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A Differential Game Approach to Multi-agent Collision Avoidance
Thulasi Mylvaganam, Member, IEEE, Mario Sassano, Member, IEEE, and Alessandro Astolfi, Fellow, IEEE

Abstract—A multi-agent system consisting of N agents is con-
sidered. The problem of steering each agent from its initial po-
sition to a desired goal while avoiding collisions with obstacles
and other agents is studied. This problem, referred to as the multi-
agent collision avoidance problem, is formulated as a differential
game. Dynamic feedback strategies that approximate the feedback
Nash equilibrium solutions of the differential game are constructed
and it is shown that, provided certain assumptions are satisfied,
these guarantee that the agents reach their targets while avoiding
collisions.

Index Terms—Control design, collision avoidance, nonlinear
control systems, multi-agent systems.

I. INTRODUCTION

The state of multi-agent systems is a fast-emerging field in control
engineering [1]–[3]. One of the main motivations behind this area of
research is that a team of “simple” agents collectively can perform
“complex” tasks. Many areas of applications exist for such multi-agent
systems. Typically the agents are expected to solve a task collabora-
tively or maintain certain positions relative to one another. Often the
terms collaborative control, cooperative control, and formation con-
trol are used to describe such problems [4]–[16]. In the context of
formation control, most of the proposed approaches are based on the
notion of navigation function—introduced by Rimon and Koditschek
in [17] in the case of single agents—which is constructed from the
geometric information on the considered topology and then employed
to define gradient descent control laws. This concept has been recently
extended to the multi-agent scenario, both in a centralized [18], [19]
and decentralized [20], [21] implementation. In [6], [7], the problem
of continuously monitoring a region using a team of unmanned aerial
vehicles has been formulated as a differential game for which approx-
imate solutions have been found using the methodology developed
in [22]. Many research topics within the area of multi-agent systems
are inspired by naturally occurring systems, such as schools of fish,
migrating birds, and swarms of bees [23]–[29].

Although it is common to study problems in which the agents in
a multi-agent system solve a task collaboratively, there are scenarios

Manuscript received August 29, 2016; revised February 22, 2017 and
February 28, 2017; accepted March 2, 2017. Date of publication April 24,
2017; date of current version July 26, 2017. The work of T. Mylvaganam
is conducted as part of the “STABLE-NET” Research Project supported
by the RCUK’s Energy Programme under Contract EP/L014343/1. Rec-
ommended by Associate Editor H. G. Tanner. (Corresponding author:
Thulasi Mylvaganam.)

T. Mylvaganam is with the Department of Aeronautics, Imperial Col-
lege London, London SW7 2AZ, U.K. (e-mail: thulasi.mylvaganam06@
imperial.ac.uk).

M. Sassano is with the Dipartimento di Ingegneria Civile e Ingegneria
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in which the agents have individual, and possibly conflicting, goals.
Differential game theory introduces a framework to study problems
in which several players seek to attain individual goals, which may
or may not be competing [30]–[33]. It therefore appears natural that
differential game theory can be useful to study and solve problems
involving multi-agents systems [34], [35].

In this paper, we consider a team of mobile agents. We focus on the
problem of controlling these agents from their given initial positions to
a set of predefined targets while avoiding collisions with static obstacles
as well as collisions with other agents. This problem is referred to as
the multi-agent collision avoidance problem. Preliminary results have
appeared in [36]. The game introduced herein is a nonlinear differential
game for which feedback Nash equilibrium solutions are sought. How-
ever, since obtaining such solutions relies on solving a set of coupled
partial differential equations (PDEs), for which closed-form solutions
are not readily available, it is necessary to settle for approximate so-
lutions. In [37]–[39], two methods for constructing dynamic feedback
strategies for a class of nonlinear differential games have been devel-
oped. Using the machinery developed in [39], we construct dynamic
feedback strategies, which approximate the feedback Nash equilibrium
solution of the differential game describing the multi-agent collision
avoidance problem. Furthermore, we show that, subject to certain nat-
ural assumptions being satisfied, these strategies guarantee that all
agents reach their targets while avoiding collisions with obstacles or
other agents. The method allows us to systematically construct a Lya-
punov function yielding local stability and asymptotic convergence of
the agents to the desired targets. This constructive result is achieved
in two steps. First, we define a matrix-valued function, for each agent,
which is similar in spirit to the definition of a standard navigation func-
tion. This function is modified by the presence of additional dynamics
and the resulting value functions are smooth, hence yielding smooth
control laws. The proposed differential game formulation endows the
value functions with an interesting property: Given the initial config-
uration of the agents, evaluating these functions allows us to assess
a priori the performance, individually for each agent, of the control
strategy (in terms of distance from obstacles or interagent collisions
during the entire movement). In addition to providing a novel perspec-
tive of the collision avoidance problem, the differential game approach
adopted in this paper paves the way to several extensions in relation
to control of multi-agent systems, such as the incorporation of multi-
ple simultaneous objectives and control design under communication
constraints (see, for example, [40]).

The remainder of the paper is structured as follows. The multi-
agent collision avoidance problem is introduced and formulated as a
differential game in Section II. In Section III, the solution to the prob-
lem is presented. Finally, simulations illustrating the theory are pre-
sented in Section IV before some concluding remarks are provided in
Section V.

