
594 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 2, FEBRUARY 2018
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Abstract—In this paper, a novel variational Bayesian (VB)-based
adaptive Kalman filter (VBAKF) for linear Gaussian state-space
models with inaccurate process and measurement noise covari-
ance matrices is proposed. By choosing inverse Wishart priors,
the state together with the predicted error and measurement noise
covariance matrices are inferred based on the VB approach. Sim-
ulation results for a target tracking example illustrate that the pro-
posed VBAKF has better robustness to resist the uncertainties of
process and measurement noise covariance matrices than existing
state-of-the-art filters.

Index Terms—Adaptive filtering, inverse Wishart distribution,
Kalman filtering, time-varying noise covariance matrices, varia-
tional Bayesian (VB).

I. INTRODUCTION

The Kalman filter is an optimal state estimator for linear Gaussian
state-space models, and it has been widely used in many applications,
such as navigation, target tracking, and control. The performance of
the Kalman filter depends largely on a priori knowledge of the noise
statistics, and the use of wrong a priori statistics can result in substan-
tial estimation errors or even filtering divergence [1]. However, in many
applications, such as Global Positioning System and Inertial Naviga-
tion System-based integrated navigation systems, their noise statistics
may be unknown and time-varying [2]–[4]. The adaptive Kalman filter
(AKF) is the most common method to solve this problem, and it can
be divided into correlation, covariance matching, maximum likelihood,
and Bayesian methods [1].
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The Sage–Husa AKF (SHAKF) is a covariance matching method,
which estimates the noise statistics recursively based on the maximum
a posterior criterion [5], [6]. However, the convergence to the right
noise covariance matrices is not guaranteed with SHAKF, which may
lead to filtering divergence [1]. The Innovation-based AKF (IAKF)
is a maximum likelihood method, which estimates the noise covari-
ance matrices based on the fact that the innovation sequence of the
Kalman filter is a white process [2]. However, the IAKF requires rather
large windows of data to obtain reliable estimations of noise covari-
ance matrices, which makes it impractical for rapidly varying noise
covariance matrices [7]. The multiple model AKF (MMAKF) is an
approximation of the Bayesian method, which can deal with the model
uncertainty by operating a bank of Kalman filters with different mod-
els simultaneously [8]. However, the MMAKF suffers from substantial
computational complexities [9].

The existing variational Bayesian (VB) based AKF (VBAKF) is
also an approximation of the Bayesian method, which can estimate an
inaccurate and slowly varying measurement noise covariance matrix
(MNCM) by choosing appropriate conjugate prior distribution [9]–
[12]. However, the performance of the existing VBAKF will degrade
for an inaccurate process noise covariance matrix (PNCM) since it as-
sumes accurate PNCM. Although the VB based Rauch–Tung–Striebel
smoother can estimate unknown PNCM and MNCM simultaneously
[13], [14], it can only estimate unknown and constant noise covariance
matrices offline. To the best of the knowledge of the authors, it is always
a challenge to design a VBAKF for linear Gaussian state-space models
with inaccurate PNCM and MNCM since the PNCM is difficult to be
estimated directly with a rather small window of data.

In this paper, a novel VBAKF with inaccurate PNCM and MNCM
is proposed. By choosing inverse Wishart priors for the predicted error
covariance matrix (PECM) and MNCM, the state together with PECM
and MNCM are inferred based on the VB approach. The proposed
VBAKF and existing filters are applied to the problem of target tracking
with inaccurate and slowly varying PNCM and MNCM. Simulation
results show the proposed filter has smaller root mean square error
(RMSE) than existing state-of-the-art filters.

II. MAIN RESULTS

A. Problem Formulation

Consider the following discrete-time linear stochastic system as
shown by the state-space model

xk = Fk−1xk−1 + wk−1 (1)

zk = Hkxk + vk (2)

where (1) and (2) are respectively process and measurement equa-
tions, k is the discrete time index, xk ∈ Rn is the state vector, zk ∈ Rm

is the measurement vector, Fk ∈ Rn×n is the state transition matrix,
Hk ∈ Rm×n is the observation matrix; wk ∈ Rn and vk ∈ Rm are re-
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spectively Gaussian process and measurement noise vectors with zero
mean vectors and covariance matrices Qk and Rk . The initial state vec-
tor x0 is assumed to have a Gaussian distribution with mean vector x̂0|0
and covariance matrix P0|0. Moreover, x0, wk , and v j are assumed to
be mutually uncorrelated for any j and k.

The Kalman filter is frequently employed to estimate the state vector
xk given the state-space model and measurements z1:k , where z1:k =
{z j }k

j=1 denotes the measurements from time 1 to time k. The Kalman
filter is optimal in terms of minimum mean square error (MMSE)
for linear Gaussian state-space model (1)–(2) with accurate Qk and
Rk . However, the use of wrong/inaccurate Qk and Rk can result in
substantial estimation errors or even filtering divergence [1]. Therefore,
a novel VBAKF suitable for operation with inaccurate PNCM and
MNCM will be proposed.

B. Choices of Prior Distributions

In the framework of the Kalman filter, the one-step predicted PDF
p(xk |z1:k−1) and likelihood PDF p(zk |xk) are Gaussian, i.e..

p(xk |z1:k−1, Pk|k−1) = N(xk ; x̂k|k−1, Pk|k−1) (3)

p(zk |xk, Rk) = N(zk ; Hkxk, Rk) (4)

where N(·; μ, �) denotes the Gaussian PDF with mean vector μ and
covariance matrix �, and x̂k|k−1 and Pk|k−1 are respectively the pre-
dicted state vector and corresponding PECM, and x̂k|k−1 and Pk|k−1 are
given by

x̂k|k−1 = Fk−1x̂k−1|k−1 (5)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Qk−1 (6)

where (·)T denotes the transpose operation, and x̂k−1|k−1 and Pk−1|k−1 are
respectively the state estimation vector and corresponding estimation
error covariance matrix at time k − 1. Note that Pk|k−1 obtained from (6)
is inaccurate since the true PNCM Qk is unavailable and an inaccurate
PNCM is used.

