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Discontinuous Nash Equilibria in a Two-Stage Linear-Quadratic Dynamic
Game With Linear Constraints

Rajani Singh and Agnieszka Wiszniewska-Matyszkiel

Abstract—In this note, we study a simple example of a two-stage
linear-quadratic dynamic game in which the presence of simple
linear state dependent constraints results in nonexistence of con-
tinuous symmetric feedback Nash equilibria and the existence of
continuum of discontinuous symmetric feedback Nash equilibria.
The example is not an abstract model—it has obvious applications
in economics of resource extraction.

Index Terms—Bellman equation, common renewable
resources, constraints, discontinuous solutions, discrete time,
feedback, linear-quadratic (LQ) dynamic game, Nash equilibrium,
state-dependent constraints.

I. INTRODUCTION

Dynamic games are the tool to model decision making by inde-
pendent but coupled agents in an external environment changing in
response to their decisions that encompass both aspects of the prob-
lem. Although more than a half of century has passed since the seminal
book by Isaacs [1], the results in nonzero sum games are very limited.
The reason is that dynamic games—at least two simultaneous dynamic
optimization problems in which each of the decision makers best re-
sponds to the choice of their opponents—are much more compound
than analogous single-agent dynamic optimization problems. Finding
a Nash equilibrium in a dynamic game requires finding a fixed point, in
a functional space, of a multivalued correspondence defined by solving
a set of coupled dynamic optimization problems.

Therefore, in the restricted class of nonzero sum dynamic games for
which any results have been derived, a vast majority of works concerns
only open-loop Nash equilibria, in which strategies of the players are
just predetermined functions of time only, which is not realistic.

Linear quadratic (LQ) dynamic games, formulated in both discrete
and continuous time, are the best researched class of nonzero sum
dynamic games. The formulas are now a textbook material (see e.g.,
Basar and Olsder [2], Engwerda [3], Haurie et al. [4], and Long [5]).
This class of dynamic games is very important because of their potential
applicability in modeling decision making in real-life problems and
solutions can be found more easily than in the other nonlinear games.

Manuscript received April 18, 2018; revised August 7, 2018 and
September 25, 2018; accepted October 4, 2018. Date of publica-
tion December 3, 2018; date of current version June 26, 2019.
The work of R. Singh was supported by the National Science Cen-
tre, Poland, under Grant 2016/21/N/HS4/00258. The work of A.
Wiszniewska-Matyszkiel was supported by the National Science Cen-
tre, Poland, under Grant 2016/21/B/HS4/00695. Recommended by
Associate Editor R. P. Malhame. (Corresponding author: Agnieszka
Wiszniewska-Matyszkiel.)

The authors are with the Institute of Applied Mathematics and Me-
chanics, University of Warsaw, Warszawa 02-097, Poland (e-mail:,rajani
babu7@gmail.com; agnese@mimuw.edu.pl).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2018.2882160

Nash equilibria for a feedback1 information structure have been
extensively analyzed for continuous time in LQ dynamic games without
constraints. In vast majority of applications in which a feedback or
closed-loop information structure has been considered, linear or affine
Nash equilibria have been obtained.

A two-stage LQ dynamic game with a closed-loop information struc-
ture, but without constraints, is considered by Basar [6], in which the
existence of nonlinear and nonunique closed-loop Nash equilibria has
been proven. That paper has been written as a counterexample to the
common belief that Nash equilibria in LQ dynamic games are linear
and unique. Papavassilopoulos and Olsder [7] also consider an analo-
gous game but with continuous time, both in the finite and infinite time
horizon cases, and they show a class of such LQ games with a unique
feedback Nash equilibrium for any finite time horizon, whereas none
or a unique or multiple feedback Nash equilibria for the infinite time
horizon.

So, nonuniqueness of Nash equilibria have already been observed in
LQ dynamic games. Nevertheless, discontinuity2 has never appeared.
However, the discontinuity of Nash equilibria in differential games with
concave current payoff has already appeared in Dockner and Sorger
[8], in which nonlinear dynamics is considered.

Compared to continuous-time models, discrete-time LQ dynamic
games have limited literature. There are very few theoretical papers on
closed-loop or feedback Nash equilibria. Besides, Basar [6], LQ dy-
namic games with discrete time, and finite time horizon are considered
by Hamalainen: for open-loop and feedback information structures [9]
and for an open–closed information structure [10], where an algorithm
is provided for finding Nash and Stackelberg solutions to such games
without constraints.