II. PROBLEM FORMULATION

In this section, the multi-agent collision avoidance problem is intro-
duced and formulated as a differential game. The problem is studied in
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a centralized framework, in which the positions of each agent are avail-
able to the remaining members of the group at all times. We consider
a team of N agents moving on the ground (Euclidean plane), possibly
characterized by the presence of (static) obstacles. In particular, each
agent is described by single-integrator dynamics, i.e.,

ẋi = ui , (1)

i = 1, . . . N , where ui ∈ R2 is the control input of the ith agent and
the position of the ith agent is denoted by xi ∈ R2 . Note that xi and ui

represent the position and the velocity of the ith agent on the Euclidean
plane, respectively. Suppose that each agent is associated with a desired
goal, namely a target position x∗

i ∈ R2 , i = 1, . . . , N . Moreover, let x̃i

denote the error variable between the current position of the ith agent
and its corresponding target position, i.e., x̃i = xi − x∗

i . The problem
then consists of steering each agent from its initial position to its goal
while avoiding collisions. Each agent i is associated with a parameter
ri > 0, which plays the role of safety radius. Since the team may consist
of heterogeneous agents, e.g., they may have different sizes or shapes,
individual values for the safety radius may be associated to each agent.
Suppose that there are m ≥ 0 static obstacles and let pc

j ∈ R2 and
Pj ⊂ R2 , j = 1, . . . , m, denote the center of mass of the jth obstacle
and the region of the Euclidean plane that it occupies, respectively.
The standard notation ∂Pj is employed to denote the boundary of the
region Pj . In what follows elliptical obstacles are considered, i.e.,

∂Pj = {x ∈ R2 : ‖x − pj ‖2
E j

− ρ2
j = 0}, (2)

where ρj > 0 and Ej = E�
j > 0. There is a one-to-one relation be-

tween the point pj , ρj , and Ej , and the physical parameters of the
ellipse, i.e., the center of mass pc

j and the lengths of the semiaxes. This
one-to-one relation transforms the description of the ellipse in (2) into
the canonical representation of the ellipse. For the case in which the
obstacle is circular Ej = I , pj is the center of mass and ρj is the radius
of the circle.

Remark 1: If a static obstacle is not elliptical, possibly even in
the presence of nonsmooth edges, it is possible to enclose the ob-
stacle within an ellipse, thus smoothing the obstacle. This can be
achieved by exploiting the notion of geometric moments of the portion
of the Euclidean plane that constitutes the obstacle [41], [42]. In fact,
the moments up to order 2 are related to the geometric parameters of
the smallest ellipse that contains the region of interest, see e.g., [42]. �

The ith agent is guaranteed to avoid collisions with the jth obstacle
if it does not cross the boundary ∂Pj . We define the obstacle avoidance
region and collisions between an agent and a static obstacle as follows.

Definition 1: Consider the open sets Sj = {x ∈ R2 : ‖x −
pj ‖2

E j
< ρ2

j }. The obstacle avoidance region, denoted by S, is de-
fined as S = ∪m

j=1 Sj . 	
Definition 2: A collision between the ith agent and a static obstacle

is said to occur if there exists a time instant t̄ ≥ 0 such that xi (t̄) ∈ S.
The ith agent is said to collide with the jth obstacle if there exists a
time instant t̄ ≥ 0 such that ‖xi (t̄) − pc

j ‖2 ≤ (ri + ρ̄j (φ(t̄)))2 , where1

ρ̄j (φ) denotes the radius of the ellipse Pj in polar coordinates as a
function of the angle φ of the segment connecting xi (t̄) and pc

j , relative
to the polar description of pc

j , i.e., (pc
0 ,j , φ0 ). 	

In addition to avoiding collisions with static obstacles, each agent
should avoid collisions with other members of the team by maintaining

1Given an ellipse Pj , the function ρ̄j (φ) can be computed by straightfor-

ward computations, yielding ρ̄j (φ) = ρ̄ n , j (φ )
ρ̄ d , j (φ ) , with ρ̄d ,j (φ) = (b2 − a2 )

cos(2φ − 2φa ) + a2 + b2 and ρ̄n ,j (φ) = pc
0 ,j [(b2 − a2 ) cos(φ + φ0 −

2φa )+(a2 + b2 ) cos(φ − φ0 )] +
√

2ab
√

ρ̄d ,j (φ) − 2(pc
0 ,j )2 sin(φ − φ0 ),

where a and b denote the major and minor semiaxis of the ellipse, respectively,
and φa is the rotation of the major semiaxis relative to φ0 .

a sufficiently large distance between itself and the other agents. From
the perspective of the ith agent, the remainder of the agents, i.e., j =
1, . . . , N , j �= i, can be considered as dynamic obstacles. Bearing this
in mind, the agent avoidance region of the ith agent may be described
by mimicking and adapting the ideas of Definitions 1 and 2.