Our aim is to infer xk together with Pk|k−1 and Rk . To this end, the
conjugate prior distributions need to be first selected for inaccurate
PECM Pk|k−1 and MNCM Rk since the conjugacy can guarantee that
the posterior distribution is of the same functional form as the prior
distribution. In Bayesian statistics, the inverse Wishart distribution is
usually used as the conjugate prior for the covariance matrix of a
Gaussian distribution with known mean [15]. The inverse Wishart PDF
of a symmetric positive definite random matrix B of dimension d × d

is formulated as IW(B; λ,�) = |�|λ/2|B|−(λ+d+1)/2 exp{−0.5tr(�B−1)}
2dλ/2�d (λ/2)

, where
λ is the degrees of freedom (dof) parameter, and � is the inverse
scale matrix that is a symmetric positive definite matrix of dimension
d × d , and | · | and tr(·) denote the determinant and trace operations,
respectively, and �d (·) is the d-variate gamma function [15]. If B ∼
IW(B; λ, �), then E[B−1] = (λ − d − 1)�−1 when λ > d + 1 [15].
Since both Pk|k−1 and Rk are the covariance matrices of Gaussian PDFs,
their prior distributions p(Pk|k−1|z1:k−1) and p(Rk |z1:k−1) are chosen as
inverse Wishart PDFs, i.e.,

p(Pk|k−1|z1:k−1) = IW(Pk|k−1; t̂k|k−1, T̂k|k−1) (7)

p(Rk |z1:k−1) = IW(Rk ; ûk|k−1, Ûk|k−1) (8)

where IW(·; μk, �k) denotes the inverse Wishart PDF with dof pa-
rameter μk and inverse scale matrix �k , and t̂k|k−1 and T̂k|k−1 are
respectively the dof parameter and inverse scale matrix of
p(Pk|k−1|z1:k−1), and ûk|k−1 and Ûk|k−1 are respectively the dof parame-
ter and inverse scale matrix of p(Rk |z1:k−1). Next, the prior parameters
t̂k|k−1, T̂k|k−1, ûk|k−1, and Ûk|k−1 will be determined.

To capture the prior information of Pk|k−1, the mean value of Pk|k−1

is set as the nominal PECM P̃k|k−1, i.e.,

T̂k|k−1

t̂k|k−1 − n − 1
= P̃k|k−1 = Fk−1Pk−1|k−1FT

k−1 + Q̃k−1 (9)

where Q̃k−1 denotes the nominal PNCM and is an algorithm parameter
of the proposed VBAKF. Let

t̂k|k−1 = n + τ + 1 (10)

where τ ≥ 0 is a tuning parameter. Using (10) in (9) yields

T̂k|k−1 = τ P̃k|k−1. (11)

According to the Bayesian theorem, the prior distribution
p(Rk |z1:k−1) is formulated as

p(Rk |z1:k−1) =
∫

p(Rk |Rk−1)p(Rk−1|z1:k−1)dRk−1 (12)

where p(Rk−1|z1:k−1) is the posterior PDF of MNCM Rk−1.
Since the prior distribution p(Rk−1|z1:k−2) of MNCM Rk−1 is chosen

as an inverse Wishart PDF in accordance with (8), the posterior PDF
p(Rk−1|z1:k−1) can be also updated as an inverse Wishart PDF, i.e.,

p(Rk−1|z1:k−1) = IW(Rk−1; ûk−1|k−1, Ûk−1|k−1). (13)

To guarantee p(Rk |z1:k−1) is an inverse Wishart PDF formulated in
(8), the forward predictive model p(Rk |Rk−1) needs to be determined.
However, in practical application, the dynamical model p(Rk |Rk−1) is
not known in detail. Considering that the MNCM is slowly varying in
many practical applications, in this paper, we use similar heuristics as
in [10], which just spreads previous approximate posteriors through a
factor of ρ, and the prior parameters ûk|k−1 and Ûk|k−1 are given by

ûk|k−1 = ρ(ûk−1|k−1 − m − 1) + m + 1 (14)

Ûk|k−1 = ρÛk−1|k−1 (15)

where ρ ∈ (0 1] is a forgetting factor which indicates the extent of the
time-fluctuations.

In this paper, the initial MNCM R0 is also assumed to have an
inverse Wishart PDF, i.e., p(R0) = IW(R0; û0|0, Û0|0). To capture the
prior information of the initial MNCM, the mean value of R0 is set as
the initial nominal MNCM R̃0, i.e.,

Û0|0
û0|0 − m − 1

= R̃0 (16)

where the initial nominal MNCM R̃0 is an algorithm parameter of the
proposed VBAKF.

