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Discrete-Valued Control of Linear Time-Invariant
Systems by Sum-of-Absolute-Values

Optimization
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and Shunsuke Ono, Member, IEEE

Abstract—In this paper, we propose a new design method
of discrete-valued control for continuous-time linear time-
invariant systems based on sum-of-absolute-values (SOAV)
optimization. We first formulate the discrete-valued control
design as a finite-horizon SOAV optimal control, which is
an extended version of L1 optimal control. We then give
simple conditions that guarantee the existence, discrete-
ness, and uniqueness of the SOAV optimal control. Also,
we show that the value function is continuous, by which we
prove the stability of infinite-horizon model predictive SOAV
control systems. We provide a fast algorithm for the SOAV
optimization based on the alternating direction method of
multipliers (ADMM), which has an important advantage in
real-time control computation. A simulation result shows
the effectiveness of the proposed method.

Index Terms—Convex optimization, discrete-valued
control, model predictive control, optimal control.

I. INTRODUCTION

D ISCRETE-VALUED control is a control mechanism that
achieves control objectives (e.g. stability) with control

inputs taking values in a finite alphabet (e.g. bang-bang control:
1-bit control taking ±1). Discrete-valued control has a signif-
icant advantage in networked control in which control signals
are quantized and transmitted through networks (see e.g. [1]);
since discrete-valued control signals need not be quantized, no
quantization error may occur. Also, discrete-valued control has
important applications in DC-DC conversion [2], class D am-
plifier [3], hybrid power system [4], train control [5], hormone
therapy [6], to name a few.
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A standard design method for discrete-valued control is
mixed-integer programming [7]. Although this directly gives
discrete-valued control, this method requires heavy computa-
tion, and hence it can be used only for relatively slow systems
such as a gas supply system reported in [7]. A more tractable
method is dynamic quantization proposed in [8], [9]. In this ap-
proach, a dynamic quantizer is designed such that the quantizer
mimics the ideal (i.e. no quantization) continuous output, and
the state space representation of the dynamic quantizer is given
in a closed form. This method, however, assumes an infinite
alphabet (e.g. the set of integers, Z). Another approach is the
control parametrization enhancing transform proposed by [10],
in which the optimal switching times of a piecewise-constant
(i.e. discrete-valued) control input are computed. This approach
assumes that the number of switching is previously known,
which is in practice hard to obtain.

Alternatively, we propose a novel method for discrete-valued
control based on the idea of the sum-of-absolute-values (SOAV)
optimization [11]. The proposed optimal control, which we call
the SOAV optimal control, is an extended version of L1 optimal
control [12] (also known as the minimum fuel control [13]).
The SOAV optimization is convex and hence the solution can be
obtained efficiently. In fact, as shown in Section V-B, the opti-
mization is solved, after time-discretization, by the alternating
direction method of multipliers (ADMM) [14]–[16], which is a
simple but much faster algorithm for large scale problems than
the standard interior point method [17, Chap 11].

For theoretical analysis, we prove the existence, discreteness,
and uniqueness of the (finite-horizon) SOAV optimal control un-
der simple conditions (e.g. the system model is controllable, the
A-matrix is non-singular, and the finite alphabet for the control
includes 0). The obtained discrete-valued control is a piecewise
constant signal, and we prove the number of discontinuities, or
switching times, is bounded. This property is very important in
particular for networked control since the upper bound of the
number of switching times, which can be given before opti-
mization, ensures the upper bound of the data rate required to
transmit the discrete-valued control.

We also prove that the value function, which is defined as
the optimal value of the cost function of the optimal control
problem, is a continuous and convex function of initial states.
This property is applied to prove the stability of the model
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predictive control (MPC) feedback system based on the finite-
horizon SOAV optimal control. As mentioned above, the SOAV
optimal control can be obtained by the fast ADMM algorithm,
and hence the control is well-adapted for MPC.