So, in standard LQ dynamic games, there are no constraints. On the
other hand, constraints play an important role in a vast majority of
real-life applications. For example, state variables, such as the biomass
of fish in games of exploitation of fisheries, the state of physical capital
in economic problems, or the stock of pollutant in pollution games are
always nonnegative. Control variables in the corresponding problems,
such as the catch, the production, or the emission of pollutant, are also
nonnegative, whereas in the first case, also a constraint by the amount
of biomass available has to be taken into account.

The number of papers in which constraints, especially state-
dependent constraints that may be active at equilibrium, are considered
is small. LQ dynamic games with discrete-time and linear constraints
appear in Reddy and Zaccour [11, 12] in a finite time horizon; in which
the open-loop [11] and feedback sets of strategies [12] are considered.
However, the class of games considered in both papers is restricted to
games in which the controls for which the state-dependent constraints
are considered do not influence the state variable, whereas for the re-

1We use the terminology of Haurie et al. [4]. This information structure is
also called closed-loop no-memory or Markovian.

2Obviously, we consider the continuity with respect to the state variable.
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maining controls, there are no state-dependent constraints. So, they do
not encompass our game.

Piecewise affine controls and piecewise quadratic value function
have been obtained in discrete-time dynamic optimization problems
with constraints (e.g., the social optimum problem in Singh and
Wiszniewska-Matyszkiel [13]). In continuous time, they appear in,
e.g., Rantzer and Johansson [14], for a problem which is originally
piecewise LQ. However, in an LQ differential games even with a state
independent control constraint, the value function does not have to be
piecewise quadratic (see, e.g., Wiszniewska-Matyszkiel et al. [15]).

Because two-period dynamic games are simple and they illustrate
well most of phenomena that appear in dynamic games, they have
already appeared in applications. An example of such applications is
a model of capacity investment in a duopoly market by Genc and
Zaccour [16], with state-dependent constraints on controls, but without
a common state variable (the only coupling is by price).

Here, we present a two-stage LQ dynamic game with linear con-
straints. This game has obvious applications to modeling of extraction
of a marine fishery, with players representing countries or firms that
sell their catch at a common market. As Reddy and Zaccour [12], we
also consider feedback information structure and we introduce linear
state-dependent constraints on decisions, but we do not assume that
the control variables that are constrained by the state variable do not
influence the state. Therefore, our model does not belong to the class of
games considered by Reddy and Zaccour [11, 12]. On the other hand,
we do not consider explicit constraints on the state variable (besides its
nonnegativity).

Our game is a two-period truncation of the game-theoretic model
studied before in an infinite horizon version by Singh and Wiszniewska-
Matyszkiel [13], in which the calculation of feedback Nash equilibria
has turned out to be possible only for the continuum of players case.
While solving the n-player symmetric Nash equilibrium problem in
that game, the authors have only been able to prove a negative result
that there is no Nash equilibrium of assumed regularity3 with respect to
the state variable. On the other hand, the cooperative common dynamic
optimization problem (the social optimum problem) for any number
of players is relatively simple in that game. Further analysis of the
n-player Nash equilibrium problem in that game suggested that the
irregularity is inherited from finite horizon truncations of the game,
which was the motivation of the analysis of this paper.

To sum up: in this paper, we present an example of a symmetric de-
terministic LQ dynamic game with concave payoff but no continuous
symmetric feedback Nash equilibrium and a continuum of discontinu-
ous symmetric feedback Nash equilibria.

Abbreviations and Acronyms

LQ for linear quadratic; r.h.s. for the right-hand side.

II. FORMULATION OF THE PROBLEM

We consider a discrete-time game with two stages, two players,
and identical quadratic instantaneous payoffs with payoff of player i,
Pi : R+ × R+ → R+ , defined by

Pi (si , s∼i ) =
(

A − 1
2
(si + s∼i )

)
si − s2

i

2
(1)

3The nonexistence of a fixed point of the best response correspondence in
the space of continuous piecewise linear strategies with at most three pieces is
caused by the state-dependent constraints on control.

where si and s∼i are decisions of player i and their opponent, respec-
tively, while A > 0.

There is no terminal payoff.
The trajectory X of the state variable resulting from the choices of

decisions of the players given an initial state x0 ≥ 0 is defined by

X(t + 1) = (1 + ξ) · X(t) − 1
2
(s1 (t) + s2 (t)) with X(0) = x0

(2)
where s1 (t) and s2 (t) denote the decisions of players at time t, and
ξ ∈ (0, 1) represents the net rate of growth of the state variable (fertility
minus natural mortality). We explain the constraint on ξ in Section II-A.

