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Stable Process Approach to Analysis of Systems
Under Heavy-Tailed Noise: Modeling and

Stochastic Linearization
Kenji Kashima , Member, IEEE, Hiroki Aoyama , and Yoshito Ohta , Senior Member, IEEE

Abstract—The Wiener process has provided a lot of
practically useful mathematical tools to model stochastic
noise in many applications. However, this framework is not
enough for modeling extremal events, since many statisti-
cal properties of dynamical systems driven by the Wiener
process are inevitably Gaussian. The goal of this work is
to develop a framework that can represent a heavy-tailed
distribution without losing the advantages of the Wiener
process. To this end, we investigate models based on sta-
ble processes (this term “stable” has nothing to do with
“dynamical stability”) and clarify their fundamental prop-
erties. In addition, we propose a method for stochastic
linearization, which enables us to approximately linearize
static nonlinearities in feedback systems under heavy-
tailed noise, and analyze the resulting error theoretically.
The proposed method is applied to assessing wind power
fluctuation to show the practical usefulness.

Index Terms—Extremal events, linearization, renewable
energy, stochastic systems.

I. INTRODUCTION

IN MANY engineering applications, it is important to
evaluate the effect of probabilistic uncertainty. There are

many mathematical representations for dynamical noise sig-
nals. Among them, the Wiener process is the most classical and
powerful one [1]. From a modeling point of view, the Wiener in-
crement can be viewed as a continuous-time counterpart of the
discrete-time independent and identically distributed random
variables having finite variance, which is a standard expression
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to represent probabilistic noise. From a technical point of view,
many statistical properties of linear dynamical systems driven
by the Wiener process conform to a normal distribution. This
enables one to develop beautiful theories for analysis and syn-
thesis, e.g., H2-control design and Kalman filtering [2].

On the other hand, in recent years, it has been pointed out
that extremal events often cause severe damage in many situ-
ations. Thus, it is important to suitably handle such events to
develop resilient systems. When we attempt to investigate this
problem in the Wiener process setting, the aforementioned affin-
ity to the normal distribution results in conclusions that are no
longer meaningful, and even misleading. Actually, the Gaus-
sian function, which is the probability density function of the
normal distribution, has quickly decaying tails as seen in the
popular 3σ rule (99.7% of samples lie within three standard
deviations of the mean). For example, the statistical property of
wind power fluctuation, which does not fit to the normal dis-
tribution because of its high probability of the extremal outlier
[3], is known as an “umbrella curve” and regarded as a source
of severe damage to power systems. In addition, the scale-free
property attracts much attention in various scientific disciplines
[4]. Mathematically, this is a power law of the probability distri-
bution, which represents significantly frequent outliers. These
facts imply that the Wiener process framework is not capable of
capturing such non-Gaussian phenomena adequately. There are
several interesting works to represent sudden shifts in control
systems, e.g., Markovian jump [5] and Laplacian distributions
[6], [7]. However, these treatments are rather different from the
Wiener process case. As a result, the technical advantage arising
from the Gaussianity would easily be lost.

A. Contribution and Literature Review

The goal of this work is to develop a framework that can rep-
resent heavy-tailed distributions arising from extremal events,
without losing the aforementioned advantages of the Wiener
process. To this end, we alternatively employ stable processes
(this term “stable” has nothing to do with “dynamical stability”
in control theory) [8]–[10]. Stable processes are a natural exten-
sion of the Wiener process. As a result, the technical advantages
of the Wiener process setting can be retained considerably in
comparison to other non-Gaussian frameworks. Nevertheless,
the behavior of linear systems driven by a stable process is
expressed in terms of the so-called stable distribution with a
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non-Gaussianity parameter α ∈ (0, 2]. This distribution is just
a normal distribution when α = 2, but obeys a power law oth-
erwise. This enables us to model heavy-tailed distributions. In
addition, beyond the linear systems analysis, we analyze sys-
tems equipped with static nonlinearity, such as saturation or a
dead zone. In this paper, we investigate statistical properties
of the output signal of such feedback systems driven by stable
processes. In the main results, we propose a stochastic lineariza-
tion method [11] to provide user-friendly modeling and analysis
methods.

Some related works are listed here. In [12], linear–quadratic–
Gaussian (LQG) theory was extended to another class of jump
diffusions. However, stable processes can model completely dif-
ferent statistics, which require careful mathematical treatment.
In addition, we also study the effect of nonlinearity. Next, in
[11] and [13], stochastic linearization of systems driven by the
Wiener process is thoroughly investigated. It should be empha-
sized that the extension to our setting is not straightforward.
This is because the stable distribution with α �= 2 does not have
an analytic representation for the probability distribution and
finite second-order moment. Consequently, the error variance
minimization, which was a crucial building block in the con-
ventional methods, becomes nontrivial, or even ill-posed. We
circumvent this issue by employing an alternative error met-
ric. A preliminary version of this paper was presented in [14].
The original contribution of the present paper is summarized as
follows: the results are presented in a more general (by means
of multiple-input multiple-output generalized plant and vari-
ous nonlinearities) and mathematically rigorous (in terms of the
convergence in law) framework; the power spectrum density is
characterized in a closed form in Theorem 1; the key parameter
that determines the effect of non-Gaussianity is given explic-
itly in Theorem 3; a novel theoretical error bound is derived in
Theorem 4; and, finally, in the application to wind power assess-
ment where a more realistic situation is considered, a practically
meaningful sensitivity analysis is conducted employing the pre-
sented techniques in Section V.

B. Organization

The rest of this paper is organized as follows. In Section II,
we introduce the stable process and formulate our problem. In
Section III, we characterize the asymptotic behavior of outliers
and briefly explain the frequency domain modeling. In Sec-
tion IV, we propose a stochastic linearization method for this
class of feedback systems. In Section V, we verify the effec-
tiveness of the proposed method via its application to renewable
energy assessment. Some concluding remarks are given in Sec-
tion VI. Proof of the Theorems are provided in the Appendixes.

Notation: The set of real numbers is R and j =
√−1. Let

(Ω,F ,P ) be a complete probability space equipped with a nat-
ural filtration {Ft}t≥0 . The expectation is denoted by E. Only
when we need to specify the underlying probability measure, or
conditioning, will this be shown in the subscript. The indicator
function 1S (x) is 1 if x ∈ S, and 0 otherwise. For stochastic
process xt , the convergence in law1 to a random variable x∞

1limt→∞ P [xt ∈ B ] = P [x∞ ∈ B ] for any Borel set B with boundary ∂B
satisfying P [x∞ ∈ ∂B ] = 0; see [15] and [16].

is denoted by xt
d−→ x∞. The probability distribution of x∞ is

referred to as the stationary distribution of xt . For positive real
constants s, x, the gamma function Γ(s) and scaled lower in-
complete Gamma function Γ�(s, x) are defined by

Γ(s) :=
∫ ∞

0
ts−1e−tdt

Γ�(s, x) :=
1

Γ(s)

∫ x

0
ts−1e−tdt.

