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Control Contraction Metrics: Convex and Intrinsic Criteria
for Nonlinear Feedback Design

Ian R. Manchester and Jean-Jacques E. Slotine

Abstract—We introduce the concept of a control contraction
metric, extending contraction analysis to constructive nonlinear
control design. We derive sufficient conditions for exponential sta-
bilizability of all trajectories of a nonlinear control system. The con-
ditions have a simple geometrical interpretation, can be written as
a convex feasibility problem, and are invariant under coordinate
changes. We show that these conditions are necessary and suffi-
cient for feedback linearizable systems and also derive novel con-
vex criteria for exponential stabilization of a nonlinear submanifold
of state space. We illustrate the benefits of convexity by construct-
ing a controller for an unstable polynomial system that combines
local optimality and global stability, using a metric found via sum-
of-squares programming.

Index Terms—Contraction, control system synthesis, linear ma-
trix inequalities, lyapunov methods, nonlinear control systems.

I. INTRODUCTION

The concept of a Lyapunov function is central in nonlinear system
analysis and builds upon the intuitive notion of a system’s energy
dissipating over time [1], [2]. For the nonlinear control design, the
natural extension is the control Lyapunov function (CLF): a generalized
measure of energy that can be made to decrease by choice of control
action, first formalized in [3] and [4] though implicit in earlier works.

If a CLF can be found, then, surprisingly, simple formulas yield
stabilizing feedback designs for quite broad classes of systems [5],
[6, Ch. 4]. However, the fundamental problem of finding a CLF re-
mains challenging. For mechanical and electrical systems, physical
energy often yields effective choices [2], while for systems of partic-
ular “triangular” structures, backstepping and related methods can be
applied [1], [6].

For linear systems, a straightforward change of variables converts
the CLF criteria to a linear matrix inequality (LMI) [7], [8], but for
nonlinear systems, the set of CLFs for a particular system is not
necessarily convex or even connected [9]. The density functions of
[9], the occupation measures of [10], and the Lyapunov measures
of [11] each offer “dual” representations that yield convex (but gen-
erally infinite-dimensional) searches guaranteeing almost-everywhere
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stability. Computationally tractable finite-dimensional approximations
have been based on gridding or the sum-of-squares relaxation [12].

The main result of this paper is that if the nonlinear stabilization
problem is studied differentially, then the simple convexification re-
sults for linear systems are recovered by generalizing the concept of a
contraction metric.

Contraction analysis is based on the study of a nonlinear system
by way of its differential dynamics (also known as variational system)
along solutions [13]. Roughly speaking, since the differential dynamics
are linear time varying, many techniques from linear systems theory can
be directly applied. A central result is that if all solutions of a smooth
nonlinear system are locally exponentially stable in a common metric,
then all solutions are globally exponentially stable. Historically, basic
convergence results on contracting systems can be traced back to the
results of [14] in terms of Finsler metrics, further explored in [15], while
convex conditions for existence and robustness of limit cycles were
given in [16]. In contraction analysis, question of stability is decoupled
from the specification of particular solutions, and this property is also
relevant for control design: it is common in industrial plant-wide control
and robot motion control to have a “layered architecture,” in which a
higher layer generates target trajectories and a lower layer guarantees
accurate tracking.

In this paper, we introduce universal stabilizability: the property that
every forward-complete solution of a system can be globally stabilized.
We then define a control contraction metric (CCM) for a nonlinear
system and show that existence of a CCM is sufficient for universal
exponential stabilizability. We also give extensions for stabilization of
submanifolds.

The CCM stabilizability condition has a simple geometric interpre-
tation: small displacements in directions orthogonal to the span of the
control inputs must be “naturally” contracting. Here, both the notions
of orthogonality and contraction depend on the choice of metric. This
can be thought of as a differential version of the CLF condition of
[3] and [5]. While the resulting conditions are arguably quite strong,
in contrast to a CLF, our criteria for the existence for a CCM can be
formulated as a convex feasibility problem. Furthermore, unlike, e.g.,
backstepping, they are invariant under smooth changes of coordinates
and affine feedback transformations, and necessary and sufficient for
feedback linearizable systems.

The feedback controllers we propose will generally involve real-time
optimization to find a minimal-length path with respect to the metric
(a geodesic) joining the current state to the desired state. This problem
is generally simpler than that in nonlinear model-predictive control
(MPC), since it has lower dimension and lacks dynamic constraints, and
minimal geodesics are guaranteed to exist [17]. If a state-independent
metric exists, then geodesics are just straight lines, and our method
is closely related to well-known methods using quadratic Lyapunov
functions, e.g., [7, p. 99] and [18].

The main feedback controller we propose is smooth almost ev-
erywhere, but as with a nonlinear MPC, our controller may be
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discontinuous at some points in state space. To ensure existence of
solutions at such points, we also propose a sampled-data controller that
runs open-loop short intervals, a common strategy in nonlinear MPC
[19], and similar to the notion of s-stability introduced in [20].

II. PRELIMINARIES AND PROBLEM SETUP

For symmetric matrices A and B, the notation A ≥ B (A > B)
means that A − B is positive semidefinite (positive definite). The
nonnegative reals are denoted R+ := [0,∞). Given a smooth ma-
trix function M (x, t) and vector field v : Rn × R+ → Rn defined for
x ∈ Rn , t ∈ R+ , we use the following notation for directional deriva-
tive ∂v M :=

∑
j

∂ M
∂ xj

vj . A set of sample times is a sequence t0 , t1 , . . .

with t0 = 0 and ti < ti+1 for all i and ti → ∞ as i → ∞.
In this paper, we consider control-affine nonlinear systems:

ẋ = f (x, t) + B(x, t)u (1)

where x(t) ∈ Rn and u(t) ∈ Rm are state and control, respectively, at
time t ∈ R+ , and f and B are smooth functions of their arguments.
We denote the ith column of B(x, t) by bi (x, t). We assume u(t) is
at least piecewise continuous, and (1) holds with the right derivative at
points of discontinuity.