C. Variational Approximations of Posterior PDFs

To estimate xk together with Pk|k−1 and Rk , the joint posterior PDF
p(xk, Pk|k−1, Rk |z1:k) needs to be computed. Since there is not an analyt-
ical solution for this joint posterior PDF, the VB approach is used to look
for a free form factored approximate PDF for p(xk, Pk|k−1, Rk |z1:k), i.e.,
[16], [17]

p(xk, Pk|k−1, Rk |z1:k) ≈ q(xk)q(Pk|k−1)q(Rk) (17)

where q(·) represents the approximate posterior PDF of p(·), and q(xk),
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q(Pk|k−1), and q(Rk) are given by minimizing the Kullback–Leibler
divergence (KLD) between the factored approximate posterior PDF
q(xk)q(Pk|k−1)q(Rk) and true joint posterior PDF p(xk, Pk|k−1, Rk |z1:k),
i.e., [16], [17]

{
q(xk), q(Pk|k−1), q(Rk)

} = arg min KLD(
q(xk)q(Pk|k−1)q(Rk)||p(xk, Pk|k−1, Rk |z1:k)

)
(18)

where KLD(q(x)||p(x)) �
∫

q(x) log q(x)
p(x) dx denotes the KLD be-

tween q(x) and p(x). The optimal solution for (18) satisfies the follow-
ing equation [17]:

log q(θ ) = E	(−θ ) [log p(	, z1:k)] + cθ (19)

	 � {xk, Pk|k−1, Rk} (20)

where E[·] represents the expectation operation, and log(·) represents
the logarithmic function, and θ is an arbitrary element of 	, and 	(−θ)

is the set of all elements in 	 except for θ , and cθ denotes the constant
with respect to variable θ . Since the variational parameters of q(xk),
q(Pk|k−1) and q(Rk) are coupled, we need to employ fixed-point itera-
tions to solve (19), where the approximate posterior PDF q(θ ) of the
arbitrary element θ is updated as q (i+1)(θ ) at the i + 1th iteration using
the approximate posterior PDF q (i)(	(−θ)) [16], [17]. The iterations
converge to a local optimum of (19).

Remark 1: In the standard VB approach, the KLD is chosen as
a distance measure between the factored approximate posterior PDF
and true joint posterior PDF, and the optimal solution is obtained by
minimizing the KLD. The VB approach can provide a closed form
solution for the approximate posterior PDF and guarantee the local
convergence of the fixed-point iterations. The alpha and tau diver-
gences are generalized distance measures [18], [19], and in principle
they can be also used as a distance measure between the factored
approximate posterior PDF and true joint posterior PDF. However,
the alpha or tau divergence-based Bayesian inference approach may
not provide a closed form solution for the approximate posterior
PDF.

Using the conditional independence properties of the Gaussian-
inverse-Wishart state-space model in (1)–(4), (7), and (8), the joint
PDF p(	, z1:k) can be factored as

p(	, z1:k) = p
(
zk |xk, Rk

)
p
(
xk |z1:k−1, Pk|k−1

)
×p(Pk|k−1|z1:k−1)p(Rk |z1:k−1)p(z1:k−1). (21)

Employing (3), (4) and (7), (8) in (21) obtains

p
(
	, z1:k

) = N
(
zk ; Hkxk, Rk

)
N
(
xk ; x̂k|k−1, Pk|k−1

)

×IW
(
Pk|k−1; t̂k|k−1, T̂k|k−1

)
IW
(
Rk ; ûk|k−1, Ûk|k−1

)
×p
(
z1:k−1

)
. (22)

Exploiting (22), log p(	, z1:k) is formulated as

log p(	, z1:k) = −0.5(m + ûk|k−1 + 2) log |Rk |
− 0.5

(
zk − Hkxk

)T
R−1

k

(
zk − Hkxk

)− 0.5tr
(
Ûk|k−1R−1

k

)

− 0.5
(
n + t̂k|k−1 + 2

)
log |Pk|k−1| − 0.5

(
xk − x̂k|k−1

)T

× P−1
k|k−1

(
xk − x̂k|k−1

)− 0.5tr
(
T̂k|k−1P−1

k|k−1

)+ c	. (23)

Let θ = Pk|k−1 and using (23) in (19), we have

log q (i+1)(Pk|k−1) = −0.5(m + ûk|k−1 + 2)E(i)[log |Rk |]
− 0.5E(i)

[
(zk − Hkxk)T R−1

k (zk − Hkxk)
]

− 0.5E(i)
[
tr(Ûk|k−1R−1

k )
]− 0.5(n + t̂k|k−1 + 2)

× log |Pk|k−1| − 0.5tr
(

(A(i)
k + T̂k|k−1)P−1

k|k−1

)
+ c	

= −0.5(n + t̂k|k−1 + 2) log |Pk|k−1|

− 0.5tr
(

(A(i)
k + T̂k|k−1)P−1

k|k−1

)
+ cP (24)

where q (i+1)(·) is the approximation of PDF q(·) at the i + 1th iteration,
and A(i)

k is given by

Ai
k = Ei

[
(xk − x̂k|k−1)(xk − x̂k|k−1)T

]
= Ei

[(
xk − x̂i

k|k + x̂i
k|k − x̂k|k−1

)

× (xk − x̂i
k|k + x̂i

k|k − x̂k|k−1

)T ]

= Ei
[(

xk − x̂i
k|k
)(

xk − x̂i
k|k
)T ]

+ (x̂i
k|k − x̂k|k−1

)(
x̂i

k|k − x̂k|k−1

)T

= Pi
k|k + (

x̂i
k|k − x̂k|k−1

)(
x̂i

k|k − x̂k|k−1

)T
(25)

where E(i)[ρ] denotes the expectation of variable ρ at the i th iteration.
Exploiting (24), q (i+1)(Pk|k−1) can be updated as an inverse Wishart

PDF with dof parameter t̂ (i+1)
k and inverse scale matrix T̂(i+1)

k , i.e.,

q (i+1)(Pk|k−1) = IW
(
Pk|k−1; t̂ (i+1)

k , T̂(i+1)
k

)
(26)

where the dof parameter t̂ (i+1)
k and inverse scale matrix T̂(i+1)

k are
given by

t̂ (i+1)
k = t̂k|k−1 + 1 (27)