The remainder of this paper is organized as follows: In
Section II, we give mathematical preliminaries for our sub-
sequent discussion. In Section III, we formulate optimal con-
trol problem so that optimal controls have the desired discrete
values. After that, we examine optimal controls, and lead the
existence, discreteness, and uniqueness of the SOAV optimal
control. A numerical optimization algorithm based on ADMM
is also presented in this section. Section IV investigates the con-
tinuity and the convexity of the value function in SOAV optimal
control. Section V gives the model predictive control formu-
lation and shows the stability. Section VI presents an example
of model predictive control to illustrate the effectiveness of the
proposed method. In Section VII, we offer concluding remarks.

II. MATHEMATICAL PRELIMINARIES

This section reviews basic definitions, facts, and notation that
will be used throughout the paper.

Let n be a positive integer. For a vector x ∈ Rn and a scalar
ε > 0, the ε-neighborhood of x is defined by B(x, ε) � {y ∈
Rn : ‖y − x‖ < ε}, where ‖ · ‖ denotes the Euclidean norm in
Rn . Let X be a subset of Rn . A point x ∈ X is called an
interior point of X if there exists ε > 0 such that B(x, ε) ⊂ X .
The interior of X is the set of all interior points of X , and we
denote the interior of X by intX . A set X is said to be open if
X = intX . A point x ∈ Rn is called an adherent point of X if
B(x, ε) ∩ X �= ∅ for every ε > 0, and the closure ofX , denoted
by X , is the set of all adherent points of X . A set X ⊂ Rn is
said to be closed if X = X . The boundary of X , denoted by
∂X , is the set of all points in the closure of X , not belonging to
the interior of X , i.e., ∂X = X − intX , where X1 −X2 is the
set of all points that belong to the set X1 but not to the setX2 . In
particular, if X is closed, then ∂X = X − intX , since X = X .
A set X ⊂ Rn is said to be convex if, for any x, y ∈ X and any
λ ∈ [0, 1], (1− λ)x + λy belongs to X .

A real-valued function f defined on Rn is said to be lower
semi-continuous on Rn if for every α ∈ R the set {x ∈ Rn :
f(x) > α} is open. It is known that if a function f is lower
semi-continuous on Rn , then

f(x) ≤ lim inf
y→x

f(y)

for every x ∈ Rn [18, pp. 32]. A real-valued function f defined
on a convex set C ⊂ Rn is said to be convex if

f
(
(1− λ)x + λy

) ≤ (1− λ)f(x) + λf(y),

for all x, y ∈ C and all λ ∈ (0, 1).
Let T > 0 and m be a positive integer. For a continuous-time

signal u(t) ∈ Rm over a time interval [0, T ], we define its L1

and L∞ norms respectively by

‖u‖1 �
m∑

j=1

∫ T

0
|uj (t)|dt, ‖u‖∞ � max

1≤j≤m
ess sup
t∈[0,T ]

|uj (t)|,

where uj (t) is the j-th component of u(t). We denote by μ the
Lebesgue measure on R.

For a vector x = [x1 , x2 , . . . , xn ]T ∈ Rn , we define its �1

and �∞ norms respectively by

‖x‖�1 �
n∑

j=1

|xj |, ‖x‖�∞ � max
1≤j≤n

|xj |.

III. DISCRETE-VALUED CONTROL PROBLEM

In this paper, we consider a linear time-invariant system rep-
resented by

ẋ(t) = Ax(t) + Bu(t), t ≥ 0 (1)

where x(t) ∈ Rn , u(t) ∈ Rm , A ∈ Rn×n , and B ∈ Rn×m . For
the system (1), we attempt to arrive at a discrete-valued control,
that is, the control u(t) can only take values in a fixed finite set
(or finite alphabet)

U � {±U1 ,±U2 , . . . ,±UN } (2)

where U1 , . . . , UN are non-negative real numbers satisfying

0 ≤ Umin � U1 < U2 < · · · < UN = 1. (3)

Here we assume the maximum value UN = 1 without loss of
generality (otherwise, use B/UN instead of B in (1)). An initial
state ξ ∈ Rn and a finite time T > 0 are given. The control
objective is to obtain a discrete-valued control u(t) ∈ Um for
t ∈ [0, T ] that steers the state x(t) from the initial state ξ to
the origin at time T . We will show in this paper that such a
discrete-valued control can be efficiently obtained by sum-of-
absolute-values (SOAV) optimal control described below.