Although, generally, the decision sets are R+ , given x, there are
linear state-dependent constraints for decisions

si ∈ [0, (1 + ξ)x]. (3)

This results in an implicit state constraint X(t) ≥ 0. This constraint
does not have to be explicitly stated because it is automatically fulfilled.

In this note, we are interested in feedback strategies Si : {1, 2} ×
R+ → R+ such that for every state x, Si (t, x) ∈ [0, (1 + ξ) · x].
Therefore, at each time instant t, player i chooses decision Si (t, X(t)),
given X(t), with

Si (t, X(t)) ∈ [0, (1 + ξ)X(t)].

We consider discounting by 1
1+ ξ

, so, for a profile S, the payoff in the
game is

Πi ((Si , S∼i ), x0 ) = Pi ((Si , S∼i )(1, X(1)))

+
Pi ((Si , S∼i )(2, X(2)))

1 + ξ
. (4)

We are interested in analyzing symmetric feedback Nash equilibria.
Definition 2.0.1: A profile S̄ is a Nash equilibrium iff for every

i ∈ {1, 2}, every strategy Si of player i and every initial state x0 ≥ 0,
we have

Πi ((S̄i , S̄∼i ), x0 ) ≥ Πi ((Si , S̄∼i ), x0 ).

A. Economic Interpretation of the Game

This game can be used to model various economic problems, includ-
ing exploitation of a common marine fishery divided into exclusive
economic zones. In this game, the catch is sold at a common market.
The state variable is the biomass of fish in the whole fishery, whereas si

represents the catch of player i. Fish are assumed to spread uniformly
over the fishery.

The price at the market is given by the following:
Price(s1 , s2 ) = a − 1

2 (s1 + s2 ) (in economics, it is called the in-
verse demand function) for some positive a, which is dependent on the
aggregate catch.

Therefore, the current payoff functions are equal to the revenue
from sales minus the cost of fishing Pi (s1 , s2 ) = Price(s1 , s2 ) · si −
Cost(si ).

The cost that we consider is quadratic, and Cost(si ) = fsi + 1
2 s2

i

is identical for both players.
Obviously, we assume that a is substantially greater than f . Then,

we obtain our model with A = a − f .
The constraint si ≤ (1 + ξ)x corresponds to the possibility of catch-

ing at most all the fish in the player’s region, including the last year
offspring—the inherent constraint of physical availability.

The discount factor equal to 1
1+ ξ

is sometimes referred to as the
golden rule (see, e.g., Ramsey [17]). In models with variable rate of
growth of the resource, this fact, i.e., the fact of equality between the



3076 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 7, JULY 2019

rate of growth of the resource and the rate used for discounting, is
usually obtained as a result.

Hence, the constraint ξ < 1 is implied by the fact that ξ plays the
double role of both the resource net growth rate and the real interest
rate, which is assumed to be close to 0.

III. CALCULATION OF FEEDBACK NASH EQUILIBRIA

Calculating Nash equilibria in a dynamic game requires solving a
dynamic optimization problem for each player given arbitrary strat-
egy of the opponent and finding a fixed point of the resultant joint
best response correspondence—guaranteeing that players’ strategies
are best responses to each other. In finite time horizon multistage
games with feedback strategies, this can be decomposed to solving cou-
pled static problems using auxiliary value functions and the Bellman
equation.

Consider a player i and a strategy of the opponent S∼i . The value
function V̄i : {1, 2, 3} × R+ → R is the function that represents the
optimal payoff of player i in the game given this strategy of the op-
ponent. To be more specific, V̄i (t, x) represents the optimal payoff of
player i given a strategy of the opponent if the game starts at time t
from the initial state x. These functions are auxiliary to calculate the
Nash equilibrium strategies.

The following theorem is a direct application of the standard Bellman
method (see, e.g., Bellman [18]) to our problem.

Theorem 3.1: Consider player i and the strategy of the opponent
S∼i .

a) If a function Vi : {1, 2, 3} × R+ → R fulfills

Vi (t, x) = sup
s i ∈[0 ,(1+ ξ )x ]

Pi (si , S∼i (t, x))

+
1

1 + ξ
· Vi

(
t + 1, (1 + ξ)x − 1

2
(si + S∼i (t, x))

)
(5)

for t = 1, 2 and all x ≥ 0, with the terminal condition

Vi (3, x) = 0 (6)

then it is the value function given S∼i , whereas if a strategy Si of player
i fulfills for t = 1, 2 and all x ≥ 0

Si (t, x) ∈ Argmax
s i ∈[0 ,(1+ ξ )x ]

