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K4SID: Large-Scale Subspace Identification
With Kronecker Modeling

Baptiste Sinquin and Michel Verhaegen

Abstract—In this paper, we consider the identification of
matrix state-space models (MSSM) of the following form:

X(k + 1) = A2X(k)AT
1 + B2U(k)BT

1

Y(k) = C2X(k)CT
1 + E(k)

for all time dependent quantities and matrices of appro-
priate dimensions. Due to the large size of these matrices,
vectorization does not allow the use of standard multivari-
able subspace methods such as N4SID or MOESP. In this
paper, the resulting Kronecker structure that appears in the
system matrices due to vectorization is exploited for de-
veloping a scalable subspace-like identification approach.
This approach consists of first estimating the Markov
parameters associated to the MSSM via the solution of a
regularized bilinear least-squares problem that is solved in
a globally convergent manner. Second, a bilinear low-rank
minimization problem is tackled which allows to write a
three-dimensional low-rank tensor and consequently to
estimate the state sequence and the lower-dimensional
matrices A1 , A2 , B1 , B2 , C1 , C2 . A numerical example on a
large-scale adaptive optics system demonstrates the ability
of the algorithm to handle the identification of state-space
models within the class of Kronecker structured matrices in
a scalable manner which results in more compact models.

Index Terms—Bilinear optimization, kronecker product,
large-scale networks, spatial-temporal modeling, subspace
identification.

I. INTRODUCTION

THE identification of multidimensional systems with a large
number of input-output data has started receiving interest

from the image processing community. The first attempts to
model two-dimensional (2-D) systems in state-space form hap-
pened in 1975 with the Roesser model, [1], [2]. Although the
time dimension is left out, the state-space representation mod-
els the spatial dynamics by introducing horizontal and vertical
states that are coupled together through some unknown inter-
connection. Assuming the denominator of the transfer function
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to be separable, also known as causal recursive separable in de-
nominator assumption, has helped to identify the deterministic
2-D [3], the stochastic 2-D [4] and the deterministic-stochastic
[5] systems.

When, the time dimension is considered along with the spatial
coupling between the nodes in the network, it gives rise to
a (2 + 1)D model. Examples of applications for such spatial-
temporal systems are numerous in control for high resolution
imaging, e.g., adaptive optics [6]. The large number of actuators
to be controlled and sensor channels to be processed at kilohertz
rate calls for scalable algorithms that enable real-time control.
Although different structures of networks have been investigated
to cope with different spatial interconnection patterns [8], e.g.,
sparse, circulant or decomposable to name but a few, in this
work, the focus is laid on 2-D spatial-temporal networks with
actuator-sensor nodes regularly located on a grid.

More precisely, let a 2-D network be defined from a grid
of N ×N nodes. Each node corresponds to a local subsystem
of order n with m inputs and p outputs. We assume p,m <
n� N . The subsystems influence each other through some
in general unknown interconnection. The temporal dynamics
of the network as a whole are modeled with the state-space
representation {

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + e(k)

(1)

in which x(k) ∈ RnN 2
and u(k) ∈ RmN 2

,y(k) ∈ RpN 2
are,

respectively, the lifted inputs and outputs. The measurement
noise e(k) is zero-mean white and with an unknown covari-
ance matrix. Identifying the global matrices corresponding to
the lifted state (1) from standard subspace methods such as
N4SID and MOESP [7] is not possible for large N as these
methods scale at the very least withO(N 6). The difficulties for
these centralized methods to handle large-scale 2-D networks
has already been noticed in [9]. A more thorough explanation
of the computational cost is found in Section II. Scalable sub-
space identification from data collected in a network may exploit
information about the interconnection pattern between the sub-
systems. The two main approaches that have been followed so
far in the literature are either based on local or modal decom-
positions.

The former assumes knowledge of the topology of the
dynamics. In this case, we might impose a certain structure on
the system matrices, e.g, the state-transition matrix A having
a block-tridiagonal pattern. Writing now the state equation
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locally, for each node located at the position (i, j)

xi,j (k + 1) =
N∑

i ′=1

N∑
j ′=1

(
A(i,j )

i′,j ′ xi ′,j ′(k) + B(i,j )
i′,j ′ ui ′,j ′(k)

)
(2)

where xi,j (k) ∈ Rn ,ui,j (k) ∈ Rm . When the local matrix

A(i,j )
i′,j ′ is nonzero, the neighboring unknown state at position

(i′, j′) influences the local state xi,j (k + 1). Each subsystem
influences the state of very few neighbors through some
unknown interconnection state. Let Ni,j denote the collection
of these neighboring systems for the node (i, j), and such that
card(Ni,j )� N 2 . The local state space equation (2) reduces to

xi,j (k + 1) =
∑

(i′,j ′)∈Ni , j

(
A(i,j )

i′,j ′ xi ′,j ′(k) + B(i,j )
i′,j ′ ui ′,j ′(k)

)
.

(3)
A challenge is that often, the states leaking into the local
subsystems are not measurable. Identification of the state
matrices in a sparse network has been addressed in [10] and
[11] when the adjacency matrix has a banded pattern. Both
works in [12] and [13] tackle subspace identification for more
general interconnection patterns where the subsystems are
organized in clusters and use only local measurements to
estimate the states of the neighbouring subsystems. However,
these approaches require the topology to be known. Moreover,
in these local models, the global stability of the identified
network can neither be guaranteed nor influenced.

The second approach decouples the large-scale state-space
model (1) into small-scale modal models by means of a block-
diagonalizing similarity transformation. The success of this ap-
proach depends on the efficiency of applying this similarity
transformation. For example, for the special class of 1-D in-
terconnected circular systems [14], the Fourier transform en-
ables an efficient application. Another Fourier transform based
block-diagonalization method is the extension to the class of de-
composable systems in [15]. However, the identification of the
local systems required the solution of a bilinear optimization
problem.

The major constraint of both types of approaches is that they
require the large-scale network to have a very specific and known
network topology such as 1-D homogeneous [11] or decompos-
able [15]. In this paper, we develop a subspace type of identifi-
cation approach that is scalable, does not assume sparsity in the
interconnection pattern and breaks away from assuming the sys-
tem network topology to be known. A new modeling paradigm
is introduced to model large-scale matrices of state-space mod-
els, which builds on the paper [16] where the class of Kronecker
networks has been described. The latter does not require any
knowledge on the interconnection pattern in the network nor
the subsystems to be identical. In the state-space model stated
in the abstract, the products such as A2X(k)AT

1 require separa-
bility of the column operations from those of the row operation
on the matrix X(k). This separability assumption is common in
image processing to model static input-output maps [17].

Although exploiting Kronecker structures to tackle large-
scale problems is well-known in tensor-based scientific comput-
ing [22], its use has been mainly restricted to forward modeling

with, e.g., partial differential equation or for solving large-scale
linear systems. System identification of multidimensional large-
scale systems is however in its infancy. A class of multilinear
dynamical systems (MLDS) is introduced in [20] for modeling
tensor-time series and an expectation-maximization algorithm
is presented for estimating parameters. The well-known draw-
backs of such methods are the a priori selection of the order and
the high computational cost, i.eO(N 6) per iteration. Therefore,
they are often used in combination with subspace methods that
provides them with initial estimates. In the sequel, we propose to
overcome the computational complexity issue of the parameter
estimation methods and present a subspace type of identification
method for Kronecker state-space models. The system matrices
in (1) are assumed to have a Kronecker rank equal to 1

A = A1 ⊗A2 , B = B1 ⊗B2 , C = C1 ⊗C2 . (4)

We present an algorithm to estimate the system matrices with
O(N 3Nt) where Nt is the number of temporal samples rather
than O(N 6) computational complexity. This paper is the com-
panion to the paper [16] that considers the identification of
large-scale Kronecker vector-autoregressive models, abbrevi-
ated with QUARKS. This methodology now serves as a first
step (out of three) in the identification of state-space models
when the matrices are of Kronecker rank one.

The QUARKS identification is relevant when each coefficient
matrix is modeled as a sum of few Kronecker products of low-
dimensional matrices, which enables high data compression.
Such models are interesting when the variance of the prediction
error is similar to the one obtained with the unstructured esti-
mation. This Kronecker parametrization relies on the low-rank
property of a certain reshuffling of the global system matrices.
Reshuffling the sensor data or the coefficient matrices to exhibit
low rank matrices and handle the blind system identification of
large datasets was studied in [18]. In this paper, we take advan-
tage of the special 2-level structure of the coefficient matrices
that arise in 2-D spatial systems. Data-driven methods for iden-
tifying a Kronecker-based model also include [19]. The latter
reshuffles the data in order to exhibit a large N 2 ×N 2 low-rank
matrix and therefore, is not a potential candidate for deriving
a scalable method for this first step. Furthermore, a significant
difference is that it addresses the identification of vectors in a
Kronecker product rather than matrices.

The main contributions of this work are the formulation of a
new class of 2-D spatial-temporal models within the state-space
framework and the formulation of a three-stage algorithm with
lower computational complexity than existing methods. This
algorithm Kronecker-Structured large-Scale SubSpace IDenti-
fication is abbreviated as K4SID. Moreover, we highlight the
performances in terms of data compression and prediction-error
with an application to turbulence prediction for large-scale adap-
tive optics systems. K4SID is compared with SSARX [35] and
the estimates are refined with MLDS [20] for small sizes of the
sensor.