II. GENERALIZED WHITE NOISE AND PROBLEM

FORMULATION

In this paper, we utilize a more general framework for random
signals than the Wiener process. The definitions are introduced
in Section II-A. Then, the main problem in this paper is formu-
lated in Section II-B.

A. Stable Process

We begin with an extension of the normal distribution. There
are several equivalent definitions for the normal distribution.
Among them, we rely on the representation based on its charac-
teristic function2 (see [8]).

Definition 1: A real-valued random variableX is said to have
a symmetric stable distribution with parameter α ∈ (0, 2] and
σ > 0, or simplyX ∼ SαS(α, σ), if its characteristic function
satisfies

E[exp(jνX)] = exp(−σα |ν|α ), ν ∈ R. (1)

�
The parameter α represents the degree of non-Gaussianity. In
particular, SαS(2, σ) obeys the normal distribution with vari-
ance 2σ2 . As α becomes small, the resulting distribution has a
heavier tail. Similarly to the standard deviation of the normal
distribution, σ is a scaling parameter. The parameter is omit-
ted when σ = 1 such as X ∼ SαS(α). For X ∼ SαS(α), we
have

κX ∼ SαS(α, |κ|), κ ∈ R (2)

by definition. We denote Xt
d−→ SαS(α, σ) when Xt

d−→ X∞
such that X∞ ∼ SαS(α, σ).

Next, we extend the notion to stochastic processes. The
Wiener process can be generalized in a similar way to Defi-
nition 1.

Definition 2: A stochastic processLt is said to be a (normal-
ized) α-stable process with parameter α if

Lt ∼ SαS
(
α, t1/α

)
. (3)

�
Here,

√
2Lt with α = 2 is the Wiener process. Finally, similarly

to the Itô integral for the Wiener process, we can introduce a
stochastic differential equation associated with stable processes
[8, Ch. 3].

2There is another definition for which (1) is replaced by E[exp(jνX )] =
exp(−σα |ν |α /α).
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Fig. 1. Block diagram for Problem 1.

B. Problem Formulation

The goal of this paper is to derive a simple method to find
statistical properties of the output signal of feedback systems
driven by stable processes. In particular, we focus on systems
consisting of linear systems and saturation nonlinearity in Fig. 1

dxt = Axtdt+Butdt+ bdLt (4)

zt = czxt (5)

yt = Cyxt (6)

ut = satd(yt) (7)

where xt ∈ Rn , ut ∈ Rr , zt ∈ R, and yt ∈ Rr are the state,
control input, evaluation output, observation variables, respec-
tively, b, cz	 ∈ Rn , and A, B, and Cy are matrices of compat-
ible dimension. The stochastic input Lt is an α-stable process
with parameter α and

satd(y) :=

⎡
⎢⎣

satd1 (y1)
...

satdr (yr )

⎤
⎥⎦ (8)

with the given threshold vector d ∈ [0,∞)r and

satdi (yi) :=

⎧⎪⎨
⎪⎩

−di, yi < −di
yi, |yi | ≤ di

di, yi > di

(9)

where yj (respectively, dj ) is the jth element of y (respectively,
d); see Fig. 2(a). Then, we are ready to state our problem.

Problem 1: Consider the feedback system with saturation
given above. Suppose that (A+BKCy ) is Hurwitz for any
K ∈ {diag(k1 , . . . , kr ) : ki ∈ [0, 1]} and that xt converges in
law to a random variable x∞ defined on Rn as t→ ∞. Then,
find the stationary probability distribution of zt . �

For the case with α = 2 investigated in [11], it is not difficult
to compute the desired probability distribution via the Monte
Carlo method. However, it is challenging to capture the effect
of rare events based on the Monte Carlo simulation [17]. There-
fore, it should be emphasized that the Monte Carlo method is
not enough for our purpose to quantify the effect of heavy-
tailed noise represented by the stable processes with α < 2. In
addition, it is difficult to obtain insight into the parameter de-
pendence from the obtained simulation result (see Section V).
Another approach, such as [18], is not necessarily computation-

Fig. 2. Static nonlinearities. (a) Saturation. (b) Relay. (c) Deadzone.
(d) Friction.

ally tractable for multidimensional systems. Obviously, simply
ignoring the saturation (y = u) is problematic. In view of this,
we construct a stochastic linearization method [19], [20], where
the saturation is approximated by a suitable linear function.

Derivation of existence criteria of the invariant measure is
out of the scope of this paper; see [21] and [22] for the Wiener
process. The stability assumption with K = I implies that the
feedback system is stable when the saturation is not active.
Though we confine ourselves to saturation in Problem 1, the
method proposed in this paper is applicable to other nonlinearity
blocks (see Section IV-E).

III. MODELING SYSTEMS UNDER HEAVY-TAILED NOISE

A. Sample Path Properties

In principle, the probability density function can be uniquely
determined by the inverse Fourier transform of the characteristic
function. For α = 2, the probability density function is again
a Gaussian function, which can easily be sampled. Though the
probability density function of the stable distribution withα < 2
has no analytic representation, it is possible to generate samples
by the following property [8, Proposition 1.7.1]:

X =
sin(αU)

(cos(U))
1
α

(
cos((1 − α)U)

E

) 1−α
α

∼ SαS(α) (10)

where U and E are mutually independent and, respectively, a
uniform random variable on (− π

2 ,
π
2 ) and an exponential ran-

dom variable with intensity 1. However, it is still difficult to pre-
cisely evaluate the statistical properties resulting from outliers
via the Monte Carlo simulation. This is because the statistical
property of outliers is not negligible, explained as follows (see
[8, Property 1.2.15]):

Proposition 1: For X ∼ SαS(α) with α ∈ (1, 2), we have

lim
λ→∞

λαE [X > λ] = Cα :=
1 − α

2Γ(2 − α) cos( πα2 )
. (11)

�
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Fig. 3. log-log plot of the histogram of the stable distribution SαS(1.6)
and Gaussian density function of SαS(2).

