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An Auxiliary Particle Filtering Algorithm With Inequality Constraints
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Abstract—For nonlinear non-Gaussian stochastic dynamic sys-
tems with inequality state constraints, this technical note presents
an efficient particle filtering algorithm, constrained auxiliary parti-
cle filtering algorithm. To deal with the state constraints, the pro-
posed algorithm probabilistically selects particles such that those
particles far away from the feasible area are less likely to propagate
into the next time step. To improve on the sampling efficiency in the
presence of inequality constraints, it uses a highly effective method
to perform a series of constrained optimization so that the impor-
tance distributions are constructed efficiently based on the state
constraints. The caused approximation errors are corrected using
the importance sampling method. This ensures that the obtained
particles constitute a representative sample of the true posterior
distribution. A simulation study on vehicle tracking is used to illus-
trate the proposed approach.

Index Terms—Auxiliary particle filter, Bayesian inference, in-
equality constraints, sequential Monte Carlo, state space models.

I. INTRODUCTION

In practice, nonlinear stochastic dynamic systems are often
restricted to a sub-area of the state space. This is usually the
consequence of some physical restrictions on the systems of
interests. For example, in vehicle tracking, vehicles on a road are
expected to move within the boundaries of the road and to follow
the speed limit (see, e.g., [1]). Because state constraints reduce
the variability of the state vector, incorporating the constraint-
related information into state estimation can usually improve on
the accuracy of state filtering [2].

State estimation with state constraints is very challenging and
has attracted a number of researchers. With the conventional
filtering approaches such as the extended Kalman filter (EKF)
and unscented Kalman filter (UKF), many approaches have
been developed to deal with state constraints but most of
them focus on linear and/or equality constraints. This includes
the approaches of reparameterizing, pseudo-measurement,
optimization, projection and truncation. Recently a truncation-
based method has been developed in [3]. It is based on the
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above conventional filters but a novel Monte Carlo method is
used to deal with the inequality constraints. Moving horizon
estimator (MHE), on the other hand, performs state estimation
by solving an optimization problem that can inherently handle
constraints. However, the multi-stage nonlinear optimization
in MHE incurs excessive computational burden for online
applications [4]. See [5] for an overview on the conventional
filtering approaches with state constraints.

In the literature, there are only a few particle filters developed
for dealing with state constraints, among which the pioneering
research work in [6] and [7] is particularly worth noting. In [6],
a simple algorithm using the acceptance-rejection method was
developed. The acceptance-rejection method is commonly used
in offline Monte Carlo methods where computation time is not
an issue. However, it is in general not suitable for online ap-
plications because the time required for drawing a particle that
satisfies the state constraints could be prohibitively long. To cir-
cumvent this problem, a novel approach was proposed in [7] that
consists of two stages. First, particle candidates are drawn with-
out using the state constraints; then the candidates that violate
the constraints are projected into the feasible area defined by the
constraints using a series of optimization. This method incurs
a high computational cost and the particles obtained using the
deterministic projection are no longer a representative sample
of the posterior distribution of the state vector.

Recently, [8] has made some solid advances in particle filter-
ing with state constraints and proposed three algorithms. The
first method is a Gibbs-sampling-based algorithm that is more
relevant to this technical note as the second method in [8] is
based on the acceptance-rejection and the posterior updating in
the third method does not use the constraint information. To
draw each particle at each time step, a Gibbs sampler is em-
bedded in the Gibbs-sampling-based algorithm so that only one
variable is considered in each iteration of the Gibbs sampler. As
a result, sampling within the state space reduces to a univari-
ate problem, i.e. sampling within an interval, that can be dealt
with straightforwardly. This, however, comes at a price of high
computational demand. This is because the Gibbs sampler is
an iterative procedure that is usually used as an offline method.
Embedding a Gibbs sampler for generating particles incurs ex-
cessive computation costs. Moreover, within each iteration of
the Gibbs sampler, it needs to solve the state constraints for the
end-points of the constraint interval of each state variable. This
has a high computational demand when the analytical solutions
are not available.

The Gibbs-sampling-based algorithm also has some restric-
tive requirements on the systems under investigation. It is
required that: (a) both the conditional cumulative distribution
of each state variable and its inverse function can be evaluated
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analytically; (b) these conditional cumulative distributions
can be sampled easily; and (c) the constraint region for the
univariate sampling is a single interval. In practice these
assumptions may not be valid. Take requirement (c) as an
example: the obtained constraint region may consist of sev-
eral non-overlapped intervals because a nonlinear constraint
function in general leads to more than one solution.

In this technical note, we propose a new method, constrained
auxiliary particle filtering algorithm (CAPFA). Similar to the
ordinary auxiliary particle filter (APF), the CAPFA consists of
resampling and sampling stages at each time step. In the re-
sampling stage, it probabilistically selects particles such that
particles with a lower likelihood of output measurements and/or
far away from the feasible area are less likely to survive and
propagate into the next time step. For this end, we carry out
a series of constrained optimization to work out the center (as
measured by the mode) of each transition distribution within the
feasible area from which the particles are to be drawn. To im-
prove on the sampling efficiency in the sampling stage, we form
each importance distribution in a way such that it is centered at
the mode of the corresponding restricted transition distribution.
In doing so, the chance of drawing a feasible particle is much
higher as the mode lies within the feasible area. Finally we use
the importance sampling method to correct the errors caused in
the previous stages.