The paper has the following outline. Section II formulates the
identification problem and introduces theoretical results related
to the Kronecker state-space model. Section III summarizes the
identification of QUARKS models for estimating a high-order
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FIR filter in Kronecker form. The estimates feature two se-
quences of impulse response -with terms of size pN ×mN -
that are related via a bilinear equation. Section IV analyzes, the
question why realizing the state-space matrices from these esti-
mates requires to first solve a bilinear low-rank optimization. A
method is proposed in Section V to estimate the factor matrices
A1 ,A2 ,B1 ,B2 ,C1 ,C2 using two consecutive singular value
decompositions (SVD). A realistic numerical example for pre-
dicting large-scale wavefront aberrations in an adaptive optics
setting is presented in Section VI.

Notations: Scalars are denoted by lower or uppercase let-
ters or symbols. �x� denotes the floor of the real number x.
mod(a,m) denotes the remainder after division of a by m.

Vectors are written as boldface lower-case letters such as x.
The boldface is used to make a distinction between indexing
a set of vectors, such as x1 ,x2 , and referring to the elements
of a single vector x ∈ Rn , such as x1 , . . . , xn . The null vector
and the vector of ones is denoted by 0 and 1, respectively,
where an index can be used to explicitly show its size, e.g.,
1n ∈ Rn . The Euclidean norm of a vector x is written as ‖x‖2 =√

x2
1 + . . . + x2

n = 〈x,x〉.
Matrices are represented by boldface uppercase letters such

has X. The element located at the ith row and j-column of the
matrix X is written as xi,j . The identity matrix of size N ×N
is written with IN . The inverse, pseudo-inverse and transpose
are written as X−1 , X†, and XT , respectively. MATLAB-like
notations are used to denote columns and rows of matrices,
e.g., X(:, i) refers to the ith column of X, X(i, :) the ith row.
The matrix X(a : i : b, c : j : d) selects a submatrix from X
that consists of the intersection of all entries with row index
a + ki (until it reaches b) and column index c + kj (until d)
where k is an integer starting at 0. It is standard MATLAB
notation. The vectorization operator applied on X is written
with vec(X) =

[
x1,1 x2,1 . . . xm,n

]T
. The Kronecker product

of two matrices X,Y is represented by the symbol ⊗ such
as X⊗Y. The Frobenius norm for a matrix X ∈ Rm×n is
denoted with ‖X‖2F =

√∑m
i=1
∑n

j=1 x2
i,j . The nuclear norm

for a matrix X is indicated with ‖X‖� .
Let m,n, s, s1 be strictly positive integer’s such that s =

2s1 − 1, and define x ∈ Rs and Yi ∈ Rm×n for all i = 1..s.
The block-Hankel matrixH(xiYi) is such that

H(xiYi) =

⎡
⎢⎢⎢⎢⎣

x1Y1 x2Y2 x3Y3 . . . xs1 Ys1

x2Y2 x3Y3 . .
.

. .
. ...

... . .
.

. .
.

. .
. ...

xs1 Ys1 . . . xsYs

⎤
⎥⎥⎥⎥⎦ .

The big-O notation is used for describing computational com-
plexities and indicates the asymptotic growth rate of the compu-
tational cost for a given mathematical operation. For example,
an operation costing O(n) floating-point operations (flops) fin-
ishes in at most c · n flops, for some constant c.

Other section-specific notations are introduced in the respec-
tive section.

Nomenclature: A matrix X written as X = X1 ⊗X2 is said
to have Kronecker rank 1. The matrices X1 and X2 are called the

factor matrices. The matrices Ai ,Bi ,Ci are called the fac-
tored state-space matrices. The terms CAiB = C1Ai

1B1 ⊗
C2Ai

2B2 are the Markov parameters while CjAi
jBj are called

the factored Markov parameters. The computational rules re-
lated to the Kronecker product are described in [21].

II. PROBLEM FORMULATION

We consider a 2-D array with N ×N nodes, that each has
the same number of input and output data. The input data are
collected at time instant k into the matrix U(k) ∈ RmN×N

U(k) =

⎡
⎢⎣

u1,1(k) . . . u1,N (k)
...

...
uN,1(k) . . . uN,N (k)

⎤
⎥⎦

where, for i, j = 1 . . . N,ui,j ∈ Rm . The output matrix Y(k)
is defined similarly from local signals yi,j (k) ∈ Rp . Denote the
lifted quantities with u(k) = vec(U(k)). The temporal dynam-
ics of the network are modeled with the state-space model (1)
in which the state-space matrices have a Kronecker rank equal
to 1

A = A1 ⊗A2 , B = B1 ⊗B2 , C = C1 ⊗C2 (5)

with,

A1 ∈ Rn1×n1 , B1 ∈ Rn1×N , C1 ∈ RN×n1

A2 ∈ Rn2×n2 , B2 ∈ Rn2×mN , C2 ∈ RpN×n2 .
(6)

When the global state-space model (1) has the Kronecker struc-
ture (5), it is equivalently written in matrix form as{

X(k + 1) = A2X(k)AT
1 + B2U(k)BT

1

Y(k) = C2X(k)CT
1 + E(k).

(7)

Definition 1: The set of generators S for the Kronecker
MSSM (7) is defined with the factored state-space matrices
as follows:

S = {A1 ,A2 ,B1 ,B2 ,C1 ,C2}
with the dimensions of the corresponding matrices given in (6).

In Lemma 1, Lemma 2, and Corollary 1, we relate the sta-
bility, the observability and the minimal realization associated
to the large-scale matrices (A,B,C) to the sets defined from
(A1 ,B1 ,C1) and (A2 ,B2 ,C2). First, we establish a relation-
ship between the spectral radius of A1 ⊗A2 and the factor
matrices A1 ,A2 .

Lemma 1: If the systems associated with (A1 ,B1 ,C1) and
(A2 ,B2 ,C2) are both stable, then the system associated with
(A1 ⊗A2 ,B1 ⊗B2 ,C1 ⊗C2) is stable. The reverse is not
true in general.

Proof: Let (i, j) ∈ {1, . . . , n1} × {1, . . . , n2}. Assume that
A1 and A2 have eigenvalues, respectively, μ1,i and μ2,j , lying
strictly within the unit circle. The eigenvalues of A1 ⊗A2 are
μ1,iμ2,j . If |μ1,i | < 1 and |μ2,j | < 1, then |μ1,iμ2,j | < 1. How-
ever, if |μ1,iμ2,j | < 1, it does not guarantee that both |μ1,i | < 1
and |μ2,j | < 1. �

Let s1 denote an integer such that s1N min(p,m) >
max(n1 , n2). The integer s is defined as 2s1 − 1 for reasons
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that are explained in Section IV. Let the observability matrix
built from two matrices Ci ,Ai be denoted with Oi,s such that:

Oi,s =

⎡
⎢⎢⎢⎣

Ci

CiAi

...
CiAs−1

i

⎤
⎥⎥⎥⎦

Os =

⎡
⎢⎢⎢⎣

C
CA

...
CAs−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C1 ⊗C2
C1A1 ⊗C2A2

...
C1As−1

1 ⊗C2As−1
2

⎤
⎥⎥⎥⎦ .

The extended controllability matrix built from Bi ,Ai is simi-
larly denoted with Ci,s :

Ci,s =
[
Bi AiBi . . . As−1

i Bi

]
Cs =

[
B AB . . . As−1B

]
.

Lemma 2: If (A1 ⊗A2 ,C1 ⊗C2) is observable, then each
of the pairs (A1 ,C1) and (A2 ,C2) is observable.

The reverse is not true in general.
Proof: Let n = n1n2 . We start by partitioning the columns

of On blockwise:

On =
[
L0 . . . Ln1−1

]
where Lj ∈ RnpN 2×n2 for j = 0 . . . n1 − 1. Each block-matrix
Lj is such that

Lj =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1,(1,j+1)C2
...

c1,(N,j+1)C2
...

mn−1,(N,j+1)Wn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

where Mn−1 = C1An−1
1 ,Wn−1 = C2An−1

2 . If On is full col-
umn rank, so is Lj . It yields the following equalities for the
column ranks:

rank(Lj ) = rank(O2,n ). (8)

Therefore, rank(O2,n ) = n2 . A similar reasoning on the sub-
matrix On (1 : pN : pnN 2 , 1 : n2 : n) holds to prove that
rank(O1,n ) = n1 .

We provide with a counter example for the reverse side

C1 =
[
1 1

]
A1 =

[
0.4 0
0 0.6

]

C2 =
[
1 1

]
A2 =

[
0.6 0
0 0.4

]
.

Both O1,n and O2,n are full column rank which is not the case
for On . �

Controllability is the dual notion from observability, and
therefore, a similar statement can be made for the pairs (A1 ,B1)
and (A2 ,B2) to be controllable.

Definition 2: A minimal realization of (7) corresponds to a
set S such that the extended observability and controllability

matrices built, respectively, from the pairs (A1 ⊗A2 ,C1 ⊗
C2) and (A1 ⊗A2 ,B1 ⊗B2) are of minimal rank n1n2 .

