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Abstract—This article proposes direct and indirect model
reference adaptive control strategies for multivariable
piecewise affine systems, which constitute a popular tool
to model hybrid systems and approximate nonlinear sys-
tems. A chosen reference model, which can be linear or also
piecewise affine, describes the desired closed-loop system
behavior that is to be achieved by the adaptive controllers
for unknown system dynamics. Each subsystem acquires
its own set of control gains, which is tuned under care-
ful consideration of the switching behavior. In the indirect
approach, the use of dynamic gain adjustment avoids sin-
gularities in the certainty equivalence principle. It is shown
for both algorithms that the state of the reference model
is tracked asymptotically given a common Lyapunov func-
tion for the switched reference model is available. Further-
more, parameter convergence in both the direct and indirect
approach is proven for sufficiently rich reference signals.
Finally, both algorithms are evaluated in numerical simu-
lations and their advantages and disadvantages are dis-
cussed.

Index Terms—Model reference adaptive control (MRAC),
piecewise affine (PWA) systems, switching.

I. INTRODUCTION

INCREASING complexity in technical systems lead to a
growing interest in hybrid systems to efficiently handle

switching behavior or approximate nonlinearities. Hybrid sys-
tems consist of continuous dynamics and a switching mecha-
nism [1]. Different subclasses for hybrid systems exist, such
as mixed logical dynamical systems, linear complementarity
systems, and piecewise affine (PWA) systems. In PWA systems,
the state-input space is partitioned into convex polytopes and the
system dynamics are governed by different linear subsystems
in each polytope. Hence, PWA systems also constitute a sub-
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class of linear switched systems in which the switching signal is
state-dependent instead of exogenous. Recent examples for the
application of PWA systems can be found in switching power
converters [2], biosystems [3], pneumatic systems [4], or cruise
control systems [5]. While this list is by no means complete, it
gives a good understanding of the ubiquitous presence of PWA
systems due to their universal approximation capabilities for
nonlinear systems.

Switching generally complicates the analysis of a dynami-
cal system and the controller design. The research on hybrid
systems extended the linear system theory and developed new
stability concepts [6]–[8], definitions for observability and con-
trollability [9] as well as observer [10] and controller designs
[11]. In the next step, it is to be noted that hybrid systems may
contain unknown or time-varying parameters, which sets the
stage for adaptive control of hybrid systems. Model reference
adaptive control (MRAC) forces the unknown system to track
a specified reference system. By choosing a suitable reference
system, this technique may, thus, remove undesired switching
and nonlinearities from the open-loop hybrid systems, resulting
in a simple linear closed-loop system. Existing approaches to-
wards this goal can be divided into MRAC for general switched
systems and MRAC for PWA systems.

For the general class of switched systems various adaptive
controllers have been proposed in recent years [12]–[15]. A
model reference robust adaptive control algorithm for uncertain
switched linear systems is proposed in [12]. The proof of uni-
form boundedness under arbitrary switching is based on multiple
Lyapunov functions constructed from a sufficient LMI condi-
tion. Furthermore, a dead band is introduced in order to sup-
press the bursting phenomenon in adaptive systems. A critical
assumption in MRAC for switched systems is exact knowledge
of the switching signal. The case in which the reference sys-
tem and controller do not switch synchronously with the plant
is investigated in [13]. Dwell-time constraints are derived that
ensure practical global stability of the switched error system.
While work in [13] is restricted to switched linear systems, [14]
extends the proposed framework to nonlinear switched systems
with nonlinear reference systems. This extension enables more
sophisticated performance requirements as shown by the exam-
ple of a highly maneuverable aircraft. Wang and Zhao point
out that deriving dwell-time constraints for switched systems
may be infeasible without knowledge of the actual subsystem
parameters [15]. Instead, their adaptive state tracking algorithm
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is based on a hyper-stability criterion which relates to passivity.
The proposed control, however, assumes that also the switching
signal of the system can be controlled. This is unsuitable for
PWA systems where the switching is always state-dependent.

This brings us to the class of PWA systems, for which there
are various MRAC approaches available in the literature [16]–
[24]. Early work by di Bernardo et al. extends the minimal
control synthesis algorithm to bimodal PWA systems [16]–[18].
Later, di Bernardo et al. proposed a hybrid MRAC strategy for
multimodal PWA systems [19] in which the state-input space
partitioning of the controlled system may be different form the
reference system. Excluding sliding modes, stability in [19]
was proven by passivity-based arguments as well as Lyapunov
theory. For the Lyapunov-based proof, a common Lyapunov-
function of the reference system’s subsystems is required. The
extension of this hybrid MRAC algorithm in [20] is concerned
with potential instabilities of the original algorithms due to dis-
turbances at the input in form of the affine terms of the plant and
reference system. The solution is based on a common Lyapunov
function and can guarantee convergence of the error system even
when the system enters a sliding mode. Note that the referenced
work by di Bernardo et al. focuses on single input systems in
control canonical form which restricts the class of applicable
systems.

Work by Sang and Tao focuses on MRAC for piecewise lin-
ear (PWL) systems which approximate nonlinear systems by
linearization at multiple operating points [21]–[24]. The state
tracking algorithm proposed in [21] and [22] ensures bounded
signals and asymptotic tracking for arbitrary fast switching in
case a common quadratic Lyapunov function (CQLF) exists. In
case no such Lyapunov function exists, signals are shown to be
bounded, and an upper bound on the tracking error is given.
Asymptotic tracking can be ensured through parameter projec-
tion combined with PE and slow switching. A more detailed
analysis of the proposed algorithm is given in [23] with careful
treatment of various special cases related to the existence of
a common Lyapunov function or the level of excitation in the
reference signal. A multivariable extension of the algorithm is
proposed in [24].

Closely related to adaptive control of PWA systems is their
recursive identification. In particular, our previous works [25],
[26] provide algorithms for the subsystem identification of
continuous-time PWL and PWA systems in state-space form.
Furthermore, the achievable convergence rates were improved
by using concurrent learning [27]. A recent survey of PWA
system identification was given in [28].

Despite the revised list of publications on adaptive control
of switched systems, there still is a lack of MRAC algorithms
for multivariable PWA systems [29]. Our contribution in this
paper is to fill this gap by means of two approaches: One di-
rect and one indirect MRAC algorithm. First, we build upon the
direct approach by Sang and Tao [23] to define direct MRAC
for PWA systems. Especially for parameter convergence, the
additional affine terms require further analysis. By adding one
additional assumption and revising the proof for persistence of
excitation, all gains are guaranteed to converge to their nominal
values. This extension provides great advantages compared to

the state of the art. It will be shown that working with affine
subsystems requires less previous knowledge about the system.
As opposed to [21]–[24], this enables application of the algo-
rithm to systems with uncertain or unknown operating points.
Then, we derive an indirect MRAC algorithm which is based
on our previous work on parameter identifiers [26]. Parame-
ter identifiers generate estimates of the subsystem parameters
and the control gains are dynamically adjusted based on these
estimates. The unique advantage of this approach is that esti-
mates of all system parameters are obtained in parallel to the
control task. For both the direct and the indirect approach, the
stability proofs for asymptotic state tracking rely on Lyapunov
theory and dwell-time assumptions. Moreover, parameter con-
vergence is guaranteed under PE. Overall, this paper yields the
first MRAC laws for multivariable PWA systems, which over-
comes restrictions to PWL systems, single-input systems or
systems in control canonical form, postulated by state of the art
algorithms [16]–[24].

The remainder of this paper is structured as follows. In
Section II, we provide required preliminaries such as the defini-
tion of PWA systems and the control structure. Also the formal
MRAC problem is stated. The direct and indirect MRAC al-
gorithms are presented in Sections III and IV, respectively. In
both cases, we consider reference system tracking separately
from the additional requirement of parameter convergence. The
application of direct and indirect MRAC is demonstrated in
Section V by means of numerical examples. Finally, Section VI
concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section defines PWA systems and discusses briefly how
they naturally arise from the linearization of a nonlinear system
at multiple operating points. Furthermore, a motivation is given,
why PWA systems are favorable for MRAC compared to PWL
systems. Thereafter, the reference system is introduced and the
MRAC problem is formulated. The section concludes with some
preliminaries on signal properties and the Filippov concept for
sliding mode solutions.

A. PWA Systems

The considered PWA system consists of a total of s ∈ N
affine subsystems with dynamics

ẋ(t) = Aix(t) + Biu(t) + fi, i = 1, . . . , s (1)

where x ∈ Rn is the state vector, u ∈ Rp is the control input,
and Ai ∈ Rn×n , Bi ∈ Rn×p , and fi ∈ Rn are the unknown,
constant system parameters. The pairs (Ai,Bi) are assumed to
be controllable and each Bi be of full column rank. For the
common case p ≤ n, the full column rank is usually satisfied by
physical systems.

The state-input space [x�, u�]� ∈ Rn+p is partitioned into s
polyhedral regions Ωi . The i-th polyhedral region is defined by
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a set of μi ∈ N linear inequalities
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where �[i] represents an element-wise list of operators < and
≤. Each row vector h(·,·) defines a hyperplane which divides
the state-input space into two half spaces and is of the form
h = [α1 , . . . , αn , β1 , . . . , βp , γ] ∈ R1×(n+p+1) . Hence, Ωi is
the intersection of μi half spaces. The discrimination between
< and ≤ specifies whether the half space is open or closed and
hence whether the hyperplane does not or does belong to the
partition, respectively. Each hyperplane must belong to either
one of the two neighboring partitions. This is necessary to ob-
tain a complete partition of the state space without overlapping
regions, i.e., Ωi ∩ Ωj = ∅, ∀i 	= j.