This is a power law for stable random variables. In comparison
to the normal distribution for α = 2, extremal values occur with
a significantly larger probability. Fig. 3 shows the log–log plot
of the tail distribution. Such a linear decay is often called scale
free. As a direct consequence of this power law, the moment
E[|X|p ] is not finite for p ≥ α (see [9, Example 25.10]).

Proposition 2: For X ∼ SαS(α) with α∈(0, 2) and
p ∈ (−1, α), we have

E[|X|p ] =
2pΓ

( 1+p
2

)
Γ
(
1 − p

α

)
√
πΓ
(
1 − p

2

) . (12)

�
Concerning the continuity of sample paths, we have the fol-

lowing property [9].
Proposition 3: Every α-stable process is a Lévy process, that

is, a càdlàg process (right continuous with left limits) having
stationary and independent increment. �

Lévy processes allow discontinuity of sample paths although
the Wiener process is known to have almost sure continuous
sample paths. This causes a significant difference in terms of
the trajectories. This proposition, combined with Definition 1,
means

Lt+dt − Lt ∼ (dt)1/αSαS(α) (13)

for any α, dt > 0, which allows one to employ the Euler–
Maruyama method [23] for simulating dynamical systems
driven by stable processes [8].

Example 1: Let us consider

dnt = −0.001ntdt+ 1.365dLt (14)

where Lt is an α-stable processes, which is used as a wind
power fluctuation model (with time t [s]) in Section V. Fig. 4
shows sample paths for α = 2, 1.6, which are scaled such that
they have identical stationary 1st order moment (see Proposition
2 and Theorem 2). Even a simulation over such a short time
interval suggests that we can use stable processes with α < 2
to represent stochastic noises that exhibit frequent and large
sudden shifts.

Fig. 4. Scaled sample path for α = 2 (red) and 1.6 (blue).

Fig. 5. Block diagram of the Ornstein–Uhlenbeck process.

B. Frequency-Domain Modeling

Before we proceed, let us examine the advantage of the use
of stable processes from a modeling point of view.

In order to model noise signals from time-series data, it is
standard to use the Ornstein–Uhlenbeck processes driven by
Wiener processes as follows. Let us assume that the noise one
wants to model is represented as yt defined by3

dxt = Axtdt+ bdLt, yt = cxt (15)

where A ∈ Rn×n is Hurwitz, b, c	 ∈ Rn , andLt is an α-stable
process with α ∈ (0, 2]. We need to choose suitable

G(s) := c(sI − A)−1b (16)

to capture the statistical property of the noise (see Fig. 5). Sup-
pose that sufficiently many long sample paths of yt are available
so that we can approximately compute its power spectrum den-
sity. When α = 2, one of the easiest ways of choosing G(s) is
to make |G(jω)| close to the power spectrum density because
the Wiener process has a “flat” frequency distribution. Such a
gain diagram fitting provides a good approximation to capture
the size and smoothness of the given noise signals.

The following result shows that a similar modeling approach
is also possible for stable process cases.

Theorem 1: For (15) and any α ∈ (0, 2), p ∈ (−1, α), and
ω > 0,

lim
T→∞

E

[∣∣∣∣ 1
T 1/α

∫ T

0
e−jωtytdt

∣∣∣∣
p
]

= κ(α,p) |G(jω)|p (17)

3Throughout this paper, Italic fonts (e.g., xt ,A) are used to represent symbols
related to the nonlinear dynamics in Problem 1, while Roman fonts (e.g., xt ,
A) are used for the general linear dynamics in (15).
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holds with

κ(α,p) =
(2κα )pΓ(1 + p

2 )Γ(1 − p
α )

Γ(1 − p
2 )

(18)

κα :=
(

1
π

∫ π

0
| cos t|αdt

)1/α

. (19)

�
This equality also holds for α = p = 2, where the left- and

right-hand sides of (17) are equal (up to scaling) to the power
spectrum density of yt and |G(jω)|2 , respectively. This fact
justifies the aforementioned gain diagram fitting. This theorem
implies that, for any fixed α, we should approximate the given
power spectrum density by |G(jω)| in the sense of (17). There-
fore, we can use the new parameter α to capture other statistical
characteristics without sacrificing the capability of representing
the given frequency-domain information about the smoothness;
see also Remark 2 in Section IV-B for a reasonable way to
determine α.

Remark 1: The Student’s t distribution is widely used to
model heavy-tailed random variables. However, to the best of
our knowledge, its associated stochastic process does not have
similar properties to the Wiener process [24]. For example, the
stable distribution cannot be replaced by the Student’s t distri-
bution in any of Definition 2 and Theorems 1 and 2.

IV. STOCHASTIC LINEARIZATION

In this section, we derive some theoretical results related to
stochastic linearization and introduce our proposed method to
Problem 1. In what follows, we confine ourselves to the case
with α ∈ (1, 2] because even the mean absolute value is not
finite for α ≤ 1.

A. Wiener Process Case

In this section, we briefly review the stochastic linearization
for α = 2. The following are two important properties for per-
forming stochastic linearization of feedback systems consisting
of linear systems and saturation.

� The probability distribution of yt in (15) converges to the
normal distribution SαS(2, ‖ceAtb‖2). This well-known
result plays a crucial role in LQG theory. By using this,
once the nonlinearity is approximated by linear systems
in Problem 1, it is straightforward to know the stationary
distribution of yt and zt based on the associated transfer
function.

� Given real scalar constants σ > 0 and d > 0, the gain
k > 0 that minimizes

EY ∼SαS(2,σ )
[|satd(Y ) − kY |2] (20)

is given by

k = erf
(
d

2σ

)
(21)

where the error function is given by

erf(x) :=
2√
π

∫ x

0
e−t

2
dt.

This fact shows that, assuming that the underlying random
variable is Gaussian, the best approximation gain, in the
sense of the error variance, is given analytically. This is a
consequence of the fact that the probability density func-
tion has an explicit representation. An important feature
of this characterization is that the optimal gain depends
not only on the threshold d, but also σ.

Let us go back to the feedback systems in Problem 1. If the
stationary distribution of v is close to SαS(2, σv ), then it is
reasonable to approximate the saturation by k = erf (d/(2σv )).
Conversely, once the saturation is approximated by a linear gain
k, the stationary distribution of v should be close to the normal
distribution characterized in terms of the system from L̇t to v. By
combining these two observations, we obtain an equation with
respect to k, which can be a reasonable linearized gain for the
saturation; see the next section for detail. Note that the resulting
gain depends not only on d, but also on linear dynamics.

B. Stable Process Case

The next step is to provide a stable process counterpart for
the properties in the previous section.