Corollary 1: If the set of generators S = {A1 ,A2 ,B1 ,B2 ,
C1 ,C2} corresponds to a minimal realization of the MSSM (7),
then both sets {A1 ,B1 ,C1} and {A2 ,B2 ,C2} correspond to
a minimal realization.

The reverse is not true in general.
Proof: The proof follows from Lemma 2. �
As shown in [21] for standard matrix properties and in the

above results, a particularity of the Kronecker product is that
the properties relating the global matrices to the factors are
often one-sided. We now investigate the state-space (7) from
the input-output relationship, which matrix form reads

Y(k) = C2Ak−1
2 X(1)Ak−1

1
T
CT

1

+
k−1∑
i=1

C2Ak−i−1
2 B2U(i)BT

1 Ak−i−1
1

T
CT

1 +E(k).

(9)

Definition 3: Let Nt be the number of temporal samples. For
i ∈ {1, 2}, denote:

Si =
{
A(i)

1 ,A(i)
2 ,B(i)

1 ,B(i)
2 ,C(i)

1 ,C(i)
2

}
.

The two sets of generators S1 and S2 are said to be equivalent
if the input-output behavior of the associated state-space model
(7) is identical for all k = 1 . . . Nt .

It is well-known that the state-space matrices A,B,C in (1)
modeling the input-output relationship are not unique because
of the existence of a nonsingular similarity transformation T ∈
Rn1 n2×n1 n2 . Reshuffling (1) yields (7) if and only if the state-
space matrices are all of Kronecker rank one. It is not the case
when allowing similarity transformations not written as T =
T1 ⊗T2 .

We characterize the similarity transformation in the case of
Kronecker state-space models and relate equivalent sets of gen-
erators in the next Lemma.

Lemma 3: The sets of generators S1 and S2 for the
Kronecker MSSM equivalently model (7) if and only if
there exist T1 ∈ Rn1×n1 ,T2 ∈ Rn2×n2 nonsingular, P1 ∈
RmN×mN ,P2 ∈ RN×N and nonzero scalars η, ct that satisfy

∀k ∈ {1, . . . , Nt}, P2U(k)PT
1 = U(k) (10)

A(1)
1 = ηT−1

1 A(2)
1 T1

B(1)
1 = T−1

1 B(2)
1 P1

C(1)
1 = ctC

(2)
1 T1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11)

A(1)
2 = 1

η T−1
2 A(2)

2 T2

B(1)
2 = T−1

2 B(2)
2 P2

C(1)
2 = 1

ct
C(2)

2 T2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (12)
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Proof: If (11) and (12) hold, then the input-output model (9)
built from S1 is equivalent to the model built from S2 :

X̃(k + 1) = T−1
2

1
η
A(2)

2 T2X̃(k)TT
1 ηA(2)

1
T
T−T

1

+ T−1
2 B(2)

2 P2U(k)PT
1 B(2)

1
T
T−T

1

Y(k) =
1
ct

C(2)
2 T2X̃(k)TT

1 ctC
(2)
1

T
(13)

where X̃(k) = T−1
2 X(k)T−T

1 . This model yields the same
input-output behavior provided that

P2U(k)PT
1 = U(k). (14)

This assumes a global similarity transformation with a
Kronecker structure: T = T1 ⊗T2 . �

The matrices P1 ,P2 in Lemma 3 are particular to MSSM
and can be further characterized by assuming persistency of
excitation. For all temporal samples until Nt , we form the matrix
Ũ ∈ RmN 2×Nt from concatenated input data with

Ũ =
[

vec(U(1)) . . . vec(U(Nt))
]
.

Definition 4: [7] The input is persistency exciting of order 1
if the matrix Ũ is full row rank.

Let us assume Nt ≥ mN 2 and that the input is persistently
exciting. Then, (14) is equivalently written with

(P1 ⊗P2 − I)vec(U(k)) = 0.

Concatenating data for all k in {1, . . . , Nt}, it follows:

(P1 ⊗P2 − I)Ũ = 0. (15)

Under the assumption that the matrix Ũ is full column rank

P1 ⊗P2 = I

which implies that both P1 and P2 are diagonal, and

p1,(i,i)p2,(j,j ) = 1

for all i = 1 . . . mN, j = 1..N . Hence, P1 = btImN and P2 =
1
bt

IN for some nonzero scalar bt .
Remark 1: When the similarity transformation T is unstruc-

tured, the Kronecker structure in the vectorized state-space
model is lost. Denote xT (k) := T−1x(k). Then, the Kronecker
rank of T−1(A1 ⊗A2)T is in general not one unless T =
T1 ⊗T2 . Therefore, the vector state-space model with matri-
ces (T−1(A1 ⊗A2)T,T−1(B1 ⊗B2), (C1 ⊗C2)T) cannot
be rewritten in general with a matrix state-space model as in (7).

The above discussion is of particular interest as the identi-
fication algorithm we propose relies on the matrix state-space
model (7) and the global matrices are never formed. The global
similarity transformation is not involved.

In order to derive a scalable identification algorithm, the fol-
lowing assumptions on the data and system matrices in (7) are
made.

1) A1: The pair (A1 ⊗A2 ,C1 ⊗C2) is observable.
2) A2: The pair (A1 ⊗A2 ,B1 ⊗B2) is controllable.
3) A3: The eigenvalues of bothA1 andA2 are strictly within

the unit circle.

4) A4: The input is persistently exciting.
5) A5: The measurement noise e(k) is zero-mean white

noise with unknown covariance matrix.
6) A6: The measurement noise is uncorrelated with all past

inputs:

for all k ≤ j, E
[
u(k)e(j)T

]
= 0

The assumptions A1 to A4 and A6 are related to the global
system properties and are commonly used in subspace identi-
fication, [7]. The assumption A6 is also made in [12]–[13] in
order to focus on the essential building of the subspace identifi-
cation method(s) like the vector autoregressive with exogenous
inputs (VARX) modeling and state sequence approximations.
The generality of the method is illustrated in Section IV in
which a model in innovation form is identified. We are now
ready to state the problem formulation.

Problem Formulation: Assuming A1 to A6, and given the
input-output data U(k),Y(k) from the state-space model in (7)
for k = {1, . . . , Nt}, estimate, up to the similarities transforma-
tion T1 ,T2 and the ambiguity scaling factors η, ct , bt defined
in Lemma 3, the matrices A1 ,A2 ,B1 ,B2 ,C1 ,C2 that corre-
spond to a minimal realization. The challenge lies on deriving
an algorithm with O(N 3Nt) computational complexity.

Such requirements on the computational cost exclude a cen-
tralized identification of (1) with standard subspace meth-
ods such as MOESP [7] or SSARX [35]. Such methods fail
for three main reasons. First, they rely on a QR decomposi-
tion of the concatenated block-Hankel matrix built from the
input-output sequence, whose size is (p + m)sN 2 ×M (where
M = Nt − s + 1 and s is a scalar). A square lower-triangular
Gram–Schimdt matrix is only obtained when Nt ≥ psN 2 which
requires storing huge data samples. Second, with a global sys-
tem order of n1n2 , computing the QR decomposition and the
SVD of N 2 ×N 2 matrices is very costly,O(N 6) flops. If a prior
knowledge of the system order is available, then a rank-n1n2
SVD can be computed at a cost of O(n1n2N

4). More efficient
methods [23] for computing SVD do not break the curse of di-
mensionality (that appears with multidimensional systems) and
still require O(log(n1n2)N 4) flops. Last, forming the global
matrices is a drawback for storage and, e.g., subsequent con-
trol design for real-time applications. For example, computing a
matrix-vector multiplication with the dense unstructured matrix
requires O(N 4) instead of O(N 3) in the matrix form.

The algorithm PBSID [24] provides with an alternative route
that estimates first a high-order VARX and then computes the
SVD of a large-matrix. The computational cost associated with
the latter operation along with the estimation of unstructured
(and dense) estimates of the state-space matrices reachesO(N 6)
and is reduced in this paper by working rather with the factored
Markov parameters C1Ai

1B1 and C2Ai
2B2 .

In the three following sections, we describe the subspace-like
method which is decomposed in three major steps. We first iden-
tify the factored Markov parameters using a globally convergent
algorithm. Such parameters are however estimated up to an un-
known scaling factor. Second, these estimates are analyzed so as
to estimate the factored Markov parameters wC1(ηA1)i−1B1
and 1

w C2( 1
η A2)i−1B2 (for w, η nonzero scalars). This paves
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the way for the third step in Section V where we identify the
factored state-space matrices by estimating the state sequence.

III. HIGH-ORDER FIR ESTIMATION

Based on Assumption A3, the output y(k) can be approxi-
mated with a high-order FIR model, for all k > s,

y(k) ≈
s∑

i=1

CAi−1Bu(k − i) + e(k)

≈
s∑

i=1

(
C1Ai−1

1 B1 ⊗C2Ai−1
2 B2

)
u(k − i) + e(k).

(16)

Denote Mi,� := C1Ai−1
1 B1 ∈ RN×N and Mi,r := C2Ai−1

2
B2 ∈ RpN×mN . The matrix M� =

[
M1,� . . . Ms,�

]
is de-

noted as the left-factor impulse response. Similarly, the ma-
trix Mr is built from the factor matrices Mi,r and called the
right-factor impulse response.

By appropriately selecting the parameters as standardly done
in the subspace identification literature [7], the approximation
error can be made arbitrarily small, [25].