Pi (si , S∼i (t, x))

+
1

1 + ξ
· Vi

(
t + 1, (1 + ξ)x − 1

2
(si + S∼i (t, x))

)
(7)

for arbitrary function Vi fulfilling (5) and (6), then it is the best response
to S∼i .

b) The value function V̄i fulfills (5) and (6), whereas the strategy S̄i

being the best response to S∼i fulfills (7).
Therefore, each profile fulfilling (7) for both i for Vi defined by (5)

and (6) is a Nash equilibrium.
Equations (5)–(7) are called the Bellman optimality principle (see,

e.g., Bellmann [18]), and (5) is called the Bellman equation.
We start solving the game backward. By (5)–(7), if the state at t = 2

is x, then the best choice of a player at t = 2 given a strategy of their
opponent is independent of previous decisions and it depends only on
the current opponent’s decision and state. Therefore, we can consider
a static game.

Proposition 3.2: Consider any fixed x ≥ 0 and the one-stage game
with strategies si ∈ [0, (1 + ξ)x] and the payoff functions Pi given by

(1). The strategy profile given by

s̄i = S̄i (2, x) : =

{
(1 + ξ)x if x ≤ x̂1

ŝ if x ≥ x̂1
(8)

where ŝ =
2
5
A and x̂1 =

ŝ

1 + ξ
(9)

for i ∈ {1, 2}, is the unique Nash equilibrium in this game.
Proof: The Nash equilibrium strategy of player i fulfills

s̄i ∈ Argmax
s i ∈[0 ,(1+ ξ )x ]

((
A − 1

2
(si + s∼i )

)
si − s2

i

2
+ 0

)
. (10)

We calculate the zero derivative of the r.h.s. of (10) w.r.t. si to get the
first-order condition si = 2A−s∼i

4 .
If 2A−s∼i

4 ≥ (1 + ξ)x, then the maximum is at (1 + ξ)x. Therefore,
the unique Nash equilibrium is s̄ = S̄(2, x). �

Corollary 3.3: For every Nash equilibrium, for our (two stage) LQ
game, at terminal time 2, players’ strategies fulfill Si (2, x) = S̄i (2, x)
for S̄i (2, x) given by (8), and they are nondecreasing in x while the
value functions fulfill

V̄i (2, x) =

{ (
A − 3

2 (1 + ξ)x
)
(1 + ξ)x if x ≤ x̂1(

A − 3
2 ŝ

)
ŝ if x ≥ x̂1

(11)

Next, we proceed backward to solve the problem at time 1, given
Nash equilibrium strategies and the value functions at time 2 from
Proposition 3.2.

Lemma 3.4: Consider any x ≥ 0 and an LQ dynamic game with
only one time instant 1, the current payoff given by (1), the sets of
strategies [0, (1 + ξ)x], and the terminal payoff equal to V̄i (2, x) de-
fined by (11). With notation

xnext(si , s∼i )(x) = (1 + ξ)x − 1
2
(si + s∼i ) (12)

denote the point s at which xnext(si , s∼i , x) = x̂1 for x̂1 defined in (9),
by sBd(s∼i ).

a) Given a strategy of the opponent s∼i , the best response of player
i can be at one of the points: {0, dI(s∼i ), dII(s∼i ), sBd(s∼i ), (1 + ξ)x}
where

dI(s∼i ) =
6(1 + ξ)2x + 2A − s∼i (5 + 3ξ)

11 + 3ξ
(13a)

dII(s∼i ) =
2A − s∼i

4
(13b)

sBd(s∼i ) = 2(1 + ξ)x − 2x̂1 − s∼i . (14)

Moreover, the best response is at most A
2 .

b) If we have a symmetric Nash equilibrium, then for every x,
we have four possible values of Nash equilibrium strategy {(1 +
ξ)x, sI(x), ŝ, ssym

Bd (x)} for

sI(x) =
A + 3(1 + ξ)2x

8 + 3ξ
, ŝ defined by (9) and (15)

ssym
Bd (x) = (1 + ξ)x − x̂1 . (16)

In Lemma 3.4, we restrict the set of strategies for which we calculate
the best responses excluding those strategies that cannot appear at a
symmetric Nash equilibrium. This simplifies further work: since the
maximization problem that has to be solved at stage 1 is a maximization
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of a function that may be nonconcave and nondifferentiable and it may
have two local maxima, the comparison of the resulting two values is
needed to find the global maximum and the final result depends on the
strategy of the opponent in quite a complicated way.