Each of the subsystems in (1) belongs to one of the regions Ωi .
Thus, the region which contains the current state-input vector
determines which subsystem is active. This is expressed with
the indicator functions

χi(t) =

{
1, if (x(t), u(t)) ∈ Ωi

0, otherwise.
(3)

As the regions do not overlap, it follows that
∑s

i=1 χi(t) = 1
and χi(t)χj (t) = 0, i 	= j. The dynamics of the PWA system
are then given by

ẋ(t) = A(t)x(t) + B(t)u(t) + f(t) (4)

where A(t) =
∑s

i=1 Aiχi(t), B(t) =
∑s

i=1 Biχi(t), and f(t)
=

∑s
i=1 fiχi(t). Hence, in the following, a matrix without in-

dex refers to the currently active matrix, i.e., A → Ai with
χi = 1.

The adaptive control algorithms derived in this paper are
based on the PWA system representation (4). In order to demon-
strate the benefit of PWA systems compared to PWL systems,
a brief revision of how they are obtained by linearizing a non-
linear system around multiple operating points is appropriate.
Consider the nonlinear system

ẋ(t) = g (x(t), u(t)) (5)

where g : Rn+p → Rn is a smooth (continuously differentiable)
nonlinear vector function. Note that, throughout the paper, we
omit the dependency on time t as long as it is clear from the
context.

Neglecting higher order terms in the linearization of g around
an operating point (x∗

i , u∗
i ) yields the affine model

ẋ ≈ g(x∗
i , u

∗
i ) + Ai(x − x∗

i ) + Bi(u − u∗
i )

= Aix + Biu + g(x∗
i , u

∗
i ) − Aix

∗
i − Biu

∗
i

= Aix + Biu + fi (6)

where Ai = ∂g(x,u)
∂x

∣
∣
(x∗

i ,u
∗
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, Bi = ∂g(x,u)
∂u

∣
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(x∗

i ,u
∗
i )

, and fi = g

(x∗
i , u

∗
i ) − Aix

∗
i − Biu

∗
i . A PWA model is obtained by lin-

earizing around various operating points {(x∗
i , u

∗
i )}i=1,...,s and

partitioning the state space such that the active subsystem in

each region is characterized by a minimal error with respect to
the original nonlinear system. Considering only the deviations
Δxi = x − x∗

i and Δui = u − u∗
i , and assuming additionally

equilibrium operating points with g(x∗
i , u

∗
i ) = 0, the same con-

siderations yield a PWL model with linear subsystems

ẋ ≈ AiΔxi + BiΔui. (7)

As both the affine subsystems (6) and the linear subsystems
(7) constitute first order approximations of the nonlinear dy-
namics g, they share the same approximation capabilities and
result in the same partitioning of the state-input space. The cen-
tral difference is that PWA models replace the local deviations
from the operating points, i.e., Δxi,Δui , by the globally valid
measurements x and u at the expense of the additional uncertain
terms fi . That means, working with PWA models, as opposed to
working with PWL models, requires no knowledge of the oper-
ating points x∗

i and u∗
i as well as the values of g(x∗

i , u
∗
i ). Hence,

PWA models are more favorable in the design and application
of adaptive algorithms as less knowledge about the system has
to be introduced a priori.

B. Reference System Modeling

The aim of this paper is to design MRAC laws for PWA sys-
tems. In MRAC, a reference system, which defines the desired
behavior of the controlled system, is chosen by the designer.
The adaptive control law causes the controlled system to track
the reference system despite parameter uncertainties in the con-
trolled system.

The reference system in this paper is chosen to be PWA in
order to give enough flexibility to the designer. Let the reference
system and the controlled PWA system share the same state-
space partitions Ωi . Hence, we consider the reference system

ẋm = Amxm + Bmr + fm (8)

where xm ∈ Rn and r ∈ Rp are the state of the reference sys-
tem and the reference signals, respectively. The parameters
of the reference system switch according to the same indi-
cator functions χi in (3) and are therefore given by Am =∑s

i=1 Am iχi , Bm =
∑s

i=1 Bm iχi , and fm =
∑s

i=1 fm iχi with
Am i ∈ Rn×n , Bm i ∈ Rn×p , and fm i ∈ Rn , ∀i = 1, . . . , s.

Note that simply applying the partitions of the controlled
PWA system also for the reference system would unnecessarily
limit the choice of reference systems. Take for example the case
in which the designer wants to introduce certain thresholds into
the behavior of the closed-loop system at which the dynamics
are supposed to change. In that case, the reference system may
need to feature a switch at states where the controlled system
is continuous. Hence, to gain additional freedom, an original
partition Ωi of the controlled PWA system may be divided into
convex subsets Ωk and Ωl with Ωi = Ωk ∪ Ωl . While the pa-
rameters of the controlled PWA system remain the same in both
regions, e.g., Ak = Al = Ai , the reference system parameters
can be chosen differently in both sets, i.e., Amk 	= Am l . In prac-
tice, this enables to switch the reference system independently
from the controlled system.
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Stability of the reference system (8) is essential for the track-
ing problem. Assuming that each subsystem Am i is stable, it
follows that there exists a symmetric, positive definite Lyapunov
matrix Pi ∈ Rn×n for every symmetric, positive definite matrix
Qm i ∈ Rn×n such that

A�
m iPi + PiAm i = −Qm i ∀i = 1, . . . , s. (9)

Hence, Vi = x�
mPixm is a quadratic Lyapunov function for the

i-th subsystem of the reference system. For each subsystem
i, there also exist constants am i , λm i > 0 such that ‖eAm i t‖ ≤
am ie−λm i t . If all subsystems satisfy (9) for a common matrix P ,
i.e., Pi = P,∀i, then V = xmPxm is referred to as a CQLF . For
a CQLF, the reference system (8) is stable, even for arbitrary fast
switching. If, however, no CQLF exists, stability of the reference
system (8) can be ensured through dwell-time considerations. In
other words, the reference system must reside in one mode for a
sufficiently long (dwell) time T0 . The dwell-time constraint for
the switched reference system (8) is captured in the following
Lemma, where λmin(Pi) and λmax(Pi) refer to the minimum
and maximum eigenvalue of Pi .

Lemma 1 (see[23]): “The switched system ẋ(t) = Am(t)
x(t) is exponentially stable with decay rate σ ∈ (0, 1/2α) if
T0 satisfies

T0 ≥ Tm =
α

1 − 2σα
ln(1 + μΔAm ) μ =

a2
m

λmβ
max

i
‖Pi‖

where ΔAm = maxi,j ‖Am i − Amj‖, α = maxi λmax (Pi),
β = mini λmin (Pi), am = maxi am i , and λm = maxi λm i .”

Proof: The detailed proof of Lemma 1 can be found in [23].
Here, it suffices to point out that the proof is based on the
Lyapunov function V = x� (

∑s
i Piχi) x. The indicator func-

tions χi cause discontinuities in the Lyapunov function at every
switching time tk . For later analysis in this paper, the following
approximation of the potential increase in V associated with
each switch is of greater importance:

V (tk ) ≤ (1 + μΔAm )V (t−k ) (10)

where V (t−k ) and V (tk ) are the values of the Lyapunov function
immediately before and after the switch, respectively. �

Finally, given that the autonomous switched system ẋ =
Am(t)x(t) is exponentially stable for a dwell-time T0 , it can be
concluded, with the same dwell-time constraint, that the state of
the switched reference system (8) remains bounded for bounded
reference signals [30].

C. Problem Formulation and Controller Design

The formal problem statement addressed by this paper reads
as follows.

Problem 1 (State tracking): Given a PWA system (4) with
known regions Ωi and unknown subsystem parameters Ai , Bi ,
and fi , design a state feedback control law u(t) which stabilizes
the PWA system and forces the state x(t) to asymptotically track
the state xm(t) generated by the reference system (8).

In the following two sections, we propose a direct and an
indirect approach to Problem 1. In both cases, the control law

takes the form

u(t) = Kx(t)x(t) + Kr (t)r(t) + kf (t) (11)

with estimated control gains Kx ∈ Rp×n , Kr ∈ Rp×p , and
kf ∈ Rp . Note that there is a different set of control gains
{Kxi,Kri, kf i} for each subsystem i and the control gains
need to switch in synchrony with the system parameters.
Hence, the control gain switching relies on the same indi-
cator functions χi as the controlled system and the refer-
ence system, i.e., Kx =

∑s
i=1 Kxiχi , Kr =

∑s
i=1 Kriχi , and

kf =
∑s

i=1 kf iχi . Therefore, as common in related works [16]–
[27], Ωi and χi are assumed to be known throughout the paper.
Despite this technical assumption, the later simulation studies
will suggest some degree of robustness against asynchronous
switching. This also implies that, given the partitions of the
PWA system are unknown, one may define a sufficiently large
number of fictitious partitions, which deliver a satisfactory ap-
proximation of the actual switching behavior. In combination
with the robustness to asynchronous switching this can yield an
acceptable control performance.

Controlling the PWA system (4) with the state feedback con-
troller (11) yields the closed-loop system

ẋ =
s∑

i=1

χi

(
(Ai + BiKxi)x + BiKrir + Bikf i + fi

)
(12)

which in order to solve Problem 1 should equal (8) for suit-
ably chosen control gains. Therefore, to ensure feasibility of the
tracking problem, it is assumed, as usual, that there exist nom-
inal control gains K∗

xi , K∗
ri , and k∗

f i which fulfill the matching
conditions

Am i = Ai + BiK
∗
xi

Bm i = BiK
∗
ri ∀i = 1, . . . , s

fm i = fi + Bik
∗
f i (13)

One practical implication of these matching conditions is that
the structure of the controlled system needs to be known to some
extend. Otherwise the designer cannot guarantee that the chosen
reference systems yield feasible matching conditions.