SOAV optimal control is an extended version of L1 opti-
mal control (also known as minimum-fuel control [13]). Denote
by U(ξ) the set of all L1-integrable feasible controls that sat-
isfy x(0) = ξ, x(T ) = 0, and ‖u‖∞ ≤ 1 for the system (1). We
consider initial values ξ such that U(ξ) is non-empty. This as-
sumption is satisfied if T is greater than some minimum time
T� [19]. Then the L1 optimal control is a control that mini-
mizes the L1 cost function ‖u‖1 among all feasible u ∈ U(ξ).
It is known that the L1 optimal control takes only 0 and ±1
when the system (1) is normal, that is, the coefficient matrix A
is non-singular and the pairs (A, b1), (A, b2), . . . , (A, bm ) are
controllable [13, Theorem 6–13], where B = [b1 , b2 , . . . , bm ],
bj ∈ Rn . In other words, if (1) is normal, then the L1 optimal
control gives a discrete-valued control on U with U1 = 0 and
U2 = 1 (N = 2). To extend this idea to a general set U as in
(2), we consider the following SOAV cost function:

J(u) �
N∑

i=1

m∑

j=1

wiφi,j (u),

φi,j (u) � ‖uj − Ui‖1 + ‖uj + Ui‖1 (4)

where w1 , . . . , wN are given weights satisfying w1 + w2 +
· · ·+ wN = 1. The motivation for this cost function is based
on the observation that if uj (t) = Ui on a set I ⊂ [0, T ], then
uj (t)− Ui = 0 on I, which is sparse and reduces the L1 norm
‖uj − Ui‖1 as discussed in [12].
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Let us formulate the associated optimal control problem as
follows.

Problem 1 (SOAV Optimal Control Problem): For a given
initial state ξ ∈ Rn , find a feasible control u ∈ U(ξ) that mini-
mizes the SOAV cost function J(u) given in (4).

We call the optimal solution the SOAV optimal control. We
will show that under some assumptions on the system (1) and
the initial state ξ, the SOAV optimal control takes its values in
the set U .

A. Existence

Here we show the existence theorem for the SOAV optimal
control.

Let us define the reachable set of initial values from which
the state x(t) in (1) is steered to the origin by some control u(t),
t ∈ [0, T ] with ‖u‖∞ ≤ 1.

Definition 1 (Reachable Set): For the system (1), the reach-
able setR at time T is defined by

R �
{∫ T

0
e−AtBu(t)dt : ‖u‖∞ ≤ 1

}
⊂ Rn . (5)

Then we have the following existence theorem.
Theorem 1 (Existence): For each initial state in the reachable

setR, there exists an SOAV optimal control.
Proof: Let an initial state ξ ∈ R be fixed. The feasible con-

trol set U(ξ) can be described by

U(ξ) =
{

u ∈ L1 :
∫ T

0
e−AtBu(t)dt = −ξ, ‖u‖∞ ≤ 1

}
.

(6)
Since the set U(ξ) is non-empty, we can define

θ � inf{J(u) : u ∈ U(ξ)}.
Then there exists a sequence {ul}l∈N ⊂ U(ξ) such that
liml→∞ J(ul) = θ, ‖ul‖∞ ≤ 1, and

ξ = −
∫ T

0
e−AtBul(t)dt. (7)

Since the set {u ∈ L∞ : ‖u‖∞ ≤ 1} is sequentially compact
in the weak∗ topology of L∞ [20], there exist a measurable
function u∞ with ‖u‖∞ ≤ 1 and a subsequence {ul ′ } such that
each component {uj,l ′ } converges to uj,∞, the j-th component
of u∞, in the weak∗ topology of L∞, that is, we have

lim
l ′→∞

∫ T

0

(
uj,l ′(t)− uj,∞(t)