T̂(i+1)
k = A(i)

k + T̂k|k−1. (28)

Let θ = Rk and using (23) in (19), we have

log q (i+1)(Rk) = −0.5(m + ûk|k−1 + 2) log |Rk |

− 0.5tr
((

B(i)
k + Ûk|k−1

)
R−1

k

)
− 0.5

(
n + t̂k|k−1 + 2

)

× E(i)
[
log |Pk|k−1|

]− 0.5E(i)
[
tr
(
T̂k|k−1P−1

k|k−1

)]

− 0.5E(i)
[(

xk − x̂k|k−1

)T
P−1

k|k−1

(
xk − x̂k|k−1

)]+ c	

= −0.5
(
m + ûk|k−1 + 2

)
log |Rk | − 0.5tr

((
B(i)

k + Ûk|k−1

)
R−1

k

)
+ cR (29)

where B(i)
k is given by

B(i)
k = Ei

[
(zk − Hkxk)(zk − Hkxk)T

]
= Ei

[(
zk − Hk x̂i

k|k + Hk x̂i
k|k − Hkxk

)

× (zk − Hk x̂i
k|k + Hk x̂i

k|k − Hkxk

)T ]

= (
zk − Hk x̂i

k|k
)(

zk − Hk x̂i
k|k
)T

+ HkEi
[(

xk − x̂i
k|k
)(

xk − x̂i
k|k
)T ]

HT
k

= (
zk − Hk x̂i

k|k
)(

zk − Hk x̂i
k|k
)T + HkPi

k|kHT
k . (30)
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Utilizing (29), q (i+1)(Rk) can be updated as an inverse Wishart PDF
with dof parameter û(i+1)

k and inverse scale matrix Û(i+1)
k , i.e.,

q (i+1)(Rk) = IW
(
Rk ; û(i+1)

k , Û(i+1)
k

)
(31)

where the dof parameter û(i+1)
k and inverse scale matrix Û(i+1)

k are
given by

û(i+1)
k = ûk|k−1 + 1 (32)

Û(i+1)
k = B(i)

k + Ûk|k−1. (33)

Let θ = xk and using (23) in (19) results in

log q (i+1)(xk) = −0.5(m + ûk|k−1 + 2)E(i+1)[log |Rk |]
− 0.5E(i+1)

[
tr
(
Ûk|k−1R−1

k

)]− 0.5(n + t̂k|k−1 + 2)

× E(i+1)
[
log |Pk|k−1|

]− 0.5E(i+1)
[
tr
(
T̂k|k−1P−1

k|k−1

)]

− 0.5(zk − Hkxk)T E(i+1)
[
R−1

k

]
(zk − Hkxk)

− 0.5(xk − x̂k|k−1)T E(i+1)
[
P−1

k|k−1

]
(xk − x̂k|k−1) + c	

= −0.5(zk − Hkxk)T E(i+1)
[
R−1

k

]
(zk − Hkxk)

− 0.5(xk − x̂k|k−1)T E(i+1)
[
P−1

k|k−1

]
(xk − x̂k|k−1) + cx (34)

where E(i+1)[R−1
k ] and E(i+1)[P−1

k|k−1] are given by

E(i+1)
[
R−1

k

] = (
û(i+1)

k − m − 1
)(

Û(i+1)
k

)−1
(35)

E(i+1)
[
P−1

k|k−1

] = (
t̂ (i+1)
k − n − 1

)(
T̂(i+1)

k

)−1
. (36)

Define the modified one-step predicted PDF p(i+1)(xk |z1:k−1) and
likelihood PDF p(i+1)(zk |xk) at iteration i + 1 as follows:

p(i+1)(xk |z1:k−1) = N
(
xk ; x̂k|k−1, P̂(i+1)

k|k−1

)
(37)

p(i+1)(zk |xk) = N
(
zk ; Hkxk, R̂(i+1)

k

)
(38)

where the modified PECM P̂(i+1)
k|k−1 and MNCM R̂(i+1)

k are formulated as

P̂(i+1)
k|k−1 = {

E(i+1)
[
P−1

k|k−1

]}−1
R̂(i+1)

k = {
E(i+1)

[
R−1

k

]}−1
. (39)

Employing (37)–(39) in (34) yields

q (i+1)(xk) = 1

c(i+1)
k

p(i+1)(zk |xk)p(i+1)(xk |z1:k−1) (40)

where the normalizing constant c(i+1)
k is given by

c(i+1)
k =

∫
p(i+1)(zk |xk)p(i+1)(xk |z1:k−1)dxk . (41)

According to (37)–(41), q (i+1)(xk) can be updated as a Gaussian PDF
with mean vector x̂(i+1)

k|k and covariance matrix P(i+1)
k|k , i.e.,

q (i+1)(xk) = N
(
xk ; x̂(i+1)

k|k , P(i+1)
k|k

)
(42)

where the mean vector x̂(i+1)
k|k and covariance matrix P(i+1)

k|k at iteration
i + 1 are given by

K(i+1)
k = P̂(i+1)

k|k−1HT
k

(
Hk P̂(i+1)

k|k−1HT
k + R̂(i+1)

k

)−1
(43)

x̂(i+1)
k|k = x̂k|k−1 + K(i+1)

k

(
zk − Hk x̂k|k−1

)
(44)

P(i+1)
k|k = P̂(i+1)

k|k−1 − K(i+1)
k Hk P̂(i+1)

k|k−1. (45)

Algorithm 1: One time step of the proposed VBAKF with inaccu-
rate PNCM and MNCM.