A computationally efficient and globally convergent algo-
rithm has been derived in [16] to estimate structured large-scale
VARX models when the coefficient-matrices have large dimen-
sions but low-Kronecker rank. In the FIR approximation (16),
each Markov parameter Mi has Kronecker rank equal to 1,
and hence the (16) can be recast into a minimization on the
factor matrices Mi,� ,Mi,r only. We review in the next para-
graph the main features of the QUARKS identification method
of [16]. The cost function of the optimization problem features a
least-squares term and a regularization prior to induce temporal
stability of the estimated MIMO system.

The stability of the impulse responses built from factored
matrices is imposed by using kernel regularization methods.
The general problem of fitting impulse responses given data
while guaranteeing stability has been studied in a number of
papers. See e.g. [26], [27] for surveys on these kernel methods
applied to function estimation. The kernel matrix Pt ∈ Rs×s is
here introduced along with the decomposition of its inverse with
a square-root matrix Kt . Both the decay rate and the smoothness
of the impulse responses can be tuned using hyperparameters as
shown in [26], [27]. Adding the following cost as regularization
to a cost function induces stable VARX models:

rt(Mi,� ,Mi,r ) = ‖Qt

⎡
⎢⎣

vec(M1,�)vec(M1,r )T

...
vec(Mp,�)vec(Mp,r )T

⎤
⎥⎦ ‖2F

where Qt = Wt ⊗ IN 2 . The factor matrices Mi,� ,Mi,r are
estimated using alternating least squares (ALS) on the following
least-squares bilinear minimization problem:

min
M i , r ,M i , �

Nt∑
k=s+1

‖Y(k)−
s∑

i=1

Mi,rU(k − i)MT
i,�‖2F

+ λALSrt(Mi,� ,Mi,r ) (17)

Algorithm 1: Summary of QUARKS.

Input: {uk}1:Nt
, {yk}1:Nt

, s, λALS , κmax , emax

Output: M̂� , M̂r

/* QUARKS identification */
1: κ← 0
2: foreach i ≤ s do
3: M(κ)

i,� ← randn(N, N)

4: end
5: while κ ≤ κmax − 1 and e > emax do
6: M(κ+1)

r ← argmin LM (κ )
�

(Mr ).

7: M(κ+1)
� ← argmin LM (κ + 1 )

r
(M�).

8: Evaluate the residual c(�)

9: e← |c(�) − c(�−1) |
10: κ← κ + 1
11: end
12: M̂r ←M(κm a x )

r

13: M̂� ←M(κm a x )
�

where λALS is a regularization parameter. An ALS algorithm is
proposed and described in Algorithm 1. The notationLM r

(M�)
is introduced and refers to the the cost function in (17) when
the optimization variables are only Mi,� for all i while Mi,r

is fixed. As was the case for QUARKS identification in [16] in
which similar priors were used to induce stability, random search
[28] can be used for finding a set of valid hyperparameters.

The convergence of the regularized ALS to the global mini-
mum of the ALS provided the input is persistently exciting and
the initial guesses are nonzero is proved in [16]. The solution to
(17) is not unique as summarized in the following Lemma.

Lemma 4: [16]. Let s and Nt tend towards infinity. Let i ∈
{1, . . . , s} and ti ∈ R\{0}. Denote a solution to (17) with the
parameters Mi,� ,Mi,r .

The set of all solutions M̂i,� , M̂i,r that yield the same opti-
mum value of the cost function (17) is such that

vec(M̂i,�) = vec(Mi,�)ti , vec(M̂i,r ) =
1
ti

vec(Mi,r )

Proof: See [16]. �
Denote the estimates from (17) with M̂i,� , M̂i,r . They are

related to the nonscaled parameters Mi,� ,Mi,r with

M̂i,� ≈ tiMi,� , M̂i,r ≈ viMi,r (18)

where tivi ≈ 1. The nonzero ambiguity constants ti are however
unknowns and different for each i.

A. Computational Complexity

The computational complexity for the QUARKS has been
analyzed in [16]. We assume that the number of iterations κmax
are independent of N , which is however not the case for the
number of temporal samples Nt . The algorithm scales with
O(N 3Nt), where Nt > s.
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IV. ESTIMATION OF THE IMPULSE RESPONSES UP TO A

SCALING FACTOR

In this section, we assume that the matrices Mi,� and Mi,r are
estimated up to a different nonzero scaling factor as highlighted
in Lemma 4 in the previous section. This relationship between
the matrices estimated with QUARKS in (17) and their true vari-
ants hold in an asymptotic consistent manner. We now study how
to estimate the factored Markov parameters wC1(ηA1)i−1B1
(for w, η nonzero scalars). Although, the forthcoming analysis
is performed on the left factor matrices Mi,� , it is equally valid
for the right factor matrices Mi,r .

A. A Low-Rank Block-Hankel Matrix

From the matrices
[
M1,� . . . Ms,�

]
, the realization theory

consists in forming a block-Hankel low-rank matrix H(M1,�)
that is equal to O1,s1 C1,s1 . A SVD is then computed to esti-
mate the range space of the observability matrix O1,s1 . In the
analysis from this section, the approximations in (18) are con-
sidered as equalities. Because, the unknowns ti are dependent
on the temporal index i, the block-Hankel matrix built from the
estimated matrices [M̂1,� . . . M̂s,� ] is in general not low rank.

Each of the factored Markov parameters need to be multiplied
with a scalar on which we formulate conditions such that the
resulting block-Hankel matrix has rank equal to n1 . We describe
this statement in Theorem 1 for which Lemma 5 is needed.

Lemma 5 (Partial Realization Problem [29]): Let δ ∈ N.
Let s = 2s1 − 1 with s1 an integer strictly larger than δ. For
i = 1 . . . s, let xi ∈ R such that rank(H(xi)) = δ.

Then, there exists a realization (a,b, c) of minimal de-
gree δ with a ∈ Rδ×δ ,b ∈ Rδ×1 , c ∈ R1×δ such that for i =
1 . . . s, xi = cai−1b. This decomposition is unique up to a sim-
ilarity transformation.

The triplet (a,b, c) defines a partial realization on the finite
sequence

[
x1 . . . xs

]
.

Theorem 1: Let s = 2s1 − 1 with s1 an integer such that
s1N min(p,m) ≥ max(n1 , n2). For i ∈ {1, . . . , s}, let (αi, ti)
be nonzero scalars and let the matrices M̂i,� satisfy

M̂i,� = tiMi,�

with rank(H(Mi,�)) = n1 .
1) If rank(H(αiM̂i,�)) = n1 , then rank (H(αiti)) = 1.
2) If αiti = ηi−1 for a nonzero scalar η, then

rank(H(αiM̂i,�)) = n1

Proof: We derive the proof using the contraposition. In the
sequel, we denote xi = αiti and Xi = Mi,� .

Let δ ∈ N such that 1 < δ ≤ s1 and suppose that

rank (H(xi)) = δ. (19)

From Lemma 5, there exists a realization (a,b, c) of mini-
mal degree δ with a ∈ Rδ×δ ,b ∈ Rδ×1 , c ∈ R1×δ such that for
i = 1 . . . s, xi = cai−1b. If every eigenvalue of a is 0, then a
is nilpotent (via Cayley–Hamilton) which is forbidden by the
assumption xi �= 0 for all i. Therefore, the matrix a has at least
one nonzero eigenvalue.

We divide the proof in two cases. If a is diagonalizable, there
exists an invertible matrix P such that a = PDP−1 where D
is a diagonal matrix containing the eigenvalues. All eigenvalues
λi are distinct. Let k ∈ N. We have

cakbCAkB = C(cakb)AkB

= CcPDkP−1bAkB.

Denote c̃ = cP, b̃ = P−1b and ri = c̃ib̃i �= 0. It yields:

cak bCAkB = Cc̃Dk b̃AkB

= C
δ∑

i=1

c̃iλ
k
i b̃iAkB

=
δ∑

i=1

riC(λiA)kB (20)

Then, without loss of generality, consider δ = 2. These Markov
parameters are associated with the state-space matrices

Ã =
[

λ1A 0
0 λ2A

]

B̃ =
[
B
B

]
, C̃ =

[
r1C r2C

]
.

Let Wi be an eigenvector of A. Then both

[
Wi

0

]
and[

0
Wi

]
are eigenvectors of Ã. The condition C̃

[
Wi

0

]
= 0

or C̃
[

0
Wi

]
= 0 is equivalently written with

riCWi = 0 (21)

for i ∈ {1, 2}. Using the Popov–Belevitch–Hautus (PBH) test
and with the assumption that the pair (A,C) is observable, it
implies that Wi = 0. Therefore, the pair (Ã, C̃) is observable
following the PBH test. It follows that the rank of H(xiXi) is
strictly larger than n1 and we have a contradiction.

Suppose now that the matrix a is not diagonalizable. There
exists an invertible matrix P such that a = PJP−1 , where J
is the Jordan matrix. The latter matrix is block-diagonal: each
of the so-called Jordan blocks has a size equal to the algebraic
multiplicity of the associated eigenvalue. Let q denote the num-
ber of blocks (also equal to the number of different eigenvalues)
and hi the multiplicity of the ith eigenvalue.