The proposed direct and indirect adaptive control laws pro-
duce and update estimates of the nominal control gains in dif-
ferent ways, but both solve Problem 1. A well-known advantage
of MRAC is that solutions to Problem 1 need not converge
to the nominal control gains. However, parameter convergence
improves robustness and transient performance in adaptive sys-
tems [31], [32]. Hence, in cases where the reference signal is
not periodic or where it is desirable to monitor the nominal pa-
rameters, the convergence of estimated parameters according to
the following problem is required.

Problem 2 (Convergence of parameter estimates): Besides
the tracking according to Problem 1, ensure that all estimated
parameters converge to their nominal values.

The proposed algorithms comply with Problem 2 under the
assumption of suitable reference signals.
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D. Signal Properties

In order to characterize suitable reference signals, we need
to define some signal properties. First, persistence of excitation
plays a fundamental role in the convergence of adaptive systems.
The general idea is that if some internal signals are rich enough in
their frequency content they are able to excite all system modes.
We consider the standard notation presented in [33, Def. 4.3.1]
and refer to a piecewise continuous signal vector z : R+ → Rn

as persistently exciting (PE) in Rn with a level of excitation
α0 > 0 if there exist constants α1 , T0 > 0 such that α1In ≥
1
T0

∫ t+T0

t z(τ)z�(τ)dτ ≥ α0In , ∀t ≥ 0. While, we rely on this
PE definition in combination with dwell-time assumptions,
a first notion of PE for switched systems was introduced
in [34].

A common approach to ensure PE of a signal vector is to
relate it to the spectral properties of the reference signals. As
will be shown throughout the paper, the sufficiently rich property
given in [33, Def. 5.2.1] serves well for this purpose. A signal
r : R+ → R is referred to as sufficiently rich of order 2n, if it
consists of at least n distinct frequencies. Therefore, a signal
with n sinusoidal components, for instance, is sufficiently rich
of order 2n. Finally, a frequently applied relationship is that a
reference signal sufficiently rich of order n + 1 ensures PE of a
controllable linear state-space system with state dimension n.

While the above properties can characterize the amount of in-
formation contained in signals, additional definitions are needed
to analyze the input-output properties of a system. For this pur-
pose, it is conventional to use Lp spaces defined for instance in
[35, Section 2.7]. As z ∈ L∞ implies boundedness of z(t) and
vice versa, we use the two statements synonymously.

E. Sliding Mode Solutions

One important aspect in the problem formulation has not been
considered so far. That is, if the vector fields of two neighboring
regions both point towards the switching hyperplane, the system
trajectories cannot simply cross from one region to the other.
Instead, the state of the system is unable to leave the hyperplane
and an additional mode—the sliding mode—is created. As the
solutions of such sliding modes may evolve in a substantially
different manner from the individual subsystems, they must be
carefully examined.

In the Filippov concept [36], the sliding mode solution is
described by a unique convex combination of the contributing
vector fields. In order to obtain such a convex combination in
the presented framework, replace all indicator functions χi by
χ̄i with the modified property that χ̄i now takes values in the
interval [0, 1]. That means the property χiχj = 0 for i 	= j does
not hold for sliding modes. But for convexity

∑s
i=1 χ̄i = 1 still

holds. In the later proofs of Theorems 1 and 3, the Filippov
concept is applied to show that the presented results also hold
in the presence of sliding modes.

III. DIRECT MRAC

As pointed out in the previous section, the advantage of PWA
systems over PWL systems for MRAC is the reduced a priori

knowledge about the system. Hence, this section builds upon
the framework in [23] and derives a direct MRAC algorithm for
PWA systems. This generalization modifies the PE conditions
in [23] and, hence, demands for an extended proof of parameter
convergence.

We begin by defining errors between the current control gains
and the nominal values: K̃xi = Kxi − K∗

xi , K̃ri = Kri − K∗
ri ,

and k̃f i = kf i − k∗
f i . Let us rewrite the dynamics of the closed-

loop system in terms of the reference system and the gain errors
by adding and subtracting the expression BiK

∗
xix + BiK

∗
rir +

Bik
∗
f i in (12), which yields

ẋ =
s∑

i=1

χi

(
(Ai + BiK

∗
xi)x + BiK

∗
rir + fi + Bik

∗
f i

+ Bi

(
(Kxi − K∗

xi)x + (Kri − K∗
ri)r + (kf i − k∗

f i)
))

= Amx + Bmr + fm +
s∑

i=1

χiBi

(
K̃xix + K̃rir + k̃f i

)
.

(14)

Following from (14) and (8), the dynamics of the tracking
error e(t) = x(t) − xm(t) are

ė = Ame +
s∑

i=1

χiBi

(
K̃xix + K̃rir + k̃f i

)
. (15)

If the control gains Kxi , Kri , and kf i take the nominal values
defined in (13), then the error dynamics in (15) reduce to ė =
Ame, which indicates that the tracking error e converges to zero
exponentially for a stable reference system.

Consider now, however, the case in which the system pa-
rameters Ai , Bi , and fi are unknown, which at the same time
implies unknown nominal control gains. We make the usual as-
sumption in multivariable MRAC [29] that there exist known
quadratic matrices Si ∈ Rp×p for which K∗

riSi is symmetric
and positive definite: K∗

riSi = (K∗
riSi)� � 0. Then, initial es-

timates Kxi(0) = Kxi0 , Kri(0) = Kri0 , and kf i(0) = kf i0 are
introduced and updated over time. Lyapunov analysis—which
will be conducted shortly—suggests the following update laws
for the estimated control gains

K̇xi = −ΓxiS
�
i B�

m iPiex
�χi

K̇ri = −ΓriS
�
i B�

m iPier
�χi

k̇f i = −Γf iS
�
i B�

m iPie χi (16)

where Γxi , Γri , Γf i ∈ R+ are positive scaling constants, and
where Pi ∈ Rn×n is the symmetric, positive definite Lya-
punov matrix of the i-th reference system satisfying A�

m iPi +
PiAm i = −Qm i for some symmetric, positive definite matrix
Qm i ∈ Rn×n . The tracking abilities under the adaptation (16)
are summarized in the following theorem.

Theorem 1 (Direct MRAC for PWA systems with CQLF):
Consider a reference system (8) for which a CQLF with
P = Pi, ∀i is known. Let the PWA system (4) with known
regions Ωi be controlled by the state feedback (11) with gains
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updated according to (16). Then, the state of the PWA system
asymptotically tracks the state of the reference system.

Proof: Consider the following candidate Lyapunov function,
which is quadratic in the tracking error e and the deviations K̃xi ,
K̃ri , k̃f i from the nominal control gains

V =
1
2
e�Pe +

1
2

s∑

i=1

(
tr
(
K̃�

xiMsiK̃xi

)

+ tr
(
K̃�

riMsiK̃ri

)
+ k̃�

f iMsi k̃f i

)
(17)

where Msi = (K∗
riSi)−1 ∈ Rp×p . As mentioned before, the

variables Si are chosen such that the inverse exists and is positive
definite. The time derivative of (17) along (15) is

V̇ = e�
(

1
2

s∑

i=1

χi(A�
m iP + PAm i)

)

e

+
s∑

i=1

(
χie

�PBi

(
K̃xix + K̃rir + k̃f i

))

+
s∑

i=1

(
tr
(
K̃�

xiMsi
˙̃Kxi

)
+ tr

(
K̃�

riMsi
˙̃Kri

)
+ k̃�

f iMsi
˙̃
kf i

)
.

(18)

At this point, the rationale behind the update laws in (16) can
be seen as a suitable choice to cancel all terms in the last two lines
of (18). Note that, for simplicity and without loss of generality,
the scaling constants Γxi , Γri , Γf i are neglected throughout the
proof. Inserting the update laws (16) with Pi = P in (18) yields

V̇ = −e�
(

1
2

s∑

i=1

Qm iχi

)

e

+
s∑

i=1

χi

(
e�PBiK̃xix − tr

(
K̃�

xiMsiS
�
i B�

m iP ex�
)

+ e�PBiK̃rir − tr
(
K̃�

riMsiS
�
i B�

m iP er�
)

+ e�PBik̃f i − k̃�
f iMsiS

�
i B�

m iP e
)

(19)

for which the terms under the second summation cancel
out. To see this, note that MsiS

�
i B�

m i = MsiS
�
i (K∗

ri)
�B�

i =
MsiM

−1
si B�

i =B�
i simplifies the first trace to tr(K̃�

xiB
�
i P ex�).

As tr(X) = tr(X�), this is equivalent to tr(xe�PBiK̃xi),
which can be rewritten as tr(e�PBiK̃xix) due to the property
tr(XYZ) = tr(YZX). Next, note that the obtained expression
inside the trace operator is a scalar and cancels the correspond-
ing term in (19). The same steps can be performed to cancel the
other terms in (19).

It follows that the derivative of V is negative semidefinite:

V̇ = −e�
(

1
2

s∑

i=1

Qm iχi

)

e ≤ 0. (20)

Considering additionally the case of potential sliding modes,
one must furthermore evaluate the derivative of V along the slid-
ing mode solution. Hence, with the Filippov solution concept all

convex combinations of the vector fields contributing to the slid-
ing modes are analyzed by replacing χi ∈ {0, 1}with χ̄i ∈ [0, 1]
in the above derivation. As in [20], doing so confirms nega-
tive semidefiniteness of V as V̇ = −e�

( 1
2

∑s
i=1 Qm i χ̄i

)
e ≤ 0.

Note that this derivation shows stability of the sliding mode so-
lution without determining the uniquely defined Fillipov vector
field of the actual sliding mode.