)
f(t)dt = 0 (8)

for any f ∈ L1 and j = 1, 2, . . . , m. By (7) and (8),

ξ = −
∫ T

0
e−AtBu∞(t)dt

and hence u∞ ∈ U(ξ). Put

J±l ′ �
N∑

i=1

m∑

j=1

wi

∫ T

0
(uj,l ′(t)± Ui)sgn(uj,∞(t)± Ui)dt (9)

where the function sgn is defined by

sgn(v) =

{
v/|v|, if v �= 0,

0, if v = 0.

From (8), we have

lim
l ′→∞

J±l ′ =
N∑

i=1

m∑

j=1

wi‖uj,∞ ± Ui‖1 .

Let Jl ′ � J +
l ′ + J −l ′ . Then the above equation gives

lim
l ′→∞

Jl ′ = lim
l ′→∞

(J +
l ′ + J −l ′ ) = J(u∞). (10)

Also, from (4) and (9), we have

Jl ′ ≤ |Jl ′ | ≤
N∑

i=1

m∑

j=1

wiφi,j (ul ′) = J(ul ′) (11)

for each l′ ∈ N. Since the sequence {J(ul)} converges to θ as
l→∞, the subsequence {J(ul ′)} has the same limit θ. There-
fore we have

J(u∞) = lim
l ′→∞

Jl ′ ≤ lim
l ′→∞

J(ul ′) = θ (12)

from (10) and (11). On the other hand, since u∞ ∈ U(ξ), we
have J(u∞) ≥ θ. This with (12), we have J(u∞) = θ, and u∞
is an optimal control for the initial state ξ. �

B. Discreteness of SOAV Optimal Control

Here we show the SOAV optimal solution is a discrete-valued
control on U . The following theorem is one of the main results.

Theorem 2 (Discreteness): Assume that the coefficient ma-
trix A is non-singular and the pairs (A, b1), (A, b2), . . . , (A, bm )
are controllable1. If an SOAV optimal control u∗ exists, then at
least one of the followings holds.

i) u∗(t) ∈ Um for almost all t ∈ [0, T ].
ii) If u∗j violates (i) for some j, then ‖u∗j‖∞ ≤ Umin .

In particular, if Umin = 0, then u∗(t) takes values in U for
almost all t ∈ [0, T ].

Proof: We give the proof based on the discussion in the proof
of [13, Theorem 6–13], which is devoted to the discreteness of
L1 optimal controls. The Hamiltonian H for the SOAV optimal
control problem is defined by

H(x, u, p) �
m∑

j=1

L(uj ) + pT

⎛

⎝Ax +
m∑

j=1

bjuj

⎞

⎠

where

L(uj ) �
N∑

i=1

wi(|uj − Ui |+ |uj + Ui |)

and p is the costate vector. Let x∗ denote the trajectory corre-
sponding to u∗. From Pontryagin’s minimum principle [13],

1The pair (A, bi ) is said to be controllable if the matrix [bi , Abi ,
. . . , An−1 bi ] is non-singular.
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there exists a costate vector p∗ satisfying H(x∗, u∗, p∗) ≤
H(x∗, u, p∗), or

L(u∗j ) + (p∗)Tbju
∗
j ≤ L(uj ) + (p∗)Tbjuj (13)

for every uj with |uj | ≤ 1, where j = 1, 2, . . . ,m. Therefore,
each component of the optimal control is the minimizer of the
right hand side of (13), which can be obtained analytically as
follows.

Fix arbitrarily j ∈ {1, 2, . . . ,m}. An elementary computa-
tion yields

L(uj ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−akuj + a′k , if uj ∈ [−Uk+1 ,−Uk ],

2
∑N

i=1 wiUi, if uj ∈ [−Umin , Umin ],

akuj + a′k , if uj ∈ [Uk , Uk+1]

(14)

for k = 1, 2, . . . , N − 1, where

ak � 2
k∑

i=1

wi, a′k � 2
N∑

i=k+1

wiUi, k = 1, 2, . . . , N − 1.