Proof: The proof is based on properties of optima of strictly con-
cave differentiable functions on compact intervals. The KKT sufficient
condition can be used instead but in this case our method is analytically
simpler.

a) Let us fix player i and a strategy s∼i of their opponent. For brevity,
given strategy profile (si , s∼i ), we write xnext(si , s∼i , x) given by (12)
as xnext, whenever it does not lead to confusion. So, for t = 1, given x
and s∼i , (5) becomes

V̄i (1, x) = sup
s i ∈[0 ,(1+ ξ )x ]

RBE(si ) (17)

for RBE(si ) :=
(
A − s∼i

2
− si

)
si

+
{

ŝ
1+ ξ

(
A − 3

2 ŝ
)

if xnext ≥ x̂1

(A − 3
2 (1 + ξ) · xnext) · xnext if 0 ≤ xnext ≤ x̂1

(18)

while the Nash equilibrium strategy has to fulfill

S̄i (1, x) ∈ Argmax
s i ∈[0 ,(1+ ξ )x ]

RBE(si ). (19)

By calculating the zero derivative points, we obtain dI and dII. The
maximum can also be attained either at one of the boundary points 0
or (1 + ξ)x or at the switching point sBd(s∼i ), at which the function is
usually nondifferentiable.

The global maximum of Pi (·, s∼i ) is attained at
A− s∼i

2
2 ≤ A

2 .
Obviously, dII(s∼i ) ≤ A

2 . If the maximum of RBE is attained at
dI(s∼i ) > A

2 , then player i can increase their current payoff by re-
ducing si by ε and the other part of RBE(si ) does not decrease, since
xnext increases and V̄i (2, x) is increasing in x over the set of possible
xnext, which contradicts si is a Nash equilibrium strategy. Similarly, for
(1 + ξ)x (maximal only if not greater than dI(s∼i )) and sBd (maximal
only if not greater than dII(s∼i )).

b) Assuming that a strategy has to be equal to a best response to
it for results of a), we obtain five possible candidates for the optimal
strategy of player i with

sI(x) for dI(s) = s, ŝ for dII(s) = s, ssym
Bd (x) for sBd(s) = s

(1 + ξ) and 0. For 0, the best response is greater than 0. �
Lemma 3.5: Consider any x ≥ 0 and the one-stage LQ dy-

namic game as in Lemma 3.4. The best response correspondence
BRi : [0, (1 + ξ)x] → [0, (1 + ξ)x] restricted to strategies s∗∼i ∈
{sI(x), ŝ, ssym

Bd (x), (1 + ξ)x} and with s∗∼i ≤ A
2 is

BRi (s∗∼i ) =

⎧⎪⎪⎨
⎪⎪⎩

{(1 + ξ)x} if x ≤ ŷ1 (s∗∼i )
{dI(s∗∼i )} if ŷ1 (s∗∼i ) < x < ybd(s∗∼i )
{dI(s∗∼i ), dII(s∗∼i )} if x = ybd(s∗∼i )
{dII(s∗∼i )} if x > ybd(s∗∼i )

(20)
for dI(s∗∼i ), dII(s∗∼i ), and ŝ defined in (13) and (9), where

ybd(s∗∼i ) =
45(1 + ξ)s∗∼i + 2A(35 + 15ξ +

√
2(11 + 3ξ))

120(1 + ξ)2 ,

ŷ1 (s∗∼i ) =
2A − s∗∼i (5 + 3ξ)

5 + 2ξ − 3ξ2 . (21)

Fig. 1. Two symmetric Nash equilibria—the decision at stage 1 de-
pending on the initial state.

Fig. 2. Value functions at stage 1 for Nash equilibria from Fig. 1, de-
pending on the initial state.

In Lemma 3.5, we calculate the best response of player i to a strategy
of the opponent with properties restricted by Lemma 3.4 b).

The technical proof of Lemma 3.5 is in the Appendix.
Theorem 3.6: Any profile S with Si (1, x) = S̄L

i (1, x) or
Si (1, x) = S̄R

i (1, x), where

S̄L
i (1, x) =

⎧⎨
⎩

(1 + ξ)x if x ≤ Y1

sI(x) Y1 < x ≤ Y2

ŝ if x > Y2

(22)

S̄R
i (1, x) =

⎧⎨
⎩

(1 + ξ)x if x ≤ Y1

sI(x) Y1 < x < Y2

ŝ if x > Y2 ,
(23)

for Y1 being the solution of ŷ1 ((1 + ξ)x) = ŷ1 (sI(x)) and an arbi-
trary Y2 ∈ [ybd(ŝ), ybd(sI(Z))] for Z being the unique solution of
ybd(sI(Z)) = Z [for ŷ1 and ybd defined by (21)] and Si (2, x) =
S̄i (2, x) for S̄i (2, x) defined by (8), is a symmetric Nash equilib-
rium for our two-stage game and only such profiles can be symmetric
Nash equilibria.