1) Stationary Distribution of the Ornstein-Uhlenbeck
Process: We begin with the output of linear systems driven
by stable processes.

Theorem 2: For (15) with α ∈ (1, 2],

yt
d−→ SαS

(
α, ‖ceAtb‖α

)
(22)

holds, where theLα -norm of a real-valued function f(t) defined
on t ≥ 0 is defined by

‖f‖α :=
(∫ ∞

0
|f(t)|αdt

)1/α

(23)

provided that it is finite. �
This theorem indicates that the output of a linear system

driven by stable processes has a stable stationary distribution
with the same α. The gain is the Lα -norm of the impulse re-
sponse. Note that this value is identical to the H2-norm of
the transfer function when α = 2. In the proposed method,
Theorem 2 for general linear dynamics is used to find a suitable
linear approximation of the nonlinear dynamics in Problem 1.

Remark 2: From a modeling viewpoint, it seems easy and
reasonable to determine α based on (11) and the line fitting of
the log–log plot (as in Fig. 3 ) of the histogram of the long history
of the noise data (an alternative of the stationary distribution).

2) Optimal Linear Approximation: Theorem 2 motivates
us to investigate the optimal approximation gain for the satura-
tion function, where the underlying random variable conforms
to a stable distribution. However, by Proposition 1, the error
variance as in (20) cannot be finite when α < 2. In view of this,
we approximately linearize the saturation based on the mean
absolute error instead of the error variance.

Theorem 3: Given d > 0, σ > 0, and α ∈ (1, 2), the gain
k > 0 that minimizes

EY ∼SαS(α,σ ) [|satd(Y ) − kY |] (24)
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TABLE I
γα VERSUS α

Fig. 6. γα for α ∈ [1.3, 2].

Fig. 7. Optimal gain k versus σ/d ∈ [0, 2] for α = 1.3, 1.5, 1.9, 2.0.

is given by

ksat := min
(

1,
d

γασ

)
(25)

where γα is a unique positive constant satisfying
∫ π

2

0
Fα (u) Γ�

(
2 − 1

α
,

(
γ

Fα (u)

) α
α −1

)
du =

1
2

α

α− 1
(26)

and Fα (u) is defined by

Fα (u) :=
sin(αu)
(cosu)

1
α

(cos((1 − α)u))
1−α
α . (27)

�
The value of γα for some α is shown in Table I and Fig. 6.

The optimal gain in (25) is a monotonically decreasing function
of σ/d for any fixed α, as is expected from (2); see Fig. 7,

which shows σ/d and the corresponding optimal gain k for
α = 1.3, 1.5, 1.9, 2.0. It should be noted that it is optimal to
ignore the saturation (i.e., k = 1) ifσ/d < γα despite the heavy-
tailed distribution of the underlying random variable. When
σ/d > γα , the optimal gain is inversely proportional to σ/d.

Remark 3: As stated in the proof (see the Appendixes), (26)
is equivalent to

EY ∼SαS(α)
[
Y · 1[0,γα ](Y )

]
=

1
2π

Γ
(

1 − 1
α

)
. (28)

In [14], the left-hand side of (28) was computed via the Monte
Carlo simulation, by which 100% confidence intervals cannot
be obtained. This fact can lead to invalid estimates particularly
when α is close to 1. In contrast, the integral in (26) is much
easier to evaluate. Note that the normalized incomplete Gamma
function Γ� is implemented as gammainc in MATLAB [25].

C. Proposed Method

First, let us examine the boundedness of the moment of y in
the original dynamics:

Corollary 1: In Problem 1, the stationary distribution of
yj has a finite pth order moment for any p ∈ [1, α) and
j = 1, . . . , r. �

In view of this, similarly to the Gaussian case, the stationary
distribution of yj is approximated by

SαS(α, σyj ). (29)

Then, it is reasonable to approximate satdj (yj ) by linear gain

kj = min
(

1,
dj

γασyj

)
(30)

by Theorem 3. Conversely, once each saturation satdj (yj ) is
approximated by a linear gain kj , the stationary distribution of
yj is given in the form of (29) with

σyj =
∥∥∥Cyje(A+BKCy )tb

∥∥∥
α

(31)

by Theorem 2, where Cyj is the jth row of Cy and K :=
diag(k1 , . . . , kr ). Here, we utilized the fact that the trans-
fer function of the linearized system from L̇t to the yj is
Cyj (sI − (A+BKCy )−1b). Combining (29)–(31), we are
ready to state our proposed method for Problem 1:



1350 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 4, APRIL 2019

Fig. 8. Block diagram for the loop shifting.

The formula in Proposition 2 can be used to compute the
moments with respect to this distribution. We solve the r coupled
equations (32) numerically. This implies that it is important that
the equation is given in a simple form so that no sample path
generation is needed at any iteration.

D. Error Analysis

To the best of the authors’ knowledge, existing Gaussian ap-
proximation error analysis methods (e.g., [26], [27]) are not
applicable to our case. Actually, even in the conventional Gaus-
sian case, theoretical error bounds for stochastic linearization of
feedback systems have not been obtained [11]. In this section,
we provide a novel theoretical bound and numerical experiments
to examine the practical usefulness.

1) Theoretical Bound: First, the loop shifting in Fig. 8 is
applied to obtain

dxt = (A+BKCy )xtdt+Būtdt+ bdLt (33)

ūt = ψ(yt) (34)

with (5) and (6), where

ψ(y) := satd(y) −Ky. (35)

Furthermore, thanks to the linearity of the dynamics, the solu-
tions to

dx̃t = (A+BKCy )x̃tdt+ bdLt (36)

dδt = (A+BKCy )δtdt+Būtdt (37)

with x0 = x̃0 + δ0 satisfy

xt = x̃t + δt . (38)

See the block diagram in Fig. 9. The proposed
method approximates x∞ by x̃∞, which satisfies cz x̃∞ ∼
SαS(α, ‖cz e(A+BKCy )tb‖α ). It is, therefore, crucial for error
analysis to evaluate δt . The main difficulty lies in the fact that
δt is a signal generated in the nonlinear feedback loop. Recall

Fig. 9. Block diagram for Theorem 4.

that our proposed method determines K aiming at minimizing

η(K) := EY ∼SαS(α,‖Cy e(A + B K C y ) t b‖
α
)[|satd(Y ) −KY |].