Without loss of generality, we assume that λi has multiplicity
2. The Jordan blocks Ji have then the following form:

Ji =

[
λi 1
0 λi

]

It can be proven (using, e.g., induction) that Jk
i is expressed as

Jk
i =

[
λk

i kλk−1
i

0 λk
i

]
.
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The expression in (20) reads

cakbCAkB = C
q∑

i=1

c̃i

[
λk

i kλk−1
i

0 λk
i

]
b̃iAkB

=
q∑

i=1

C̃iÃk
i B̃i

where

Ãi =

[
λiA A

0 λiA

]

B̃i =

[
b̃i,1B

b̃i,2B

]
, C̃i =

[
c̃i,1C c̃i,2C

]
.

The matrix a has at least one nonzero eigenvalue from the as-
sumption that all xi are different from 0. The following therefore
assumes λi �= 0.

The observability matrix associated to the triplet (Ãi , B̃i , C̃i)
is written as

Vn,i =

⎡
⎢⎣

c̃i,(1)C c̃i,(2)C

c̃i,(1)C(λiA) c̃i,(1)CA + c̃i,(2)C(λiA)
...

...

⎤
⎥⎦ (22)

whose rank is equal to the rank of 1
c̃ i , ( 1 )

Vn for λi �= 0, c̃i,(1) �= 0

1
c̃i,(1)

Vn,i =

⎡
⎢⎢⎢⎢⎣

C 0

C(λiA) C(λiA)
C(λiA)2 2C(λiA)2

...
...

⎤
⎥⎥⎥⎥⎦
[

I c̃ i , ( 2 )

c̃ i , ( 1 )
I

0 1
λi

I

]
. (23)

From Sylvester’s inequality [7], the rank of 1
c̃ i , 1

Vn,i is equal to
the rank of the following matrix:⎡

⎢⎢⎢⎢⎣
C 0

C(λiA) C(λiA)
C(λiA)2 2C(λiA)2

...
...

⎤
⎥⎥⎥⎥⎦ . (24)

If the pair (C, λiA) is observable, then the matrices⎡
⎢⎢⎢⎢⎣

C

C(λiA)
C(λiA)2

...

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

I

2I
. . .

(s− 1)I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

C

C(λiA)
C(λiA)2

...

⎤
⎥⎥⎥⎥⎦

are both full column rank. Owing to the zero block in the upper
right part of the matrix (24), the rank of Vn,i is strictly larger
than n1 and again we have a contradiction.

The proof for the second bullet is as follows. If αiti = ηi−1

for all i, then

H(αiM̂i,�) = H(C1(ηA1)i−1B1)

= O1,s1 C1,s1

where O1,s1 and C1,s1 are, respectively, the observability and
controllability matrices associated with the pairs (C1 , ηA1) and
(ηA1 ,B1). From Sylvester’s inequality, the rank of O1,s1 C1,s1

is equal to n1 , which proves that the rank of H(αiM̂i,�) is n1
under the conditions specified in the Theorem. �

Corollary 2: With the notations introduced in Theorem 1,
if rank(H(αiM̂i,�)) = n1 , then, there exist nonzero scalars
(aα , bα , cα ) such that

αi =
cαai−1

α bα

ti

Proof: It follows from Theorem 1 by using xi = αiti . �
Corollary 3: With the notations introduced in Theorem 1, if

rank(H(βiM̂i,r )) = n2 , then, there exist (aβ , bβ , cβ ) nonzero
scalars such that

βi = cβ ai−1
β bβ ti .

Proof: It follows from Theorem 1 adapted toH(βiM̂i,r ) and
by using xi = βi

ti
. �

To summarize, the matrix H(M̂i,�) is in general not low-
rank as indicated in Theorem 1 because the scaling factor ti
is different for each factor matrix. The properties of the block-
Hankel H(αiM̂i,�) have then been studied. If the rank of the
latter matrix is minimal, then

rank(H(αiti)) = 1.

There are, however, an infinite number of sequences α for which
such a condition is valid. In the next theorem, we analyze a rank
minimization problem featuring both low-rank block-Hankel
matrices H(αiM̂i,�) and H(βiM̂i,r ) and study the uniqueness
when the scalings αi, βi are related with a bilinear constraint.

Theorem 2: The solution to the multicriteria feasibility
problem

find (α,β)

s.t. {rank(H(αiM̂i,�)) = n1 , rank(H(βiM̂i,r )) = n2}
∀i ∈ {1, . . . , s}, αiβi = 1 (25)

is not unique and feasible values for (25) are obtained for all α, β
as described in Corollary 2 and 3 with the additional conditions
that aαaβ = 1 and cαcβ bαbβ = 1.

Proof: Using Corollary 2 and 3, the above rank conditions
are satisfied for all i = 1 . . . s:

αi =
cαai−1

α bα

ti

βi = cβ ai−1
β bβ ti .

Replacing these expressions inside the bilinear constraint (25)
yields

αiβi = cαcβ (aαaβ )i−1bαbβ = 1

which implies aαaβ = 1 and cαcβ bαbβ = 1. �
The nonuniqueness of the feasibility problem in (25) will be

studied further on in Section IV. A when estimating the state-
space matrices and related to Lemma 3.
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Remark 2: With the bilinear constraint αiβi = 1, both αi

and βi cannot be 0. Moreover, the scalars ti , vi are related
with tivi = 1 using Lemma 4. Therefore, both sequences αiti
and βi

ti
are nonzero which fulfills the condition expressed in

Theorem 2.

B. A Bilinear Constrained Low-Rank Optimization

In this paragraph, we propose a method to estimate a set
of vectors α,β using the constraints that have been derived
in the previous paragraph and the estimates M̂i,� , M̂i,r that
have been obtained with the QUARKS identification. From (25),
and without knowing a priori the system orders (n1 , n2), we
formulate a bilinear rank optimization problem

min
α,β

rank(H(αiM̂i,�)) + rank(H(βiM̂i,r ))

s.t. ∀i ∈ {1, . . . , s}, αiβi = 1 (26)

where λ is a regularization parameter that trades between the
low-rank priors and the stability constraint. The minimization
problem (26) is bilinear and features the rank operator which
is nonconvex. When convexifying the rank operator with the
nuclear norm, it belongs to the class of multiconvex optimization
problems as described in [30]. The works in [31] and [32] both
propose an iterative algorithm. In this paper, use is made of a
block-coordinate updates (BCU) algorithm with slack variables,
[31]. The slack variables are used to relax the bilinear constraint
and are denoted with qi for i ∈ {1, . . . , s}. The optimization
(26) is transformed into

min
α,β,q

‖H(αiM̂i,�)‖� + ‖H(βiM̂i,r )‖� + μ

s∑
i=1

q2
i

s.t. ∀i ∈ {1, . . . , s}, αiβi − 1 = qi (27)

where μ is a regularization parameter related to the slack vari-
ables. The higher μ is, the more weight is laid on setting q to
0. The optimization problem is solved iteratively with nonzero
initial guesses. At each iteration, the optimization successively
solves over (α,q) and then (β,q). The number of variables is
moreover only 2s. Algorithm 2 details the steps. The notation
BM̂ r ,α,μ

(β,q) is introduced for the cost function in (27) when
the optimization variables are β,q only while α is fixed, and
with the regularization parameter μ. The regularization param-
eter μ shall be gradually increased throughout the iterations to

Algorithm 2: Summary of BCU.

Input: M̂� , M̂r , μ
(0) , d, τ, κmax , emax

Output: α̂, β̂
/* Bilinear low-rank optimization */

1: κ← 0
2: foreach i ≤ s do
3: α

(κ)
i ← 1

4: end
5: while κ ≤ κmax − 1 and e > emax do
6: β(κ+1) ← argmin BM̂ r ,α(κ ) ,μ (κ ) (β,q).
7: α(κ+1) ← argmin BM̂ � ,β(κ + 1 ) ,μ (κ ) (α,q).
8: if mod(κ, d) = 0 then
9: μ(κ+1) ← τμ(κ)

10: end
11: e←∑s

i=1(αiβi − 1)2

12: κ← κ + 1
13: end
14: α̂ = α(κm a x )

15: β̂ = α(κm a x )

ensure that the bilinear constraint (27) is met, [31]. We high-
light the prominent role of the initial value μ(0) for μ. If it is set
too large when optimizing over (α,q), respectively (β,q), the
variable αi is fixed to 1/βi by the constraint. If it is set too low,
αi goes to 0 and qi to −1. In that respect, μ(0) plays the role of
a regularization parameter whose optimal value is determined
by grid search.

Standard alternating direction method of multipliers
(ADMM) techniques apply here and a detailed analysis of the
optimization updates are inspired from [33] using the linear op-
erator framework to enforce the block-Hankel structure. The
nuclear norm minimization is performed via singular value soft
thresholding. The details are however not reproduced here to
focus on the subspace algorithm.

C. Computational Complexity

The complexity of Algorithm 2 lies in solving each ADMM
problem, BM̂ r ,α( τ ) ,μ ( τ ) (β, q) and BM̂ � ,β( τ + 1 ) ,μ ( τ ) (α, q). We
assume that the number of iterations is independent from N .
Prior to performing the ADMM updates, a Gramian matrix is
computed based on the sequences {M̂i,r}, {M̂i,�}withO(N 2)

V =

⎡
⎢⎢⎢⎢⎣

CrX(1)CT
� . . . CrX(M)CT

�

CrArX(1)(C�A�)T . . .
...