In summary, the error system is shown to be stable under ar-
bitrary fast switching and sliding modes, and the errors e, K̃xi ,
K̃ri , and k̃f i are bounded (∈ L∞). Boundedness of e, together
with a stable reference system (i.e., xm ∈ L∞), yields x ∈ L∞.
Moreover, from (15) it follows that ė ∈ L∞. This permits appli-
cation of Barbalat’s Lemma on (20) and yields limt→∞ e(t) = 0,
which completes the proof. �

In most cases, it is desirable to choose an LTI reference sys-
tem as it defines the same reference system for all subsystems
or equivalently over the entire state-input space. This choice
causes the nonlinear system (4) to behave like a linear system
and naturally satisfies the assumption of a CQLF in Theorem 1.
Depending on the PWA system, however, the matching condi-
tions (13) might not allow for an LTI reference system. In such
cases, a PWA reference system must be employed, for which a
CQLF might not exist. In this case, the following theorem con-
siders a PWA reference system and shows that under a certain
dwell-time assumption and under sufficiently rich reference sig-
nals, all tracking errors and parameter errors converge to zero.

Theorem 2 (Direct MRAC and parameter convergence for
PWA systems without CQLF): Consider the reference system
(8) without CQLF and let the PWA system (4) with known
regions Ωi be controlled by the state feedback (11) with gains
updated according to (16). Let the reference signals in r
be sufficiently rich of order n + 1 with distinct frequencies.
Furthermore, let the resulting switching signal be sufficiently
slow with dwell time Tdwell and cause repeated activation of
all subsystems. If the input matrices Bi have full column rank,
if the system matrices Am i are invertible, and if the the pairs
(Am i , Bm i) are controllable, then all errors e, K̃xi , K̃ri , and
k̃f i asymptotically converge to zero for t → ∞.

Proof: The proof of Theorem 2 begins with analyzing the
convergence of the active subsystem parameters. Consider a
time interval t ∈ [tk−1 , tk ) and let i be such that χi(t) = 1.
Thus, the error (15) reads as

ė = Am ie + Bi

[
K̃xi K̃ri k̃f i

]

⎡

⎣
x
r
1

⎤

⎦ . (21)

We make use of the Kronecker product ⊗ and define

Ψr :=

⎡

⎣
x
r
1

⎤

⎦⊗ In ϑ̃B
i := vec

(
Bi

[
K̃xi K̃ri k̃f i

])
(22)

where the operator vec(·) concatenates the columns of a matrix
(·) in a single column vector. With (22), rewrite (21) as

ė = Am ie + Ψ�
r ϑ̃B

i . (23)
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In the next step, the time derivative

˙̃
ϑB

i = vec
(
Bi

[
˙̃Kxi

˙̃Kri
˙̃
kf i

])
(24)

is formulated in terms of the update laws (16) (with neglected
scaling constants for simplicity). After inserting (16) and per-
forming various steps of algebraic reformulation, the derivative
(24) relates to the tracking error e and Ψr in the following way:

˙̃
ϑB

i = −Ψr BiM
−1
si B�

i Pi
︸ ︷︷ ︸

=:Pi 2

e = −ΨrPi2e. (25)

Equations (23) and (25) can be combined in the following
dynamic system, which is a standard form frequently appearing
in adaptive systems

[
ė
˙̃
ϑB

i

]

=
[

Am Ψ�
r

−ΨrPi2 0

] [
e

ϑ̃B
i

]

. (26)

Exponential stability of the equilibrium e = 0 and ϑ̃B
i = 0 can

thus be concluded if [x�, r�, 1]� is PE [33, Lemma 5.6.3]. Fol-
lowing the same arguments as in [26, Theorem 1], we determine
that [x�

m , r�, 1]� is PE under the given assumptions of con-
trollable pairs (Am i , Bm i), invertible Am i , and sufficiently rich
reference signals with distinct frequencies. Finally, according to
[37], PE of the reference system ensures PE of the controlled
system. An alternative reasoning is that for e → 0, we have
x = xm and, thus, if the reference system is PE also the con-
trolled system is PE. Hence, on the interval t ∈ [tk−1 , tk ), the
errors e and ϑ̃B

i converge towards zero exponentially.
Note that due to its assumed full column rank, the null

space of Bi is empty. Therefore, the exponential convergence
of ϑ̃B

i also implies exponential convergence of ϑ̃i , where
ϑ̃i = vec([K̃xi , K̃ri , k̃f i ]). Thus, for zi = [e�, ϑ̃�

i ]�, there exist
constants ai > 0 and λi > 0 such that

‖zi(t)‖ ≤ aie
−λi (t−tk −1 )‖zi(tk−1)‖. (27)

It is well known that exponential stability of all subsystems
alone does not imply stability of the switched system. In order
to conclude asymptotic stability, or convergence in the present
case, it has to be shown that the Lyapunov function values at
switching times form a decreasing sequence [38]. Therefore, in
the next step, the worst-case (i.e., minimal) decrease of the Lya-
punov function (17) over the interval t ∈ [tk−1 , tk ), for which
χi(t) = 1, is compared with the worst-case (i.e., maximal) in-
crement of the Lyapunov function associated with the switch at
time instance tk . Note that the control gains of inactive subsys-
tems are constant over the considered interval. Therefore, the
term

Ck−1 =
s∑

j=1,j 	=i

tr(K̃�
xjMsj K̃xj) + tr(K̃�

rjMsj K̃rj) + k̃�
f jMsj k̃f j

is also constant over [tk−1 , tk ). Since V is quadratic in zi , (27)
can bound the decrease of V for the adapted gains and tracking

error from above by

V (t−k ) − Ck−1 ≤ λmax (Pi) ‖z(t−k )‖2

≤ αi(aie
−λi (t−k −tk −1 )‖zi(tk−1)‖)2

≤ αi

βi
a2

i e−2λi (t−k −tk −1 ) (V (tk−1) − Ck−1)

(28)

with αi = λmax (Pi) and βi = λmin (Pi), and where the last
step follows from V (tk−1) − Ck−1 ≥ βi‖zi(tk−1)‖2 . In order
for the Lyapunov function to form a decreasing sequence at
switching times, the decrease in (28) must be greater than the
increment induced by the switching at time tk . Note that the
switch does not affect the terms in Ck−1 . Hence, the bound
given in (10) only applies to V (tk ) − Ck−1 and V (t−k ) − Ck−1 ,
which yields the worst-case increase due to switching at tk

V (tk ) − Ck−1 ≤ (1 + μΔAm )(V (t−k ) − Ck−1). (29)

Combining the decrease in (28) with the increase in (29) charac-
terizes the worst-case evolution between consecutive switches
as

V (tk ) − Ck−1 ≤ ρ(V (tk−1) − Ck−1) (30)

with

ρ :=
αi

βi
a2

i (1 + μΔAm )e−2λi (tk −tk −1 ) . (31)

For a decreasing sequence, it must hold that ρ ≤ 1 or equiva-
lently

tk − tk−1 ≥ 1
2λi

ln
(

αi

βi
a2

i (1 + μΔAm )
)

=: Ti (32)

which defines a dwell time Ti for the i-th subsystem. We con-
clude that stability and convergence of the direct adaptive con-
trol algorithm is given if the switching of the controlled sys-
tem obeys a dwell time Tdwell > max{Tm , T1 , . . . , Ts}, i.e.,
tk − tk−1 ≥ Tdwell,∀k > 1. �

Remark 1: Note that the assumption of known Si

constitutes—besides the known regions of the PWA system—
the biggest limitation of the proposed algorithm. In the multiin-
put case the retrieval of suitable Si may become nontrivial. For
the single-input case, however, it reduces to Si = sign(K∗

ri).
Hence, Si corresponds to the usual assumption of known input
effectiveness. Relaxing the required knowledge about Si is an
important topic and has received some attention in the multivari-
able adaptive control community [29]. In [33], it is shown that
for positive definite and symmetric nominal gain matrices K∗

ri ,
the design matrix can be chosen as identity matrix: Si = I . An-
other approach, discussed in [39, Section 9.1.2], parametrizes
K∗

ri in terms of an LDU decomposition with lower and upper
triangular matrices L and U , and a diagonal matrix D. For the
resulting stable convergent adaptive controller, only L and the
sign of the diagonal entries in D need to be known.

Remark 2: When considering single input systems in canon-
ical form, it is interesting to note that the direct MRAC algorithm
presented here also relates to the extended MCS algorithm in
[19] and [20]. Two characteristics differentiate the algorithms.
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First, Di Bernardo et al. define the state-space partitions for
the controlled PWA system and the reference system separately.
Therefore, their control gains consist of two parts, one switching
according to the controlled system and one switching accord-
ing to the reference system. Second, in the MCS framework, the
control gains depend on the tracking error through a proportional
and an integral term. Due to the differential equations in (16),
the algorithm presented here only contains the integral term. As
the proportional term has a beneficial effect on the convergence
of the tracking error, it is interesting to investigate in future work
whether adding such a term in the presented adaptation schemes
can further improve the control performance.

This section introduced MRAC with direct gain adaptation
according to (16). Compared to its PWL counterpart in [23], the
consideration of affine terms enlarges the class of applicable sys-
tems. Also, it is not restricted to single input system in canonical
form as [19], [20]. It was determined in Theorem 1 that the state
tracking task can be achieved without imposing additional re-
quirements on the excitation of the reference system. Theorem 2
on the other side suggests excitation with sufficiently rich refer-
ence signals in case convergence to the nominal control gains is
required. This is for instance the case if a nonperiodic reference
signal needs to be tracked precisely or the nominal gains are
to be monitored. For monitoring purposes it might, however,
be more interesting to analyze the system parameters Ai , Bi ,
and fi instead of the control gains. This is the motivation for
the indirect MRAC algorithm derived in the next section, which
has the advantage that estimates of the system parameters are
generated in parallel to the control task.