In Fig. 1, we present two symmetric Nash equilibrium strategies at
t = 1 (as a function of x), whereas in Fig. 2, we present the correspond-
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ing value functions at t = 1, both for the parameter values A = 10 000
and ξ = 0.02.

As we can see, the strategy at stage 1 is piecewise linear in state
and increasing on the first two intervals. We can interpret the results
for the fishery model from Section II-A. The first interval corresponds
to immediate catching of all the fish, in the second one, this happens
at stage 2, whereas the third one corresponds to a certain level of
sustainability and at stage 2 the global unconstrained maximum is
reached for each player. If we compare the points near to the jump
point Y2 , then for x0 < Y2 , both players are more greedy than for
x0 > Y2 . The reason is that facing increased fishing of the opponent;
a player also fishes more since the global unconstrained optimum in
the second stage is either not available any more or reaching it requires
substantial decrease of payoff at stage 1. This greediness results in
substantially decreased state at stage 2, however, the price in stage 2
increases compared to that obtained for the case x0 > Y2 .

Proof: By Corollary 3.3, for every Nash equilibrium, its profile of
decisions at time 2 coincides with the Nash equilibrium of the one-stage
game considered in Proposition 3.2, with identical Bellman equations.
So, the value functions of both players for Nash equilibria at stage 2
are equal to V̄i (2, x). So, the Nash equilibrium problem at stage 1 is
equivalent to the Nash equilibrium problem in a one-stage game from
Lemmas 3.4 and 3.5. The maximal set of x on which symmetric Nash
equilibrium can be equal to (1 + ξ)x is [0, Y1 ].

The maximal set of x in which a symmetric Nash equilibrium can
be equal to sI(x) is [Y1 , ybd(sI(x))].

The maximal set of x in which a symmetric Nash equilibrium can
be equal to ŝ is [ybd(ŝ), +∞).

Note that ybd(sI(x)) > ybd(ŝ) since sI(x) > ŝ for x ≥ ybd(ŝ). Let
us take any Y2 ∈ [ybd(ŝ), ybd(sI(Z))] and a profile S with Si (2, x) =
S̄i (2, x) and Si (1, x) = S̄L

i (1, x). The Bellman equation is fulfilled
and S̄L

i (1, x) is in the best response to S̄L
i (1, x).

For Si (1, x) = S̄R
i (1, x), the proof is analogous. �

Corollary 3.7: For our LQ dynamic game, there is a continuum of
discontinuous symmetric feedback Nash equilibria but no continuous
symmetric feedback Nash equilibrium (continuity with respect to the
state variable). These equilibria are functions differing by the state Y2

at which the jump appears at stage 1 and whether the function is left or
right continuous.

The value functions corresponding to these symmetric feedback
Nash equilibria are discontinuous at stage 1 at the same points Y2 .

We can also derive implications about different possible behavior
of the players at symmetric feedback Nash equilibria given fixed x0 .
If x0 ∈ [ybd(ŝ), Z ] (for Z from Theorem 3.6), then, depending on Y2 ,
players choose either Si (1, x0 ) = sI(x0 ), which results in depletion
of the resource after stage 2, or Si (1, x0 ) = ŝ, which results in some
resources left. In this interval, an arbitrarily small change of the initial
state may result in a substantial change of action. Besides this interval,
Si (1, x0 ) is unique.

IV. CONCLUSION

In this note, we have studied a symmetric two-stage LQ dynamic
game with a feedback information structure and linear state-dependent
constraints on strategies. This game has an obvious application in eco-
nomics. We have proven that a continuous (with respect to the state
variable) symmetric Nash equilibrium does not exist, whereas there are
a continuum of discontinuous symmetric Nash equilibria although the
instantaneous payoffs are concave while the sets of available decisions
are convex. So, our result is a counterexample to the common belief in
continuity of equilibria for LQ dynamic games with concave payoffs.