... . . .
...

CrAs−1
r X(1)(C�As−1

� )T . . . CrAs−1
r X(M)(C�As−1

� )T

⎤
⎥⎥⎥⎥⎦ (28)

Tu =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
M1,rU(1)MT

1,� . . . M1,rU(M)MT
1,�∑1

i=0Mi+1,rU(2− i)MT
i+1,�

...
...

. . .
...∑s−2

i=0Mi+1,rU(s− 1− i)MT
i+1,� . . .

∑s−2
i=0Mi+1,rU(Nt − i)MT

i+1,�

⎤
⎥⎥⎥⎥⎥⎥⎦

. (29)
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flops. Two operations that appear in each of the above ADMM
algorithm are detailed below. The number of unknowns in only
2s and hence, the cost of the primal variable update in each
of the ADMM algorithm is not dominated by the matrix inver-
sion but rather forming the matrices prior to solving the least
squares, which scales with O(N 2) only. However, at each it-
eration of the ADMM algorithm, a SVD of the block-Hankel
matrix H(α(τ )

i M̂i,�) (respectively, H(β(τ )
i M̂i,r )) is computed

with a singular value soft thresholding, which is the bottleneck
in Algorithm 2 as this operation scales with O(N 3).

D. Stability

The feasibility problem (25) (similarly, the rank minimization
(26)) can lead to unstable factored models. For αi as described
in Corollary 2, the sequence αiM̂i,� becomes

αiM̂i,� = cαηi−1bαC1Ai−1
1 B1

= cαC1(ηA1)i−1bαB1

The stability of ηA1 is not guaranteed depending on the value
for η. Although this does not affect the estimation of α,β,
we wish to recover two stable impulses built from the factor
matrices. This is however done using an scaling/couterscaling
approach of the matrices Â1 and Â2 as described in Section V.

V. ESTIMATION OF THE STATE-SPACE MATRICES

In this section, we estimate the state sequence and then per-
form a bilinear least-squares optimization on the MSSM model
(7). Similarly to standard subspace identification methods, a
data equation is first written in the form

Y = V + Tu + E (30)

where the block-Hankel matrix Y ∈ RpN s×N M is as follows:

Y =

⎡
⎢⎢⎢⎢⎣

Y(1) Y(2) . . . Y(M)

Y(2)
. . .

...
...

. . .
...

Y(s) Y(s + 1) . . . Y(Nt)

⎤
⎥⎥⎥⎥⎦

with M = Nt − s + 1. The block-Hankel matrix E is similarly
built from the noise matrices E(k). The matrices V and Tu are,
respectively, defined in (28) and (29) are shown at the bottom
of previous page.

The matrix form of the data equation features matrices of
sizes of the order N (rather than N 2) but with no key structural
properties like low rank as is enforced in standard subspace
identification, [7]. For example, the matrix V is in general not
low rank, hence the estimation of the state sequence is not
straightforward.

In the following, the terms in V are embedded into a structured
3-D tensor, denoted with A. Let ϕ ∈ N such that ϕpN > n2 and
ϕN > n1 . For all k = 1 . . . M , a slice A(:, :, k) ∈ RpϕN×ϕN

is described with⎡
⎢⎣

C2X(k)CT
1 . . . C2X(k)(C1A

ϕ−1
1 )T

...
...

C2A
ϕ−1
2 X(k)CT

1 . . . C2A
ϕ−1
2 X(k)(C1A

ϕ−1
1 )T

⎤
⎥⎦ .

(31)
We first justify the use of the tensor A before focusing on
estimating the entries in the tensor A. The rank properties of
the tensor A are related to its matricizations.

Definition 5: Let A ∈ RpϕN×ϕN×M be an order-3 tensor.
The unfolding A(1) is defined with

A(1) =
[
A(:, :, 1) . . . A(:, :,M)

] ∈ RpϕN×ϕN M

Consequently, using (31) along with Definition 5:

A(1) =

⎡
⎢⎢⎢⎣

C2
C2A2

...
C2A

ϕ−1
2

⎤
⎥⎥⎥⎦
[
X(1)CT

1 . . . X(M)(C1A
ϕ−1
1 )T

]
.

The rank of the tensor unfolding A(1) is equal to n2

rank(A(1)) = n2 < pϕN. (32)

Computing an SVD of A(1) yields

A(1) = U2V2

U2 = Oϕ,2T2

V2 = T−1
2

[
X(1)CT

1 . . . X(M)(C1A
ϕ−1
1 )T

]
(33)

for a nonsingular T2 . From (33) and more precisely from
U2 , the matrices A2 and C2 are estimated. By reshaping the
matrix V2 , we can write

H =

⎡
⎢⎣

T−1
2 X(1)CT

1 . . . T−1
2 X(1)(C1A

ϕ−1
1 )T

...
...

T−1
2 X(M)CT

1 . . . T−1
2 X(M)(C1A

ϕ−1
1 )T

⎤
⎥⎦

=

⎡
⎢⎣

T−1
2 X(1)

...
T−1

2 X(M)

⎤
⎥⎦ [CT

1 . . . (C1A
ϕ−1
1 )T

]
.

The following rank equality holds:

rank(H) = n1 < ϕN. (34)

An SVD on the low-rank matrix H gives

H = U1V1

U1 =

⎡
⎢⎣

T−1
2 X(1)T1

...
T−1

2 X(M)T1

⎤
⎥⎦

V1 = T−1
1

[
CT

1 . . . (C1A
ϕ−1
1 )T

]
. (35)

Hence, U1 provides with an estimate for the state sequence
up to two similarity transformations as presented initially in the
proof of Lemma 3. The matrix V1 is equal to the extended
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observability matrix Oϕ,1 up to a similarity transformation T1 ,
and the matrices A1 and C1 can then be estimated. From both
rank equalities (32) and (34), we conclude that two consecutive
SVDs on, respectively, A(1) and H enable to estimate the state
sequence.

Remark 3: Contrary to the Multilinear-SVD presented in
[34] in which an SVD of each of the three unfoldings are com-
puted independently to estimate the column space of the factors,
the first SVD (33) is performed on an unfolded tensor A(1) while
the second one (35) deals with a reduced size matrix H obtained
from the right singular vectors in (33). The method proposed
here is advantageous for extending the subspace algorithm to
higher tensor orders.

Remark 4 (Stability): The matrices Â1 and Â2 are estimated
up to a scaling/couterscaling factor which might lead to unsta-
bility. In this case, it is suggested to compute an eigenvalue
decomposition of both matrices and scale the matrix with the
largest spectral radius with a quantity strictly smaller than the
inverse of its spectral radius and counterscale the other matrix.

In the following, we propose a method to estimate the tensor
A. In the noise-free case E = 0, the termsC2Ai

2X(k)(C1A
j
1)

T

for i = j and located on the main block diagonal of A(:, :, k)
are available from

V ≈ Y − T̂u (36)

where T̂u is obtained from Tu by replacing all Mi,� ,Mi,r with
M̂i,� , M̂i,r .

Furthermore, the block entries away from the main
block diagonal of A(:, :, k) feature cross terms such as
C2Ai

2X(k)(C1A
j
1)

T for i �= j. To cope with both the mea-
surement noise and the estimation of cross terms, we introduce
the so-called virtual outputs, denoted with Y� , as follows:{

X(k + 1) = A2X(k)AT
1 + B2U(k)BT

1

Y�
g ,h(k) = C�

2,gX(k)C�
1,h

T (37)

where g, h ∈ N,C�
2,g = C2A

g
2 and C�

1,h = C1Ah
1 .

In other words, Y�
g ,h(k) is a virtual output asso-

ciated with the set of Kronecker generators Sg ,h =
{A1 ,A2 ,B1 ,B2 ,C1A1

h ,C2A
g
2}. The virtual outputs

{Y�
g ,h(k)}k=1...Nt

are not known when both g, h are not zero
and are in the sequel approximated with a high-order FIR filter.

Let z ∈ N. For all k ≥ z

Y�
g ,h(k) ≈

z−1∑
i=0

C2A
i+g
2 B2U(k − i− 1)(C1Ai+h

1 B1)T

≈
z−1∑
i=0

Mi+g+1,rU(k − i− 1)MT
i+h+1,� . (38)

Using the estimates M̂i,� , M̂i,r for the factored left and right
coefficient matrices in the VARX model in Section III along
with the estimates α̂, β̂ in Section IV, the (38) reads

Y�
g ,h(k)

≈
z−1∑
i=0

β̂i+g+1M̂i+g+1,rU(k − i− 1)α̂i+h+1M̂T
i+h+1,� .

(39)

Y�
0,0(k) is an FIR approximation of the noise free model (7),

hence the coefficients α̂, β̂ are not needed for computing the
virtual output Y�

0,0(k).
We now investigate the requirements on the indices g, h to

fill the tensor A according to (31). Both sequences α̂ and β̂
have been estimated with s entries, therefore the (39) implies
the following ranges for choosing the triplet (z, g, h):

z + g ≤ s, z + h ≤ s.

For ϕ strictly smaller than s and larger than n
p so that the rank

strict inequalities (32) and (34) hold, the combinations of the
pair (g, h) for filling A are obtained with

1) g = 0, h ∈ {1, . . . , ϕ− 1}
2) g = 0, h = 0
3) g ∈ {1, . . . , ϕ− 1}, h = 0.