IV. INDIRECT MRAC

In the direct MRAC approach, the control gains are directly
tuned based on the tracking error. In the indirect case, which is
discussed next, the adaptation of control gains is based on time-
varying estimates Âi(t), B̂i(t), and f̂i(t) of the system param-
eters Ai , Bi , and fi . Under the certainty equivalence principle,
the estimates are handled as if they are the true parameters at all
times [29]. Based on the estimates, the control gains Kxi , Kri ,
and kf i are derived from the matching conditions (13).

The estimates Âi , B̂i , and f̂i are determined by parameter
identifiers, which are a standard tool for the adaptive identi-
fication of LTI systems, see [33, chapter 5]. Recently in [25]
and [26], parameter identifiers were extended to the setting of
switched linear and switched affine systems. Parameter identi-
fiers in [26] predict the state x in terms of the parameter esti-
mates (Âi , B̂i , f̂i) of the currently active subsystem (χi = 1).
The dynamics of the predicted state x̂ ∈ Rn are

˙̂x = Am x̂ +
s∑

i=1

(
(Âi − Am i)x + B̂iu + f̂i

)
χi (33)

where Am =
∑s

i=1 Am iχi is the switched system matrix of the
stable reference system (8). Let x̃ = x̂ − x be the prediction
error between the predictor (33) and the controlled system (4).
This prediction error contains information about the mismatch
between parameter estimates and true parameters and is, hence,

an essential element in the update law. The parameter update
laws proposed in [26] are

˙̂
Ai = −χiPix̃x� ˙̂

Bi = −χiPix̃u� ˙̂
fi = −χiPix̃

where the indicator functions χi ensure that only the currently
active subsystem parameters are updated. Let Ãi = Âi − Ai ,
B̃i = B̂i − Bi , and f̃i = f̂i − fi be the parameter errors. Then,
the derivative of the prediction error in terms of these parameter
errors is

˙̃x = Am x̃ +
s∑

i=1

(
Ãix + B̃iu + f̃i

)
χi. (34)

Following the certainty equivalence principle, one can rear-
range the matching conditions (13) and obtain the following
algebraic equations for the controller gains:

Kxi = B̂+
i (Am i − Âi)

Kri = B̂+
i Bm i

kf i = B̂+
i (fm i − f̂i)

where B̂+
i represents the Moore–Penrose pseudoinverse of B̂i .

This pseudo inverse constitutes the main obstacle in this ap-
proach as it introduces singularities into the system. In case of
singularities, the control gains take unbounded values which
violates the stability requirement. Hence, additional measures
need to be taken to ensure stability. One approach is the use of
projection operators to avoid singularities [33, Sect. 8.5.5]. In
order to use projection operators, however, additional knowl-
edge about the system (more precisely K∗

ri) as compared to the
direct adaptive control algorithm in Section III would be needed.

Instead of introducing projection operators, we follow ideas
previously discussed in [35], [40], and define dynamic update
laws for the control parameters (Kxi,Kri, kf i) which are based
on the current parameter estimates (Âi , B̂i , f̂i). This preserves
the indirect nature of the adaptation algorithm (hence provides
estimates of the system parameters) and at the same time relies
on the same previous knowledge about the system as the direct
approach. Our contribution in this context is the extension of
[35, Section 3.3] and [40] to switched affine systems. We also
present a thorough proof of parameter convergence, which is
not given in [35] and [40].

We begin by defining the following closed-loop estimation
errors, which can be interpreted as errors in the matching con-
ditions (13):

εAi = Âi + B̂Kxi − Am i

εB i = B̂iKri − Bm i

εf i = f̂i + B̂kf i − fm i . (35)

The closed-loop estimation errors (35) characterize the mis-
match between the desired system dynamics and the estimated
closed-loop system dynamics, which are obtained for the esti-
mated system parameters and control gains.
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Lyapunov-based stability analysis (which will be presented
shortly) suggests the next steps. Let the closed-loop estimation
errors drive the adaptation of the control gains as follows:

K̇xi = −S�
i B�

m iεAi

K̇ri = −S�
i B�

m iεB i

k̇f i = −S�
i B�

m iεf i (36)

where Si is the same—assumed to be known—matrix as in the
direct adaptive control algorithm, for which K∗

riSi is symmetric
and positive definite. In order to maintain convergence for the
new control gain adaptation (36), also the adaptation of system
parameters needs to include the closed-loop estimation errors.
Stability analysis suggests

˙̂
Ai = −χiPix̃x� − εAi

˙̂
Bi = −χiPix̃u� − εAiK

�
xi − εBiK

�
ri − εf ik

�
f i

˙̂
fi = −χiPix̃ − εf i . (37)

We are now ready to state the following theorem, which char-
acterizes indirect MRAC for PWA systems for reference systems
whose subsystems have a CQLF.

Theorem 3 (Indirect MRAC for PWA systems with CQLF):
Consider a reference system (8) for which a CQLF with
P = Pi, ∀i is known. Let the PWA system (4) with known
regions Ωi be controlled by the state feedback (11) with gains
updated according to (36), which is based on (33), (35), and
(37). Then, the state of the PWA system asymptotically tracks
the state of the reference system.

Proof: The proof is based on the candidate Lyapunov func-
tion

V =
1
2
x̃�P x̃ +

1
2

s∑

i=1

(
tr
(
Ã�

i Ãi

)
+ tr

(
B̃�

i B̃i

)
+ f̃�

i f̃i

+ tr
(
K̃�

xiMsiK̃xi

)
+ tr

(
K̃�

riMsiK̃ri

)
+ k̃�

f iMsi k̃f i

)
,

whose time derivative along ˙̃x in (34) is

V̇ = x̃�
(

1
2

s∑

i=1

(A�
m iP + PAm i)χi

)

x̃

+
s∑

i=1

(

x̃�P
(
Ãix + B̃iu + f̃i

)
χi

+ tr
(
Ã�

i
˙̃Ai

)
+ tr

(
B̃�

i
˙̃Bi

)
+ f̃�

i
˙̃
fi

+ tr
(
K̃�

xiMsi
˙̃Kxi

)
+ tr

(
K̃�

riMsi
˙̃Kri

)
+ k̃�

f iMsi
˙̃
kf i

)

.

At this point, with equalities of the form x̃�PÃix =
tr(Ã�

i P x̃x�), the first elements in the update laws (37) for Â,
B̂, and f̂ prove suitable to cancel out x̃�P (Ãix + B̃iu + f̃i)χi .
The elements containing εAi , εBi , εf i on the other side will turn
out to cancel those terms associated with the control gains K̃xi ,

K̃ri , k̃f i . To see this, insert the update laws (37) with Pi = P ,
which yields

V̇ = − x̃�
(

1
2

s∑

i=1

Qm iχi

)

x̃ +
s∑

i=1

(

− tr
(
Ã�

i εAi

)

− tr
(
B̃�

i

(
εAiK

�
xi + εBiK

�
ri + εf ik

�
f i

) )− f̃�
i εf i

+ tr
(
K̃�

xiMsi
˙̃Kxi

)
+ tr

(
K̃�

riMsi
˙̃Kri

)
+ k̃�

f iMsi
˙̃
kf i

)

.

With some algebraic reformulations, this expression suggest the
proposed adaptation of control gains in (36). Inserting the update

laws (36) for ˙̃Kxi ,
˙̃Kri , and ˙̃

kf i gives

V̇ = − x̃�
(

1
2

s∑

i=1

Qm iχi

)

x̃ +
s∑

i=1

(

− tr
(
Ã�

i εAi

)

− tr
(
B̃�

i

(
εAiK

�
xi + εBiK

�
ri + εf ik

�
f i

) )− f̃�
i εf i

− tr
(
K̃�

xiMsiS
�
i B�

m iεAi

)
− tr

(
K̃�

riMsiS
�
i B�

m iεB i

)

− k̃�
f iMsiS

�
i B�

m iεf i

)

which by exploiting

MsiS
�
i B�

m i = MsiS
�
i (BiK

∗
ri)

� = MsiS
�
i K∗

ri
�B�

i

= MsiM
−1
si B�

i = B�
i

and grouping traces of matrices with equal dimension, results
in

V̇ = − x̃�
(

1
2

s∑

i=1

Qm iχi

)

x̃

+
s∑

i=1

(

− tr
(
Ã�

i εAi + K̃�
xiB

�
i εAi

)
− f̃�

i εf i − k̃�
f iB

�
i εf i

− tr
(
B̃�

i (εAiK
�
xi + εBiK

�
ri + εf ik

�
f i) + K̃�

riB
�
i εB i

))

.

(38)

Inside the trace operators, one can justify the transformations

(
Ã�

i + K̃�
xiB

�
i

)
εAi =

(
Â�

i − A�
i + K�

xiB
�
i − K∗

xi
�B�

i

)
εAi

=
(
Â�

i − A�
m i + K�

xiB
�
i

)
εAi

=
(
Â�

i − A�
m i + K�

xiB̂
�
i − K�

xiB̃
�
i

)
εAi

=
(
εAi − K�

xiB̃
�
i

)
εAi
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and

B̃�
i (εAiK

�
xi + εBiK

�
ri + εf ik

�
f i) + K̃�

riB
�
i εB i

= B̃�
i εAiK

�
xi + B̃�

i εf ik
�
f i + B̂�

i εB iK
�
ri

− B�
i εB iK

�
ri + K�

riB
�
i εB i − K∗

ri
�B�

i εB i

= B̃�
i εAiK

�
xi + B̃�

i εf ik
�
f i + B̂�

i εB iK
�
ri − K∗

ri
�B�

i εB i

= B̃�
i εAiK

�
xi + B̃�

i εf ik
�
f i + B̂�

i εB iK
�
ri − B�

m iεB i

= B̃�
i εAiK

�
xi + B̃�

i εf ik
�
f i + ε�BiεBi.