We define a target trajectory to be a forward-complete solution of (1),
i.e., a pair (x� , u� ) with x� : R+ → Rn piecewise differentiable and
u� : R+ → Rm piecewise continuous satisfying (1) for all t ∈ R+ .

We will consider open-loop, sampled-data, and continuous
feedback controllers. An open-loop controller is a mapping
(x(0), x� (·), u� (·), t) �→ u(t). Given a set of sample times, a sampled-
data feedback controller has the property that on each interval [ti , ti+1 ),
the control law is a mapping (x(ti ), x� (t), u� (t), t) �→ u(t), while a
continuous feedback controller is a mapping (x(t), x� (t), u� (t), t) �→
u(t).

A target trajectory x� , u� is said to be globally exponentially con-
trollable (respectively, stabilizable) if one can construct an open-loop
(respectively, feedback) controller such that for any initial condition
x(0) ∈ Rn , a unique solution x(t) of (1) exists for all t and satisfies

|x(t) − x� (t)| ≤ e−λtR|x(0) − x� (0)| (2)

where rate λ > 0 and overshoot R > 0 are constants independent of
initial conditions. If every target trajectory is globally exponentially
controllable (respectively, stabilizable), then the system is said to be
universally exponentially controllable (respectively, stabilizable). The
following example illustrates the distinction with global stabilizability
of a particular solution.

Example 1: Consider the planar system
[

ẋ1

ẋ2

]

=

[
−2x1 + x2

1 − x2
2

−6x2 + 2x1x2

]

+

[
1

0

]

u

which has four equilibria [9]: (x1 , x2 ) = (0, 0), (2, 0), and (3,±
√

3).
The origin is globally exponentially stabilized by the feedback law u =
−x2

1 − x2
2 , since the quadratic Lyapunov function V (x) = x2

1 + x2
2

verifies V̇ = −4x2
1 − 12x2

2 ≤ −4V . However, notice that if x2 (0) =
0, then x2 (t) = 0, ∀t ≥ 0 regardless of x1 , u, so it is impossible for a
control input to move the state from the line x2 = 0 to the equilibria at
(3,±

√
3). Therefore, this system is not universally stabilizable.

We utilize the following standard results of Riemannian geometry,
see, e.g., [21] for details. A Riemannian metric is a smoothly varying
inner product 〈·, ·〉x on the tangent space of a state manifold X ; this
defines local notions of length, angle, and orthogonality. In this paper,
X = Rn and the tangent space can also be identified with Rn . We allow
metrics to be smoothly time varying and use the following notation:

〈δ1 , δ2 〉x,t = δ′1M (x, t)δ2 and ‖δ‖x,t =
√

〈δ, δ〉x,t . We call a metric
uniformly bounded if ∃α2 ≥ α2 > 0 such that α1I ≤ M (x, t) ≤ α2I
for all x, t. For a smooth curve c : [0, 1] → Rn , we use the notation
cs (s) := ∂ c (s)

∂ s
and define the Riemannian length and energy function-

als as

L(c, t) :=
∫ 1

0
‖cs‖c ,t ds, E(c, t) :=

∫ 1

0
‖cs‖2

c ,t ds

respectively, with integration interpreted as the summation of integrals
for each smooth piece. Let Γ be the set of piecewise-smooth curves
[0, 1] → Rn , and for a pair of points x, y ∈ Rn , let Γ(x, y) be the subset
of Γ connecting x to y, i.e. curves c ∈ Γ(x, y) if c ∈ Γ, c(0) = x,
and c(1) = y. A smooth curve c(s) is regular if ∂ c

∂ s
�= 0 for all s ∈

[0, 1]. The Riemannian distance d(x, y, t) := infc∈Γ(x,y ) L(c, t), and
we define E(x, y, t) := d(x, y, t)2 . Under the conditions of the Hopf–
Rinow theorem, a smooth regular minimum-length curve (a geodesic) γ
exists connecting every such pair, and the energy and length satisfy the
following inequalities: E(x, y, t) = E(γ, t) = L(γ, t)2 ≤ L(c, t)2 ≤
E(c, t), where c is any curve joining x and y. For time-varying paths
c(t, s), we also write c(t) := c(t, ·) : [0, 1] → Rn .

A central result of [13] is that if there exists a uniformly bounded
metric M (x, t) such that Ṁ + ∂ f ′

∂ x
M + M ∂ f

∂ x
≤ −2λM, where

Ṁ = ∂ M
∂ t

+ ∂f M , then the system is contracting with rate λ, i.e.,
d
dt
‖δx‖x,t ≤ −λ‖δx‖x,t . By integrating along minimizing geodesics,

we see that d(x, y, t) and E(x, y, t) between any pair of points x, y
both decrease exponentially under the flow of the system and, thus,
can serve as incremental Lyapunov functions. Such systems are called
contracting systems and M is a contraction metric. Similarly, we call
a system strictly contracting with rate λ if d

dt
‖δx‖x,t < −λ‖δx‖x,t

for δx �= 0. Since M (x, t) > 0, a system that is contracting with rate
λ > 0 is strictly contracting with any rate less than λ.

III. CONTROL CONTRACTION METRICS

To analyze stabilizability, we utilize the “extended” system consist-
ing of (1) paired with its differential dynamics:

δ̇x = A(x, u, t)δx + B(x, t)δu (3)

defined along solutions x(t), u(t), where A := ∂ f
∂ x

+
∑m

i=1
∂ b i
∂ x

ui .
Let us begin by examining the case when a known controller makes

the system contracting and yet is flexible enough that any target trajec-
tory of (1) remains possible in closed loop.

Proposition 1: Suppose there exists a smooth feedback control law
u = k(x, t) + v that makes the closed-loop system strictly contracting
with rate λ in some metric M (x, t) for any piecewise-continuous signal
v(t). Then, for all x, u, t

Ṁ + (A + BK)′M + M (A + BK) < −2λM (4)

where K = ∂ k
∂ x

, and for δx �= 0, the following is true:

δ′x MB = 0 ⇒ δ′x (Ṁ + A′M + MA + 2λM )δx < 0. (5)

It is clear that (4) =⇒ (5); the proof of (4) and all subsequent results
in this paper are collected in the Appendix.