Definition 3: Given a time instant t̄ ≥ 0, consider the open sets
Dt̄

ij = {x ∈ R2 : ‖x − xj (t̄)‖2 ≤ (ri + rj )2}, j = 1, . . . , N , j �= i.
The agent avoidance region of the ith agent at t̄, denoted Dt̄

i , is defined
as Dt̄

i = ∪N
j=1 ,j �= i Dt̄

ij . 	
A collision between two agents may be now defined.
Definition 4: The ith agent is said to collide with the jth agent if

there exists a time instant t̄ ≥ 0 such that ‖xi (t̄) − xj (t̄)‖2 ≤ (ri +
rj )2 , namely xi (t̄) ∈ Dt̄

i . 	
Let D̄t̄

i denote the complement of the set Dt̄
i and similarly let S̄

denote the complement of S. Then, a collision-free trajectory for the
ith agent is defined as follows.

Definition 5: The ith agent is said to be collision-free if xi (t̄) �∈
Dt̄

i ∪ S for all t̄ ≥ 0, or equivalently xi (t̄) ∈ D̄t̄
i ∩ S̄, for all t̄ ≥ 0. 	

Remark 2: Definitions 3, 4, and 5 are provided for simplicity con-
sidering circular geometries around each agent, namely the sets Dt̄

ij

are circles centered at xi . Different and more complex geometries
can easily be accounted for by modifying Definitions 3 and 4. The
alternative definition Dt̄

ij =
{
x ∈ R2 : ‖x − xj (t̄)‖2

M i
≤ r2

i , j =
1, . . . , N , j �= i

}
, with Mi = M�

i > 0, for instance, allows for el-
liptical geometries. �

Remark 3: The presence of dynamic obstacles may be allowed by
mimicking the definitions concerning collisions between two different
agents. �

In what follows, we assume that sufficient time is provided to ac-
complish the task of steering each agent from its initial position xi (0)
to its corresponding target position x∗

i . In a more practical scenario,
in which a sequence of desired target positions x∗,k

i , k = 1, 2, . . ., is
assigned to each agent, this assumption requires that the rate at which
the sequential tasks are assigned is sufficiently slow to let the agent
accomplish the previous task, or at least to be steered arbitrarily close
to the desired target position. According to the above discussion the
multi-agent collision avoidance problem can then be formulated as
an infinite-horizon, noncooperative, nonzero-sum differential game, as
detailed in the following definitions. This formulation allows us to
simultaneously deal with the primary goal of reaching the desired po-
sition x∗

i and the secondary, though unavoidable, objective of avoiding
collisions.

Problem 1: Consider a multi-agent system consisting of N > 1
agents with dynamics (1), for i = 1, . . . N . The multi-agent collision
avoidance problem consists in determining feedback control strategies
ui , i = 1, . . . , N , that steer each agent from its initial position to a
predefined target while avoiding collisions. 	

Problem 1 can be recast in the framework of differential games as
done in the following statement.

Problem 2: Consider a multi-agent system consisting of N agents
with dynamics (1), for i = 1, . . . N , and let x̃ =

[
x̃�

1 , . . . , x̃�
N

]�
, such

that

˙̃x = B1u1 + · · · + BN uN , (3)

where B1 = [I, 0, . . . 0]� , . . . , BN = [0, . . . 0, I ]�. Problem 1 can be
recast into that of minimizing the individual cost functionals

Ji (x̃(0), u1 , . . . , uN ) =
1
2

∫ ∞

0

(
qi (x̃(t)) + ‖ui (t)‖2) dt, (4)

i = 1, . . . , N , where qi : R2N → R, qi (x̃) > 0, qi (0) = 0, are run-
ning costs given by

qi (x̃) =
(
αi + βs

i gs
i (x̃) + βd

i gd
i (x̃)

)
x̃�

i x̃i , (5)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 8, AUGUST 2017 4231

with constants αi > 0, βs
i > 0, βd

i > 0 and where gs
i (x̃) ≥

0 and gd
i (x̃) ≥ 0 are such that limx̃+x ∗→∂ S gs

i (x̃) = +∞ and
limx̃+x ∗→∂Dt

i
gd

i (x̃) = +∞, respectively. 	
Remark 4: The differential game formulation has been preferred

to an optimal control approach for several reasons. First of all, in
the latter case a single value function is sought for, hence providing
a cumulative index of performance for the entire group of agents,
whereas in the game theory scenario an individual value function is
associated to each agent, thus allowing for a more detailed analysis
of the effectiveness of the derived solution. It can also be shown that
the control law obtained with the game theory approach is a solution
according to the notion of feedack Stackelberg equilibrium, in addition
to that of feedback Nash equilibrium. This implies that, should the
planning be performed, for any reason, sequentially for each agent,
e.g., in the presence of delays, the solution proposed in this paper
remains an equilibrium solution to the collision avoidance problem
[11], [43]. This feature is particularly appealing when considering an
extension towards a decentralized implementation of the approach. �

The functions gs
i (x̃) and gd

i (x̃) are barrier functions penalizing the
ith agent from approaching the static obstacles or other agents, re-
spectively, hence can be considered as obstacle collision avoidance
and agent collision avoidance functions, respectively. In the following,
inverse barrier functions are considered for gs

i and gd
i , namely

gs
i (x̃) =

m∑

j=1

1
(
‖(x̃i + x∗

i − pj )‖2
E j

− ρ2
j

)c ,

gd
i (x̃) =

N∑

j=1 ,j �= i

1
(‖(x̃i + x∗

i ) − (x̃j + x∗
j )‖2 − r2

i

)c , (6)

with c > 0. Note that alternative definitions for the two functions are
possible (see, for example, [7], [44]). A control design approach to the
multi-agent collision avoidance problem then consists in determining
the feedback Nash equilibrium strategies for each player, namely the
set of strategies (u∗