In comparison with [8], the proposed method is computation-
ally more efficient and hence suitable for online applications.
Its assumptions on the system are also less restrictive and hence
it can be applied to a wider range of problems.

This technical note is structured as follows. Section II is
devoted to problem formulation. In Section III we present the
main results and in Section IV we conduct a simulation study
for algorithm evaluation. Finally we conclude this technical
note in Section V.

II. PROBLEM FORMULATION

Consider a nonlinear stochastic dynamic system:

xk+1 = fk (xk , uk ) + ωk (1)

with the observation equation

zk = hk (xk ) + υk , (2)

where xk = [x1,k , . . . , xn,k ]T ∈ �n , uk = [u1,k , . . . , um,k ]T

∈ �m , and zk = [z1,k , . . . , zl,k ]T ∈ �l are the vectors of state
variables, inputs, and outputs at time step k (k = 0, 1, 2, . . .)
respectively. fk : �n ×�m → �n is a vector of possibly
nonlinear functions of xk and uk , and hk : �n → �l is a
vector of possibly nonlinear functions of xk . The process noise
ωk ∈ �n and measurement noise υk ∈ �l are assumed to be
absolutely continuous random vectors with a zero mean and
mutually independent. Their probability density functions are
denoted as pω (ωk ) and pυ (υk ) which may be time-dependent
but for notational simplicity the subscript for time step k is
suppressed. We assume that pω (ωk ) is log-concave and has
continuous second-order partial derivatives. The initial state
x0 is independent of ωk and υk with a known probability

density function p(x0). Let x0:k = {x0 , x1 , . . . , xk} and
z1:k = {z1 , . . . , zk} denote the set of all states and the set of
all output measurements up to time k respectively.

We denote the distribution of xk conditional on xk−1 by
p(xk |xk−1) which can be derived from (1). Likewise, we denote
the distribution of zk conditional on xk by p(zk |xk ) which can
be derived from (2); see, e.g., [9] and [10] for further discussion.

Suppose that xk satisfies the following constraints:

gk (xk ) ≤ 0, (3)

where gk = [g1,k , . . . , gM ,k ]T : �n → �M is a vector of pos-
sibly nonlinear functions of xk . Each gj,k (xk ) is assumed to
have continuous second-order partial derivatives. Let Bk =
{xk |gk (xk ) ≤ 0} denote the feasible area of xk that satisfies
the constraints. Following the literature (e.g., [2], [10]), the in-
equality (3) is treated as pseudo-measurements:

yk =
{

1 if xk ∈ Bk ;
0 otherwise.

(4)

Let pg (yk |xk ) = I{xk ∈ Bk} denote the unnormalized density
function of the pseudo-measurements yk , where I{xk ∈ Bk} is
an indicator function, having 1 if xk ∈ Bk and 0 otherwise.

III. MAIN RESULTS

We aim to obtain the posterior distribution p(x0:k |z1:k ) of
the sequence of state vector x0:k at each time step k for given
observation sequence z1:k , the initial state vector x0 , constraints
(3), and knowledge about system (1)–(2).

When the system is nonlinear/non-Gaussian, usually
p(x0:k |z1:k ) is analytically intractable, and hence a numerical
solution is required in practice. Theoretically this can be
obtained by drawing a representative sample of size N from
p(x0:k |z1:k ), termed particles. Unfortunately, for many complex
practical problems, it is usually impossible to draw such a
sample directly from p(x0:k |z1:k ). In the particle filtering,
importance sampling is used to circumvent this difficulty,
where the particles xi0:k (i = 1, . . . , N ) are drawn from an
importance distribution π(x0:k |z1:k ) instead of p(x0:k |z1:k ) per
se. A correction step with a set of weights wi

k (i = 1, . . . , N )
is required to ensure that the obtained particles constitute a
representative sample of the true posterior distribution:

p(x0:k |z1:k ) ≈
N∑
i=1

wi
kδ(x0:k − xi0:k ), (5)

where δ(.) is the Dirac measure and the importance weights
are given by wi

k ∝ p(xi0:k |z1:k )/π(xi0:k |z1:k ). The impor-
tance weights need to be normalized, i.e. wi

k are replaced
with wi

k/
∑N

j=1 w
j
k , so that the normalized weights sum

to one.
The approximation in (5) is based on the law of large

number. A common problem with the particle filtering is the
degeneracy phenomenon, where after a few iterations, all but
one particle will have a negligible weight, leading to a very poor
approximation to the true posterior distribution in (5) and hence
poor quality of statistical inference for the state vector. The
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degree of degeneracy is characterized by the effective sample
size (ESS) defined to be Neff = N/[1 + Var(wk (p, π))],
where wk (p, π) = p(x0:k |z1:k )/π(x0:k |z1:k ) is the true weight
function [11]. In numerical computation, ESS is estimated
by N̂eff = [

∑N
i=1(w

i
k )

2 ]−1 . When designing algorithms for
particle filtering, one should endeavour to ensure that the ESS
is as large as possible [12].