(15)
Put qj (t) � p∗(t)Tbj ∈ R, f(uj ) � L(uj ) + qjuj , and

cj,k �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−aN−k + qj , k = 1, . . . , N − 1,

qj , k = N,

ak−N + qj , k = N + 1, . . . , 2N − 1.

Since f is continuous and cj,1 < cj,2 < · · · < cj,2N−1 , we have
the following.

1) If cj,1 > 0, then

arg min
|uj |≤1

f(uj ) = −UN = −1.

2) If cj,k < 0 and cj,k+1 > 0 for k ∈ {1, 2, . . . , 2N − 2},
then we have

cj,1 < · · · < cj,k < 0 < cj,k+1 < · · · < cj,2N−1 .

This implies that

arg min
|uj |≤1

f(uj ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−UN−k , k = 1, . . . , N − 1,

Umin , k = N,

Uk−N +1 , k = N + 1, . . . , 2N − 2.

3) If cj,2N−1 < 0, then we have

cj,1 < cj,2 < · · · < cj,2N−1

and hence

arg min
|uj |≤1

f(uj ) = UN = 1.

4) If cj,k = 0 for k ∈ {1, 2, . . . , 2N − 1}, then we have

arg min
|uj |≤1

f(uj )

∈

⎧
⎪⎪⎨

⎪⎪⎩

[−UN−k+1 ,−UN−k ], k = 1, . . . , N − 1,

[−Umin , Umin ], k = N,

[Uk−N , Uk−N +1], k = N + 1, . . . , 2N − 1.

In this case, the minimizer of f(uj ) is not determined
uniquely.

Note the statements 1) to 4) boil down to L being a piecewise
linear function on intervals. In summary, the minimizer of f(uj ),
that is the j-th component of the SOAV optimal control u∗, is
given by

u∗j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if aN−1 < qj (t),

−UN−k , if aN−k−1 < qj (t) < aN−k ,

−Umin , if 0 < qj (t) < a1 ,

Umin , if − a1 < qj (t) < 0,

Uk+1 , if − ak+1 < qj (t) < −ak ,

1, if qj (t) < −aN−1

where k = 1, 2, . . . , N − 2 and

u∗j (t) ∈

⎧
⎪⎪⎨

⎪⎪⎩

[−UN−k+1 ,−UN−k ], if qj (t) = aN−k ,

[−Umin , Umin ], if qj (t) = 0,

[Uk , Uk+1], if qj (t) = −ak

(16)

where k = 1, 2, . . . , N − 1.
Next we claim that

μ
({t ∈ [0, T ] : qj (t) = ±ak}

)
= 0 (17)

for every k ∈ {1, 2, . . . , N − 1} and j ∈ {1, 2, . . . ,m}, where
μ denotes the Lebesgue measure. Fix arbitrarily j ∈
{1, 2, . . . ,m}, take any k ∈ {1, 2, . . . , N − 1}, and assume
μ({t ∈ [0, T ] : qj (t) = ak}) > 0. Then we have

qj (t) = p∗(t)Tbj = ak (18)

on a set E ⊂ [0, T ] with m(E) > 0. From Pontryagin’s mini-
mum principle, we have