Hence, together with

(
f̃�

i + k̃�
f iB

�
i

)
εf i =

(
f̂�

i − f�
i + k�

f iB
�
i − k∗

f i
�B�

i

)
εf i

=
(
f̂�

i − f�
m i + k�

f iB
�
i

)
εf i

=
(
f̂�

i − f�
m i + k�

f iB̂
�
i − k�

f iB̃
�
i

)
εf i

= ε�f iεf i − k�
f iB̃

�
i εf i

the derivative of the Lyapuonv function in (38) can be rewritten
as

V̇ = − x̃�
(

1
2

s∑

i=1

Qm iχi

)

x̃ +
s∑

i=1

(

− tr
(
ε�AiεAi

)

− tr
(
ε�BiεBi

)− ε�f iεf i + tr
(
K�

xiB̃
�
i εAi

)

− tr
(
B̃�

i εAiK
�
xi + B̃�

i εf ik
�
f i

)
+ k�

f iB̃
�
i εf i

)

= − x̃�
(

1
2

s∑

i=1

Qm iχi

)

x̃

−
s∑

i=1

(

tr
(
ε�AiεAi

)
+ tr

(
ε�BiεBi

)
+ ε�f iεf i

)

which is negative semidefinite.
As in the direct case, special attention must be given to poten-

tial sliding modes. In order to analyze all convex combinations
of vector fields contributing to the sliding mode, replace the bi-
nary indicator functions χi by χ̄i in the above derivation. Since
all steps are also valid for χ̄i , the property V̇ < 0,∀x̃ 	= 0 is
verified for all possible sliding mode solutions.

It follows that V is a Lyapunov function decreasing also along
possible sliding mode solutions and therefore x̃, Âi , B̂i , f̂i , Kxi ,
Kri , and kf i are all bounded (equivalently ∈ L∞). At the same
time, according to (35), this implies boundedness of εAi , εBi ,
and εf i . Furthermore, the Lyapunov function and its derivative
imply that εAi , εBi , εf i ∈ L2 . It remains to be shown that also
x, x̂, and u are bounded, which cannot be concluded directly
from boundedness of x̃. Instead, rewrite (33) with feedback (11)

in terms of εAi , εBi , and εf i as

˙̂x = Am x̂ + (Â − Am)x + B̂u + f̂

= Am x̂ + (Â − Am)x + B̂(Kxx + Krr + kf ) + f̂

= Am x̂ + εAx + B̂(Krr + kf ) + f̂

= (Am + εA )x̂ − εA x̃ + (Bm − εB )r + fm − εf (39)

where εA =
∑s

i=1 εAiχi , εB =
∑s

i=1 εBiχi , and εf =
∑s

i=1
εf iχi . By design, reference signals are assumed to be bounded:
r ∈ L∞. With stable Am , boundedness of (Bm − εB )r + fm −
εf , and εA ∈ L2 , it can be concluded from (39) that x̂ ∈ L∞.
Since x = x̂ − x̃, and since both x̂ and x̃ are bounded, also the
system state is bounded (x ∈ L∞). This implies boundedness
of u due to (11). Finally, bounded x and u imply boundedness
of ˙̃x, ε̇A , ε̇B , and ε̇f due to ˙̃x = Am x̃ + Ãx + B̃u + f̃ and
(35). It follows that V̈ ∈ L∞ and V̇ ∈ L2 ∩ L∞ which makes
Barbalat’s Lemma applicable and, therefore limt→∞ V̇ (t) = 0
[35, Corollary 2.9]. Hence, x̃, εA , εB , εf → 0 as t → ∞.

Inspecting the dynamics of x̂ in (39), we conclude that

lim
t→∞

˙̂x(t) = Am x̂ + Bmr + fm

and therefore the predicted state x̂ approaches xm asymptoti-
cally. As x̃ → 0 it follows that also the state x of the controlled
system asymptotically tracks the state xm of the reference sys-
tem, i.e., limt→∞ e(t) = 0.

The advantage of indirect approaches lies in the ability to
estimate the actual system parameters. As can be seen from the
proof of Theorem 3, however, convergence of the parameter es-
timates is not necessary for the tracking task. Before we show
which additional assumptions need to be imposed on the refer-
ence signals in order to achieve parameter converge, we need
the following lemma on the PE condition of some signal vector
in the reference system.

Lemma 2: Let the reference system (8) be realized as the
unknown system ẋm = Aixm + Bium + fi with nominal con-
troller um = K∗

xixm + K∗
rir + k∗

f i . Furthermore, let the refer-
ence signals in r be sufficiently rich of order n + 1 with distinct
frequencies. If the system matrices Am i are invertible, and if
the pairs (Am i , Bm i) are controllable, then the signal vector
zm = [x�

m , u�
m , 1]� is PE.

The technical proof of Lemma 2 is given in Appendix A.
Based on Lemma 2, the following theorem specifies that all
estimated parameters converge to the nominal values under the
assumption of sufficiently rich reference signals.

Theorem 4 (Indirect MRAC and parameter convergence for
PWA systems with CQLF): Consider a reference system (8) for
which a CQLF with P = Pi, ∀i is known. Let the PWA system
(4) with known regions Ωi be controlled by the state feedback
(11) with gains updated according to (36), which is based on
(33), (35), and (37). Let the reference signals in r be sufficiently
rich of order n + 1 with distinct frequencies and such that all
subsystems are repeatedly activated. If the input matrices Bi

have full column rank, if the system matrices Am i are invertible,
and if the pairs (Am i , Bm i) are controllable, then the state of
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the PWA system asymptotically tracks the state of the reference
system and the estimated parameters Âi , B̂i , and f̂i as well as
the estimated gains Kxi , Kri , and kf i converge to their nominal
values as t → ∞.

Proof: The proof of Theorem 3 showed that the adaptation
is stable and that state tracking is achieved. For the proof of
Theorem 4, it is left to show that the parameter estimates of
the active subsystem converge asymptotically to the true pa-
rameters. During this proof, we thus neglect the index i with
the understanding that all steps shown here apply for the active
subsystem. Hence, if all subsystems are activated in a persistent
manner, all parameter estimates converge.

The proof consists of three steps. First, the convergence of
estimated subsystem parameters is tied to a PE condition of
internal signals. Then, Lemma 2 is applied to verify this PE
requirement and, thus, show convergence of the estimated sub-
system parameters. In the final step, it is shown that converging
parameter estimates yield converging control gains.

Using a similar notations as in (22), begin by introducing

Ψu :=

⎡

⎣
x
u
1

⎤

⎦⊗ In θ̃ := vec
([

Ã B̃ f̃
])

. (40)

Then, from (34) and (37), likewise (26), the closed-loop system
for both the prediction error x̃ and parameter errors θ̃ can be
written as

[
˙̃x
˙̃
θ

]

=
[

Am Ψ�
u (t)

−Ψu (t)P 0

] [
x̃

θ̃

]

+
[

0
ε

]

(41)

where ε = −vec([εA , εAK�
x + εB K�

r + εf k�
f , εf ]). Note that

from the proof of Theorem 3 it can be concluded that ε ∈ L2 .
Hence, convergence is derived from the analysis of the first
summand in (41).

For (41) with ε = 0, exponential stability of the equilib-
rium x̃ = 0 and θ̃ = 0 holds if zu = [x�, u�, 1]� is PE [33,
Lemma 5.6.3]. As Theorem 3 showed e → 0, it follows that zu is
PE if zm = [x�

m , u�
m , 1]� is PE, where um can be thought of as an

internal signal in the reference system if it was realized in terms
of the matching conditions, i.e., um = K∗

xxm + K∗
r r + k∗

f . Un-
der the given assumptions, Lemma 2 guarantees PE of zm .
Hence, the PE condition on zu is also satisfied, which—
according to [33, Lemma 5.6.3] —implies asymptotic conver-
gence of θ̃ to zero and thus Â → A, B̂ → B and f̂ → f as
t → ∞. Note that the exponential convergence stated in [33,
Lemma 5.6.3] does not hold here due to the presence of ε in
(41).

Finally, combine the convergence of Â, B̂, and f̂ with the
convergence of εA , εB , and εf shown in the proof of Theorem 3.
For the assumed full column rank of B, it can then be concluded
that also the control gains converge to their nominal values:
Kx → K∗

x , Kr → K∗
r , and kf → k∗

f as t → ∞. �
After deriving direct and indirect MRAC control algorithms

for PWA systems, let us briefly revise their preferred use cases
as well as advantages and disadvantages. The direct MRAC
algorithm presented in Section III is ideally suited for refer-
ence system tracking alone. In case a linear reference system is
chosen, or a CQLF for the reference subsystems is known, The-

orem 1 guarantees asymptotic state tracking without imposing
additional assumptions on the reference signals. If, however, the
choice of reference systems is restricted and no CQLF is found,
one must resort to Theorem 2 and impose additional require-
ments on the system as well as the reference signals in order
to achieve asymptotic state tracking. The dominant requirement
are sufficiently rich reference signals to ensure PE and in turn
guarantee convergence of the control gains to the nominal gains.
As converged gains imply perfect reference system matching,
direct MRAC according to Theorem 2 should also be applied if
precise tracking under nonperiodic reference signals is required.
Independent of the existence of a CQLF this task is only achiev-
able for arbitrary reference signals if the nominal control gains
are applied.