Since (5) is independent of the particular control law k, it describes
an intrinsic property of the system (1): if 〈δx , bi (x)〉x,t = 0 for all
i = 1, 2, . . . , m, then d

dt
‖δx‖x,t < −λ‖δx‖x,t . That is, every tangent

vector δx orthogonal to the span of actuated directions bi (x) is naturally
contracting with rate λ. It is interesting to ask whether (5) implies the
existence of some form of stabilizing control for any target trajectory.
Our main theoretical result is that this is indeed the case.
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Theorem 1: If there exists a uniformly bounded metric M (x, t),
i.e., α1I ≤ M (x, t) ≤ α2I , for which (5) holds for all δx �= 0, x, u, t,
then System (1) is
1) universally exponentially open-loop controllable;
2) universally exponentially stabilizable via sampled-data feedback

with arbitrary sample times;
3) universally exponentially stabilizable via continuous feedback de-

fined almost everywhere, and everywhere in a neighborhood of the
target trajectory;

all with rate λ and overshoot R =
√

α 1
α 2

.

We refer to a metric satisfying the conditions of this theorem as a
CCM for the system (1). The proof of this theorem is given in the
Appendix, but here we briefly describe the main idea and construction
of controllers.

Given a CCM, Lemma 2 in the Appendix establishes the existence
of a differential feedback controller δu = kδ (x, δx , u, t) that achieves
closed-loop exponential stabilization of the differential dynamics (3)
along all solutions:

d

dt
(δ′x Mδx ) = δ′x Ṁδx + 2δ′x M (Aδx + Bkδ ) < −2λδ′x Mδx

and furthermore, is path-integrable, so that for any smooth path c ∈ Γ
and any u� ∈ Rm and t ∈ R+ , the following integral equation has a
unique solution:

kp (c, u� , t, s) := u� +
∫ s

0
kδ (c(s), cs (s), kp (c, u� , t, s), t)ds. (6)

The motivation for this construction is to give a smooth path of con-
trol signals kp with tangent vectors ∂ kp

∂ s
= kδ for all s ∈ [0, 1] and

boundary condition kp = u� at s = 0.
The path-integrability condition is a significantly weaker require-

ment than the kδ being completely integrable, i.e., of the form
kδ = K(x, t)δx , with K the Jacobian of a feedback controller, as was
assumed in Proposition 1. This distinction will be important for our
convex conditions in Section III-B.
1) Open-loop control: For ti ≥ 0, consider a bounded or unbounded

time interval in one of the following forms: T = [ti , ti+1 ), T =
[ti , ti+1 ] or T = [ti ,∞).

a) At the initial time ti , measure x(ti ) and construct a smooth
path c(ti ) ∈ Γ(x� (ti ), x(ti )).

b) For each t ∈ T , apply the control signal u(t) =
kp (c(t), u� (t), t, 1), where c(t) is the forward image of
the path c(ti ) with the path of controls (6), i.e., for each
s ∈ [0, 1] and t ∈ T , c(t, s) satisfies

d

dt
c(t, s) = f (c(t, s), t) + B(c(t, s), t)

kp (c(t), u� (t), t, s). (7)

When this strategy is applied on an interval T = [ti ,∞),
the length of the curve c(t) shrinks exponentially and allows
us to establish claim 1 of Theorem 1.
The bound R =

√
α 2
α 1

given in the theorem is achieved if

the initial path c0 is a minimal geodesic joining x� (ti ) to
x(ti ), existence of which is established in Lemma 1 in the
Appendix. With any other initial path, exponential stability
is still achieved with the same rate but perhaps with larger
overshoot. Note that when c(ti ) is a geodesic, it is in general
not the case that c(t) is a geodesic for t > ti (see Fig. 1).

2) Sampled-data feedback controller: The open-loop controller can
be extended to sampled-data feedback by recomputing geodesics
at the sampling instants. To be precise:

Fig. 1. Illustration of the geometry of solutions using the open-loop or
sampled-data CCM-based control over an interval [ti , ti+1 ]. The target
trajectory x� (t) is shown in red, and system trajectory x(t) in black.
Paths joining x� (t) to x(t) are shown in blue.

a) At each sample time ti , measure the state x(ti ) and compute
a minimal geodesic γi ∈ arg minc∈Γ i

E(c, ti ) where Γi :=
Γ(x� (ti ), x(ti )).

b) On the interval T = [ti , ti+1 ), apply the open-loop control
described above with c(ti ) = γi .

Note that this is stabilizing with any choice of sample times, in-
cluding uniform sampling: ti = its for some fixed ts > 0.

3) Smooth feedback, uniquely defined almost everywhere and in a
neighborhood of x� : By taking the limit as sampling interval goes
to zero, one can obtain a continuous-time controller, which does
away with the need to solve (7) over the intersample intervals.
Specifically:

a) measure the state x(t) and a minimal geodesic γ =
arg minc∈Γ(x� (t) ,x (t)) E(c, ti );

b) apply the control signal u(t) = kp (γ, u� (t), t, 1).
This defines a mapping (x(t), x� (t), u� (t), t �→ u(t); however, a

difficulty is that it may be multiply defined or nonsmooth at some
states x(t) and specifically points on the cut locus, denoted by C(x� , t),
which is the set of points for which nonunique minimizing geodesics
exist from x� (cut points) and/or the first-order minimality condition
fails (conjugate points).

This set is known to have zero Lebesgue measure. Let us define
D(x� , t) := Rn /(C(x� , t) ∪ x� ), which is diffeomorphic to punctured
open ball. For every x ∈ D(x� , t), there is a unique minimal geodesic
γ joining x and x� [21, Ch 13], and we show in the Appendix that
the above controller is smooth on D(x� , t) and continuous at x =
x� (t). This controller is universally exponentially stabilizing under the
technical assumption that the set of times at which x(t) ∈ C(x� , t) has
zero measure.