The maximum value of g is obtained for g = ϕ− 1, which
implies z + ϕ− 1 = s. A total of 2ϕ− 1 virtual outputs are
available within the temporal range {z, . . . , Nt}. For each of
the associated subsystems in (37), a data equation in matrix
form similar to (36) is written

Y �
g ,h =Vg ,h + T g ,h (40)

Vg ,h =

⎡
⎢⎢⎣

C�
2,gX(z)C�

1,h

T
. . . C�

2,gX(Mz )C
�
1,h

T

...
. . .

...
C�

2,gA
ϕ−1
2 X(z)(C�

1,hA
ϕ−1
1 )T . . . C�

2,gA
ϕ−1
2 X(Mz )(C

�
1,hA

ϕ−1
1 )T

⎤
⎥⎥⎦

Tg,h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0
C�

2,gB2U(z)(C�
1,hB1)T . . . C�

2,gB2U(Mz )(C
�
1,hB1)T

∑1
i=0 C�

2,gA
i
2B2U(z + 1− i)(C�

1,hA
i
1B1)T . . .

...
...

...∑ϕ−2
i=0 C�

2,gA
i
2B2U(z + ϕ− 2− i)(C�

1,hA
i
1B1)T . . .

∑ϕ−2
i=0 C�

2,gA
i
2B2U(Nt − i)(C�

1,hA
i
1B1)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 1. Schematic of the tensor A. The position of the observability
matrices obtained by writing the data equation for each virtual system
are indicated for (g, h) equal to (0, 1), (0, 0), (1, 0).

where

Y �
g ,h =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y�
g ,h(z) Y�

g ,h(z + 1) . . . Y�
g ,h(Mz )

Y�
g ,h(z + 1)

. . .
...

...
. . .

...

Y�
g ,h(z + ϕ− 1) . . . . . . Y�

g ,h(Nt)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Mz = Nt − ϕ + 1

The matrices Vg ,h and T g ,h are, respectively, defined in (28)
and (29). The matrices Vg ,h are estimated with

Vg ,h ≈ Y �
g ,h − T̂ g ,h (41)

and are contained in the tensor A. A diagonal slice of the tensor
A is defined as follows:

A((i− 1)pN + 1 : ipN, (i− 1)N + 1 : iN, :).

Then each diagonal slice of the tensor A contains a matrix
Vg ,h as illustrated in Figs. 1 and 2. For example, the block
diagonal terms for each A(:, :, k) are contained in V0,0 , the
block subdiagonal terms are contained in V1,0 , the block super-
diagonal terms are contained in V0,1 , etc. To summarize, one
diagonal slice is provided by one data equation (with E = 0)
corresponding to one MSSM (37). The main block diagonal can
be computed without the bilinear low-rank optimization in Sec-
tion IV contrary to all other slices that use the estimates (α̂, β̂)
from the BCU estimation.

From the estimates of the state sequence X̂T (k) =
T−1

2 X(k)T1 , the following bilinear least squares is formulated
to recover the matrices B1 ,B2

min
B1 ,B2

Mz −1∑
k=z+1

‖
(
X̂T (k + 1)−A2X̂T (k)AT

1

)
−B2U(k)BT

1 ‖2F .

(42)
The minimization problem (42) is solved using ALS and starting
with a random nonzero initial guess.

Fig. 2. Schematic of a slice A(:, :, k). The position of the observability
matrices obtained by writing the data equation for each virtual system
are indicated for (g, h) equal to (0, 1), (0, 0), (1, 0).

Algorithm 3: Estimation of the State Sequence.

Input: {uk}1:Nt
, {yk}1:Nt

, α̂, β̂, M̂� , M̂r , z, ϕ

Output: Â1 , Â2 , B̂1 , B̂2 , Ĉ1 , Ĉ2
1: foreach η = 1 : 2ϕ− 1 do
2: if η < ϕ then
3: g = 0, h = η

4: else if η = ϕ then
5: g = 0, h = 0
6: else if η > ϕ then
7: g = η − ϕ, h = 0.
8:
9: foreach k = z + 1 : Nt do

10: Compute the virtual outputs with (39)
11: end
12: Compute Vg ,h with (41)

/* Fill-in the tensor A /*
13: foreach k = z : Nt do
14: Fill block-diag(A(:, :, k), η − ϕ) with the kth

block column of Vg ,h according to (31).
15: end
16: end

/* Compute the state sequence /*
17: Form the unfolding A(1) and compute the SVD (33)

18: Estimate Â2 , Ĉ2
19: Form H and compute the SVD (35)
20: Estimate Â1 , Ĉ1

/* Compute the input state-space
matrices /*

21: Solve (42) iteratively with ALS and estimate B̂1 , B̂2

The steps for estimating the state sequence are summarized
in Algorithm 3.

Computing the virtual outputs requires (2ϕ− 1)N 3Ntz flops
and therefore, scales withO(N 3Nt). The first and second SVD
cost, respectively,O(N 3M) andO(n̂2N

2M). Last, solving the
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bilinear least-squares in (42) requires N 3Mz flops. The overall
computational complexity for Algorithm 3 is O(N 3Nt).

VI. NUMERICAL EXAMPLE FOR LARGE-SCALE ATMOSPHERIC

TURBULENCE PREDICTION

A. The Model

The subspace algorithm is now illustrated with an adaptive
optics application. When a light beam with an originally flat
wavefront passes through a turbulent medium, the wavefront
gets distorted both in time and space. Adaptive optics is the sys-
tem that corrects in real-time atmospheric aberrations to obtain
high-resolution images. A description of the signal-generation
model is described in [16].

We aim here at illustrating the subspace identification of
Kronecker state-space models in innovation form defined with{

x(k + 1) = Ax(k) + Ke(k)
s(k) = Cx(k) + e(k)

where e(k) is a zero-mean white Gaussian noise sequence. The
prediction model reads{

x̂(k + 1|k) = Ãx̂(k|k) + Ks(k)
s(k) = Cx̂(k|k) + e(k)

(43)

where we assume that the matrices Ã = A−KC, K, and C
have a Kronecker rank equal to 1, hence giving rise to the MSSM
as follows:{

X̂(k + 1|k) = Ã2X̂(k|k)ÃT
1 + K2S(k)KT

1

S(k) = C2X̂(k|k)CT
1 + E(k)

(44)

In the following simulation, we evaluate the performance of
Algorithm 1 for varying size of the lenslet-array and compare it
with the SSARX method developed in [35].

Remark 5 (Structured innovation forms): A drawback that
appears when considering the state-space model in innovation
form of networked systems such as [11] or the Kronecker-based
subspace algorithm is that the structure of the Kalman gain is
restricted to the structure of the matrix A. In our example, Ã
and K are assumed to have a Kronecker rank equal to 1.

We investigate here, the performances for 20 independent
turbulence realizations. For each of these, the following methods
are compared:

1) SSARX: The centralized identification scheme used for
adaptive optics purposes in [35] and tackles the model
(43). The number of temporal samples is set to the mini-
mum required for the method, 4N 2s + 2s. The integer s
is set to 15.

2) K4SID (Algorithms 1 + 2 + 3) The detailed set of pa-
rameters is found below.

3) K4SID+MLDS: The estimates obtained with K4SID
are used for initializing the non-linear expectation-
maximization algorithm for handling multilinear dynam-
ical systems, [20], [36]. 10sN temporal samples are
used for identification and ten iterations are computed.
However, only small sizes of networks with N ≤ 10
could be handled because of the high computational

complexity of MLDS. Note that we have computed a
suboptimal model from K4SID by fixing the system or-
ders n1 , n2 to lower values than the optimal ones such
that MLDS could handle the optimization, i.e, n1 , n2 are
set to 2N .

We summarize the building blocks of the algorithm K4SID
along with the chosen parameters used in the simulations below.

1) The QUARKS identification (Algorithm 1): The number
of temporal points in the identification set (for Kronecker-
based models) is 10sN . The initial guesses for the ma-
trices Mi,� are chosen following a Gaussian distribution
with zero mean and identity covariance matrix. A maxi-
mum of ten iterations is fixed along with a stopping bound
emax set to 10−5 . The temporal stability of the QUARKS
model is ensured by fitting a DC-kernel

pt,(m,n) = e−η |m−n |e−ξ/2(m+n)

for m,n = 1 . . . s. The optimization is performed for dif-
ferent hyperparameters λ, η, ξ; the optimal set is found by
random search, [28] with ten runs.

2) The bilinear low-rank optimization in (27) (Algorithm 2):
The initial guesses for α(0) , β(0) are chosen equal to 1.
The regularization parameter μ to gradually set the slack
variables to 0 is defined as follows. The initial value
for μ(0) is taken within the range linspace(1, 50, 5) and
its influence is studied in Section F. Although, there is
no clear theoretical guideline on how to update μ(�) , a
heuristic rule for its update is to increase it gradually,
for example multiply it by five every four iterations. The
necessity for a similar update rule is found in [32]. A
maximum of 15 iterations is fixed and the stopping bound
emax is set to 10−3 .

