under a slightly stronger set of assumptions.
Namely, besides Assumptions 1 and 2:{0}, we introduce the additional
Assumptions 4 and 5 (which imply Assumption 3).

Introduce the matrices B := [Bd , Bf ] and D := [Dd , Df ].
Assumption 4: (I) The matrix DdDT

d − γ2Df DT
f = DJγ DT has

inertia (nf , 0, ny − nf ).
(II) There is a real matrix X that solves the following generalized

algebraic Riccati equation (GARE):

EXT = XET , AXT + XAT + BJγ BT

− (XCT + BJγ DT )(DJγ DT )−1 (CXT + DJγ BT ) = 0. (25)
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Introduce matrix L = (XCT + BJγ DT )(DJγ DT )−1 . Sufficient
conditions for existence of a stabilizing3 solution X are given in [11],
Theorem 1. Note that we do not need a stabilizing solution X .

Define the matrix L := L − H , define the nonsingular matrix M
such that DJγ DT = MJMT , where J = diag{In y −n f

,−In f
}, and

define the matrix N := [0, In f
]M−1 . The matrix NDf is nonsingular.

Denote AL := A − LC = A − LC , Bf L := Bf − LDf =
Bf − LDf and BdL := Bd − LDd = Bd − LDd . With the found
matrix X , we can obtain less-order realizations of the RMs, which are
defined in the proof of Theorem 1. Namely, the RM Ψ satisfying (19)
is given by Ψ = [In y + C(sE − A )−1L]M, and RM F̃ satisfying

F̃ = [0, In f
]Ψ−1 is given by F̃ = N −NC(sE − AL )−1L.

Using the algebra of transfer matrices, we obtain that RMs F̂ in (21)
and F̂ N f in (22) reduce to

F̂ =
[

AL + K1NC − sE L − K1N
−NC N

]
(26)

F̂ N f =
[

AL + K1NC − sE Bf L + K1NDf

NC NDf

]
. (27)

Assumption 5: The pair (NC, AL − sE) is finite mode observable
and impulse observable.

We see from (27) that, under Assumption 5, the matrix K1 can be
used to assign the finite poles of F̂ N f , as well as to render the RM
F̂ N f proper.

If F̂ (0)N f (0) is a nonsingular matrix for all choices of matrices
K1 , we can define matrix Y = (F̂ (0)N f (0))−1 . The filter F = Y F̂
solves Problem 3.

It remains to prove that the matrix F̂ (0)N f (0) is nonsingular.4 Let
xF̂ (0)N f (0) = 0, for some vector-row x. Using (27), we obtain the
identity [y, z][ A L

NC
B f L
ND f

] = 0, where y = −xNC(AL + K1NC)−1

and z = x + yK1 . The proof of nonsingularity of F̂ (0)N f (0) is
completed by the fact that matrix [ A L

−NC
B f L
ND f

] is nonsingular (proof

omitted).
It is easy to check that the estimation algorithm (3) takes the follow-

ing descriptor observer form:

E ˙̂x = Ax̂ + Bu u + H(y − Cx̂ − Du u)

r = Y N (y − Cx̂ − Du u) (28)

where H := L − K1N . Note that observer (28) does not depend on
matrix H . The following corollary is proved.

Corollary 1: Under Assumptions 1, 2:{0}, 4 and 5, Problem 3 is
solvable. A solution is given by the observer (28).

Next Theorem 2 is a sufficiency result on Problem 3:B.
Theorem 2: In addition to Assumptions 1, 2:{0}, and the full col-

umn rank of the matrix N f (0), assume that following is a generalized
factorization of Πγ :

Πγ = Ψ · diag{Φ1 ,Φ2} · Ψ# (29)

where RM Ψ is a nonsingular factor, possibly improper, and with
unspecified location of poles and zeros, Φ1 and Φ2 are nonsingular
para-Hermitian (ny − nf )- and nf -dimensional polynomial matrices,
respectively, such that Φ1 is positive semi-definite on jB, Φ2 is negative
semi-definite on jB, and det(Φ2 (0)) �= 0. Then, the filter given by (21)
and (23) solves Problem 3:B.

3A stabilizing solution of the GARE (25) is a solution X such that the matrix
pencil A − LC − sE is regular, stable and impulse-free.

4The arguments from the proof of Theorem 1 cannot be applied, because
[AL , L] is not necessarily a full row rank matrix.

Proof: The proof is analogous to the proof of the sufficiency part

of Theorem 1, except the identity (20), which is now: F̂ N dN#
d F̂

# −
γ2 F̂ N f N#

f F̂
#

= R−1Φ2Φ
#
2 R−# . �

To formulate Theorem 3, we define at first the RMs F 4 :=
H 1H

#
2 (H 2H

#
2 )−1 and

F � := [In f
, −F 4 ]

[
N f 1 0
N f 2 I

]−1

. (30)

Using the identities (13) and (14), we obtain that

F �N f = In f
, F �N dN#

d F #
� = Ξ · Ξ# ,

F �N dN#
d F #

� − γ2F �N f N#
f F #

� = Ξ · Ξ# − γ2I . (31)

By (31), if ‖Ξ‖ ≤ γ on jB, the RM F � can be a solution of Problem
3:B, if we stabilize it.