A. Stronger Conditions Giving Simpler Controllers

Since the differential dynamics are linear, it is tempting to look for an
admissible differential feedback controller of the form δu = K(x, t)δx

satisfying (4). We will show that this is possible under the following
slightly stronger conditions:
C1: if δx �= 0 satisfies δ′x MB = 0, then

δ′x

(
∂M

∂t
+ ∂f M +

∂f

∂x

′
M + M

∂f

∂x
+ 2λM

)

δx < 0

C2: for each i = 1, 2, . . . , m, ∂bi
M + ∂ b i

∂ x

′
M + M ∂ bi

∂ x
= 0.

These stronger conditions also hold under the assumptions of
Proposition 1, as is clear from the proof in the Appendix. Condi-
tion C1 says that the uncontrolled system is contracting in directions
orthogonal to the span of the control inputs. Condition C2 ensures that
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large u of unknown sign cannot cause expansion of ‖δx‖. Formally, it
states that the vector fields bi are Killing fields for the metric M .

In particular, if B is of the form [0, I ]′, with 0 and I the zero and
identity matrices of appropriate dimension, then Condition C2 states
that M must not depend on the last m state variables. By applying
Finsler’s theorem (see, e.g., [22]) pointwise in x and t to condition C1,
we immediately obtain the following.

Proposition 2: Condition C1 is equivalent to the existence of a
scalar multiplier ρ(x, t) such that for all x, t:

∂M

∂t
+ ∂f M +

∂f

∂x

′
M + M

∂f

∂x
− ρMBB ′M + 2λM < 0. (8)

One can then construct the differential feedback gain K(x, t) =
− 1

2 ρ(x, t)B(x, t)′M (x, t), which satisfies (4) and is always path inte-
grable since it is independent of u.

Remark 1: If (8) holds for some multiplier ρ(x, t) = ρ0 (x, t), then
it clearly holds for any ρ(x, t) ≥ ρ0 (x, t) for all x, t since MBB ′M ≥
0. This can be interpreted as the differential feedback having infinite
up-side gain margin and also implies that one can construct a smooth
ρ(x, t).

B. Dual Metrics and Convexity of Synthesis

It is known that the search for a CLF for a linear system is convexified
by a simple change of variables, leading to an LMI representation of
stabilizability [7], [8]. In this section, we show that essentially the same
transformation makes the search for a CCM convex.

Consider the change of variables η = M (x, t)δx and W (x, t) =
M (x, t)−1 . This is related to the “musical isomorphism” to the dual
space of cotangent vectors, and the function η′W η is the Fenchel dual
of δ′x Mδx , so we refer to W as a dual CCM. Under this change of
variables, the CCM condition (5) now states that η′(−Ẇ + AW +
W A′ + 2λW )η < 0 whenever η′B = 0, which can be written as

B ′
⊥

(
−Ẇ + AW + W A′ + 2λW

)
B⊥ < 0 (9)

for all x, u, t, where B ′
⊥(x, t) is any matrix function satisfying B ′

⊥B =
0 for all x, t. Since differentiation is a linear operation, inequality (9)
is linear (and hence convex) in the unknown matrix function W .

One can search directly for differential feedback δu = K(x, u, t)δx

by way of W and Y (x, u, t) ∈ Rm ×n satisfying

−Ẇ +
∂f

∂x
W + W

∂f

∂x

′
+ BY + Y ′B ′ + 2λW < 0 (10)

giving the differential feedback gain K = Y W −1 . If Y , and hence K ,
are at most affine in u, then the resulting differential control will be
path integrable, similarly to Lemma 2.

Condition C1 can be written similarly to (9) and, by Finsler’s theo-
rem, is equivalent to the existence of a scalar function ρ(x, t) satisfying
the inequality

−∂W

∂t
− ∂f W +

∂f

∂x
W + W

∂f

∂x

′
− ρBB ′ + 2λW < 0. (11)

which is jointly convex in W and ρ and gives an explicit construction
of a differential feedback gain K = − 1

2 ρB ′W −1 .
Condition C2 also transforms to a linear constraint on W : ∂bi

W −
∂ b i
∂ x

W − W ∂ bi
∂ x

′
= 0.

The above conditions are all convex but infinite dimensional: they
are inequalities that must hold over all x ∈ Rn and t ∈ R+ , and the
decision variables are sets of smooth matrix functions. Finite-
dimensional LMI approximations can be constructed by building W
and ρ or Y as linear combinations of a finite basis set (e.g., polynomials

up to some order), and verifying the inequalities either by gridding over
states and times, or by the sum-of-squares relaxation [12].

Remark 2: Note that complete integrability of kδ (x, δx , t) =
K(x, t)δx could be imposed by requiring that each row of K satis-

fies the Schwarz condition, i.e.,
∂ K i , j

∂ xk
= ∂ K i , k

∂ xj
. While this constraint

is linear and hence convex in K , it is not convex jointly in the decision
variables W, Y for (10), since K = Y W −1 , or the decision variables
W, ρ for (11), since K = − 1

2 ρB ′W −1 . This is essentially the same
problem as the well-known nonconvexity of structured feedback syn-
thesis for linear systems, e.g., static output feedback [23].

IV. PROPERTIES OF CCMS

A. Riemannian Energy as a CLF

The proof of Theorem 1 uses an explicit construction of a particular
stabilizing controller, but in doing so, we have actually shown that the
Riemannian energy E(x, x� , t) can always be decreased and, hence,
be used as CLF for any target trajectory of the system.

The formula for first variation of energy [21, p. 195] gives a par-
ticularly convenient expression for the time derivative of the energy
functional as an affine function of u:

1
2

d

dt
E(x, x� , t) = 〈γs (t, 0), ẋ� 〉x� ,t − 〈γs (t, 1), f (x, t)〉x,t

− 〈γs (t, 1), B(x, t)u〉x,t +
1
2

∂E

∂t
(12)

When x(t) ∈ C(x� , t), the above formula still holds with = replaced
by ≤ and d

dt
replaced by the Dini derivative.