Since all the symmetric Nash equilibria are discontinuous and
nonunique, the extension of the game to more than two periods poses
several technical challenges: because of the discontinuity of the Nash
equilibrium value functions in the two-stage game, calculation of the
strategies at the first-stage even in a three-stage game requires solving
the Bellman equation with discontinuous r.h.s., besides there is a prob-
lem which Nash equilibrium in the two-stage game to choose (since,
e.g., the fact that there is no symmetric Nash equilibrium assuming a
specific Nash equilibrium in the last two stages is not a proof that a
symmetric Nash equilibrium does not exist).

APPENDIX

TECHNICAL PROOFS

To prove Lemma 3.5, we state the following preliminary results on
properties of the best response correspondence.

Lemma A.1: Consider the game of Lemma 3.4. For fixed x and
a strategy s∗∼i ∈ {sI(x), ŝ, ssym

Bd (x), (1 + ξ)x} ∩ [0, A
2 ], the best re-

sponse fulfills

BRi (s∗∼i ) ⊂

⎧⎪⎪⎨
⎪⎪⎩

{(1 + ξ)x} if x ≤ ŷ1 (s∗∼i )
{dI(s∗∼i )} if ŷ1 (s∗∼i ) < x ≤ x̂2 (s∗∼i )
{dI(s∗∼i ), dII(s∗∼i )} if x̂2 < x < ŷ2 (s∗∼i )
{dII(s∗∼i )} if x ≥ ŷ2 (s∗∼i )

(24)

where, besides the symbols from (13) and (21)

x̂2 (s∗∼i ) =
(15(1 + ξ)s∗∼i + 2A(13 + 5ξ))

40(1 + ξ)2 (25)

ŷ2 (s∗∼i ) =
(15(1 + ξ)s∗∼i + A(27 + 11ξ))

40(1 + ξ)2 . (26)

Proof: First, let us note that the function RBE is piecewise concave
with at most two pieces. The switching points ŷ1 , ŷ2 , and x̂2 are defined
as follows: ŷ1 by dI(s∗∼i ) = (1 + ξ)x, ŷ2 by dI(s∗∼i ) = sBd(s∗∼i ), and
x̂2 by dII(s∗∼i ) = sBd(s∗∼i ).

We consider the four consecutive cases from (24). Given s∗∼i and x,
our optimization problem given in (17) can be decomposed into two
optimization problems of differentiable and strictly concave functions:
RBE1 over the interval [sBd(s∗∼i ), (1 + ξ)x] ∩ [0, (1 + ξ)x] and RBE2

over the interval [0, sBd(s∗∼i )] ∩ [0, (1 + ξ)x] defined as follows:

RBE1 (si ) :=
(

A − s∗∼i

2
− si

)
si +

ŝ

1 + ξ

(
A − 3

2
ŝ

)
(27)

RBE2 (si ) :=
(

A − s∗∼i

2
− si

)
si +

(
A − 3(1 + ξ)xnext

2

)
· xnext.

(28)

By Lemma 3.4 a), the maximum of RBE can be attained at 0, (1 + ξ)x,
sBd(s∗∼i ), dI(s∗∼i ), or dII(s∗∼i ).

Note that for s∗∼i ≤ A
2 , both dI(s∗∼i ) and dII(s∗∼i ) are positive, so 0

is not the best response.
By meticulous checking, we obtain that all the functions dII(s∗∼i ) −

sBd(s∗∼i ), dI(s∗∼i ) − sBd(s∗∼i ), dII(s∗∼i ) − (1 + ξ)x, dI(s∗∼i ) − (1 +
ξ)x, and −sBd(s∗∼i ) for (s∗∼i ) ∈ {sI(x), ŝ, ssym

Bd (x), (1 + ξ)x} are
strictly decreasing in x. So, to prove that, e.g., dII(s∗∼i ) ≥ sBd(s∗∼i )
on some interval of state variables, it is enough to check it at the upper
bound of the interval only. Similarly, the function (1 + ξ)x − sBd(s∗∼i )
is either strictly decreasing in x (for s∗∼i = sI(x) and s∗∼i = ŝ) or it is
a positive constant (for s∗∼i = (1 + ξ)x and s∗∼i = ssym

Bd (x)).
We consider the following division of the state set. For brevity, in

the sequel, we use sBd for sBd(s∼i ) given in (14).
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Case 1: If x ≤ ŷ1 (s∗∼i ), then dI ≥ (1 + ξ)x and dII > sBd. So, the
maximum of RBE2 over [0, sBd] (if it is nonempty) is at sBd while RBE1

is strictly increasing on [sBd, (1 + ξ)x]. So, the maximum of RBE is
attained at (1 + ξ)x.