The ideal use case for the indirect MRAC algorithm presented
in Section IV is when monitoring of subsystem parameters be-
comes the main goal besides reference system tracking alone.
Applications can be the early detection of parameter drifts or ag-
ing components in the system. From this point of view, indirect
MRAC according to Theorem 3 has limited practical relevance
as it only achieves the asymptotic state tracking of a reference
system for which a CQLF is known. No guarantees are given for
the convergence of parameter estimates. Hence, in this case the
benefit of a simpler structure in the direct MRAC law is more
convincing. Yet, the advantage of the indirect MRAC strategy
is that control gains are updated indirectly over the interme-
diate closed-loop estimation errors, such as εA . Therefore, the
control gains are updated less aggressively which can reduce
the wear associated with strongly oscillating control gains. The
convincing full potential of indirect MRAC is given in form
of Theorem 4. That is, by exciting the system with sufficiently
rich reference signals, it is guaranteed that the estimated sub-
system parameters converge to the true values, which is ideal
for monitoring purposes. Unfortunately the application of indi-
rect MRAC is restricted to reference systems with CQLF as the
convergence of subsystem parameters is asymptotic. Therefore,
a stability proof as carried out for direct MRAC is infeasi-
ble as the discontinuities in the Lyapunov function can not be
compensated by a combination of exponential convergence and
dwell-time constraints.

V. NUMERICAL VALIDATION

We consider the mass-spring-damper system in Fig. 1(a)
for numerical validation of the proposed adaptation schemes.
The system consists of two masses m1 = 5 kg and m2 = 1 kg
connected to each other and the environment by springs and
dampers. All dampers have fixed damping coefficients d =
1 Ns/m. The left cart is connected to the environment by a
constant spring with stiffness c0 = 1 N/m. Let the stiffness of
the spring between the two masses be PWA with characteris-
tic Fc(p1 , p2) shown in Fig. 1(b), which suggest a PWA system
with three subsystems. The characteristic is assumed to be linear
with slope c1 = 10 N/m for |p2 − p1 | < γ = 1 m. If the spring
is extended beyond γ, the slope of the spring characteristic de-
creases to c2 = 1 N/m < c1 . For strong spring compression, i.e.,
p2 − p1 < −γ, the slope of the spring characteristic increases to
c3 = 100 N/m > c1 . As Fig. 1(b) indicates, the change in slope
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Fig. 1. The two-cart system in (a), whose connecting spring has the
PWA stiffness characteristic shown in (b), can be described by a PWA
model.

yields affine terms in regions Ω2 and Ω3 of the form γ(c1 − c2)
and−γ(c1 − c3), respectively. The two-cart system in Fig. 1 can
be modeled by a PWA system with three subsystems. Subsystem
2 for instance takes the form

ẋ =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0

− (c0 +c2 )
m 1

− 2d
m 1

c2
m 1

d
m 1

0 0 0 1
c2
m 2

d
m 2

− c2
m 2

− 2d
m 2

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
A 2

x

+

⎡

⎢
⎢
⎢
⎣

0 0
1

m 1
0

0 0
0 1

m 2

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
B2

u +

⎡

⎢
⎢
⎢
⎢
⎣

0
γ (c1 −c2 )

m 1

0

− γ (c1 −c2 )
m 2

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
f2

with state vector x = [p1 , ṗ1 , p2 , ṗ2 ]� and input vector u =
[F1 , F2 ]�. The two inputs, in form of forces F1 and F2 ap-
plied to the two carts, make the system multivariable. This
paper proposes the first adaptive control laws for such multi-
variable PWA systems. For the following simulation studies, we
assume all system parameters in Ai , Bi , and fi , i ∈ {1, 2, 3} to
be unknown.

With the proposed algorithms, the system can be forced to
track the dynamics of a reference system. For the reference
system it is desirable to remove the nonlinearity as well as the
coupling between the two masses. This motivates the following
choice of reference system:

ẋm =

⎡

⎢
⎢
⎣

0 1 0 0
−25 −10 0 0
0 0 0 1
0 0 −25 −10

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Am

xm +

⎡

⎢
⎢
⎣

0 0
25 0
0 0
0 25

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Bm

r

which corresponds to a transfer function matrix with all poles
located at −5

[
p1(s)
p2(s)

]

=

[
1

(0.2s+1)2 0
0 1

(0.2s+1)2

] [
r1(s)
r2(s)

]

.

Hence, the reference signals r1 and r2 can be used as decoupled
set points for the cart positions p1 and p2 , respectively.

In the following, the direct and indirect MRAC algorithms are
analyzed in three settings. First, the tracking ability according
to Theorems 1 and 3 is validated for simple reference signals.
Afterwards, the robustness against asynchronous switching is
inspected, before finally, the convergence derived in Theorems 2
and 4 is confirmed for sufficiently rich reference signals.

A. Reference System Tracking

In order to test the tracking ability, let the reference signals
be

r1(t) = 3 sin(0.5t) and

r̄2(t) =

⎧
⎨

⎩

−2, for kT ≤ t < kT + 10 s
0, for kT + 10 s ≤ t < kT + 20 s
2, for kT + 20 s ≤ t < kT + 30 s

where k ∈ N and T = 30 s. These signals yield a sinusoidal
set point for the left cart and a piecewise constant set point for
the right one. Furthermore, the reference signals drive the con-
trolled system through all three partitions of the state space. The
state of the reference system and two-cart system are initialized
with xm = 0n and x = [−2, 0, 2, 0]�, respectively. Moreover,
Gaussian noise with zero mean and 0.1 variance is added to the
state measurements x during simulation. All control gains and
parameter estimates are initialized with zeros.

The design parameters were chosen as follows. Let all scaling
constants (Γxi, Γri , Γf i) be equal to one, and let the design
matrices be

Qm =

⎡

⎢
⎢
⎣

100 10 0 0
10 100 0 0
0 0 100 10
0 0 10 100

⎤

⎥
⎥
⎦ , P =

⎡

⎢
⎢
⎣

140 2 0 0
2 5.2 0 0
0 0 140 2
0 0 2 5.2

⎤

⎥
⎥
⎦

which also incorporates the desired decoupling of the two carts.
Since the input effectiveness of the forces F1 and F2 with respect
to the accelerations p̈1 and p̈2 is known, and since each force does
not directly affect the opposite cart, and since the same holds
for the reference system, it can be anticipated that all K∗

ri are
symmetric and positive definite. This, according to Remark 1,
suggests the choice S = I2 .

Figs. 2 and 3 show the tracking performance of the direct
and indirect MRAC law, respectively. As can be seen from the
figures, both algorithms yield the desired performance despite
frequent switching and the considerable parameter variations
between the subsystems. The same performance could not be
obtained by a single adaptive controller operating in all parti-
tions.

Note that the frequent switching is a consequence of noisy
state measurements. The switching signal used in the controller
is, therefore, not equal to the switching signal of the actual sys-
tem. As the closed-loop system nonetheless exhibits the desired



5646 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 11, NOVEMBER 2017

Fig. 2. Direct MRAC of the PWA two-cart system enables decoupled
control of both carts despite frequent switching. Solid lines represent the
measured states of the system and dashed lines indicate the states of
the reference system.

Fig. 3. Indirect MRAC of the PWA two-cart system enables decoupled
control of both carts despite frequent switching. Solid lines represent the
measured states of the system and dashed lines indicate the states of
the reference system.

behavior, the simulation results suggest that the proposed al-
gorithm contains some robustness against uncertainties in the
assumed partitioned state space.

B. Robustness Against Delayed Switching

Robustness against delayed switching is further validated nu-
merically by repeating the tracking experiment with increas-
ing delays. Let Δt be the delay between the time instance at
which the actual PWA system switches and the time instance
at which controllers, reference systems, and predictors switch.
Now, the tracking is performed over a time frame of 1000 s
without measurement noise. In order to evaluate the track-
ing performance, we determine the integrated tracking error
E =

∫ 1000
0

√
e�(τ)e(τ)dτ for each run withincreasing delay

Δt ∈ [0, 0.5]. Fig. 4 shows E(Δt) for the direct and indirect
MRAC algorithm. As expected, delays increase the integrated
tracking error. In the indirect approach this increase is stronger
than in the direct approach. Nonetheless, the maximum tracking
error during all trials stays within 3% of the maximum reference
signal amplitude for the direct approach, and within 7% for the

Fig. 4. Integrated tracking error E obtained for increasing delays Δt
between switches of the system and the controller.

Fig. 5. Convergence of controller gains under direct MRAC for sub-
system 1. Dashed lines represent ideal gains; solid lines correspond to
the estimated gains while the subsystem 1 is active (χ1 = 1) and dotted
lines visualize the estimated gains during inactive periods of subsystem 1
(χ1 = 0).

indirect approach. Hence, the direct approach is more suitable
for applications with considerable delays.

C. Parameter Estimation

Next, the derived convergence properties of the direct and
indirect MRAC laws are validated with the reference signals

r1(t) = 0.4 sin(t) + 0.3 sin(4t) + 0.2 sin(11t)

r2(t) = r̄2(t) + 0.4 sin(2t) + 0.3 sin(10t) + 0.2 sin(14t)

where r̄2(t) is the piecewise constant reference signal used in
the tracking example above. Besides exciting the system in all
modes, these reference signals ensure the required properties of
being sufficiently rich of at least order 5 with distinct frequen-
cies. All design parameters and initial values are the same as in
the previous example. The added measurement noise has zero
mean and variance 10−3 .

Fig. 5 exemplifies the evolution of gains for subsystem 1 under
direct MRAC. Note that gains for region 2 and 3 evolve similarly
and are, thus, not shown for clarity. The figure shows that adap-
tation pauses in time intervals in which the system evolves in
region 2 and 3, visualized here by the dotted segments. Despite
repeated switching, all gains converge to the ideal values visu-
alized by dashed lines and specified by the matching conditions
(13). This meets the expectations raised by Theorem 2.