Inputs: x̂k−1|k−1, Pk−1|k−1, ûk−1|k−1, Ûk−1|k−1, Fk−1, Hk , zk , Q̃k−1,
m, n, τ , ρ, N

Time update:
1: x̂k|k−1 = Fk−1x̂k−1|k−1

2: P̃k|k−1 = Fk−1Pk−1|k−1FT
k−1 + Q̃k−1

Variational measurement update:
3: Initialization: x̂(0)

k|k = x̂k|k−1, P(0)
k|k = P̃k|k−1, t̂k|k−1 = n + τ + 1,

T̂k|k−1 = τ P̃k|k−1, ûk|k−1 = ρ(ûk−1|k−1 − m − 1) + m + 1,
Ûk|k−1 = ρÛk−1|k−1

for i = 0 : N − 1
Update q (i+1)(Pk|k−1) = IW(Pk|k−1; t̂ (i+1)

k , T̂(i+1)
k ) given q (i)(xk):

4: A(i)
k = P(i)

k|k + (x̂(i)
k|k − x̂k|k−1)(x̂(i)

k|k − x̂k|k−1)T

5: t̂ (i+1)
k = t̂k|k−1 + 1, T̂(i+1)

k = A(i)
k + T̂k|k−1

Update q (i+1)(Rk) = IW(Rk ; û(i+1)
k , Û(i+1)

k ) given q (i)(xk):
6: B(i)

k = (zk − Hk x̂(i)
k|k)(zk − Hk x̂(i)

k|k)T + HkP(i)
k|kHT

k

7: û(i+1)
k = ûk|k−1 + 1, Û(i+1)

k = B(i)
k + Ûk|k−1

Update q (i+1)(xk) = N(xk ; x̂(i+1)
k|k , P(i+1)

k|k ) given q (i+1)(Pk|k−1)
and q (i+1)(Rk):

8: E(i+1)[R−1
k ] = (û(i+1)

k − m − 1)(Û(i+1)
k )−1,

E(i+1)[P−1
k|k−1] = (t̂ (i+1)

k − n − 1)(T̂(i+1)
k )−1

9: P̂(i+1)
k|k−1 = {

E(i+1)[P−1
k|k−1]

}−1
, R̂(i+1)

k = {
E(i+1)[R−1

k ]
}−1

10: K(i+1)
k = P̂(i+1)

k|k−1HT
k (Hk P̂(i+1)

k|k−1HT
k + R̂(i+1)

k )−1

11: x̂(i+1)
k|k = x̂k|k−1 + K(i+1)

k (zk − Hk x̂k|k−1)

12: P(i+1)
k|k = P̂(i+1)

k|k−1 − K(i+1)
k Hk P̂(i+1)

k|k−1

end for
13: x̂k|k = x̂(N )

k|k , Pk|k = P(N )
k|k , t̂k|k = t̂ (N )

k , T̂k|k = T̂(N )
k ,

ûk|k = û(N )
k , Ûk|k = Û(N )

k

Outputs: x̂k|k , Pk|k , t̂k|k , T̂k|k , ûk|k , Ûk|k

After fixed-point iteration N , the variational approximations of pos-
terior PDFs are given by

q(xk) ≈ q (N )(xk) = N
(
xk ; x̂(N )

k|k , P(N )
k|k
) = N

(
xk ; x̂k|k, Pk|k

)
(46)

q(Pk|k−1) ≈ q (N )(Pk|k−1) = IW
(
Pk|k−1; t̂ (N )

k , T̂(N )
k

)

= IW
(
Pk|k−1; t̂k|k, T̂k|k

)
(47)

q(Rk) ≈ q (N )(Rk) = IW
(
Rk ; û(N )

k , Û(N )
k

)

= IW
(
Rk ; ûk|k, Ûk|k

)
. (48)

The proposed VBAKF operates recursively by combining time up-
date (5), (9)–(11), and (14)–(16) with variational measurement update
(25)–(28), (30)–(33), (35)–(36), (39), and (42)–(48), whose implemen-
tation pseudocode is shown in Algorithm 1.

Remark 2: In the standard Kalman filter, Pk|k−1 is usually used to
represent the covariance matrix of the predicted error based on the mea-
surement information z1:k−1. However, in the proposed method, Pk|k−1

is estimated using the measurement information z1:k−1 and zk based
on the VB approach. Thus, the estimation of PECM P̂k|k−1 depends
on not only previous measurement information z1:k−1 but also current
measurement information zk .

D. Parameter Selection of the Proposed VBAKF

To implement the proposed VBAKF, the tuning parameter τ , the
forgetting factor ρ, the nominal PNCM Q̃k , and the initial nominal
MNCM R̃0 need to be selected.
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First, we discuss the effect of the tuning parameter τ upon the pro-
posed VBAKF. Substituting (36) in (39), the modified PECM P̂(i+1)

k|k−1

can be reformulated as

P̂(i+1)
k|k−1 = T̂(i+1)

k

t̂ (i+1)
k − n − 1

. (49)

Using (10)–(11) and (27)–(28) in (49) yields

P̂(i+1)
k|k−1 = T̂k|k−1 + A(i)

k

t̂k|k−1 − n
= τ P̃k|k−1 + A(i)

k

τ + 1
. (50)

It is seen from (50) that the tuning parameter τ can be deemed as
a harmonic weight to balance the efficacy of P̃k|k−1 and A(i)

k . On the
one hand, if τ is too large, the substantial prior uncertainties induced
by the inaccurate nominal PNCM are introduced into the measurement
update, which degrades the performance of the proposed VBAKF. On
the other hand, if τ is too small, a large quantity of information about
the process model is lost, which also degrades the performance of the
proposed VBAKF. In this paper, the tuning parameter is selected to lie
within the range τ ∈ [2, 6], and the proposed VBAKF with τ ∈ [2, 6]
has essentially consistent estimation performance and higher estimation
accuracy than existing filters, as shown in the later simulation.