1 , . . . , u
∗
N ) satisfying

Ji (x̃(0), u∗
1 , . . . , u

∗
i , . . . , u

∗
N ) ≤ Ji (x̃(0), u∗

1 , . . . , ui , . . . , u
∗
N ), (7)

for all ui �= u∗
i , i = 1, . . . , N and rendering the zero-equilibrium of the

closed-loop system locally asymptotically stable. This, in fact, ensures
that each agent reaches its target position without entering its obstacle
avoidance and agent avoidance regions.

Remark 5: The inequalities (7) describe the Nash equilibrium so-
lution of the differential game. The so-called ε-Nash equilibrium so-
lution [39] is an approximate solution to the problem. This is the
set of strategies u∗

1 , . . . , u
∗
N , which is such that the zero equilib-

rium of the closed-loop system is asymptotically stable and guar-
antees that if one agent deviates from its ε-Nash equilibrium strat-
egy, its gain is bounded from above by a constant ε > 0, i.e., the set
of strategies satisfies the inequalities Ji (x̃(0), u∗

1 , . . . , u
∗
i , . . . , u

∗
N ) ≤

Ji (x̃(0), u∗
1 , . . . , ui , . . . , u

∗
N ) + ε , for some ε > 0, where ui �= u∗

i and
the set of strategies u∗

1 , . . . , ui , . . . , u
∗
N is such that the zero equilib-

rium in closed-loop is asymptotically stable for i = 1, . . . , N . �
Remark 6: In [39], an alternative definition of approximate

solution for a differential game has been introduced. Suppose
that the set of strategies u∗

1 , . . . , u
∗
N renders the zero equilibrium

(locally) asymptotically stable. The set of strategies is then said
to be an εα -Nash equilibrium solution for the differential game if
Ji (x̃(0), u∗

1 , . . . , u
∗
i , . . . , u

∗
N ) ≤ Ji (x̃(0), u∗

1 , . . . , ui , . . . , u
∗
N ) + εα ,

for some εα > 0 and for all u∗
1 , . . . , ui , . . . , u

∗
N such that

σ(Acl + αI) ∈ C−, with α > 0, and Acl denotes the matrix
describing the linearization of the system in closed-loop with the
strategies u∗

1 , . . . , ui , . . . , u
∗
N about the origin. �

III. MULTI-AGENT COLLISION AVOIDANCE

In this section, we discuss the control design technique proposed
to solve the multi-agent collision avoidance problem. Since Nash
equilibria for the differential game introduced in Problem 2 cannot be
easily obtained, a systematic method for constructing feedback control
laws, which satisfy partial differential inequalities (PDIs) (instead of
equations), leading to εα -Nash (instead of Nash) equilibria is provided.
The method requires only the solution of matrix algebraic inequalities,
which is provided in closed-form. It is shown that the constructive
design methodology, which leads to approximate solutions of the
differential game in Problem 2, yields a solution to the original
Problem 1.

A. Hamilton–Jacobi–Isaacs (HJI) PDIs and ε-Nash Equilibria

The HJI PDEs associated with the differential game described by the
cost functionals (4) and the dynamics (1) for i = 1, . . . , N , must be
considered toward the construction of Nash equilibrium strategies, i.e.,
individual value functions Vi : R2N → R, i = 1, . . . , N , satisfying the
coupled nonlinear PDEs

−1
2

∂Vi

∂x̃
BiB

�
i

∂Vi

∂x̃

�
+

1
2
qi (x̃) −

N∑

j=1 ,j �= i

∂Vi

∂x̃
Bj B

�
j

∂Vj

∂x̃

�
= 0,

(8)
with Vi > 0 and Vi (0) = 0, i = 1, . . . , N , must be found [30], [31],
[45]. Provided a solution to the PDEs (8) can be determined, the Nash
equilibrium strategy of the ith agent is given by

u∗
i = −B�

i

∂Vi

∂x̃
(x̃1 , . . . , x̃N )� . (9)

Equation (8), i = 1, . . . , N , do not readily admit closed-form solutions
and it is of interest to settle for an approximate solution of the differ-
ential game. In what follows, it is shown that an approximate solution
to the problem (in terms of ε- or εα -Nash equilibrium solutions) can
be determined in a systematic manner by considering the immersion
of the original dynamics in a higher-dimensional state space. It can be
shown, see, e.g., [39], that εα -Nash equilibrium solutions are related to
PDIs. Toward this end, consider the HJI PDIs

−1
2

∂Vi

∂x̃
BiB

�
i

∂Vi

∂x̃

�
+

1
2
qi (x̃) −

N∑

j=1 ,j �= i

∂Vi

∂x̃
Bj B

�
j

∂Vj

∂x̃

�
≤ 0,

(10)
with Vi > 0 and Vi (0) = 0, i = 1, . . . , N . It then follows that the set of

strategies ui = −B�
i

∂Vi

∂x̃i

�
, i = 1, . . . , N solves the multi-agent col-

lision avoidance problem, i.e., collision-free motion is achieved while
the agents maneuver to reach their goals. In fact, the set of strategies
constitutes a local εα -Nash equilibrium solution for the differential
game described in Problem 2. However, solving the PDIs (10) may
still be a daunting task to accomplish. Thus, in the Section III-B, we
show how a solution to the inequalities (10) can be systematically con-
structed in an extended state space by relying merely on the solution
of a system of matrix inequalities.