A. Why Use Inequality Constraints in State Filtering?

Following [2] and [10], we consider a dynamic system (1)
and treat the constraints (3) as pseudo measurements. During
the filtering, the pseudo measurements (4) together with the
output measurements (2) will be used to form the likelihood
function to draw inference about the state vector. We will show
that, for any importance distribution for which state constraints
(3) are not taken into account, one can always construct a mod-
ified importance distribution so that the particles drawn from
the modified importance distribution can better represent the
posterior distribution. For ease of exposition, the measurements
z1 , . . . , zk are not written explicitly and the subscript for time
step k is dropped in this subsection.

Consider an approximate posterior distribution which pools
the prior information and the observation equation (2) without
consideration of constraints (3). Let p̃(x) with

∫
p̃(x) dx = 1

denote the probability density function of this approximate pos-
terior distribution. Suppose that an importance distribution π̃(x)
with

∫
π̃(x)dx = 1 is used to draw the particles.

From Bayes’ theorem, the true posterior probability den-
sity function where the pseudo-measurements are taken into
consideration is given by p(x|y) = c0 p̃(x)pg (y|x) with c0 =
[
∫
p̃(x)pg (y|x) dx]−1 . Now we take into account the con-

straints to construct a modified importance distribution: π(x) =
cπ̃(x)pg (y|x), where c = [

∫
π̃(x)pg (y|x) dx]−1 ≥ 1. The cor-

responding weight function is w(x) = p(x|y)/π(x). In addi-
tion, when using the importance distribution π̃(x), the weight
function is w̃(x) = p(x|y)/π̃(x). The following theorem shows
that Var[w(x)] ≤ Var[w̃(x)].

Theorem 1: Let pg (y|x) be the probability density function
of the pseudo-measurements defined in (4), and p̃(x) and π̃(x)
be the approximate posterior distribution and the correspond-
ing importance distribution where the constraints are ignored.
Let p(x|y) = c0 p̃(x)pg (y|x) with c0 = [

∫
p̃(x)pg (y|x) dx]−1

be the true posterior distribution where the constraints are
taken into consideration. Then one can always construct a
modified importance distribution π(x) = cπ̃(x)pg (y|x) where
c = [

∫
π̃(x)pg (y|x) dx]−1 , with weight w(x) = p(x|y)/π(x),

such that Var[w(x)] ≤ Var[w̃(x)], where w̃(x) = p(x|y)/π̃(x)
is the weight function of the importance distribution
π̃(x).

Proof: First, we show Ew2 ≤ Ew̃2 . We note

Ew2 =
∫
w2π(x) dx =

c20
c

∫
p̃2(x)pg (y|x)

π̃(x)
dx,

Ew̃2 =
∫
w̃2 π̃(x) dx = c20

∫
p̃2(x)p2

g (y|x)
π̃(x)

dx.

Since p2
g (y|x) ≡ pg (y|x) and c ≥ 1, we obtain Ew2 ≤ Ew̃2 .

Then it follows by noting Ew = Ew̃ = 1. �
From Theorem 1, by taking into account the state constraints

during the sampling, the weights are always more evenly dis-
tributed.

Corollary 1: LetNeff and Ñeff denote the ESS values corre-
sponding to weight functionsw(x) and w̃(x) respectively. Then
under the assumptions of Theorem 1, we have Neff ≥ Ñeff .

The proof is immediate from Theorem 1. Corollary 1 indi-
cates that the ESS is always larger when the state constraints
are taken into consideration. Because particle filtering is based
on the law of large numbers, Corollary 1 has important implica-
tions: a smaller ESS of particles will in general lead to a poorer
representation of the posterior distribution with inferior quality
of state estimation.

Now define Geff = 100 × [(Neff − Ñeff )/Ñeff ]% as the gain
in ESS when the state constraints are taken into account in the
particle filtering. The benefits of using the constraint-related
information in particle filters can be measured as follows.

Corollary 2: Under the assumptions of Theorem 1, the gain
in ESS by using the constraint-related pseudo-measurement in-
formation in the particle filtering is given by

Geff = 100(c− 1)%,

where c = [
∫
π̃(x)pg (y|x) dx]−1 ≥ 1.

Proof: Let a = c20
∫

[p̃2(x)pg (y|x)/π̃(x)] dx. From the
proof of Theorem 1, we note that Var[w(x)] = c−1a− 1 and
Var[w̃(x)] = a− 1. Then by definition, we obtainNeff = cN/a
and Ñeff = N/a. �

When the state constraints are accounted for in particle filter-
ing, Corollary 2 shows that the smaller the feasible area is, the
more the gain in ESS can be obtained when the state constraints
are taken into account.