(39)

The following theorem gives an error bound in terms of η(K).
Theorem 4: In Problem 1 with r = 1, given K ∈ [0, 1], de-

fine

ζ := max(K, 1 −K) ∈ [1/2, 1]

ηy := ‖Cy e(A+BKCy )tB‖1

ηz := ‖cz e(A+BKCy )tB‖1 .

Then, if ζηy < 1, then

E := lim sup
t→∞

E[|cz (xt − x̃t)|] ≤ ηz
1 − ζηy

η(K). (40)

�
When the mean absolute value of zt is of interest in Problem

1, one can use

E[|cz x̃∞|] − E ≤ E[|czx∞|] ≤ E[|cz x̃∞|] + E (41)

which follows from (40) and the triangle inequality.
The obtained a posteriori error bound can be understood

intuitively as follows: Concerning the static nonlinearity, the
only property we utilized in the proof is

|ψ(y + Δ)| ≤ |ψ(y)| + ζ|Δ|, y,Δ ∈ R. (42)

Note that the H∞-norm of Cy (sI − (A+BKCy ))−1B is less
than or equal to ηy (see, e.g., [2]). Therefore, ζ and ηy can be
viewed as (incremental) gain upper bounds of the static non-
linearity ψ(·) and the linear system from ūt to yt , respectively.
Consequently, the assumption ζηy < 1 plays a role of a small
gain condition to ensure the stability of the nonlinear feedback
loop in Fig. 9. Under this condition, 1/(1 − ζηy ) can be seen as
the sensitivity function that characterizes how much the addi-
tive signal to ūt , which is related to η(K), affects ūt . Similarly,
ηz is the gain of the linear system from ūt to zt . The upper
bound in (40) is the product of these three terms.

Remark 4: Although the case of r = 1 and the saturation is
considered here for simplicity, similar bounds can be obtained
for general cases with other nonlinearities shown in Fig. 3. It is
also expected that there are several ways to tighten the bounds.
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Fig. 10. Unity feedback system.

TABLE II
MONTE CARLO METHODS (MC) AND THE PROPOSED METHOD (SL)

For example, it seems better to replace (42) by

|ψ(y + Δ)| ≤ |ψ(y)| +K|Δ| + d(1 − 2K) (43)

when K is close to 0.
2) Numerical Experiments by Randomly Generated Sys-

tems: Similarly to [11, Sec. 3], we apply the proposed
method to the unity feedback system in Fig. 10, where
F (s), C(s), P (s), d > 0, and 1 < α ≤ 2 (the parameter in
the stable process Lt) are randomly generated and examine the
resulting accuracy.

For the proposed method, the approximate gain for the satura-
tion, i.e., the solution to (32), was computed within the accuracy
10−3 . For the Monte Carlo method, we calculated long time av-
erage of |yt | (i.e., zt = yt) of sample paths, which are generated
by time discretization with width dt = 0.01 until these average
values seem to converge. For each value, the computation time
is more than 10 min for the Monte Carlo method and less than
1 s for the proposed method with MacBook Air with an Intel
Core i7 processor. Table II shows the obtained data of the mean
absolute value of the stationary distribution of ut for some cases
with

F (s) =
σ

s+ 1
, C(s) =

1
s+ 1

, P (s) =
1

s+ p
, α = 1.7.

We can observe that the proposed method provides reasonable
estimates. It should be emphasized that the computation time re-
quired for the Monte Carlo method quickly increases as α↘ 1,
while it does not affect that for the proposed method signifi-
cantly.

Next, Theorem 4 is applied to obtain a hard bound. In this
feedback system, ηy = ηz is the L1-norm of the impulse re-
sponse of the system

C(s)P (s)
1 +KC(s)P (s)

.

Unfortunately, Theorem 4 is not applicable to the case p < 0.5
because ζηy < 1 does not hold. For other cases, E is shown in the
rightmost column of Table II. These bounds for σ = 1 provide

useful information about the accuracy, while it is desirable to
tighten them for σ = 5. It is worth noting that the result for
(σ, p, d) = (1, 2, 3) again indicates that the Monte Carlo method
is not trivial.

E. Other Nonlinearities and Impact of Non-Gaussianity α

We have so far investigated the saturation only. The proposed
scheme is also applicable to other piecewise affine nonlineari-
ties.

Theorem 5: Let d, σ > 0, α ∈ (1, 2) and E denotes
EY ∼SαS(α,σ ) .

1) For the relay in Fig. 3(b)

reld(y) :=

⎧⎪⎨
⎪⎩

−d, y < 0

0, y = 0

d, y > 0

(44)

E[|reld(Y ) − kY |] is minimized by

krel :=
d

γασ
. (45)

2) For the deadzone in Fig. 3(c)

dzd(y) :=

⎧⎪⎨
⎪⎩
d+ y, y < −d
0, |y| ≤ d

−d+ y, y > d

(46)

E[|dzd(Y ) − kY |] is minimized by

kdz := 1 − ksat . (47)

3) For the friction in Fig. 3(d)

frd(y) :=

⎧⎪⎨
⎪⎩

−d+ y, y < 0

0, y = 0

d+ y, y > 0

(48)

E[|frd(Y ) − kY |] is minimized by

kfr := 1 + krel. (49)

�
The relationships ksat = 1 − kdz and kfr = 1 + krel are the
same as in the conventional Gaussian case (see [11]).

Remark 5: For the saturation with deadzone satd(dzδ (y))
with d, δ > 0, the gain k that minimizes E[|satd(dzδ (Y )) −
kY |] is given by the unique k ∈ [0, d/(d+ δ)] satisfying

2E
[
Y · 1(δ/(1−k),d/k)(Y )

]
= E[Y · 1(0,∞)(Y )]. (50)

The result for the saturation and deadzone can be viewed as a
special case of (50) with δ = 0 and d = +∞, respectively; see
(70) in the proof of Theorem 3.

Next, we make some comments on the relationship between
parameters. All the optimal gains in Theorems 3 and 5 are
determined by the ratio between the saturation threshold d and
noise scale σ and γα . The contribution of the non-Gaussianity
parameter α is characterized as follows.
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Fig. 11. Optimal gain k for α ∈ [1.1, 2) when σ/d = 2.

Theorem 6: For α ∈ (1, 2), γα defined by (28) is monotoni-
cally decreasing with respect to α, and

lim
α↘1

γα = +∞. (51)

�
Consequently, when σ/d > 0 is fixed, the optimal gain ksat

in (26) is monotonically increasing with respect to α, and

lim
α↘1

ksat = 0. (52)

This fact can be explained as follows. First, a smaller gain
achieves a smaller error for the extremal outliers (i.e., |d− kx|
for |x|  d) that frequently occur for stable processes with
α close to 1. While a smaller gain leads to a larger error on
the unsaturated interval (i.e., |x− kx| for |x| < d), this is less
important because the unsaturated input is close to 0 with a high
probability. See Fig. 11 for α-dependence when σ/d = 2.