In proving Theorem 1, we have also proven that for any x� , u� , t,
the convex set (either a half-space or all of Rm ):

U =
{

u ∈ Rm :
d

dt
E(x, x� , t) ≤ −2λE(x, x� , t)

}

where d
dt

E(x, x� , t) is given by (12), is always nonempty.
This opens up the possibility of using many other particular con-

trollers based on CLFs that may have further desirable properties.
For example, pointwise min-norm control [6] u(t) = arg minũ∈U ‖ũ‖2

would have reduced control magnitude and can be generalized to pro-
vide approximate optimality with guaranteed stability [24].

B. Invariance Under Coordinate Change and Feedback

Metrics and dual metrics are tensors: geometrical objects that are
‘intrinsic” and have coordinate representations that transform appro-
priately under smooth coordinate changes. In the following theorem,
we establish that the CCM criteria are invariant under such coordinate
changes and, additionally, under affine feedback laws.

Theorem 2: If the CCM condition (5) [or equivalently (9)] is satis-
fied for system (1), then (5) and (9) still hold under:
1) affine feedback transformations u(x, v) = α(x) + β(x)v with β

a smooth nonsingular n × n matrix function;
2) differential coordinate changes δξ = Φ(x)δx , in which Φ(x)

is a nonsingular matrix for all x, with the new CCM
Mξ (x, t) := Ψ′(x)M (x, t)Ψ(x) and dual CCM Wξ (x, t) :=
Φ(x)W (x, t)Φ(x)′, where Ψ(x) = Φ(x)−1 ;

3) coordinate changes ξ = φ(x), φ a smooth diffeomorphism, with
the new CCM and dual CCM Mξ , Wξ as above with Φ(x) = ∂ φ

∂ x

evaluated at x = φ−1 (ξ).
Remark 3: If Φ(x) has bounded singular values over all x, t within

[σm in , σm ax ], then the uniform bounds on M and W are also preserved
under coordinate change.
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C. Necessity for Feedback Linearizable Systems

A corollary of Theorem 2 is that for feedback linearizable systems,
existence of a CCM is guaranteed. A system of the form (1) is feedback
linearizable if there exists a change of variables and feedback trans-
formation such that the transformed system is linear time invariant:
ξ̇ = Gξ + Hv, where the pair of constant matrices (G, H) is control-
lable [1].

Corollary 1: For any feedback linearizable system, there is a
CCM that verifies universal stabilizability, given by W (x, t) =
Φ(x, t)PΦ(x, t)′, where P is any constant symmetric positive-definite
matrix satisfying H⊥(GP + PG′)H ′

⊥ < 0.
The proof is immediate from Theorem 2, and we note that such a P

is guaranteed to exist if (G, H) is stabilizable [8].
The converse is not true: the necessary and sufficient conditions for

feedback-linearizability consist of a controllability condition and an
involutivity (complete integrability) condition to find an appropriate
coordinate change [1]. In contrast, existence of a CCM depends only
on stabilizability and does not require complete integrability of the
differential control. This is because a metric corresponds to a differen-
tial change of coordinates δz = Θ(x, t)δx , i.e., M = Θ′Θ, but there is
no requirement that this should be integrable to an explicit change of
coordinates z = θ(x) (see also discussion in [Sec 3, 13]).

Example 2: The following system

d

dt

[
x1

x2

]

=

[
−x1 − x3

1 + x2
2

0

]

+

[
0

1

]

u =: f (x) + Bu

is not feedback linearizable in the sense of [25], since the vector fields
B and adf B := ∂ f

∂ x
B − ∂ B

∂ x
f = [2x2 , 0]′ are not linearly independent

when x2 = 0. However, it is universally stabilizable as verified by (11)
with W = I and multiplier ρ(x) = 1 + 2x2

2 . Additionally, since we
can take B⊥ = [1 0]′, condition (9) reduces to the fact that ∂ f1

∂ x 2
=

−1 − 3x2
1 < 0 ∀x.

V. STABILITY AND STABILIZATION OF SUBMANIFOLDS

Convergence of a nonlinear system to a submanifold of state space
is a requirement that appears in many applications, including coordi-
nation of multiagent systems [26], synchronization of oscillators [27],
computational neuroscience [28], and nonlinear control design [29].
Design of controllers to stabilize submanifolds has been investigated
recently using transverse feedback linearization [30], reduction and
backstepping [31], and modifying controllers for drift-free systems
[32].

Suppose a submanifold is defined by a level set of some smooth
funciton Z(t) = {x : z(x, t) = c}, where z : Rn × R+ → Rq and ∂ z

∂ x

has rank q for all x. The sets Z(t) are called controlled invariant if there
exists a smooth mapping u� : Z(t) × R+ → Rm such that

∂z(x, t)
∂t

+
∂z(x, t)

∂x
(f (x, t) + B(x, t)u� (x, t)) = 0

for all x ∈ Z(t) for all t ∈ R+ . In the case of an uncontrolled system,
this reduces to the condition for a manifold to be flow invariant: ∂ z

∂ t
+

∂ z
∂ x

f (x, t) = 0.
The objective is to design a controller guaranteeing exponential

convergence to Z(t), i.e., for each x(0), one can construct a control
signal u(t) such that the solution x(t) of (1) satisfies infy∈Z (t) |x(t) −
y| ≤ e−λt R̄ for some R̄ > 0.

Assume that we can construct a smooth matrix function G(x, t)
with columns that form a basis for the null space of ∂ z (x,t)

∂ x
. In order to

study stability and stabilization of Z(t), we construct a “virtual control

system”:

ẋ = f (x, t) + B̄(x, t)ū (13)

where B̄(x, t) = [B(x, t) G(x, t)] and ū = [u′ v′]′, with u the actual
control input and v a newly introduced “virtual control.”