The parameter trend for subsystem 1 under indirect MRAC
is given in Fig. 6 (again, the performance in region 2 and 3 is
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Fig. 6. Parameter convergence under indirect MRAC for subsystem 1.
Solid lines represent parameters during the active periods of subsys-
tem 1 (χ1 = 1) and dotted lines visualize the inactive periods of subsys-
tem 1 (χ1 = 0). The ideal control gains are given by dashed lines.

similar and therefore omitted). Besides the control gains Kx1 ,
Kr1 , and kf 1 , the figure also visualizes the norm of the error
in the estimated parameters: ‖θ̃1‖ = ‖vec([Ã1 , B̃1 , f̃1 ])‖. As
derived in Theorem 4, all errors tend to zero asymptotically
despite switching.

One difference between direct and indirect MRAC is the
strength with which control gains are adjusted. Especially kf 1
is adjusted less aggressively in the indirect case (note that the
scales differ by a factor of ten).

VI. CONCLUSION

This paper proposes a direct and an indirect algorithm for
MRAC of multivariable PWA systems. In both cases, asymp-
totic tracking of the reference system is shown for arbitrary fast
switching in case a common Lyapunov function for the refer-
ence system is known. Without a common Lyapunov function,
a dwell-time constraint on the switching signal is given for the
direct approach. Furthermore, convergence of all parameter er-
rors and tracking errors to zero is guaranteed for sufficiently rich
reference signals. The limitations of the proposed algorithms are
twofold. First, the full state feedback restricts the class of ap-
plicable systems and limits the choice of reference systems.
This limitation can be overcome by output feedback. The sec-
ond limitation of the proposed algorithms is the assumption of
full state measurement and known state-space partitions. While
the conducted simulation studies show some degree of robust-
ness against asynchronous switching, the proposed algorithms
become inapplicable for completely unknown state-space parti-
tions. Therefore, future work focuses on extending the presented
ideas to uncertain switching hyperplanes. From a practical point
of view, also the reduction of discontinuities in the control inputs
at switching times is an important topic for future work.

APPENDIX A
PROOF OF LEMMA 2

Proof: The proof of Lemma 2 follows ideas presented in [33,
pp. 306–308] and relates the PE condition of zm to the spectral
properties of r. Consider the two representations

ẋm = Amxm + Bmrm + fm and

ẋm = Axm + Bum + f

um = K∗
xxm + K∗

r r + k∗
f .

Note that the affine terms fm and k∗
f can be understood to

relate xm and um to a constant input of 1. Therefore, let zm =
[x�

m , u�
m , 1]� be related to the constant input via the transfer

function Hf (s). Furthermore, let the transfer function Hk (s)
relate zm to the k-th element of the reference signal vector
r = [r1 , . . . , rp ]�. Hence, zm(s) is given by

zm(s) =

⎡

⎢
⎣

xm(s)
um(s)
1(s)

⎤

⎥
⎦ =

⎡

⎢
⎣

(sI − Am)−1 fm

k∗
f

1

⎤

⎥
⎦

︸ ︷︷ ︸
=:Hf (s)

1(s)

+
p∑

k=1

⎡

⎢
⎣

(sI − Am)−1 bm ,k

k∗
r,k + K∗

x (sI − Am)−1 bm ,k

0

⎤

⎥
⎦

︸ ︷︷ ︸
=:Hk (s)

rk (s)

where I is the identity matrix, and bm ,k and k∗
r,k denote the k-th

column of Bm and K∗
r , respectively.

Under the assumption of distinct frequencies in the reference
signals, the auto covariance of zm is given by

Rzm (0) =
1
2π

∫ ∞

−∞
Hf (−jω)S1(ω)H�

f (jω)dω

+
1
2π

p∑

k=1

∫ ∞

−∞
Hk (−jω)Srk

(ω)H�
k (jω)dω (42)

where S1(ω) and Srk
(ω) are the spectral distributions of the

constant input 1 and the reference signals rk , respectively. Since
rk is sufficiently rich of order n + 1, its spectrum has n + 1
distinct peaks Frk

(ωkl) at frequencies ωkl , l = 1, . . . , n + 1.
The constant input 1(s) results in a single spectral peak at zero.
The spectral distributions are

S1(ω) = δ(ω) Srk
(ω) =

n+1∑

l=1

Frk
(ωkl)δ(ω − ωkl) (43)

where δ(ω = 0) = 1 and δ(ω 	= 0) = 0. With (43), the integrals
in (42) are replaced by summations

Rzm (0) =
1
2π

Hf (−j0)H�
f (j0)

+
1
2π

p∑

k=1

n+1∑

l=1

Frk
(ωkl)Hk (−jωkl)H�

k (jωkl).

(44)
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According to [33, Lemma 5.6.1], the vector signal zm is PE
if Rzm (0) is positive definite, i.e., the quadratic equation

v�Rzm (0)v = 0, v ∈ Rn+p+1 (45)

can only have a single solution at v = 0n+p+1 . Note that the
outer products Hk (−jωkl)Hk (jωkl)� of the column vectors
Hk (jωkl) are positive semidefinite. Therefore, each summand
in (44) is positive semidefinite and (45) is equivalent to

v�Rzm (0)v = v�Rz1(0)v
︸ ︷︷ ︸

≥0

+ v�Rz2(0)v
︸ ︷︷ ︸

≥0

= 0 (46)

where

Rz1(0) :=
1
2π

p∑

k=1

n+1∑

l=1

Frk
(ωkl)Hk (−jωkl)HT

k (jωkl)

Rz2(0) :=
1
2π

Hf (−j0)HT
f (j0).

First, v�Rz1(0)v = 0 is analyzed. Since all summands in
Rz1(0) are positive semidefinite, the equality holds, if and only
if

v�Hk (−jωkl)H�
k (jωkl)v = 0

∀k = 1, . . . , p

∀l = 1, . . . , n + 1

or equivalently

H�
k (jωkl)v = 0

∀k = 1, . . . , p

∀l = 1, . . . , n + 1.
(47)

Next, rewrite the transfer function Hk (s) with a(s) = det(sI −
Am) as

Hk (s) =
1

a(s)

⎡

⎢
⎣

adj(sI − Am)bm ,k

a(s)k∗
r,k + K∗

xadj(sI − Am)bm ,k

0

⎤

⎥
⎦

︸ ︷︷ ︸
=:H̄k (s)

(48)

and note that the equalities (47) are also equivalent to

H̄�
k (jωkl)v = 0

∀k = 1, . . . , p

∀l = 1, . . . , n + 1.
(49)

From (48), it can be seen that each element of the vector
H̄k (jωkl) is a polynomial in ωkl of maximal order n. Hence,
multiplying with v makes gk (s) := H̄�

k (s)v also a polynomial
in s of maximal order n. Now note that the requirement ∀l in
(49) implies that gk (s) vanishes at all n + 1 frequencies ωkl

or corresponding values of s. As, however, gk (s) is only of
order n, it follows that gk (s) = 0, ∀s ∈ C, ∀k. Combining the
p equalities obtained for k = 1, . . . , p in matrix form yields

⎡

⎢
⎣

adj(sI − Am)Bm

a(s)K∗
r + K∗

xadj(sI − Am)Bm

0�p

⎤

⎥
⎦

�

v = 0p (50)

where 0p ∈ Rp is a zero vector. Next, express the vector
v as v = [X�,Y�,Z]�, with X = [v1 , . . . , vn ]� ∈ Rn , Y =

[vn+1 , . . . , vn+p ]� ∈ Rp and Z = vn+p+1 ∈ R, which leads to

(adj(sI − Am)Bm)� X
+ (a(s)K∗

r + K∗
xadj(sI − Am)Bm)� Y + 0pZ = 0p . (51)

The following expressions for adj(sI − A)B and a(s) are
applied to (51)

adj(sI − A)B = Bsn−1 + (AB + an−1B)sn−2

+ (A2B + an−1AB + an−2B)sn−3+, . . . ,

+ (An−1B + an−1A
n−2B+, . . . ,+a1B)

a(s) = sn + an−1s
n−1+, . . . ,+a1s + a0

which results in a polynomial of order n. All coefficients of the
resulting polynomial must be zero in order for the polynomial to
be zero independent of s. For the coefficient of sn , one obtains

Y�K∗
r = 0 (52)

which by multiplication of SMs from the right yields Y = 0p .
Note that the assumption of full column ranks in B and Bm
ensures that both S and Ms have empty null spaces such that
their multiplication does not affect the solution of (52).

For Y = 0p , the n equalities related to the coefficients from
s0 to sn−1 can be combined in the compact form

[
Bm AmBm . . . An−1

m Bm
]� X = 0np

which due to controllable (Am , Bm) leads to X = 0n .
This shows that (51) holds for X = 0n , Y = 0p , and an ar-

bitrary Z ∈ R. Consequently, Rz1(0) is only positive semidef-
inite. Therefore, Rz2(0) in (46) must restrict the choice of Z
further. In other words, for X = 0n and Y = 0p the equality
v�Rz2(0)v = 0 must only hold for Z = 0. The same arguments
as above lead to

H̄�
f (j0)v =

⎡

⎢
⎣

adj(−Am)fm

a(j0)k∗
f

a(j0)

⎤

⎥
⎦

�

v = 0

which with v = [0�p , 0�n ,Z]� and a(j0) = a0 implies a0Z = 0.
Since Am is assumed to be invertible, we have a0 	= 0. There-

fore, Z != 0 in order to ensure H̄�
f (j0)v = 0 with X = 0n and

Y = 0p . This proves positive definiteness of Rzm (0) and ac-
cording to [33, Lemma 5.6.1] makes zm PE.
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