B. A Brief Summary of the Auxiliary Particle Filter

Consider system (1)–(2) without any constraints. The poste-
rior distribution at time k can be derived using Bayes’ rule:

p(x0:k |z1:k ) ∝
N∑
i=1

wi
k−1p(zk |xk ) p(xk |xik−1). (6)

In the sequential Monte Carlo particle filtering, the im-
portance weights for system (1)–(2) is updated recursively:
wi
k ∝ wi

k−1 p(zk |xik )p(xik |xik−1) /π(xik |xi0:k−1 , z1:k ), where
π(xk |x0:k−1 , z1:k ) is an importance distribution. A com-
monly used importance distribution is π(xk |x0:k−1 , z1:k ) =
p(xk |xk−1); the weight updating equation reduces to wi

k ∝
wi
k−1p(zk |xik ) for this choice. This importance distribution is

chosen in a way that does not take into account the out-
put measurements z1:k . Hence, it may be inefficient since
the state space is explored without any knowledge of the
observations.

A distinctive nature of the APF is that its importance dis-
tributions incorporate such information. The auxiliary particle
filter (APF) was initially proposed in [13] and [14]. The APF
algorithm draws particles on the basis of (6) in two stages [12],
[13]: (a) draw indices Ii with the particle selection probabilities
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proportional to wi
k−1p(zk |xik−1); and (b) draw each particle xik

from p(xk |xIik−1) for given index Ii .
The predictive likelihood p(zk |xik−1) is defined to be∫
p(zk |xk )p(xk |xik−1) dxk . In many applications, it is difficult

to evaluate this predictive likelihood. One simple solution is to
use the approximation p(zk |λik ), where λik is the center (as mea-
sured by mean, median, or mode) of p(xk |xik−1) (e.g., [9]). Note
that when pω (ωk−1) is Gaussian, p(xk |xik−1) is also Gaussian.
In this case, the mean, median, and mode of p(xk |xik−1) are
all equal, and the centers of the importance distributions can be
obtained straightforwardly, i.e. λik = fk−1(xik−1 , uk−1). A cor-
rection via the importance weights wi

k = p(zk |xik )/p(zk |λIik ) is
required to ensure the set of obtained particles represents the
true posterior distribution.

The APF can be regarded as an interchange of the importance
sampling and resampling procedures in the generic particle fil-
tering (see, e.g., [12], [15]): the resampling stage is performed
prior to the sampling stage. Consequently only those particles
with a higher particle selection probability are likely to survive
and propagate into the next step.

C. Design of the CAPFA

We now take into account state constraints and develop a new
filtering algorithm CAPFA based on the APF. The design of
the CAPFA will take advantages of the APF to improve on the
sampling efficiency in the presence of state constraints.

Following [2], [10], we consider the inequality con-
straints (3) as pseudo-measurements with the density func-
tion pg (yk |xk ). This leads to a generalized likelihood function
p(zk |xk )pg (yk |xk ). Applying Bayes’ rule to pool this general-
ized likelihood with the prior distribution p(xk |xk−1), we obtain
the posterior distribution of x0:k at time step k:

p(x0:k |z1:k ) ∝
N∑
i=1

wi
k−1p(zk |xk )pg (yk |xk ) p(xk |xik−1). (7)

The key idea of the CAPFA is to select particles to prop-
agate into the next time step by using the constraint-related
information. Bearing in mind that the constraints are now
treated as pseudo-measurements that modify the likelihood to
be p(zk |xk )pg (yk |xk ), we follow the design of the APF and
select the particles in the CAPFA with probabilities propor-
tional to this modified likelihood multiplied by the correspond-
ing weight wi

k−1 . In addition, similar to the APF, the unknown
xk at this stage is replaced with the center of the restricted
transition distribution pg (yk |xk ) p(xk |xik−1), denoted as λik . In
summary, the particles in the resampling stage of the CAPFA are
selected with probabilities proportional to ψik � wi

k−1p(zk |λik )
p(λik |xik−1).

The overall structure of the CAPFA is designed in a
similar way to the APF: (a) in the resampling stage: we
find the centers λik of the restricted transition distributions
pg (yk |xk ) p(xk |xik−1), and draw indices Ii with the particle
selection probabilities proportional to ψik ; and (b) in the sam-
pling stage: we draw a particle from each pg (yk |xk )p(xk |xIik−1)
for given Ii . These two issues will be investigated in the next
two subsections.

D. Resampling Stage: Locating the Center of Each
pg (yk |xk ) p(xk |xik−1 )

Mathematically, the mode λik is defined to be the point
within the feasible area Bk that minimises − log[p(xk |xik−1)]
(i = 1, . . . , N ). At the first glance, the task of searching the
mode λik looks daunting asN is usually large. However, there is
no need to get the exact solution for each optimization problem
because the solution is used only for forming an importance dis-
tribution, and any approximation error can be corrected using
the weight correction method in the importance sampling. In our
experience, one-step iteration will usually suffice; the benefit of
using more iterations, if any, is marginal. See the simulation
study in Section IV for details.

Specifically, we define fik � fk−1(xik−1 , uk−1). Let Di
k and

V i
k denote the first and second derivatives of − log[p(xk |xik−1)]

evaluated at fik . Now we expand − log[p(x|xik−1)] about fik to
its second-order and use this second-order expansion to approx-
imate the original optimization problem for λik .