Theorem 3: If there exists a CCM for the virtual control system
(13) satisfying the strong conditions C1 and C2, then any time-varying
submanifold of the form Z(t) = {x : z(x, t) = c} can be exponen-
tially stabilized (open-loop, sampled-data, or continuously almost ev-
erywhere) with rate λ.

The proof uses the concept of a “shadow state” x̄(t), which has
the property that x̄(t) ∈ Z(t) ∀t and can be thought of as a general-
ized projection of x(t) onto Z(t). The virtual control system (13) is
constructed so that it can represent dynamics of the real system when
v = 0, but can also represent x̄(t) ∈ Z(t) when u = x� (x̄, t) and v is
arbitrary. The idea is to ensure x(t) converges to x̄(t) and, therefore,
to Z(t).

The following corollary gives simple convex criteria for an uncon-
trolled system to converge to a submanifold.

Corollary 2: Consider an uncontrolled system of the form (1) with
B = 0 ∀x, t. Suppose that there exists a uniformly bounded dual metric
W , invariant on level sets of z(x, t), satisfying

∂z

∂x

(

−∂W

∂t
− ∂f W +

∂f

∂x
W + W

∂f

∂x

′
+ 2λW

)
∂z

∂x

′
< 0. (14)

Then, all solutions of the system converge exponentially with rate λ to
the set Z(t).

Note that this corollary is based solely on the existence of a univer-
sally stabilizing controller. Actual computation of a control signal is
not required. Corollary 2 generalizes results on partial contraction in
[33] and [34]. The latter showed that convergence to a linear manifold
defined by z(x) = V x = 0, with V a constant matrix, is guaranteed
by the condition that V ( ∂ f

∂ x
+ ∂ f

∂ x

′
)V ′ is uniformly negative definite. A

similar notion of horizontal contraction was studied in [15].

VI. ILLUSTRATIVE EXAMPLE

One of the advantages of convex criteria is that it is possible to
mix and match different design objectives for one controller. In [35]
and references therein, the problem of “uniting” locally optimal and
globally stabilizing control was considered. This problem is nontriv-
ial in a Lyapunov framework, since the set of CLFs for a system is
nonconvex, but in the CCM framework, it is straightforward. Let us
illustrate this with a particular example system taken from [35], with
state x = [x1 , x2 , x3 ]′ and dynamics (1) with

f (x) =

⎡

⎢
⎣

−x1 + x3

x2
1 − x2 − 2x1x3 + x3

−x2

⎤

⎥
⎦, B =

⎡

⎢
⎣

0

0
1

⎤

⎥
⎦. (15)

Note that this system is not feedback linearizable, since the matrix
[B, adf B, ad2

f B] drops rank at the origin.
We first solve the linear quadratic regulator (LQR) problem for the

system linearized at the origin with cost function
∫ ∞

0 (x′x + ru2 )dt
with r = 1, obtaining a solution P = P ′ > 0 of the algebraic Riccati
equation, and the locally optimal controller u = −r−1B ′Px. Then,
we can search for W and ρ satisfying (11) and the additional linear
constraints W (0) = P −1 and ρ(0) = 2r−1 , so that locally the LQR
and CCM controllers are the same. To satisfy Condition C2, entries of
W were allowed to be quadratic functions of x1 and x2 . The resulting
metric is not uniformly bounded, but still satisfies the conditions of
Lemma 1. Similarly, ρ was a quadratic polynomial in x1 , and λ = 0.5.
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Fig. 2. Response of system (15) with CCM and LQR control to ini-
tial state x(0) = [0.5, 0.5, 0.5]′ (left) and x(0) = [9, 9, 9]′ (right). This ex-
hibits the “locally optimal” and “globally stabilizing” behavior of the CCM
controller.

As an optimization objective, we chose the l1 norm of the coefficients
of the polynomial entries of W to encourage sparsity. The metric was
found using sum-of-squares programming [12] via the parser Yalmip
[36] and solver Mosek; the resulting semidefinite program took about
0.4 s to solve on a standard desktop computer.

It can be seen in Fig. 2 that for small initial conditions, the CCM con-
troller and the LQR are virtually identical. This is because the minimal
geodesic is close to a straight line, and ρ and W are almost unchanged,
so the CCM control law approximates a simple linear feedback on
x − x� . In contrast, for larger initial conditions, the LQR controller
was not stabilizing, while the CCM controller was. Simulations un-
der LQR diverge rapidly after about 2 s. Further results on CCMs for
problems in robotics can be found in [37], and a method for computing
geodesics can be found in [17].

APPENDIX

Proof of Proposition 1: By assumption that the closed-loop system
is strictly contracting, we have d

dt
(δ′x M (x, t)δx ) < −2λδ′x M (x, t)δx

for all x, v, t and δx �= 0. Expanding the left-hand side,
d
dt

(δ′x M (x, t)δx ) = δ′x [ ∂ M
∂ t

+ ∂f M + ( ∂ f
∂ x

+ BK)′M + M ( ∂ f
∂ x

+
BK). +

∑m
i=1 (ki (x, t) + vi )(∂bi

M + ∂ b i
∂ x

′
M + M ∂ bi

∂ x
)]δx . Note

that this is affine in vi , so if this to be bounded for all v ∈ Rm ,
it is clearly required that ∂bi

M + ∂ b i
∂ x

′
M + M ∂ bi

∂ x
= 0 for each i.

Furthermore, if δ′x MB = 0, then terms involving K vanish, and
hence, δ′x ( ∂ M

∂ t
+ ∂f M + ∂ f

∂ x

′
M + M ∂ f

∂ x
+ 2λM )δx < 0, and the

result follows from direct calculation of A and Ṁ .
Lemma 1: Suppose a dual metric W (x) = M (x)−1 satisfies a

quadratic bound on its largest eigenvalue: λm ax (W (x)) ≤ |Ax + B|2
for all x ∈ Rn , for some fixed matrices A, B, where | · | is the Eu-
clidean norm. Then, there exists a minimal geodesic between any pair
of points in Rn .