Let us also note that for x = ŷ1 (s∗∼i ), dI(s∗∼i ) = (1 + ξ)x.
Case 2: If ŷ1 (s∗∼i ) < x ≤ x̂2 (s∗∼i ) then dII(s∗∼i ) ≥ sBd and sBd ∈

[0, (1 + ξ)x]. So, the supremum of RBE2 on [0, sBd] is attained at sBd.
Since the zero derivative point of RBE1 , dI(s∗∼i ) ∈ [sBd, (1 + ξ)x], the
maximum of RBE is attained at dI(s∗∼i ). So, dI(s∗∼i ) is the unique best
response.

Case 3: If x̂2 (s∗∼i ) < x < ŷ2 (s∗∼i ) then both dI(s∗∼i ) ∈ (sBd, (1 +
ξ)x] and dII(s∗∼i ) ∈ (0, sBd) and sBd ∈ (0, (1 + ξ)x). Therefore, the
supremum of RBE2 on [0, sBd] is attained at dII(s∗∼i ), whereas the
supremum of RBE1 on [sBd, (1 + ξ)x] is attained at dI(s∗∼i ). So, the
supremum of RBE can be attained either at dI(s∗∼i ) or dII(s∗∼i ), de-
pending on whether RBE1 (dI(s∗i )) or RBE2 (dII(s∗i )) is greater. So,
only dI(s∗∼i ) and dII(s∗∼i ) can be in the best response.

Case 4: If x ≥ ŷ2 (s∗∼i ), then dI(s∗∼i ) ≤ sBd while dII(s∗∼i ) ∈
[0, min{sBd, (1 + ξ)x}]. So, the maximum of RBE1 on [sBd, (1 +
ξ)x)] is either at sBd and sBd is not the maximum of RBE2 on [0, sBd], or
the interval [sBd, (1 + ξ)x] is empty. Therefore, the maximum of RBE
over [0, (1 + ξ)x] is attained at dII(s∗∼i ). So, dII(s∗∼i ) is the unique best
response. �

Proof of Lemma 3.5: By Lemma (A.1) and the fact that the best
response is nonempty (as a maximum of continuous function over a
compact set), we know exactly what the best response is besides the
interval [x̂2 (s∗∼i ), ŷ2 (s∗∼i )]. So, consider x ∈ [x̂2 (s∗∼i ), ŷ2 (s∗∼i )].

For x < ybd(s∗∼i ), RBE(dI(s∗∼i )) > RBE(dII(s∗∼i )), whereas for
x > ybd(s∗∼i ), RBE(dII(s∗∼i )) > RBE(dI(s∗∼i )). For x = ybd(s∗∼i ),
they are equal. �
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[10] R. P. Hämäläinen, “Nash and Stackelberg solutions to general linear-
quadratic two player difference games. I. Open-loop and feedback strate-
gies,” Kybernetika, vol. 14, no. 1, pp. 38–56, 1978.

[11] P. V. Reddy and G. Zaccour, “Open-loop Nash equilibria in a class of
linear-quadratic difference games with constraints,” IEEE Trans. Autom.
Control, vol. 60, no. 9, pp. 2559–2564, Sep. 2015.

[12] P. V. Reddy and G. Zaccour, “Feedback Nash equilibria in linear-quadratic
difference games with constraints,” IEEE Trans. Autom. Control, vol. 62,
no. 2, pp. 590–604, Feb. 2017.

[13] R. Singh and A. Wiszniewska-Matyszkiel, “Linear quadratic game
of exploitation of common renewable resources with inherent con-
straints,” Topological Methods Nonlinear Anal., vol. 51, no. 1,
pp. 23–54, 2018.

[14] A. Rantzer and M. Johansson, “Piecewise linear quadratic optimal
control,” IEEE Trans. Autom. Control, vol. 45, no. 4, pp. 629–637,
May 2000.

[15] A. Wiszniewska-Matyszkiel, M. Bodnar, and F. Mirota, “Dynamic
oligopoly with sticky prices: Off-steady-state analysis,” Dyn. Games Appl.,
vol. 5, no. 4, pp. 568–598, 2015.

[16] T. S. Genc and G. Zaccour, “Capacity investments in a stochastic dynamic
game: Equilibrium characterization,” Oper. Res. Lett., vol. 41, no. 5,
pp. 482–485, 2013.

[17] F. P. Ramsey, “A mathematical theory of saving,” Econ. J.,
vol. 38, no. 152, pp. 543–559, 1928. [Online]. Available:
http://www.jstor.org/stable/2224098

[18] R. Bellmann, Dynamic Programming. Princeton, NJ, USA: Princeton
Univ. Press, 1957.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