B. Algebraic P̄ Matrix Solutions

In this section, a procedure to systematically construct a set of dy-
namic strategies solving the PDIs (10) instead of the HJI PDEs (8),
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i = 1, . . . , N , is presented. The method, introduced in [37]–[39], re-
lies on the notion of an algebraic P̄ matrix solution and a dynamic
extension ξ, which is common to all agents.

Definition 6: Consider the system (1) and the cost functionals
(4). Let Σi : R2N → R2N ×2N be such that Σi (x̃) = Σi (x̃)� ≥ 0,
i = 1, . . . , N , for all x̃ ∈ R2N , the matrix-valued functions Pi (x̃) =
Pi (x̃)�, i = 1, . . . , N , are said to be algebraic P̄ matrix solutions for
the differential game with HJI (8), for i = 1. . . . , N , if the following
conditions hold.
1) For all x ∈ Rn and i = 1, . . . , N ,

− Pi (x̃)BiB
�
i Pi (x̃) + Qi (x̃) + Σi (x̃)

−
N∑

j=1 ,j �= i

(Pi (x̃)Bj B
�
j Pj (x̃) + Pj (x̃)Bj B

�
j Pi (x̃)) = 0, (11)

where Qi (x̃) is such that qi (x̃) = x̃�Qi (x̃)x̃.
2) For i = 1, . . . , N , Pi (0) = P̄i , where P̄i denotes the symmetric

positive definite solution of the coupled Riccati equations

− P̄iBiB
�
i P̄i + Q̄i + Σ̄i

−
N∑

j=1 ,j �= i

(
P̄iBj B

�
j P̄j + P̄j Bj B

�
j P̄i

)
= 0, (12)

where Q̄i = Qi (0).
Exploiting the notion of algebraic P̄ matrix solution define the

functions

Vi (x̃, ξ) =
1
2
x̃�Pi (ξ)x̃ +

1
2
‖x̃ − ξ‖2

R i
, (13)

with ξ ∈ R2N , where Ri = R�
i > 0, i = 1, . . . , N , which are locally

positive definite around the origin for any Ri . The partial derivatives
of Vi (x̃, ξ) are given by

∂Vi

∂x̃
= x̃�Pi (x̃) + (x̃ − ξ)�(Ri − Φi (x̃, ξ))�,

∂Vi

∂ξ
= x̃�Ψi (x̃, ξ) − (x̃ − ξ)�Ri , (14)

where Φi (x̃, ξ) is such that x̃�(Pi (x̃) − Pi (ξ)) = (x̃ − ξ)�Φi (x̃, ξ)�

and Ψi (x̃, ξ) is the Jacobian matrix of the mapping 1
2 Pi (ξ)x̃. We recall

one of the main results of [39]. The following result characterizes the
properties of the extended value functions Vi in (13).

Theorem 1 ([39]): Consider the system (1) and the cost functionals
(4). Let Pi , i = 1, . . . , N , be algebraic P̄ matrix solutions of (8). Then,
there exist k̄ ≥ 0, Ri = R�

i > 0, i = 1, . . . , N , and a neighborhood
Ω ⊆ R2N × R2N of the origin such that the dynamic strategies

ui = −B�
i

∂Vi

∂x̃i

�
, ξ̇ = −k

N∑

i=1

(
Ψi (x̃, ξ)�x̃ − Ri (x̃ − ξ)

)
, (15)

satisfy the inequalities

− 1
2

∂Vi

∂x̃
BiB

�
i

∂Vi

∂x̃

�
+

1
2
qi (x̃)

−
N∑

j=1 ,j �= i

∂Vi

∂x̃
Bj B

�
j

∂Vj

∂x̃

�
+

∂Vi

∂ξ
ξ̇ ≤ 0, (16)

for all (x̃, ξ) ∈ Ω and for all k > k̄. The dynamic feedback strategies
(15) are such that the trajectories of the system (1)–(15) asymptoti-
cally converge to the origin and constitute an εα -Nash solution for the
differential game described in Problem 2. 	

Theorem 1 entails that obtaining a solution to Problem 2 boils down
to determining algebraic P̄ matrix solutions, i.e., matrix-valued func-
tions satisfying (11). Using algebraic P̄ matrix solutions dynamic
control strategies are designed which, by construction, satisfy the PDIs
(16) locally. Note that the method does not necessitate solving the PDEs
(8) or the PDIs (16) directly.

C. Feedback Design Methodology

It is assumed that the following conditions are satisfied by the initial
configurations of the agents.