Proof: By the Hopf–Rinow theorem, the result follows if any
geodesic segment can be extended indefinitely [21]. By assumption,
the metric M (x) satisfies the lower bound λm in (M (x)) ≥ 1

|Ax+B |2 .
Take any geodesic γ(s) defined on some interval s ∈ (a, b) ⊂ R.
Geodesics have constant speed: γ ′

sM (γ)γs = c for some c > 0, so
|γs | ≤ c|Aγ + B|. This implies that |γ| grows at-worst exponentially
as the parameter s → ±∞. Therefore, solutions do not exhibit finite
escape in either direction, so the interval of existence is (−∞,∞). �

Lemma 2: Consider the system (1), (3), and smooth real-valued
“differential storage function” V (x, δx , t) and “differential supply rate”
κ(x, δx , t). If for all x, u, δx �= 0, t

∂V

∂δx

B = 0 =⇒ ∂V

∂t
+

∂V

∂x
(f + Bu) +

∂V

∂δx

Aδx < κ. (16)

then a “differential feedback controller” kδ (x, δx , u, t) ∈ Rm exists
that satisfies the following two properties:
1) Closed-loop dissipativity: for all x, u, δx �= 0, t

V̇ =
∂V

∂t
+

∂V

∂x
(f + Bu) +

∂V

∂δx

(Aδx + Bkδ ) < κ.

2) Path integrability: For any regular curve c, and any u0 ∈ Rm , t ∈
R+ , a unique solution of the following integral equation exists on
s ∈ [0, 1]:

υ(s) = u0 +
∫ s

0
kδ (c(s), cs (s), υ(s), t)ds. (17)

Proof: For brevity of notation, let us define

a(x, δx , u, t) :=
∂V

∂t
+

∂V

∂x
(f + Bu) +

∂V

∂δx

Aδx − κ

b(x, δx , t) :=
∂V

∂δx

BB ′ ∂V

∂δx

′
.

Note that by construction b ≥ 0, and by assumption (16), for all x, δx �=
0, u, t, either a < 0 or b > 0. Now, define

ρ(x, δx , u, t) :=

⎧
⎪⎨

⎪⎩

0, if a < 0

a +
√

a2 + b2

b
, otherwise.

(18)

It follows from [5, Th. 1] that ρ is a smooth for all x, δx �= 0, u, t. Now,
we construct the control:

kδ (x, δx , u, t) = −ρ(x, δx , u, t)B(x, t)′
∂V (x, δx , t)

∂δx

′
. (19)

Substituting into (3) establishes closed-loop dissipativity: d
dt

V = a −
ρb + κ = κ −

√
a2 + b2 < κ.

We now prove path integrability, i.e., that a solution of (17) exists.
We will prove this by contradiction. By assumption, the curve c is
regular, so cs (s) �= 0 for all s, so kδ is a smooth function of its third
argument for all s. Hence, integrability follows unless there is finite
escape at some s = s̄ ≤ 1. It is clear from (19) that this would imply
ρ → ∞ as s → s̄.

First, we observe that b > 0 in a neighborhood of s̄, since if b = 0,
then ρ = 0, but we require ρ to blow up.

Second, we note that the only dependence ρ has on u is via a, which
by construction is an s-dependent affine function of u. It follows from
(18) that if there is a closed interval S ⊂ [0, 1] such that b > 0 for
s ∈ S, then ρ is a globally Lipschitz function of u on S. By standard
comparison results, e.g., [1, Th. 3.2], a unique solution to (17) exists
on this interval, which contradicts finite escape at s = s̄. �

Lemma 3: Given a CCM M (x, t), a time interval T = [ti , ti+1 ] ⊂
R+ , and a path c(ti ) connecting x� (ti ) to x(ti ), suppose the open-loop
control signal in point 1 in Section III is applied on T initialized with
c, then for all t ∈ T

d(x� (t), x(t), t) ≤ e−λ(t−t i )L(c(ti ), ti ). (20)

Proof: By construction, c(t, 0) = x� (t) and c(t, 1) = x(t) for
all t ∈ T . Furthermore, cs (t, s) = ∂ c

∂ s
(t, s) satisfies d

dt
cs (t, s) =

A(c(t, s), kp , t)cs + B(c(t, s), t)kδ (t, s) for all t ∈ T , s ∈ [0, 1]. �
By construction of kδ , we have d

dt
(c′sM (c, t)cs ) < −2λc′s

M (c, t)cs . Integrating with respect to s gives d
dt

E(c(t), t) <
−2λE(c(t), t) and integrating with respect to t gives E(c(t), t) ≤
e−2λ(t−t i )E(c(ti ), ti ) for t ∈ T , with strict inequality for t > ti . Tak-
ing square roots gives L(c(t), t) ≤ e−λ(t−t i )L(c(ti ), ti ). Now, for each
t, the curve c(t) connects x� (t) to x(t), and the Riemannian distance
between these points is the infimum of lengths of such curves, so we
obtain the bound (20).
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Proof of Theorem 1: We will show that for each type of controller,
the Riemannian distance between x(t) and x� (t) decreases exponen-
tially:

d(x� (t), x(t), t) ≤ e−λt d(x� (0), x(0), 0). (21)

Exponential convergence in the Euclidean metric is then implied
by uniform boundedness of M (x, t). In particular, it is straight-
forward to show that

√
α1 |x(t) − x� (t)| ≤ d(x� (t), x(t), t) and

d(x(0), x� (0), 0) ≤ √
α2 |x(0) − x� (0)|. Combining with (21) gives

√
α1 |x(t) − x� (t)| ≤ e−λt√α2 |x(0) − x� (0)|

i.e., (2) holds with R =
√

α 2
α 1

.

For the open-loop control, Lemma 3 implies that for any t > 0,
we have d(x� (t), x(t), t) ≤ e−λtL(c(0), 0). If the minimal geodesic is
chosen for c(0), then L(c(0), 0) = d(x� (0), x(0), 0), and so we obtain
(21).