We suppress subscript k for notational simplicity. The original
optimization problem for λi can be approximated by a series
of constrained optimization problems Pi (i = 1, . . . , N ), each
having a quadratic objective function:

min
x

(x− fi)T Di +
1
2
(x− fi)T V i(x− fi)

s.t. gj (x) ≤ 0 j = 1, . . . ,M. (8)

For problems Pi (i = 1, . . . , N ), if fi − (V i)−1Di falls into the
feasible area, it is the exact optimal solution. Let A denote all
the indices i that fi − (V i)−1Di is outside the feasible area, i.e.
A = {i|fi − (V i)−1Di /∈ B}. In the rest of this subsection, we
only focus on problems Pi for i ∈ A.

We use a simple interior-point method (SIPM) described be-
low to solve problem (8) for i ∈ A; see [16] for an overview on
various interior-point methods. We choose a barrier function as
B(x) = −1/x. Then solving problem (8) can be converted to
solving the following problem for a suitably chosen γ > 0:

min
x

{
(x− fi)T Di +

1
2
(x− fi)T V i(x− fi)

− γ

M∑
j=1

g−1
j (x)

}
. (9)

Suppose that an initial value x(0) ∈ B has been chosen. The
Newton method can be used to solve (9) and it terminates after
the first iteration. The one-step solution is taken as an approxi-
mate solution:

λi = x(0) + α∗di (10)

where α∗ is the step length. di = −(Hi)−1∇Ji |x=x( 0 ) is the
search direction andHi � ∇2Ji , whereJi denotes the objective
function of problem (9).

There are two issues to be addressed: (a) the choice of step
length α∗; and (b) the choice of the initial value x(0) .

For the selection of α∗, we use the widely-used linearization
method, i.e. we linearize constraint functions gj (x) and solve
(8) with the linearized constraint functions. It is easy to show
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Fig. 1. Illustration of the CAPFA algorithm: the importance distribution
is shifted from N (1, 2) to N (5, 2) such that its center falls into the the
feasible area [4,+∞). The chance that the candidate particles drawn
from N (5, 2) fall into [4,+∞) is higher.

that the optimal solution to this problem is given by

α∗ = min
j

{ −gj (x(0))
(di)T∇gj (x(0))

| for all (di)T∇gj (x(0)) > 0
}

(11)
or α∗ = 1 if x(0) + di ∈ B.

Occasionally for the step length α∗ obtained in (11), we have
λi = x(0) + α∗di /∈ B. In this case, we shrink α∗ by a pre-
selected factor β (0 < β < 1) for a couple of times until all
the constraints are satisfied. As this is a linear search problem,
we suggest using either the bisection method β = 0.5 or golden
section method β = 0.618.

Since all the optimization problems Pi have a common fea-
sible area, a common initial point x(0) can be used for all Pi .
We suggest using the weighted mean or mode (for the case that
the mean lies outside the feasible area) of all the feasible fi as
the initial point x(0) . Specifically, let us re-introduce the sub-
script k for each time step for the clarity purposes. We define
Ck = {i|fik ∈ Bk} and calculate f̄k =

∑
i∈Ck w

i
kf

i/
∑

i∈Ck w
i
k .

If f̄k ∈ Bk , then we choose x
(0)
k = f̄k ; otherwise, we find

i∗ = arg maxi(wi
k |i ∈ Ck ) and choose x(0)

k = fi∗k .

E. Sampling Stage: Drawing Particles From Restricted
Transition Distributions

Now we turn to consider how to efficiently sample
from each unnormalized restricted transition distribution
pg (yk |xk ) p(xk |xIik−1).

A simple approach would be to use the acceptance-rejection
method. However, the computational cost for this method could
be prohibitively high if the center of p(xk |xIik−1) is far away
from Bk . To address this issue, we use an importance-sampling-
based method as follows. Consider any particle with index Ii . We
construct an importance distribution π(xk |λIik ) for the particle
as p(xk |xIik−1) with its mean translated to λ

Ii
k :

π(xk |λIik ) = p(xk − λ
Ii
k + fk−1(xIik−1 , uk−1)|xIik−1).

Hence, rather than to draw a particle from the unnormal-
ized distribution pg (yk |xk )p(xk |xIik−1), we draw the particle

from the importance distribution π(xk |λIik ). Since π(xk |λIik )
has the center of λ

Ii
k ∈ Bk , it is more likely that the candi-

date particle drawn from π(xk |λIik ) will fall into the feasible
area, hence improving on the sampling efficiency, as illustrated
in Fig. 1.

Because particle xik is drawn from π(xk |λIik ), the importance
weight needs to be adjusted by a factor

ρik = pg (yk |xik )p(xik |xIik−1)/π(xik |λIik ) (12)

to ensure that the obtained particles as a whole constitute a rep-
resentative sample of the true posterior distribution. Combining
ψik with ρik , we obtain the importance weight for each particle
xik (i = 1, . . . , N ) in the CAPFA:

wi
k =

ρikp(zk |xik )
p(zk |λIik )p(λIik |xIik−1)

. (13)

Finally, due to the indicator function in (12), we resample the
obtained particles. After the resampling, all particles fall into the
feasible area with a non-zero weight. The CAPFA is outlined in
Algorithm 1.