V. APPLICATION: UNCERTAINTY ASSESSMENT OF WIND

POWER GENERATION

A. Model Description

In this section, we apply the proposed scheme to evaluate the
frequency fluctuation of power systems interconnected to uncer-
tain renewable energy [28], [29]. We utilize the load frequency
control (LFC) model in Fig. 12; see [29, Sec. 1] for a strong
motivation to compute interconnectable capacity of wind power
in Japan. The physical meaning of each signal and block (the
role of the path with qt and P3 is explained later) is

� t [s] time;
� nt [MW] wind power fluctuation;
� et [MW] power deviation;
� ft [Hz] frequency deviation;
� vt [MW] power adjustment by LFC;
� W frequency domain model of the wind power fluctua-

tion;
� P1 physical inertia, e.g., load characteristics and system

inertia of the power system;
� P2 power generator for LFC.

The leeway available by the controller to adjust the power
output of the power generator is bounded by d1 > 0. Thus,
the saturation function satd1 is appropriate to model this. The
value of d1 significantly affects the running cost and the re-
sulting frequency deviation. The feedback loop with 1/s and
satd2 (d2 > 0) represents the rate limiter for the command in-
put to the power generator. In what follows, we analyze the
frequency deviation for the case, where Lt is an α-stable
process with α ∈ (1, 2]. Actually, several real data in [3] had
a tendency similar to Fig. 3, which did not fit well to the normal
distribution.

Note that the model with qt = 0 mainly focuses on the high-
or middle-frequency behavior controlled by inertia of the power
system and the adjustment of the thermal generation vt . In or-
der to consider the low-frequency fluctuation (e.g., longer than
20 min) caused by the frequent outliers, we also include the
slow adjustment qt by means of combined cycle or economic
dispatch control (EDC), whose responsiveness is characterized
by P3 . This signal plays a role of adjusting the saturation range
of control input (see Fig. 13).

We take d1 = 25 MW, d2 = 0.166 MW/s, ksys =
1/250 Hz/MW,

P1 =
1

3s+ 1
, P2 =

1
1

0.15 s+ 1
, W (s) =

0.0021 × 650
s+ 0.001

(53)

as in [29, Sec. 4], and

P3(s) =
1

Tcs+ 1
. (54)

Note that (14) in Example 1 corresponds to nt in Fig. 12 with
W (s) in (53). In summary, the dynamics in Fig. 12 with yt =
[ y1 y2 ]	 and zt = et are given by (4)–(7) with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1/3 0 0 −1/3 1/3

0 −0.15 0.15 0 0

0 0 0 0 0

1/Tc 0 0 −1/Tc 0

0 0 0 0 −0.001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1/3 0

0 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cy =

[
Cy1

Cy2

]
=

[
0 1 0 0 0

1 0 −1 −1 0

]

cz =
[
1 0 0 0 0

]

b =
[
0 0 0 0 −0.0021 × 650

]	
.
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Fig. 12. Block diagram of the LFC system.

Fig. 13. Sample path of vt (black), y1 t + qt (blue), and qt ± d1 (red).

Finally, we set

α = 1.9 (55)

unless otherwise stated.
To confirm the effect of qt , a sample path of vt is shown in

Fig. 13, where Tc = 103 . While vt ∈ [−d1 , d1 ] if qt = 0, we
can generate a wider range of vt by slowly adjusting the satura-
tion range.

B. Simulation Result

In order to assess the resulting average frequency fluc-
tuation, we approximately compute E[|e∞|]. For the Monte
Carlo method, we generate a sample path by time discretiza-
tion with width dt = 0.01 and calculated long time average∫ TM C

0 |et |dt/TMC with large TMC . First, let us consider the case
without feedback, i.e., vt = 0. In this case, et is an Ornstein–
Uhlenbeck process as in Fig. 5 with G = P1W . Thus, its
exact stationary distribution can be obtained by Theorem 2;
E[|e∞|] ≈ 43.8695. On the other hand, the result of the Monte
Carlo method is shown in Fig. 14. We can see that even this sim-
ple Ornstein–Uhlenbeck process case is not trivial to evaluate by
sample path generation, due to its slow convergence. This result
implies that the suitable sample number is difficult to determine.
Actually, even for such linear processes, their effective Monte
Carlo simulation requires sophisticated techniques when n > 1
[30].

Next, we include feedback control. Fig. 15 shows the re-
sults for the system with/without adjustment qt of the satura-

Fig. 14. Slow convergence of the Monte Carlo method for the stable
process case with α = 1.9: Monte Carlo result versus averaging time
length (blue) and theoretical value (red).

Fig. 15. Proposed method (black) and the Monte Carlo method (red):
qt = 0 case (dashed) and Tc ∈ [101 , 104 ] (solid).

tion range of vt , where P3 is (54) with Tc ∈ [101 , 104]. The
Monte Carlo method, for which we took TMC = 106 in view of
Fig. 14, was performed only for qt = 0 and 10 different values
for Tc . Recall that a smaller Tc implies better responsiveness
of the complementary power generation or EDC. The result by
the proposed method suggests that Tc = 103 is enough because
its fluctuation suppression effect saturates. On the other hand,
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the Monte Carlo method does not provide such an insight into
the parameter dependence. In most trials, we encountered an un-
suitable result, as in that for Tc = 104 in Fig. 15, which shows
the difficulty of the Monte Carlo simulation.

VI. CONCLUSION

In this paper, we proposed a framework to deal with dy-
namical systems under heavy-tailed stochastic noise. We uti-
lized stable processes to formulate non-Gaussianity caused by
nonnegligible extremal events. From an identification point of
view, this model enables us to easily incorporate noise statistics
available from time-series data. In Section IV, we gave two key
results for stochastic linearization of feedback systems driven
by stable processes. The representation in Theorems 2 and 3 is
simple enough to calculate iteratively to solve (32). It should be
emphasized that the Monte Carlo simulation for systems with a
lot of rare events is highly nontrivial or requires an infeasibly
high number of samples. Therefore, the advantage of our pro-
posed method over the Monte Carlo method is more significant
as the non-Gaussianity increases (smaller α). The effectiveness
of the proposed method was examined through the uncertainty
assessment of wind power generation. Finally, the most impor-
tant property that is lost for α < 2 is that the associated signal
and system spaces are Hilbert (i.e., the Lebesgue space L2 and
Hardy space H2), based on which LQG theory and Kalman
filtering have been developed for α = 2. We expect that our ap-
proximation scheme is useful to circumvent this issue when
practical controller design and state estimation methods are
investigated.