Let (A� , B� , C� , D� , E� ) be at least a finite mode observable and
impulse observable descriptor realization of F � . The right- and left-
multiplication of the inequality Ξ · Ξ# − γ2I ≤ 0 on jB by RMs M �

and M #
� , correspondingly, does not change its validity. We choose the

RM M � such that

[M � , M �F � ] =
[

A� − H�C� − sE� −H� B� − H�D�

C� In f
D�

]

where H� is a matrix such that matrix pencil A� − H�C� − sE� is
stable and impulse-free, and its zeros are arbitrary.

Then, we choose the FE filter

F = M � (0)−1M �F � . (32)

Theorem 3: Under Assumptions 1 and 2, Problem 3:B admits a
solution if and only if N f (0) is a full column rank matrix and ‖Ξ‖ ≤ γ
on jB. The minimal γ is γo = ‖Ξ‖B

∞, and is independent of matrix H .
The filter (32) is a solution.

Proof: We prove only the independence of γo . Indeed, γo is the
minimal number such that the inertia of RM Πγ õn jB is (nf , 0, ny −
nf ). Since Πγ = M (GdG#

d − γ2Gf G#
f )M # , the independence of

γo on H follows by the invariance of the inertia of Hermitian matrices
under the congruence. �

If we replace Assumption 2 by Assumption 2:{0} in Theorem 3, we
can find a state-space realization of F � (s−1 ) of order 2n, similarly as in
Appendix B of [16]. Under this new set of assumptions, we transform
the condition ‖Ξ‖ ≤ γ on jB of Theorem 3 to a solvability of LMIs.
Denote by (A, B, C, D) at least an observable realization of Ξ(s−1 ).
Denote by B̂ the region of the real axis obtained by mapping with the
function s → 1/s of the region B. Let Φ and Ψ be 2 × 2-dimensional
Hermitian matrices depending on B̂, constructed as shown in [8].

Corollary 2: Under Assumptions 1 and 2:{0}, Problem 3:B admits
a solution if and only if N f (0) is a full column rank matrix and there
are Hermitian matrices P and Q, such that:

[A I
C 0

]
(Φ ⊗ P + Ψ ⊗Q)

[AT CT

I 0

]

+
[ BBT BDT

DBT DDT − γ2I

]
≤ 0 , Q ≥ 0. (33)

Proof: The proof is a consequence of the application of the gener-
alized KYP lemma [8] on the inequality (18). �
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Example 1: Consider the plant (7) given by E = I4 ,

A =

⎡
⎢⎢⎣
−1.5 −0.7 0.2 0.3
−0.2 −1.9 −0.1 0.1
−0.1 0.2 −1.8 −0.2
−0.1 0.1 −0.2 −2

⎤
⎥⎥⎦ , Bf =

⎡
⎢⎢⎣

1 −1.2
−4 −1.2
−2.6 0
0.4 −1.2

⎤
⎥⎥⎦

Bd =

⎡
⎢⎢⎣
−0.4 −1.1
−1.1 −1.3
−1.8 −1.00
−0.1 −0.5

⎤
⎥⎥⎦,

C =

⎡
⎣−5 2 1 2.5

3 5 2.5 1.5
1 15 2.5 3

⎤
⎦

Df =

⎡
⎣ 2 0.7
−2.4 1
−2.6 2.2

⎤
⎦, Dd =

⎡
⎣ 1.4 0.5

1.3 1.3
−0.5 1.1

⎤
⎦.

We elaborate on the first filter of the bank (for the fault f1 ), by intro-
ducing the disturbance d3 , which is equal to the fault f2 . A justification
is the fact that the minimal γ for Problem 3 with the original matrices is
2.42978924, while for the first filter in the bank, it is only 0.21839718.

We shall obtain six FE filters for f1 : filters solving Problems 1, 2,
deconvolution problem and filters from Theorems 1–3, and compare
the FE by numerical simulation. We consider the initial value of the
plant x(0) = [1, 1, 1, 1]T , zero initial values for the filters, and the
following test signal. The disturbance d2 is such that d2 (t) = 0, t ≤ 3
and d2 (t) = 0.3 sin(ω0 (t − 3)), t > 3, where ω0 = 16π. The distur-
bance d1 (t) is zero. The fault signal f1 (t) is a step with magnitude 1
appearing at t = 5. The fault signal f2 (t) (= d3 (t)) satisfies f2 (t) = 0,
t ≤ 3, and f2 (t) = sin(ω0 (t − 3)), t > 3.

Using the command hinfsyn of MATLAB, we find an optimal filter
solving Problem 1, of realization order 4.

Then, we obtain an optimal filter solving Problem 2. We apply
its transformation into the problem of finding proper stable X such
that ‖X‖∞ ≤ γ and XV b = U b , for some RMs V b and U b . The
latter problem is elaborated in [18]. The minimal γ for Problem 2 is
0.3763776. By Corollary 4.9 of [18], the filter is unique. It is given by
an order 3 realization.