Second, we study the effect of the forgetting factor ρ upon the pro-
posed VBAKF. Substituting (35) in (39), the modified MNCM R̂(i+1)

k

is rewritten as

R̂(i+1)
k = Û(i+1)

k

û(i+1)
k − m − 1

. (51)

Using (14)–(15) and (32)–(33) in (51) results in

R̂(i+1)
k = Ûk|k−1 + B(i)

k

ûk|k−1 − m
= ρÛk−1|k−1 + B(i)

k

ρ(ûk−1|k−1 − m − 1) + 1
. (52)

According to (48), the estimation of MNCM at time k − 1 can be
formulated

R̂k−1 = Ûk−1|k−1

ûk−1|k−1 − m − 1
. (53)

Substituting (53) in (52), we obtain

R̂(i+1)
k = ρ(ûk−1|k−1 − m − 1)R̂k−1 + B(i)

k

ρ(ûk−1|k−1 − m − 1) + 1
. (54)

Using (14), (32), and (48) yields

ûk|k = ρ(ûk−1|k−1 − m − 1) + m + 2. (55)

Solving (55) gives

ûk−1|k−1 − m − 1 = ρk−1(û0|0 − m − 1) + (1 − ρk−1)/(1 − ρ). (56)

Utilizing (56) in (54) results in

R̂(i+1)
k = w(ρ, k)R̂k−1 + B(i)

k

w(ρ, k) + 1
(57)

where w(ρ, k) is given by

w(ρ, k) = ρk(û0|0 − m − 1) + (ρ − ρk)/(1 − ρ). (58)

Using (58) gives

lim
k→+∞

w(ρ, k) = ρ/(1 − ρ). (59)

It is seen from (57)–(58) that w(ρ, k) can be deemed as a harmonic
weight to balance the efficacy of R̂k−1 and B(i)

k . Moreover, we can see
from (59) that w(ρ, k) is a monotone increasing function of the for-
getting factor ρ when k → +∞. Thus, the forgetting factor ρ ∈ (0 1]

can be used to adjust the efficacy of the previous estimation of MNCM
R̂k−1 upon the modified MNCM R̂(i+1)

k . On the one hand, the smaller
the forgetting factor ρ, the more the information from the previous
estimation R̂k−1 of MNCM is forgotten. On the other hand, the larger
the forgetting factor ρ, the more the information from the previous
estimation R̂k−1 of MNCM is used. Considering that the MNCM is
slowly varying in many practical applications, the forgetting factor is
selected to lie within the range ρ ∈ [0.9, 1], and the proposed VBAKF
with ρ ∈ [0.9, 1] has essentially consistent estimation performance
and higher estimation accuracy than existing filters, as shown in the
later simulation. Note that the forgetting factor ρ = 1 corresponds to
stationary MNCM.

Third, we discuss the effect of the nominal PNCM Q̃k and the initial
nominal MNCM R̃0 upon the proposed VBAKF. In the fixed-point
iterations, the initial values P̂(0)

k|k−1 and R̂(0)
k are set as

{
P̂(0)

k|k−1 = P̃k|k−1 = Fk−1Pk−1|k−1FT
k−1 + Q̃k−1

R̂(0)
k = R̂k−1.

(60)

Let

ak = w(ρ, k)

w(ρ, k) + 1
Ck = B(N−1)

k

w(ρ, k) + 1
(61)

where 0 < ak < 1 and Ck ≥ 0. Substituting (61) in (57) results in

R̂k = akR̂k−1 + Ck . (62)

With R̂0 = R̃0 and solving (62) obtains

R̂k−1 =
(

k−1∏
i=1

ai

)
R̃0 +

k−1∑
i=1

⎛
⎝ k−1∏

j=i+1

a j

⎞
⎠Ci . (63)

It is seen from (60) and (63) that Q̃k and R̃0 respectively have
effects on the initial values P̂(0)

k|k−1 and R̂(0)
k . Moreover, we can see from

(63) that the effect of R̃0 on R̂(0)
k is gradually reduced as k increases.

To guarantee that P̂(i)
k|k−1 and R̂(i)

k converge to true PECM Pk|k−1 and

MNCM Rk , appropriate initial values P̂(0)
k|k−1 and R̂(0)

k are required since
the VB approach can only guarantee local convergence. To this end, the
nominal PNCM Q̃k needs to be near the true PNCM Qk at each time, and
the initial nominal MNCM R̃0 needs to be near the initial true MNCM
R0. In this paper, the nominal PNCM and the initial nominal MNCM
are respectively set as Q̃k = diag[α1,k, . . . , αi,k, . . . , αn,k] and R̃0 =
diag[β1, . . . , β j , . . . , βm], where αi,k > 0 and β j > 0. The parameters
αi,k and β j are selected based on engineering experience since the
diagonal entries of the PNCM and MNCM can be approximately known
in many practical applications.