ṗ∗(t) = −ATp∗(t) (19)

for t ∈ [0, T ], and hence we have p∗(t)TAbj = 0 for t ∈ E by
differentiating (18). Again, by differentiating this equation, we
also have p∗(t)TA2bj = 0 for t ∈ E from (19). Repeating this
yields p∗(t)TAlbj = 0 on E for every l ∈ N. Therefore we have

p∗(t)TA
[
bj Abj . . . An−1bj

]
= 0 (20)

for t ∈ E. Since ak �= 0 for every k ∈ {1, . . . , N − 1}, it fol-
lows from (18) that p∗(t) is not identically 0 on [0, T ], and
hence the determinant of A[bj Abj . . . An−1bj ] is 0. However,
this contradicts the assumption that the matrix A is non-singular
and the pair (A, bj ) is controllable. Therefore μ({t ∈ [0, T ] :
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qj (t) = ak}) = 0 holds for every k ∈ {1, . . . , N − 1}. Simi-
larly, we can also prove that μ({t ∈ [0, T ] : qj (t) = −ak}) = 0
for every k ∈ {1, 2, . . . , N − 1}, and hence (17) holds for every
k ∈ {1, 2, . . . , N − 1} and j ∈ {1, 2, . . . ,m}.

Next, let assume μ({t ∈ [0, T ] : qj (t) = 0}) > 0 for some j.
Then we have p∗(t)Tbj = 0 on a set F ⊂ [0, T ]. From (19), by
a similar computation as above, we have the relation (20) for
t ∈ F . Since the matrix A[bj Abj . . . An−1bj ] is non-singular
from the assumption, it follows that

p∗(t) = 0, ∀t ∈ F. (21)

Since we have p∗(t) = e−AT tp0 on [0, T ] for some p0 ∈ Rn

from (19), it follows from (21) that p0 = 0, and hence p∗(t) = 0
on [0, T ]. Then qj (t) = p∗(t)Tbj = 0 on [0, T ], and we have
‖u∗j‖∞ ≤ U1 = Umin from (16). Therefore, if qj (t) is 0 on a
set with positive measure for some j, then the j-th component
of the optimal control satisfies ‖u∗j‖∞ ≤ Umin , and otherwise,
the j-th component of the optimal control takes discrete values
±U1 , . . . ,±UN for almost all t ∈ [0, T ]. �

Remark 1: Although we focus on the well-defined lattice
set for U in (2), that is, U contains the pair ±Ui , we note
that this proof can be also applied to show the discreteness
of the optimal control when we take general alphabet sets such
as U = {U1 , U2 , . . . , UN }with−1 = U1 < U2 < · · · < UN =
1, as considered in [21]. The lattice structure is however used
for the proof of the continuity of the value function (Theorem 6
in Section IV), with which we show the stability of the feed-
back system based on model predictive control (Theorem 7 in
Section V).

Theorem 2 suggests that if Umin = 0 then the SOAV optimal
control is a discrete-valued control that takes values in U . Oth-
erwise, it is useful to derive a condition for the optimal control
u∗ to satisfy the statement (i) in Theorem 2. In fact, it will be
shown that there exists a subset of Rn such that if an initial state
ξ is in this set then the SOAV optimal control takes values in U .
To derive such a subset, we prepare the following lemmas.

Lemma 1: Define

Jj (u) �
N∑

i=1

wiφi,j (u)

for j ∈ {1, 2, . . . ,m}, which is the j-th part of the cost function
J(u). Then Jj (u) has the minimum value

Jmin � 2T

N∑

i=1

wiUi

on the set {u ∈ L1 : ‖u‖∞ ≤ 1}.
Proof: See Appendix A. �
Lemma 2: LetRj,min be the set of all initial states for which

there exists at least one feasible control u such that Jj (u) =
Jmin . Then we have

Rj,min =
{∫ T

0
e−AtBu(t)dt : ‖uj‖∞ ≤ Umin , ‖u‖∞ ≤ 1

}
.

Proof: See Appendix B. �
Remark 2: The cost function has the minimum value mJmin

on the set {u : ‖u‖∞ ≤ 1} from Lemma 1. It follows from

Lemma 2 that the optimal value for a fixed initial state in R is
equal to mJmin if and only if each component of the optimal
controls satisfies ‖uj‖∞ ≤ Umin , since we have Jj (u) > Jmin
if ‖uj‖∞ > Umin Hence, if we take Umin = 0, then the set of all
initial states for which the optimal value is mJmin consists of
only {0}. This will be used to prove the stability in Theorem 7.