APPENDIX A
PROOF OF THEOREMS 1 AND 2 AND COROLLARY 1

A. Theorem 2

First, we prove Theorem 2 based on the following proposition
(see [8], Proposition 3.4.1):

Proposition 4: For any real-valued measurable function f
defined on [0, T ],

E

[
exp

[
jν
∫ T

0
f(s)dLs

]]
= exp

[
−
∫ T

0
|νf(s)|αds

]
(56)

for ν ∈ R holds provided that
∫ T

0 |f(s)|αds is finite. �
Equation (15) admits the explicit strong solution

xt = eAtx0 +
∫ t

0
eA(s−t)bdLs. (57)

In what follows, we take x0 = 0 as the first term vanishes in the
large t limit. Then, Proposition 4 with f(s) = ceA(t−s)b gives

E[ejνyt ] = exp
[
−|ν|α

∫ t

0
|ceAsb|αds

]
, ν ∈ R. (58)

Therefore, by taking the large t limit, the desired result follows.

B. Theorem 1

Combining (15) with the Itô product formula

d
(
e−jωtxt

)
= −jωe−jωtxtdt+ e−jωtdxt

we obtain

e−jωtxtdt = (A − jωI)−1 (d (e−jωtxt
)− e−jωtbdLt

)
.

By integrating this from 0 to T and multiplying by c/T 1/α , we
have

1
T 1/α

∫ T

0
e−jωtytdt

=
1

T 1/α

(
c(A − jωI)−1e−jωT xT + G(jω)

∫ T

0
e−jωtdLt

)
.

It follows from Proposition 4 that the first term converges in
probability to zero. Consequently, by focusing on the second
term, we have∣∣∣∣ 1

T 1/α

∫ T

0
e−jωtytdt

∣∣∣∣ = |G(jω)|‖vT ‖ (59)

where we introduced the two-dimensional random vector

vT :=
1

T 1/α

[
Re
∫ T

0
e−jωtdLt, Im

∫ T

0
e−jωtdLt

]	

=
1

T 1/α

∫ T

0
[cosωt,− sinωt]	dLt.

Next, take an arbitrary ν ∈ R2 and denote its argument by
ψν ∈ [0, 2π), i.e., ν = ‖ν‖[cosψν , sinψν ]	. Then, by the mul-
tidimensional version of Proposition 4 (see [8, Ch. 3]), we have

E
[
exp

[
jν	vT

]]
= exp

[
− 1
T

∫ T

0
|ν	[cosωt,− sinωt]	|αdt

]

= exp
[
−‖ν‖α 1

T

∫ T

0
| cos(ωt+ ψν )|αdt

]

→ exp [−‖ν‖α (κα )α ] , as T → ∞

independent of ω, ψν . Hence, vT
d−→ v∞ as T → ∞, where v∞

is an isotropic stable distribution on R2 defined by

E
[
exp

[
jν	v∞

]]
= exp [−‖ν‖α (κα )α ] .

Finally, Theorem 1 follows from (59) and a closed expression
for E[‖v∞‖p ] (see [31]).

C. Corollary 1

Corollary 1 is a direct consequence of Theorem 2. The solu-
tion to (4) is given by

xt = eAtx0 +
∫ t

0
eA(t−s)bdLs +

∫ t

0
eA(t−s)Busds. (60)

Here, the first and second terms converge in law to a sym-
metric stable distribution with α by Theorem 2. Recall that
ut ∈ [−d1 , d1 ] × · · · × [−dr , dr ] by definition. Therefore, the
support of the third term is uniformly bounded for all t. This
completes the proof.
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APPENDIX B
PROOF OF THEOREM 4

In what follows, the following explicit representation is em-
ployed:

δt = e(A+BKCy )(t−t ′)δt ′ +
∫ t

t ′
e(A+BKCy )(t+t ′−s)Bψ(ys)ds

(61)

for any t > t′ > 0. We ignore the first term, since it vanishes as
t→ ∞ independent of the choice of t′. This implies that

E[|Cyδt |] ≤ ηy · sup
s≥t ′

E[|ψ(ys)|], t > t′. (62)

Furthermore, due to the assumption xt
d−→ x∞,

lim
t ′→∞

sup
s≥t ′

E[|ψ(ys)|] = lim
t→∞ E[|ψ(yt)|]. (63)

In summary,

Ey := lim sup
t→∞

E[|Cyδt |] ≤ ηy · lim
t→∞ E[|ψ(yt)|]. (64)

By the same argument,

E ≤ ηz · lim
t→∞ E[|ψ(yt)|] (65)

also holds.
Next, inequality (42) yields

lim
t→∞ E[|ψ(yt)|] ≤ lim sup

t→∞
E[|ψ(Cy x̃t)| + ζ|Cyδt |]

≤ lim
t→∞ E[|ψ(Cy x̃t)|] + ζ lim sup

t→∞
E[|Cyδt |]

= η(K) + ζEy
≤ η(K) + ζηy · lim

t→∞ E[|ψ(yt)|] (66)

where Cy x̃t
d−→ SαS(α, ‖Cy e(A+BKCy )tb‖α ) and (64) are ap-

plied. Therefore, under the assumption ζηy < 1, we have

lim
t→∞ E[|ψ(yt)|] ≤ 1

1 − ζηy
η(K). (67)

Finally, this inequality with (65) completes the proof.

APPENDIX C
PROOF OF THEOREMS 3, 5, AND 6

In the remaining of this paper, E represents EY ∼SαS(α,σ )
unless otherwise stated.

A. Theorem 3

Let us regard (24) as a function of k. Note that this function
is continuous on R because

|E[|satd(Y ) − kY |] − E[|satd(Y ) − lY |]|
= |E[|satd(Y ) − kY | − |satd(Y ) − lY |]|
≤ |k − l|E[|Y |]

where E[|Y |] is finite.

Fig. 16. Saturation function and its linear approximation.