3) State-sequence estimation (Algorithm 3): The integers ϕ
and z are, respectively, fixed to � s+1

2 � and ϕ− 1. The
system orders n̂1 and n̂2 correspond to the index of the
singular value that in logarithm is closest to the logarith-
mic mean of the maximum and minimum singular values
for both n̂1 (35) and n̂2 (33). The maximum number of
iterations in the ALS for minimizing (42) is set to ten.

The quality criteria is the variance accounted for (VAF) be-
tween the slopes measurements si,j and the predicted ŝi,j and
is defined with

max

(
0,

(
1−

1
Nt

∑Nt

k=1 ‖sk,(i,j ) − ŝk,(i,j )‖22
1

Nt

∑Nt

k=1 ‖sk,(i,j )‖22

)
× 100

)

for Nt = 5× 103 time samples from a validation set indepen-
dent from the identification set. The VAF is computed for each
sensor channel independently, and the mean is taken over the
whole measurement grid afterwards. The fit between two iden-
tical signals si,j and ŝi,j reaches 100%.

B. The Simulation Parameters

The experiments have been carried out using MAT-
LABR2015b on a desktop computer with a CPU Intel Xeon
E5-1620V3/3.5 GHz with 24GB of RAM. The dimensions of
the problem are summarized in Table I.
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TABLE I
SIMULATION PARAMETERS

Fig. 3. VAF (%) on validation data as a function of the number of
outputs. No model was computed for SSARX for N > 20.

C. Analyzing the Prediction Error

Fig. 3 displays the VAF on validation data for the four algo-
rithms as a function of the total number of outputs, 2N 2 . We
stress that we are not aiming at reaching lower prediction errors
than SSARX as structural assumptions are made on the matrices.
However, we show that the proposed Kronecker-based model-
ing handles networks of much larger sizes and with a slight
decrease of performance w.r.t the centralized version (when the
latter model can be computed).

When N ≤ 20 (that is, 2N 2 ≤ 800), SSARX obtains lower
prediction errors than K4SID. A centralized identification could
no longer be carried out for N > 20 because of lack of memory,
which is a well-known problem as explained in Section II and
in, e.g., [9]. The QUARKS estimation reaches SSARX-like
performances and handles many more outputs. More temporal
samples would improve the performance with some impact on
the scalability. The performances using K4SID are lower than
QUARKS because the low-rank bilinear algorithm (Algorithm
2) does not in general converge to the global minimum of (26).
The difficulties are twofold: both the rank operator and the bilin-
ear constraint have been relaxed to solve a sequence of convex
minimizations rather than a rank minimization problem. The
estimates obtained with K4SID serve as good initial values for

Fig. 4. Storage complexity as a function of the size of the net-
work, in loglog scale. The linear model plotted corresponds to
log10(Storage complexity) = a × log10(N ) + b. The dashed part of the
model corresponds to extrapolated data, as no model could be identified
with these sizes.

further optimization using output-error algorithms for Kro-
necker models as highlighted with the method that combines
K4SID and MLDS (in green). However, the latter is computa-
tionally cumbersome. Increasing the system order would result
in higher performances but in much longer optimization times
as MLDS scales with the third power of the global order, that
isO(N 6) for the example considered. Systems could no longer
be identified with MLDS for sizes strictly larger than 10× 10
and this is corroborated with the timing measurements in
Section VI-E.

D. Storage Complexity

The storage is defined as the number of entries to construct
the state-transition matrix A, that is, n2 in the centralized case
and n2

1 + n2
2 in the Kronecker model. We analyze these results

further by plotting the storage as a function of the size, which
are directly related to the system orders.

Fig. 4 illustrates a dependency of the storage complexity with
N 1.86 for global models while it is only N 0.81 for the Kronecker-
structured model. The order stops increasing for SSARX when
N > 20 as reaching a user-chosen upper-bound, n = 2 · 103 .

E. Timing Experiments

In this section, we investigate how the computational time
for the identification algorithms evolves with N . We lay the
emphasis on relative results rather than absolute as the latter are
very much hardware dependent. The SSARX algorithm con-
sists mainly of a QR decomposition, a SVD and a least squares,
while the Kronecker-based methods contains many loops in the
QUARKS identification, the bilinear low-rank algorithm and
the state-sequence estimation. Consequently, the performances
would benefit from a C-based implementation. A similar obser-
vation is done for the MATLAB code used for MLDS, [36]. We
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Fig. 5. Computational time of the model identification as a function of
the size of the network, in loglog scale. The linear model plotted cor-
responds to log 10(T ime) = a × log 10(N ) + b. The dashed part of the
model corresponds to extrapolated data, as no model could be identified
with these sizes.

Fig. 6. Optimal value of the initial value for the regularization parameter,
μ, in Algorithm 2 as a function the network size, N .

nonetheless focus on the difference of scaling capabilities of
the three algorithms in Fig. 5. The time for SSARX to identify
a model scales with N 5.65 while it is only N 2.40 for K4SID.
The M-step in the MLDS computes a Kalman smoother, which
scales at the very least with O(N 6) as no Kronecker structure
could be exploited in every step and large matrices were used for
computations. For example, it requires computing the inverse of
the global state covariance matrix at each iteration for each time
sample. Consequently, the computational time increases sharply
even for moderate sizes of networks.

F. Regularization Parameter μ(0) in Algorithm 2

Algorithm 2 for estimating the parameters α̂ and β̂ requires
an initial value for the regularization parameter, μ(0) . Its value
impacts whether the bilinear constraint αiβi = 1 is met. If it is

set too low, then both α and β are estimated with 0, and the
bilinear constraint is not met. Therefore, we look for an optimal
μ(0) by grid search. We call an optimal value for μ(0) the one
that minimizes the prediction error for the method K4SID for a
particular set of data and network size.

The optimal values are plotted in Fig. 6 and it shows that
lower μ(0) are expected when N is small, while it should be
set higher when increasing the size of the network. Studying a
systematic way to determine μ(0) is outside the scope of this
paper.

VII. CONCLUSION

In this paper, we presented a new framework to analyze large
scale networks and identify withO(N 3Nt) complexity the state-
space matrices when they exhibit a Kronecker rank-1 structure.
The algorithm consists of first identifying a QUARKS model
in which we estimate the left and right factor matrices up to an
unknown parameter that is different for each factored Markov
parameter. Next, we formulated some low-rank conditions on a
block-Hankel matrix such that the left and right factored impulse
responses are retrieved up to a scaling factor. This subproblem
was tackled by formulating a regularized bilinear low-rank op-
timization. A proposal has been made to use a block-coordinate
descent algorithm with slack variables that is solved iteratively
and gradually ensures that the bilinear constraint is met. We
estimated the state sequence using two consecutive SVD on
a tensor which enabled to estimate the Kronecker generators
from an ALS on the matrix state-space model. The benefits of
large-scale modeling with the Kronecker structure have been
illustrated with an adaptive optics example and are threefold.
First, the Kronecker-based subspace algorithm handles larger
systems than the benchmark SSARX allow. Second, although
the method we propose leads to a higher prediction-error than
the centralized version, the number of time samples required
for using the SSARX method increases with N 2 . Last, timing
experiments (MATLAB-based) have shown a dependency with
N 5.65 for SSARX instead of N 2.40 for K4SID.

The estimates obtained with the subspace algorithm can be
further refined by using them as initial estimates for Kronecker-
based output-error optimization algorithms.

We have not investigated in this paper the identification of
state-space models in which the matrices (especially B,C) have
a Kronecker rank strictly larger than one, which could help
to reduce further on the orders n1 , n2 while maintaining the
same prediction-error performances. Moreover, the algorithm
has been presented for 2-D dynamical systems with temporal
dynamics and can be generalized to higher dimensions by using
a Kronecker product of multiple matrices instead of only two,
in which case larger compression rates are achieved and a larger
number of inputs and outputs can be handled.
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Écully, France, in 2014. He is currently work-
ing toward the Ph.D. degree at the Delft Cen-
ter for Systems and Control, TU Delft, Delft,
The Netherlands.

His research interest include the identifica-
tion of multi-dimensional and large-scale sys-
tems, and validation of the derived tensor-based
identification and control methods in a laboratory
environment dedicated for large-scale adaptive
optics.

Michel Verhaegen received the Engineering
degree in aeronautics from the Delft University of
Technology, Delft, The Netherlands, in 1982 and
the Doctoral degree in applied sciences from the
Catholic University Leuven, Leuven, Belgium, in
1985.

From 1985 to 1994, he was a Research
Fellow with the U.S. National Research Coun-
cil (NRC), NASA Ames Research Center in
California, and with the Dutch Academy of Arts
and Sciences, Network Theory Group, Delft Uni-

versity of Technology. From 1994 to 1999, he was an Associate Professor
with the Control Laboratory, Delft University of Technology and was ap-
pointed as a Full Professor with the Faculty of Applied Physics, University
of Twente, The Netherlands, in 1999. His main research interest is the
interdisciplinary domain of numerical algebra and system theory. In this
field he has authored and coauthored more than 130 papers. Current
activities focus on the transfer of knowledge about new identification,
fault tolerant control and data-driven controller design methodologies to
industry. Application areas include adaptive optics.

Prof. Verhaegen joint the University of Delft, in 2001, and is now a
member of the Delft Center for Systems and Control. He has held short
sabbatical leaves at the University of Uppsala, McGill, Lund, and the
German Aerospace Research Center in Munich and is participating in
several European Research Networks.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