In some applications, the covariance matrix of distribution
pω (ωk ) is rank-deficient. If this is the case, we follow [17]
(Appendix B) to transform the problem into a sub-space in
which the random variables have a full-rank covariance matrix
and to draw the relevant samples in the sub-space.

IV. SIMULATION STUDY

In this section, we evaluate the proposed CAPFA using a
vehicle-tracking simulation study. Similar problems were also
investigated in many previous studies such as [3].
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Fig. 2. Tracking scenario and the sample trajectory.

A. Simulation Settings

Consider a typical vehicle tracking problem with a moving
vehicle traveling on a bend road section. The boundaries of
the road are defined by two ellipse curves centred at the ori-
gin of a Cartesian coordinate system in the first quadrant with
major radius of a1 = 96 m and a2 = 100 m, and minor ra-
dius b1 = 76 m and b2 = 80 m. The example vehicle trajectory
is depicted in Fig. 2, where the vehicle starts from the posi-
tion (98, 0) and travels first in the central area of the road,
and then moves close to the right and left part of the road
respectively.

The vehicle dynamics are described by the following white
noise acceleration motion model:

xk+1 =

⎡
⎢⎢⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦xk +

⎡
⎢⎢⎣

0.5T 2 0
0 0.5T 2

T 0
0 T

⎤
⎥⎥⎦ωk (14)

where the state vector xk = [x1,k x2,k ẋ1,k ẋ2,k ]T con-
sists of the vehicle position and velocity components in x1 and
x2 directions, T = 1 s is the sampling interval, and ωk is a
two-dimensional Gaussian process noise with zero mean and
identity covariance matrix. Given the road boundaries, the state
constraints can be written as (x1,k /a1)2 + (x2,k /b1)2 ≤ 1 and
(x1,k /a2)2 + (x2,k /b2)2 ≥ 1. The vehicle is tracked by a range
and bearing sensor modeled as:

zk =

⎡
⎣

√
x2

1,k + x2
2,k

arctan
(
x2 , k
x1 , k

)
⎤
⎦ + υk (15)

where υk is a two-dimensional Gaussian noise vector with zero-
mean and covariance matrix R = diag{8, 0.002}.

For the above tracking problem, simulation experiments were
carried out on a PC with 2.5 GHz CPU. 100 Monte Carlo runs
were undertaken where different realisations of the noises were
generated based on a pre-specified trajectory. In the state esti-
mation, the initial prior distribution was chosen as a Gaussian

TABLE I
PERFORMANCE OF CAPFA AVERAGED OVER 100 RUNS USING DIFFERENT

OPTIMIZATION METHODS

Method(N ) MSE SD PESS (%) PFP (%) CT (s)

SIPM(150) 5.253 2.269 76.2 88.4 0.040
SIPM(250) 5.022 2.135 75.3 88.5 0.070
SIPM(500) 4.831 1.936 72.8 88.6 0.133
SQP(150) 5.162 2.216 77.3 82.5 1.227
SQP(250) 4.838 2.019 77.4 82.5 1.975

TABLE II
PERFORMANCE OF CAPFA WITH DIFFERENT LEVELS OF PARAMETER γ

AVERAGED OVER 100 RUNS

γ MSE SD PESS (%) PFP (%) CT (s)

5 5.014 2.123 73.7 88.5 0.068
10 5.005 2.130 75.3 88.5 0.075
20 5.022 2.135 75.3 88.5 0.070
40 4.988 2.104 76.0 88.5 0.068

distribution with mean x̂0 = [95, 5, 0, 10]T and covariance ma-
trix P0 = diag{25, 25, 1, 1}.

The performance of the CAPFA was assessed in terms of ac-
curacy measured by the average mean square error (MSE) of
the position-related variables and the corresponding standard
deviation (SD) of the MSE over the 100 runs; the latter char-
acterizes the reliability and stability of the filtering results from
realization to realization.

The quality of the obtained particles was measured by Per-
centage of ESS (PESS) defined as the ratio of ESS to N , Per-
centage of Feasible Particles (PFP) prior to the final resampling
at each time step, and computation time (CT) measured by the
time required in one run of the experiment.

B. The CAPFA With Different Optimization Methods

First, we compare the performance of the CAPFA using the
one-step iteration SIPM withγ = 20 to that of the CAPFA where
the optimization was undertaken using a Matlab standard solver,
‘fmincon’, which uses the Sequential Quadratic Programming
(SQP) algorithm to solve a constrained optimization problem.
The results are summarised in Table I.

It can be seen from Table I that, for the same particle number
N , the benefit of using the standard ‘fmincon’ solver in the
CAPFA was marginal in terms of average MSE, SD and PESS.
The main drawback of using the standard optimization technique
is the high computational cost, which may be problematic in
some real-time applications where the state information needs to
be updated rapidly. We also see that the benefit of the improved
MSE using the ‘fmincon’ solver withN = 150 orN = 250 can
be achieved by using the SIPM with a larger N (say N = 500)
at a much lower computational cost. The case of N = 500 with
the SQP optimization method is not reported here due to the
high computational demand.