Trivially, the optimal k that minimizes this expectation satis-
fies 0 ≤ k ≤ 1. For 0 < k ≤ 1, splitting the integration interval
as in Fig. 16, we obtain

E[|satd(Y ) − kY |]
= 2E[(Y − kY ) · 1(0,d)(Y )] + 2E[(d− kY ) · 1(d,d/k)(Y )]

+ 2E[(kY − d) · 1(d/k,+∞)(Y )]

= 2kE[Y · 1(0,+∞)(Y )] − 4kE[Y · 1(0,d/k)(Y )]

+ 4dE[1(0,d/k)(Y )] + constant

where the last term is a constant independent of k. Thus, by the
linearity of the expectation, the derivative is

d

dk
E[|satd(Y ) − kY |] = 2E

[
Y · 1(0,+∞)(Y )

]

− 4E
[
Y · 1(0,d/k)(Y )

]

− 4k
d

dk

{
E[Y · 1(0,d/k)(Y )]

}

+ 4d
d

dk

{
E[1(0,d/k)(Y )]

}

= 2E
[
Y · 1(0,+∞)(Y )

]
− 4E[Y · 1(0,d/k)(Y )] (68)

where we used the equality

k
d

dk

{
E[Y · 1(0,d/k)(Y )]

}
= d

d

dk

{
E[1(0,d/k)(Y )]

}
. (69)

This means that d
dk E[|satd(Y ) − kY |] is a strictly increasing

function with respect to k and is negative for sufficiently small k.
Therefore, the desired minimizer is given as min(1, k�), where
k� is the unique solution to

E[Y · 1(0,+∞)(Y )] = 2E[Y · 1(0,d/k)(Y )]. (70)

By (12), the left-hand side is equal to

σ

π
Γ
(

1 − 1
α

)
.



1356 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 4, APRIL 2019

On the other hand, the right-hand side is equal to

2σEY ∼SαS(α)
[
Y · 1(0,d/(σk))(Y )

]
.

In summary,

γα :=
d

σk�
(71)

satisfies (28).
Based on (10), it can be verified that the left-hand side of (28)

can be rewritten as

EY ∼SαS(α)
[
Y · 1(0,γ )(Y )

]

=
Γ(2 − 1

α )
π

∫ π
2

0
Fα (u) Γ�

(
2 − 1

α
,

(
γ

Fα (u)

) α
α −1

)
du.

(72)

Finally, Γ(2 − 1
α ) = (1 − 1

α )Γ(1 − 1
α ) completes the proof of

Theorem 3.

B. Theorem 5

Similarly to the case of the saturation, we have

E [|reld(Y ) − kY |] = 2kE[Y · 1(0,+∞)(Y )]

− 4kE[Y · 1(0,d/k)(Y )]

+ 4dE
[
1(0,d/k)(Y )

]
+ constant

where the last term is a constant independent of k. The only
difference is that this equality holds for all k ≥ 0. That is, the
optimal gain is not bounded by 1. Therefore, we obtain krel
instead of ksat .

Finally, dzd(y) = y − satd(y) (respectively, frd(y) = y +
reld(y)) readily yields kdz = 1 − ksat (respectively, kfr = 1 +
krel).

C. Theorem 6

Note that the left-hand side of (28) is strictly increasing with
respect to γα , and that the Gamma function Γ(·) is strictly
decreasing function on the interval (0, 1/2]. Therefore, γα is
strictly decreasing with respect to α. In addition, since Γ(1 −
1/α) → +∞ as α→ 1, we have (51).
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autoregressive moving average processes,” Methodol. Comput. Appl.
Probab., vol. 19, no. 1, pp. 175–211, Mar. 2017.

[31] J. P. Nolan, “Multivariate elliptically contoured stable distributions: The-
ory and estimation,” Comput. Statist., vol. 28, no. 5, pp. 2067–2089, Oct.
2013.



KASHIMA et al.: STABLE PROCESS APPROACH TO ANALYSIS OF SYSTEMS UNDER HEAVY-TAILED NOISE 1357

Kenji Kashima (S’01–M’06) was born in Oita,
Japan, in 1977. He received the B.Sc. degree
in engineering in 2000 and the M.Sc. and Ph.D.
degrees in informatics in 2002 and 2005, respec-
tively, all from Kyoto University, Kyoto, Japan.

He was an Assistant Professor with the Grad-
uate School of Information Science and En-
gineering, Tokyo Institute of Technology, from
2005 to 2011. From April 2010 to March 2011,
he was with Universität Stuttgart. He was an As-
sociate Professor with the Graduate School of

Engineering Science, Osaka University, from 2011 to 2013. Since 2013,
he has been with the Graduate School of Informatics, Kyoto University,
where he is currently an Associate Professor. His research interests
include system and control theory for distributed and stochastic phe-
nomena in large-scale dynamical systems, as well as their applications.

Dr. Kashima was a semiplenary speaker at the 19th International
Symposium on the Mathematical Theory of Networks and Systems. He
was a recipient of the Humboldt Research Fellowship for Experienced
Researchers from the Alexander von Humboldt Foundation, Germany,
in 2010, and the Pioneer Award of SICE Control Division in 2012. He
has been an Associate Editor for the IEEE TRANSACTIONS OF AUTOMATIC
CONTROL since 2017, the IEEE CSS Conference Editorial Board since
2011, and the Asian Journal of Control since 2014.

Hiroki Aoyama was born in Kumamoto, Japan,
in 1990. He received the B.Sc. degree in en-
gineering and the M.Sc. degree in informatics
from Kyoto University, Kyoto, Japan, in 2014 and
2016, respectively.

He then joined IHI Corporation, Tokyo, Japan,
where he is currently with the Control Systems
Engineering Department, where research on the
accessories (components that configure engine
control system, e.g., sensors, pumps, actuators,
and engine control unit) of aircraft engines is

conducted. He is involved in designing the control rule and analyzing
effects that noise gives in an engine control system.

Yoshito Ohta (S’83–A’84–M’86–SM’07) re-
ceived the Dr.Eng. degree in electronic engi-
neering from Osaka University, Suita, Japan, in
1986.

From 1986 to 1988, he was a Visiting Sci-
entist with the Laboratory for Information and
Decision Systems, Massachusetts Institute of
Technology. Since 2006, he has been a Profes-
sor with the Department of Applied Mathematics
and Physics, Kyoto University, Kyoto, Japan. His
research interests include modeling of control

systems, networked control systems, and robust control.
Dr. Ohta was an Associate Editor for the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL from 2001 to 2005 and a member of the Board of
Governors of the IEEE Control Systems Society from 2008 to 2010. He
was the General Chair of the 54th IEEE Conference on Decision and
Control, Osaka, Japan, in 2015. He is an Associate Editor for the Euro-
pean Journal of Control and the Editor-in-Chief of the SICE Journal of
Control, Measurement, and System Integration.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