Assumption 1 (Obstacle collision-free initial deployment): The
initial positions of the agents satisfy ‖xi (0) − pc

j ‖2 > (ri + ρ̄j

(φ(0))) , for all i = 1, . . . , N , j = 1, . . . , m.
Assumption 2 (Agent collision-free initial deployment): The initial

positions of the agents satisfy ‖xi (0) − xj (0)‖ > ri + rj , for all i =
1, . . . , N , j = 1, . . . , N , j �= i.

Assumptions 1 and 2 guarantee that the initial positions of the agents
are such that no collisions with obstacles or between agents has oc-
curred at the commencement of the problem. Similarly, it is assumed
that the following conditions are satisfied by the target configurations.

Assumption 3 (Obstacle collision-free desired deployment): The
target positions of the agents satisfy ‖x∗

i − pc
j ‖2 > (ri + ρ̄j (φ∗)) , for

all i = 1, . . . , N , j = 1, . . . , m.
Assumption 4 (Agent collision-free desired deployment): The target

positions for each agent satisfy ‖x∗
i − x∗

j ‖ > ri + rj , for all
i = 1, . . . , N , j = 1, . . . , N , j �= i.

Assumptions 3 and 4 are such that the goals for the agents, i.e., x∗
i ,

i = 1, . . . , N , are feasible, namely the target positions do not force
collisions with obstacles or between agents. Finally, it is assumed
throughout the paper that the static obstacles do not form an imper-
meable boundary about targets of one or more of the agents. Without
this assumption the problem is infeasible.

In the following the notation A = [Aij ] is used as a shorthand for
the block matrix

A =

⎡

⎢
⎢
⎣

A11 . . . , A1N

...
. . .

...

AN 1

... AN N

⎤

⎥
⎥
⎦ .

Consider now the dynamic extension ξ = [ξ1 , . . . , ξN ] ∈ R2N ,
where ξi ∈ R2 , i = 1, . . . , N , introduced in the previous section
and the matrix-valued functions P1 (x), . . . , PN (x), with Pi (x) ∈
R2N ×2N , i = 1, . . . , N , given by

Pi (x̃) =
[
P i

k j (x̃)
]� + γi I (17)

where P i
k j ∈ R2×2 , k = 1, . . . N , j = 1, . . . , N and γi > 0 is a con-

stant parameter,

P i
ii (x̃) =

[√
αi + βs

i gs
i (x̃) + βd

i gd
i (x̃)I

]
, (18)

and P i
k j = 0 for k �= i and j �= i. Define the set M = {ξ ∈ R2N :

gs
i (ξ) + gd

i (ξ) < ∞}. Note that the functions Vi in (13) are positive
definite for all (x, ξ) ∈ R2N ×M. Consider, in addition, a partition
of the matrix Ri as Ri = R�

i =
[
Ni

k j

]
> 0, where Ni

ij ∈ R2×2 , k =
1, . . . , N , j = 1, . . . , N . Adopting the above notation the following
theorem shows that the functions Pi , i = 1, . . . , N , defined in (17)–
(18) constitute algebraic P̄ matrix solutions of (8) and consequently
that the dynamic control laws (15) with Vi as in (13) and Pi as in
(17)–(18) solve the multi-agent collision avoidance problem.

Similarly to Theorem 1, the following result hinges upon the exis-
tence of a certain compact set Ω, on which it is first shown that (16)
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holds point-wise with respect to x. Then, such a property is employed
to make claims on the closed-loop trajectories, as functions of time,
that do not leave such set.

Theorem 2: Consider the dynamics (1) and the algebraic P̄ matrix
solution (17)–(18) and suppose that Assumptions 1–4 hold. Then, there
exist k̄ ≥ 0, Ri , i = 1, . . . , N , and a neighborhood Ω ⊆ R2N × R2N

of the origin such that the dynamic strategies

ui = − x̃i

(√
αi + βs

i gs
i (ξ) + βd

i gd
i (ξ) + γi

)

−
N∑

j=1

Ni
ij (x̃j − ξj ),

ξ̇ = − k
N∑

i=1

(
x̃�

i x̃i

2
√

αi + βs
i gs

i (ξ) + βd
i gd

i (ξ)

(

βs
i

∂gs
i (ξ)
∂ξ

�

+ βd
i

∂gd
i (ξ)
∂ξ

�)

− Ri (x̃ − ξ)

)

, (19)

with i = 1, . . . , N , satisfy (16) for all (x, ξ) ∈ Ω ∩ (R2N ×M) and
constitute an εα -Nash equilibrium solution for the differential game
associated to the cost functionals (4) in Problem 2. Moreover, all the
trajectories of the interconnected closed-loop system (1)–(19) that do
not leave the set Ω ∩ (R2N ×M) are such that limt→∞ x̃i (t) = 0,
limt→∞ ξ(t) = 0 and xi (t) ∈ D̄t

i ∩ S̄, for all t ≥ 0, hence, solving
Problem 2 in the set Ω ∩ (R2N ×M). 	

Proof: The proof consists of two steps, the first one to show that
the matrices Pi (x̃), i = 1, . . . , N , constitute an algebraic P̄ matrix
solution for the differential game associated to Problem 2. It then
follows that the dynamic control strategies (19), i = 1, . . . , N , solve the
inequalities (16) and thus constitute an εα -Nash equilibrium solution
for the differential game [37]–[39]. Second, it is shown that provided
Assumptions 1–4 are satisfied, the agents converge to the desired target
while avoiding collisions.