Finally, we study the numerical stability of the proposed VBAKF
with the selections of Q̃k and R̃0. Using Q̃k > 0, R̃0 > 0, 0 < ai < 1
and Ck ≥ 0 in (60) and (63) gives

P̃k|k−1 > 0 R̂k−1 > 0. (64)

Exploiting (25) and (30) yields

A(i)
k ≥ 0 B(i)

k ≥ 0. (65)

Employing (64), (65) in (50) and (57) obtains

P̂(i+1)
k|k−1 > 0 R̂(i+1)

k > 0. (66)

It is seen from (66) that the modified PECM P̂(i+1)
k|k−1 and MNCM

R̂(i+1)
k are positive definite. Thus, the proposed VBAKF is numerically

stable based on the selections of Q̃k and R̃0.
Remark 3: The number of iterations N is an important parameter

for the proposed filter since it determines the estimation accuracy and
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implementation time. As the number of iterations increases, the better
estimation accuracy is achieved but the more implementation time is
required. Generally, the higher dimensions of the state and measure-
ment vectors, an increasing number of iterations is required since with
the higher dimensions of the state and measurement vectors, the more
inaccurate information involved in the PECM and MNCM needs to
be estimated. In practical application, we suggest selecting sufficiently
large value for the number of iterations to guarantee that the fixed-point
iterations converges to a local optimum.

Remark 4: In this paper, the tuning parameter and the forgetting
factor are selected to lie within the ranges τ ∈ [2, 6] and ρ ∈ [0.9, 1]
respectively based on the above discussions. The recommendations re-
garding parameter ranges are specific to the simulation study presented
in this paper, and perhaps other parameter ranges are more appropri-
ate in other situations. Fortunately, our experience has indicated that
the proposed filter with the suggested parameter ranges exhibit good
estimation performance in many contexts.

III. SIMULATIONS

The performance of the proposed VBAKF is illustrated in the prob-
lem of target tracking with slowly varying PNCM and MNCM. In this
simulation scenario, the target moves according to the continuous white
noise acceleration motion model in two-dimensional (2-D) Cartesian
coordinates, and the target’s positions are collected by a sensor. The
state is defined as xk � [xk yk ẋk ẏk], where xk , yk , ẋk , and ẏk denote
the cartesian coordinates and corresponding velocities [13], [20]. The
state transition matrix Fk−1 and observation matrix Hk are respectively
given by

Fk−1 =
[

I2 �tI2

0 I2

]
Hk = [

I2 0
]

(67)

where the parameter �t = 1s is the sampling interval and I2 is the
2-D identity matrix. Similar to [13], the true PNCM and MNCM are
given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Qk = [
6.5 + 0.5 cos( πk

T )
]

q

⎡
⎣

�t3

3 I2
�t2

2 I2

�t2

2 I2 �tI2

⎤
⎦

Rk = [
0.1 + 0.05 cos( πk

T )
]

r

[
1 0.5

0.5 1

] (68)

where T = 1000 s denotes the simulation time, and q = 1 m2/s3 and
r = 100 m2.

In this simulation, the nominal PNCM and MNCM are respectively
selected as Q̃k = αI4 and R̃0 = βI2, where I4 is the 4-D identity ma-
trix. The Kalman filter with nominal covariance matrices Q̃k and R̃0

(KFNCM), the Kalman filter with true covariance matrices Qk and Rk

(KFTCM), the existing IAKF [2], the existing SHAKF [6], the existing
VBAKF for estimating only Rk (VBAKF-R) [10], [11], and the pro-
posed VBAKF for estimating PECM and MNCM are tested. Note that
the IAKF [2] and SHAKF [6] were often found filtering divergence;
thus, their simulation results are not shown in the following simulation.
In the proposed VBAKF and existing KFNCM and VBAKF-R, the al-
gorithm parameters are set as: parameter α = 1, parameter β = 100,
tuning parameter τ = 3, forgetting factor ρ = 1 − exp(−4), and the
number of iterations N = 10. All algorithms are coded with MATLAB
and the simulations are run on a computer with Intel Core i7-3770 CPU
at 3.40 GHz.

To evaluate the estimate accuracy of state, the RMSEs and the
averaged RMSEs (ARMSEs) of position and velocity are chosen as

Fig. 1. RMSEs of the position and velocity.

Fig. 2. SRNFNs of the PECM and MNCM.

performance metrics, which are defined as follows:⎧⎪⎨
⎪⎩

RMSEpos �
√

1
M

∑M
s=1

(
(xs

k − x̂ s
k )2 + (ys

k − ŷs
k )2
)

ARMSEpos �
√

1
MT

∑T
k=1

∑M
s=1

(
(xs

k − x̂ s
k )2 + (ys

k − ŷs
k )2
) (69)

where (xs
k , ys

k ) and (x̂ s
k , ŷs

k ) are the true and estimated positions at the
sth Monte Carlo run, and M = 1000 represents the total number of
Monte Carlo runs. Similar to the RMSE and ARMSE in position, we
can also write formula for the RMSE and ARMSE in velocity.

To evaluate the estimate accuracy of PECM and MNCM, the square
root of normalized Frobenius norm (SRNFN) and averaged SRNFN
(ASRNFN) are selected as error measures, which are defined as
follows [13]:⎧⎪⎪⎨
⎪⎪⎩

SRNFNP �
(

1
n2 M

∑M
s=1 ‖P̂s

k|k−1 − Ps
o,k|k−1‖2

) 1
4

ASRNFNP �
(

1
n2 MT

∑T
k=1

∑M
s=1 ‖P̂s

k|k−1 − Ps
o,k|k−1‖2

) 1
4

(70)

where ‖D‖2 = tr(DDT ) and P̂s
k|k−1 denotes the estimated PECM at the

sth Monte Carlo run, and Ps
o,k|k−1 represents the accurate PECM at the

sth Monte Carlo run provided by the KFTCM. Similar to the SRNFN
and ASRNFN in PECM, we can also write formula for the SRNFN and
ASRNFN in MNCM.