Next, we obtain optimal filters of Theorems 1 and 3.
By Theorem 1, the minimal γ for Problem 3 is ‖Ξ‖∞ = 0.21839718,

which is less than 0.3763776; therefore, we expect that the FE will be
better than the FE obtained with the filter solving Problem 2.

By Theorem 3 with γ = 0.15, frequency region B = [0, 5.2798] ∪
[36.78257,∞] is feasible for Problem 3:B. If we need to widen the
frequency region, we have to increase γ.

The algorithms of Theorems 1, 3 (and 2) require pole assignment
of T rf by static state feedback. It is well known that this task is not
reliable, but there is no need to assign the poles; it suffices for the poles
to be in �[s] ≤ −α, for some predefined α > 0. The latter problem we
solve by finding a solution of an algebraic Riccati equation with shifted
matrix “A, ” by αI , for some α > 0.

Taking α = 0 and using Theorem 1, we find a filter realization of
order 4. Taking α = 0.1 and using Theorem 3, we find a universal filter
realization of order 8.

In order to apply the deconvolution algorithm from Section 8.3 in
[15], the matrix Bd has to be zero. Another drawback of that algorithm
is that the dimension of the matrix that has to be inverted is proportional
with the number of samples (see [15, identity (8.8)]). For that reason
we apply the standard discrete H2 minimization, after we discretize
the model, with sampling period 0.01. We take the controlled output
zk = uk − fk + γ(fk − fk−1 ), k = 0, 1, . . ., where “the control” uk

Fig. 1. Estimate of Problems 1, 2, 3, deconvolution, and universal
estimator.

is the estimate of fk . Then, we construct a deconvolution filter of
realization order 5. For the particular test signal, the best estimate is
obtained for γ = 1.12.

The response of the residual of the filters solving Problems 1, 2,
3, deconvolution, and universal estimator to the test signal is given in
Fig. 1 (in blue, green, red, black and magenta, respectively). It is seen
that the disturbance pattern with a big amplitude appears in the residual
for the first two filters. In the stationary regime, we see that there is an
offset of r(t) in respect to f1 (t) for the filter solving Problem 1. We
see that the amplitude of the disturbance pattern for the filter solving
Problem 3 is lesser than that of the filters solving Problems 1 and 2.
It is seen that the disturbance attenuation with the universal estimator
is satisfactory, but the time for FE is longer than the FE times of the
previous filters. Note that if we increase α, the FE time will decrease,
but the ripples in r(t) will increase.

Finally, we obtain a filter of Theorem 2. For that purpose, at first we
find a factorization (29) of Πγ with γ = 0.15. The RM Πγ has two
zeros on the positive EIA: j5.2798 and j36.78257. Following the gen-
eralized spectral factorization theory of [19], we obtain ω1 = −5.2798
and ω2 = 36.78257. Using the inequalities ω1 < 0 and ω2 > 0, we ob-
tain B = [36.78257, ∞], and Φ1 (jω) = diag{(ω2

1 − ω2 )/ω1 , ω2} ≥
0, Φ2 (jω) = (ω2

2 − ω2 )/ω2 ≤ 0, ω ∈ B. We compute a balanced real-
ization of the filter F solving Problem 3:B, with the following matrices
“A, ” “B, ” “C, ” and “D : ”

⎡
⎢⎢⎢⎢⎣

−1.368 5.011 −0.6924 −6.502 −0.1411
−4.77 −1.812 1.809 9.828 0.2184

−0.1031 −1.203 −0.3006 −5.755 −0.1166
2.979 1.954 5.658 −313.4 −14.81

−0.1039 −0.1686 −0.08106 12.15 −1.772

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−1.038 −0.5271 0.1206
−0.9388 0.054 0.3568
−0.00319 −0.2651 0.1612
0.1172 2.024 −1.859

−0.03401 −0.02163 0.04502

⎤
⎥⎥⎥⎥⎦

[
1.17 −1.006 0.3103 2.75 0.06043

]
[
0.2738 −0.2596 0.06564

]
. (34)

Since the spectra of d2 and d3 are located at the frequency 16π ∈
B = [36.78257, ∞], the attenuation of the disturbance will be at least
γ = 0.15. Indeed, the response of the residual with this filter to the test
signal is given in Fig. 2 . The FE is reliable, because the amplitude of the
disturbance pattern in the residual is very small. Unlike the universal
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Fig. 2. Residual r(t) for the filter (34).

estimator, for which B = [0, 5.2798] ∪ [36.78257,∞], the filter (34)
is “dedicated” to the frequency region B = [36.78257,∞].

Note that we can construct analogously a filter over frequency re-
gion B = [0, 5.2798] with the same γ = 0.15, with Φ1 = diag{(ω2

2 −
ω2 )/ω2 , ω2} and Φ2 = (ω2

1 − ω2 )/ω1 .

III. CONCLUSION

We have motivated and formulated a new FE problem over a fre-
quency region. Three solutions/filters are given, with a greater attenu-
ation of disturbances, in respect to the existing filters. The numerical
design of the filters relies on standard and well-accepted computer
routines.
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