We also tried other choices for γ, i.e. γ = 5, 10, 40. The ob-
tained results for N = 250 are displayed in Table II which in-
dicates that the CAPFA is not sensitive to the choice of γ. This
robustness property is important in practice. In the rest of the
simulations in this section, we set γ = 20.
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TABLE III
COMPARISON OF THE PERFORMANCES OF SEVERAL FILTERS AVERAGED

OVER 100 RUNS

Filters N MSE SD PESS(%) PFP(%) CT(s)

APF([13]) 150 7.141 2.195 42.7 44.5 0.009
APF([13]) 250 7.051 2.852 42.7 44.4 0.014
APF([13]) 500 6.770 2.028 43.1 44.9 0.028
CAPFA 150 5.253 2.269 76.2 88.4 0.040
CAPFA 250 5.022 2.135 75.3 88.5 0.070
CAPFA 500 4.831 1.936 72.8 88.6 0.133
CPF(alg.2 [7]) 150 7.518 4.939 35.1 59.6 0.080
CPF(alg.2 [7]) 250 6.371 2.723 34.6 58.5 0.090
CPF(alg.2 [7]) 500 5.570 2.413 34.7 57.8 0.134
CPF(alg.3 [7]) 150 7.330 3.769 38.6 59.7 0.080
CPF(alg.3 [7]) 250 6.106 2.572 36.8 58.4 0.087
CPF(alg.3 [7]) 500 5.529 2.436 36.2 57.7 0.152
CPF(alg.4 [7]) 150 7.725 4.180 39.7 58.1 0.014
CPF(alg.4 [7]) 250 6.291 2.768 37.9 57.5 0.023
CPF(alg.4 [7]) 500 5.593 2.497 36.9 57.1 0.040
CPF(Gibbs [8]) 150 5.728 2.335 54.3 100 1.743
CPF(Gibbs [8]) 250 5.716 2.145 53.6 100 2.470
CPF(Gibbs [8]) 500 5.605 2.104 54.1 100 4.685
tUPF([18]) 150 8.262 3.759 57.5 100 0.039
tUPF([18]) 250 7.738 3.389 57.1 100 0.042
tUPF([18]) 500 7.667 3.343 56.1 100 0.049
tUPF ([19]) 500 5.562 2.634 7.3 100 0.750

C. Measuring the Benefits of Employing State Constraints

Now we gauge the gain of using the state constraints in the
particle filtering. We compared the APF with and without the
constraints during the sampling. The numerical results are dis-
played in the first two panels of Table III.

The vehicle was required to move within the road. The PFP
values in Table III, however, show that about 55% of the APF
particles fell outside the road. Hence, the ordinary APF may
provide biased information on the position of the vehicle.

The PFP of the CAPFA is about 88% prior to the final re-
sampling at each time step. After the final re-sampling, all the
particles obtained by the CAPFA fall into the feasible area,
leading to PFP = 100%. The use of the road constraints in
the CAPFA substantially increased the ESS. For N = 250, the
gain in ESS by using the CAPFA compared to the APF was
Geff = 100% × (75.3 − 42.7)/42.7 = 76.4%. For the estima-
tion error, the average MSE of the CAPFA was only about
100% × 5.022/7.051 = 71.2% of the APF.

D. Comparison With Other Algorithms

In this subsection we compare the proposed CAPFA to some
existing particle filters with state constraints.

It was shown in [7] that the constrained particle filter (CPF)
in [7] outperformed the acceptance-rejection method in [6] and
several conventional filtering methods including the EKF, con-
strained EKF, UKF, constrained UKE and MHE. Hence, we first
consider CPF Algorithm 2 in [7] (denoted as CPF(alg.2 [7])) for
which α = 0.05 was used in the chi-square test. The results are
displayed in the third panel of Table III.

It can be seen that the CPF Algorithm 2 in [7] had a reasonable
computation time. This is mainly because the chi-square test is
used to reduce the times that the optimization routine is called:

when the test is passed, no optimization is undertaken even if
there are still infeasible particles. In our simulation study, we
noted that this chi-square test was effective for the reduction of
computation time at the price that a substantial proportion of
the particles did not satisfied the constraints: its PFP was about
59%, hence there were about 41% of the particles lying outside
the feasible area. This further caused another important issue:
the corresponding PESS of the CPF Algorithm 2 was very low.
It was only about 1/3 of the nominal size N . Low PFP and
PESS levels affect the quality of inference. This can be seen
from Table III that when the total number of particles N was
not large (150 and 250), both the MSEs and SDs were relatively
high. Note that a high level of SD indicates that the quality of
the state filtering was not stable. This problem was alleviated
when N (and hence the corresponding effective sample size)
became large. This suggests that particle number N need to
be set large for the CPF to cope with the lower percentages of
ESS and feasible particles. We also tested Algorithms 3 and 4
of the CPF in [7]; they had a similar performances to the CPF
Algorithm 2.