The RMSEs of position and velocity and the SRNFNs of PECM and
MNCM from existing filters and the proposed filter are respectively
shown in Figs. 1 and 2. It is seen from Fig. 1 that the proposed filter has
smaller RMSEs than existing KFNCM and VBAKF-R, and the RMSEs
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Fig. 3. ARMSEs of the position and velocity when N = 1, 2, . . . , 20.

Fig. 4. ASRNFNs of the PECM and MNCM when N = 1, 2, . . . , 20.

from the proposed filter are close to the RMSEs from KFTCM when
k > 600 s. The ARMSEs of position and velocity from the proposed
filter are respectively reduced by 54.5% and 22.4% as compared with
the existing VBAKF-R. We can see from Fig. 2 that the proposed filter
has smaller SRNFNs than existing KFNCM and VBAKF-R. The AS-
RNFNs of PECM and MNCM from the proposed filter are respectively
reduced by 18.7% and 60% as compared with existing VBAKF-R.
Moreover, the implementation times of existing KFNCM, VBAKF-R,
and the proposed filter in a single step run are respectively 2.5 × 10−5 s,
3.8 × 10−4 s, and 5.6 × 10−4 s. Thus, the proposed filter has better es-
timation accuracy but higher computational complexity than existing
state-of-the-art filters.

Figs. 3 and 4 show respectively the ARMSEs of position and ve-
locity and the ASRNFNs of PECM and MNCM from the existing
filters and the proposed filters when N = 1, 2, . . . , 20. It can be seen
from Figs. 3 and 4 that the proposed filter has smaller ARMSEs and
ASRNFNs than existing filters when N ≥ 2, and the proposed filter
converges when N ≥ 6. Thus, the proposed filter exhibits satisfactory
convergence speed with respect to the number of iterations.

Fig. 5 shows the RMSEs of position and velocity from the existing
filters and the proposed filters when τ = 2, 3, 4, 5, 6. We can see from
Fig. 5 that the proposed filter with the tuning parameter τ = 2, 3, 4, 5, 6
has essentially consistent estimation performance and higher estimation
accuracy than existing filters.

Fig. 6 shows the RMSEs of position and velocity from the existing fil-
ters and the proposed filters when ρ = 0.9, 0.92, 0.94, 0.96, 0.98, 1.0.
It can be seen from Fig. 6 that the proposed filter with

Fig. 5. RMSEs of the position and velocity when τ = 2, 3, 4, 5, 6.

Fig. 6. RMSEs of the position and velocity when ρ = 0.9, 0.92,

0.94, 0.96, 0.98, 1.0.

Fig. 7. ARMSEs of the position and velocity when parameters (α, β) ∈
[0.1, 1000] × [0.1, 1000].

ρ = 0.9, 0.92, 0.94, 0.96, 0.98, 1.0 has better estimation accu-
racy than existing filters, and the proposed filter with ρ =
0.9, 0.92, 0.94, 0.96, 0.98 has essentially consistent estimation perfor-
mance. Moreover, the proposed filter with ρ = 1.0 has worse estimation
accuracy than the proposed filter with ρ = 0.9, 0.92, 0.94, 0.96, 0.98,
which is because ρ = 1.0 corresponds to stationary MNCM so that the
estimation performance degrades when the MNCM is slowly varying.

Figs. 7 and 8 show the ARMSEs of position and velocity from the
proposed filter when parameters (α, β) ∈ [0.1, 1000] × [0.1, 1000] and
(α, β) ∈ [1, 1000] × [1, 1000], respectively. It is seen from Figs. 7 and
8 that the proposed filter exhibits good estimation performance only
when parameters (α, β) ∈ [1, 1000] × [1, 1000]. Thus, the proposed
filter may fail when the nominal PNCM and MNCM are too far away
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Fig. 8. ARMSEs of the position and velocity when parameters (α, β) ∈
[1, 1000] × [1, 1000].

Fig. 9. RMSEs of the position and velocity when the nominal PNCM
Q̃k and the true PNCM Qk are identical.

TABLE I
STEADY-STATE ARMSES OVER THE LAST 100S FROM

THE EXISTING FILTERS AND THE PROPOSED FILTER

Filters ARMSEpos (m) ARMSEvel (m/s)

KFNCM 4.63 4.58
KFTCM 2.77 3.38
VBAKF-R 2.92 3.59
The proposed filter 2.81 3.45

from the true PNCM and MNCM, which is induced by the fact that the
VB approach can only guarantee local convergence so that the use of
improper nominal PNCM and MNCM may result in error estimations
even divergence.

Fig. 9 and Table I show respectively the RMSEs and steady-state
ARMSEs over the last 100 s of position and velocity from the existing
filters and the proposed filter when the nominal PNCM Q̃k and the
true PNCM Qk are identical. It is seen from Fig. 9 and Table I that
the proposed filter has significantly smaller RMSEs and steady-state
ARMSEs than the existing KFNCM and slightly smaller RMSEs and
steady-state ARMSEs than the existing VBAKF-R, and the steady-state
ARMSEs from the proposed filter are nearly identical to the steady-state
ARMSEs from the KFTCM, which also indicates good performance
of the proposed filter.

IV. CONCLUSION

In this paper, the authors focused on solving the filtering prob-
lem of linear Gaussian state-space models with inaccurate PNCM and
MNCM. A novel VBAKF with inaccurate PNCM and MNCM was

proposed, where the state together with PECM and MNCM were in-
ferred by choosing inverse Wishart priors. Simulation results illustrated
that the proposed VBAKF has better robustness to resist the uncertain-
ties of PNCM and MNCM as compared with existing filters, which is
induced by the fact that the proposed filter can iteratively find better
estimates of PECM and MNCM.
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