Similarly, for the sampled-data controller, on each interval [ti , ti+1 ),
we have

d(x� (t), x(t), t) ≤ L(c(t), t) ≤ e−λ(t−t i )L(c(ti ), ti )

and then, at time ti+1 , a minimal geodesic γi+1 is computed, which has
length L(γi+1 ) = d(x� (ti+1 ), x(ti+1 ), ti+1 ) ≤ limt→t i + 1 L(c(t), t),
where the limit in t is from the left.

For continuous feedback, we first show that the given controller is
smooth on D(x� , t). It follows from [21, Prop. 3.5, p. 117] that the
mapping (x, x� , t) �→ γ is smooth. Now, it follows from Lemma 2 and
the smoothness of ρ defined in (18) that the mapping (x, x� , t) �→ u is
smooth.

To show continuity at x = x� , we first note that since V = δ′x Mδx

is quadratic in δx , and the differential dynamics (3) are linear in δx ,
the small control property of [5] holds, i.e., for any ε > 0, there exists
η > 0 such that for δx �= 0 with |δx | ≤ η, there exists δu with |δu | < ε
satisfying V̇ < 0. This implies that kδ in (19) is continuous in δx at
δx = 0.

Let us show convergence of the control law to u� for a sequence of
states xk with limk→∞ xk = x� (t). It suffices to construct the sequence
xk along a particular but arbitrary geodesic γ0 , e.g., xk = γ0 (1/k),
since all states in a neighborhood of x� lie on such a geodesic [21, Th.
3.7]. Let γk denote the segment from x� (t) to xk . Now, the constant-
speed property of geodesics states that ‖γk

s ‖s = L(γk , t) for all s,
and so by uniform boundedness of the metric, |γk

s | → 0 uniformly in
s ∈ [0, 1]. Therefore, by continuous dependence of (6) on kδ (e.g.,
[38, Lemma 3.1]), the sequence of solutions kp (γk , u� (t), t, 1) of (6)
converges to u� (t) as k → ∞.

To show exponential decrease in distance, recall [21, Prop 2.4, p.
195] that on D(x� , t), the energy is a smooth function of its endpoints,
i.e., (a, b) �→ E(a, b, t) is smooth for each t. Now, consider the open-
loop control initialized with ti = t and γ for c(ti ). This open-loop
control is identical to the proposed continuous feedback at time t, and
therefore, ẋ(t) is also identical. Hence, there exists a (nonminimal)
path c(·) defined on [t, t + ε) with c(t) = γi satisfying d

dt
E(c(t), t) <

−2λE(γ, t); therefore, d
dt

E(x(t), x� (t), t) < −2λE(x(t), x� (t), t).
Integrating with respect to time gives the result.

Proof of Theorem 2: For the first statement, under the feedback
transformation, we have a new control system affine in v: ẋ =
(f + Bα) + Bβv, and the associated differential dynamics are of the
form (3) with Av (x, v) = A(x, u(x, v)) + B(x) ∂ u (x,v )

∂ x
and Bv (x) =

B(x)β(x). Now, consider the dual CCM condition (9). The same an-
nihilator matrix B⊥ can be used since B ′

⊥Bv = B⊥Bβ = 0. Now,
substitute Av for A in (9), and notice that since B ′

⊥B = 0, the second
term (B ∂ u

∂ x
) in Av has no effect. The first term in Av is just A(x, u)

evaluated a particular value of u, and (9) holds for all u and, hence, can
be applied under feedback transformation.

For the second statement, the differential dynamics transforms as
δ̇ξ = Aξ δξ + Bξ δu , with Aξ = Φ̇Ψ + ΦAΨ and Bξ := ΦB. Tak-
ing Mξ = Ψ′MΨ and the identity Ψ̇ = −ΨΦ̇Ψ, we have Ṁξ =
−Ψ′Φ̇′Ψ′MΨ + Ψ′ṀΨ − Ψ′MΨΦ̇Ψ; then, straightforward cal-
culation gives Ṁξ + A′

ξ Mξ + Mξ Aξ + 2λMξ = Ψ′(Ṁ + A′M +
MA + 2λM )Ψ and the result follows from the fact that δx = Ψδξ .
The third statement then follows by considering points x = φ−1 (ξ).

Proof of Theorem 3: We will construct the open-loop controller,
but others are analogous to the construction for Theorem 1. Since there
exists a CCM M (x, t) satisfying the strong conditions, we can construct
a differential feedback controller for (13) of the form kδ (x, δx , t) =
− 1

2 ρ(x, t)B̄(x, t)′M (x, t)δx . By construction of B̄, this decomposes
as δu = − 1

2 ρB ′Mδx , δv = − 1
2 ρG′Mδx . Now, for a given path c(t) ∈

Γ(x̄(t), x(t)), we construct the following paths of signals for the real
and virtual control inputs:

u(t, s) = u� (x̄, t) +
∫ s

0
δu (c(s), cs (s), t)ds (22)

v(t, s) = −
∫ 1

s

δv (c(s), cs (s), t)ds (23)

noting that ∂ u
∂ s

= δu and ∂ v
∂ s

= δv . Therefore, by an analogous argu-
ment to Theorem 1, one can construct open-loop, sampled-data, or
continuous almost-everywhere controllers such that the length of c(t)
shrinks exponentially.

Now, notice that at s = 1, we have v(t, 1) = 0, so ċ(t, 1) =
f (c(t, 1), t) + B(c(t, 1), t)u(t) and so c(t, 1) = x(t) for all t, i.e.,
the “real” dynamics are recovered. On the other hand, at s = 0,
we have the c(t, 0) = x̄(t) (the “shadow” state) with dynamics ˙̄x =
f (x̄, t) + B(x̄, t)u� (x̄, t) + G(x̄, t)kv (t, 0). But by the assumption
that Z is invariant for ẋ = f + Bu� , and that ∂ z

∂ x
G = 0, it follows that

x̄(t) ∈ Z(t) for all t.
So, since L(c(t)) → 0 exponentially and c(t, 1) = x(t) and

c(t, 0) ∈ Z(t), it follows that x(t) → Z(t) exponentially.
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