We next turn to consider the Gibbs-sampler-based particle fil-
ter in [8], denoted as CPF(Gibbs [8]) in Table III. First, we note
that this method can guarantee all particles fall into the feasible
area and hence its PFP is 100%. It can also be seen from Table III
that the PESS and accuracy as measured by MSE and SD were
better than that of the CPF Algorithms in [7], but not as good
as the CAPFA. More importantly, its computational cost was
much higher than all the other filters. The Gibbs-sampler-based
particle filter involves: (a) the iterative approach of the Gibbs-
sampler for every particle; and (b) determining the constraint
interval within each iteration of the Gibbs sampling. To speed
up the computation process, the constraint interval was solved
analytically in our simulation study and hence the computation
in (b) was kept at the minimum level. If it was impossible to ana-
lytically solve problem (b), then searching a numerical solution
for (b) would incur a much higher computational cost. Overall,
it seems that the Gibbs-sampler-based particle filter in [8] is
more suitable to offline applications due to its computational
demand.

Finally, we considered two particle filters recently proposed
in [18] and [19], denoted as tUPF([18]) and tUPF ([19])
respectively in Table III. For both methods, the importance
distributions are based on the UKF approach that is further
supplemented with a truncation technique to accommodate the
state constraints. They have 100% PFP because all the particles
outside the feasible are redrawn. We can see from Table III that,
in comparison with tUPF([18]), tUPF([19]) is more accurate
but it has a higher computational cost. The CAPFA outperforms
both of them in terms of MSE, SD, and PESS. The CAPFA
has a comparable computation time to tUPF([18]), and is much
faster than tUPF([19]). Note that for tUPF([19]), the cases for
N = 150 and 250 are not reported here because it did not work
properly due to a very low ESS.

E. Impact of a Poor Initial Condition

It is well known that a poorly chosen initial point for a filter
can have a negative impact on the performance of the filter, in
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TABLE IV
COMPARISON OF THE PERFORMANCES OF SEVERAL PARTICLE FILTERS

WITH A POOR INITIAL GUESS AVERAGED OVER 100 RUNS

Filters N MSE PESS(%) PFP(%) CT(s)

APF([13]) 500 7.197 42.6 44.4 0.021
CAPFA 250 5.857 75.6 88.7 0.074
CAPFA 500 5.153 73.1 88.6 0.148
CPF(alg.2 [7]) 500 6.460 33.8 57.6 0.477
CPF(alg.3 [7]) 500 6.576 36.2 57.3 0.198
CPF(alg.4 [7]) 500 6.482 37.3 56.7 0.044
CPF(Gibbs [8]) 500 6.244 49.1 100 4.726
tUPF([18]) 500 8.574 55.1 100 0.046
tUPF([19]) 500 6.357 6.9 100 0.507

particular during an initial time period. Next, we consider a poor
initial guess chosen as a Gaussian distribution with mean x̂0 =
[90, 15, 0, 10]T and covariance P0 = diag{100, 100, 1, 1}. Due
to the poor initial guess, most of the algorithms in Table III
require large particle numbers (N = 500 or above) to obtain
a reasonable result in the test. However, the proposed CAPFA
performed well even withN = 250 which is therefore included
here for the comparison purposes. The results are displayed
in IV.

Table IV shows that with a poorer initial guess: (a) the MSE
became larger for all the filters; (b) the CAPFA with both N =
250 and 500 outperformed the others; (c) the CAPFA was fairly
robust against the poor initial condition.

In summary, the simulation study shows that the PESS level
of the proposed CAPFA is superior over the existing algorithms,
leading to a satisfactory filtering accuracy with a reasonably
low computational cost.

V. CONCLUDING REMARKS

In this technical note we have proposed a new particle filtering
algorithm, CAPFA, to deal with state estimation with state con-
straints. We have shown that the CAPFA has three distinguished
features for dealing with the state constraints: (a) a highly se-
lective method that chooses particles for propagating into the
next time step; (b) an effective optimization method for locating
the center of each restricted transition distribution; and (c) a
method that efficiently constructs the importance distributions
using knowledge of the state constraints.

The simulation study shows that the proposed SIPM method
took only a fraction of time used by the ‘standard’ optimization
method with little price of performance degradation. It also
demonstrates the benefits of incorporating state constraints in
the particle sampling: the CAPFA had a much larger ESS in
comparison with the existing particle filters.

This technical note assumes that the probability density func-
tion of the system noise and the constraint functions have contin-
uous second-order partial derivatives. Primarily these conditions
are used in the SIPM. Hence, if necessary, these assumptions
can be relaxed by replacing the SIPM with a suitable derivative-
free optimization method. We also note that the assumptions of
the proposed method exclude some realistic models of practi-

cal interests where (a) the uncertainty in the state equation is
modeled as a non-additive noise without a density; and (b) the
state constraint is defined implicitly by a feasible set, where it
is just possible to check whether a point is inside or outside
the feasible set, but no simple explicit expression is available in
terms of regular enough constraint functions. Further research
is required to overcome these limitations.
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