It follows from (5) that Qi (x̃) = [ak j ], where ak j ∈ R2×2

is such that ak j = 0, for all k = 1, . . . , N , j = 1, . . . , N ,
j �= i, and aii =

(
αi + βi

(
gs

i (x̃) + gd
i (x̃)

) )
I . Then, P̂i (x̃) =

blockdiag {0, . . . , 0,
√

αi + βs
i gs

i (x̃) + βd
i gd

i (x̃) I, 0, . . . , 0} , i =
1, . . . N , satisfy (11) with Σi (x̃) = 0, for i = 1, . . . N . Simi-
larly, P1 (x̃), . . . , PN (x̃), as defined in (17), satisfy (11) with
Σi (x̃)=blockdiag{σi

11 , σ
i
22 , . . . , σ

i
N N}+

∑N
p=1 γiγp I , where σi

ii =

2γi

√
αi +βi

(
gs

i (x̃)+gd
i (x̃)

)
I and σi

j j =γi

√
αj +βj

(
gs

i(x̃)+gd
i (x̃)

)
I,

for i = 1, . . . , N , j = 1, . . . , N, and j �= i. A direct substitution
shows that the (12) are satisfied by (17), i = 1, . . . , N . Hence, the
matrix-valued functions P1 (x̃), . . . , PN (x̃) are an algebraic P̄ matrix
solution for the differential game associated to Problem 2. Using
(17)–(18), i = 1, . . . , N , as an algebraic P̄ matrix solution, the
dynamic strategies (15) are given by (19), i = 1, . . . , N .

It remains to show that the resulting closed-loop trajectories are
collision-free. The dynamic strategies (15) are the Nash-equilibrium
strategies of a differential game with dynamics (1) and cost functionals

J̃i (x̃(0), ξ(0), u1 , . . . , uN )

=
1
2

∫ ∞

0

(
qi (x̃) + ‖ui (t)‖2 + ci (x̃, ξ)

)
dt, (20)

where ci (x̃, ξ) ≥ 0, i = 1, . . . , N . The value functions V1 , . . . , VN

are such that Vi (x̃(0), ξ(0)) = J̃i (x̃(0), ξ(0), u1 , . . . , uN ) .
Assumptions 1 and 2 are such that qi (x̃(0)) , i = 1, . . . , N , are

bounded. Moreover, note that for all ξ ∈ M, the algebraic P̄
matrix solutions, Pi , i = 1, . . . , N , are bounded. This implies that
Vi (x̃(0), ξ(0)) and thus also J̃i , i = 1, . . . , N, are bounded for
all ξ ∈ M. Finally, taking W (x̃, ξ) = V1 (x̃, ξ) + · · · + VN (x̃, ξ)
as a candidate Lyapunov function, it follows from (16) that
Ẇ ≤ − 1

2

∑N
i=1 qi (x̃). Note additionally, that Assumptions 3

and 4 ensure that qi (0) = 0, i = 1, . . . , N , which ensures that
the infinite-horizon differential game problem is well posed. From the
above, it follows that the problem is well posed and for all ξ ∈ M, the
zero equilibrium of the closed-loop system is locally asymptotically
stable: The agents converge to their target position. Furthermore,
since Ẇ ≤ 0 it follows that the agents do so without entering their
avoidance region. �

It is evident that the initial condition of the dynamic extension ξ(0)
is of importance for the solution of the differential game, namely to
ensure that the trajectories of the dynamic extension do not leave the
set M. Toward this end a reasonable criterion for such selection is
to let ξ(0) be such that gi (ξ(0)) is bounded for all i = 1, . . . , N ,
i.e., ξ(0) ∈ M. The following result shows that this choice is in fact
sufficient to show that the trajectories do not leave M since such a set
is positively invariant with respect to the dynamics (1)–(19).

Proposition 1: Suppose Assumptions 1 and 2 are satisfied. If
the initial condition of the dynamic extension is selected such that
ξ(0) ∈ M it follows that (gs

i (ξ(t)) + gd
i (ξ(t))) < ∞ for all t > 0,

which implies ξ(t) ∈ M for all t > 0, i.e., the set M is positively
invariant. 	

Proof: The selection ξ(0) ∈ M is such that Pi (ξ(0)) < ∞,
which in turn ensures that Vi (x̃(0), ξ(0)) is bounded for i =
1, . . . , N , for all x satisfying Assumptions 1 and 2. Recall that
Vi (x̃(0), ξ(0)) = J̃i (x̃(0), ξ(0), u1 , . . . , uN ) . If at any time instant
t̄ > 0 the trajectory ξ(t̄) leaves the set M it is straight-forward to see
that J̃i (x̃(0), ξ(0), u1 , . . . , uN ) becomes unbounded. However since
Vi (t) < ∞, for all t ≥ 0, this cannot occur and it follows that ξ(t) ∈ M
for all t > 0. �

Remark 7: It is easy to imagine situations in which a deadlock
between agents could occur: Intuitively “symmetric” scenarios could
end in a deadlock, as seen in [18]. Whereas approaches using (static)
navigation functions typically are convergent almost everywhere, the
approach adopted herein ensures local convergence, since W is a Lya-
punov function showing local asymptotic stability of the origin of the
extended state (x̃, ξ), thus eliminating the presence of saddle points
(causing deadlocks) in a neighborhood of the equilibrium. �

Remark 8: Although the collision avoidance functions (6), for
i = 1, . . . , N , are unbounded when the denominators in (6) are zero,
the closed-loop system (3)–(19) is such that, provided the denomi-
nators are greater than zero initially, they remain greater than zero
for all time. Thus, the dynamic control strategies (19) are bounded
at all times. This is a direct consequence of Proposition 1. Namely,
x̃(0) and ξ(0) are such that Pi (ξ(0)) and Vi (x̃(0), ξ(0)) (and thus
also J̃i (x̃(0), ξ(0), u1 , . . . , uN )), i = 1, . . . , N , are bounded in the
neighborhood of the origin in which the inequalities (16) are satisfied.
Boundedness of the control efforts is then implied by the definition of
the cost functionals in (20). �

IV. SIMULATIONS

Two illustrative examples are presented in this section. In both cases
the differential game corresponding to the problem associated with
the agents is solved using Theorem 2 and for the collision avoidance
functions (6) the parameter c = 1 has been used. In Figs. 1 and 2, the
arrows indicate direction of motion and the circular markers denote the
initial positions of the agents.
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Fig. 1. Trajectories of the agents 1 (black line), 2 (gray line) with
x1 (0) = [−30, 0]�, x2 (0) = [30, 0]�, x∗

1 = x2 (0) and x∗
2 = x1 (0).

Fig. 2. Trajectories of 12 agents which pairwise exchange positions.

A. Two Agents Maneuvering Through a Narrow Path

Consider the case in which there are N = 2 agents and these are
to exchange position: The initial positions of the agents are x1 (0) =
[−30, 0]� and x2 (0) = [30, 0]�, whereas their target positions are x∗

1 =
x2 (0) and x∗

2 = x1 (0). The parameters associated with the agents
are α1 = α2 = 1, β1 = β2 = 0.1, and r1 = r2 = 1. Their paths are
blocked by two circular obstacles of radii 2, centered at (0, 4) and
(0,−3.5). Note that the obstacles are such that both agents cannot
pass between the two obstacles simultaneously. The remainder of the
parameters have been selected as follows: γ1 = 4, γ2 = 0.5, and R1 =
R2 = I , k = 0.4 and ξ(0) = [60,−5, 240, 7]�. The trajectories of the
first (black line) and second (gray line) agents are shown in Fig. 1,
where the gray circular regions indicate the static obstacles and the
dotted circles indicate the safety radius of each agent at the points
along the trajectories at which the agents are closest to one another or
to the obstacles.2

2For a video representation see https://www.dropbox.com/sh/cdah7n5ugzp91
6b/AACpbOFZPQuu2_nb4tdP1YHja?dl=0

B. Twelve-Agents Example

In this example, consider the case in which N = 12. The no-
tation ξ = [ξ1 , . . . , ξN ], where ξi ∈ R2 for all i = 1, . . . , N , is
used in the following. Consider the case in which the 12 agents
should pairwise exchange their positions, i.e., x∗

i = xi+1 (0), for
i = 1, 3, 5, 7, 9, 11. Furthermore αi = 1, βi = 0.1, ri = 0.5 for i =
1, . . . , 10. For the dynamic controller the following selection of param-
eters has been used: k = 0.2, γi = 1, and Ri = I for i = 1, . . . , N ,
and ξ1 (0) = [−4, 5]�, ξ2 (0) = [5,−4]�, ξ3 (0) = [8,−1]�, ξ4 (0) =
[1, 8]�, ξ5 (0) = [−45,−1]�, ξ6 (0) = [35, 1]�, ξ7 (0) = [7,−30]�,
ξ8 (0) = [−8, 25]�, ξ9 (0) = [−4,−30]�, ξ10 (0) = [4, 30]�, ξ11 (0) =
[−5, 2]�, and ξ12 (0) = [2, 1]�. The trajectories of the agents are
shown in Fig. 2, where solid lines represent the agents i, for
i = 1, 3, 5, 7, 9, 11, and dashed lines denote the agents j, for j =
2, 4, 6, 8, 10, 12. It should be noted that the minimum distance ri + rj

between any pair of agents i and j, for i = 1, . . . , 12, j = 1, . . . , 12,
and j �= i, is respected at all times.

V. CONCLUSION

In this paper, the problem of maneuvering a team of agents from
given initial positions to predefined target positions, while avoiding
both interagent collisions and collisions with static obstacles, is con-
sidered. For agents with single-integrator dynamics the problem is
formulated as an infinite-horizon, nonzero-sum differential game. Ob-
taining feedback Nash equilibrium solutions for the differential game
involves solving a system of coupled PDEs, for which closed-form
solutions cannot be easily found. A systematic method of constructing
approximate solutions to the problem, based on the approach developed
in [39] is proposed in this paper. The theory is demonstrated on a series
of illustrative examples. Future work includes considering the problem
in which there is limited communication between the agents. It is also
of interest to extend the results to problems in which the agents seek to
achieve trajectory tracking instead of simply reaching static targets.
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