Now let us state the following theorem on the discreteness of
the SOAV optimal control.

Theorem 3 (Discreteness for Nonzero Umin ): Assume that
A is non-singular and the pairs (A, b1), (A, b2), . . ., (A, bm )
are controllable. Define

Rmin �
m⋃

j=1

Rj,min .

If ξ ∈ R−Rmin , then the optimal controls take values in U
almost everywhere in [0, T ]. Otherwise, if ξ ∈ Rj,min for some
j, then the j-th components of the optimal controls take values
less than or equal to Umin on [0, T ].

Proof: This follows from Theorem 1, Theorem 2, Lemma 1
and Lemma 2, immediately. �

Next, we show the uniqueness theorem of the SOAV optimal
control.

Theorem 4 (Uniqueness): Assume that A is non-singular
and the pairs (A, b1), (A, b2), . . ., (A, bm ) are controllable. Then
the SOAV optimal control for the initial state ξ ∈ R−Rmin is
unique (up to null sets). In particular, if Umin = 0, the SOAV
optimal control is unique for any initial state ξ ∈ R.

Proof: Fix an initial state ξ ∈ R−Rmin , and let u1 and u2
be optimal controls for ξ. Then we have

J(u1) = J(u2) ≤ J(u) (22)

for all u ∈ U(ξ). For any λ ∈ (0, 1), the control λu1 + (1−
λ)u2 is feasible for ξ, and hence the convexity of the cost func-
tion J and (22) yields

J(u1) ≤ J(λu1 + (1− λ)u2) ≤ λJ(u1) + (1− λ)J(u2)

= J(u1)

which means J(λu1 + (1− λ)u2) = J(u1). Therefore λu1 +
(1− λ)u2 is an optimal control for ξ.

Put

E1 = {t ∈ [0, T ] : u1(t) ∈ Um},
E2 = {t ∈ [0, T ] : u2(t) ∈ Um},
Fj = {t ∈ E1 ∩ E2 : u1,j (t) = u2,j (t)},
Gj = {t ∈ E1 ∩ E2 : u1,j (t) �= u2,j (t)}

for j ∈ {1, 2, . . . ,m}. From Theorem 3, we have μ(E1) =
μ(E2) = T , and then we also have μ(E1 ∩ E2) = T .

Here, there exist some λ ∈ (0, 1) such that λu1,j (t) + (1−
λ)u2,j (t) �∈ U for any t ∈ Gj and for any j, from the gap be-
tween the uncountability of (0, 1) and the countability of U . It
follows from the optimality of the control λu1 + (1− λ)u2 for
such λ and Theorem 3 that μ(Gj ) = 0 for any j. Therefore we
have

μ(Fj ) = μ(Fj ) + μ(Gj ) = μ(E1 ∩ E2) = T,
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and then

T = μ(Fj ) ≤ μ({t ∈ [0, T ] : u1,j (t) = u2,j (t)}) ≤ T,

which yields

μ({t ∈ [0, T ] : u1,j (t) = u2,j (t)}) = T

for any j. This means the uniqueness. �
From the above discussion, the SOAV optimal control can

give a discrete-valued control taking values in U under some
assumptions on the system (1) and the initial state ξ. A discrete-
valued control is a piecewise constant signal, and changes its
value at switching instants. It is undesirable for real applications
if the number of switches were infinite, however this never
happens. The following theorem gives an upper bound on the
number of switches.

Theorem 5 (Number of Switches): Assume that A is non-
singular and the pairs (A, b1), (A, b2), . . ., (A, bm ) are con-
trollable. Then the number M of switches. of the SOAV optimal
control for each initial state ξ ∈ R−Rmin satisfies

M < mn(2N − 1)(1 + ΩT/π), (23)

where Ω is the largest imaginary part of the eigenvalues of A.
In particular, if Umin = 0, then the number M of switches for
each initial state ξ ∈ R satisfies

M < 2mn(N − 1)(1 + ΩT/π). (24)

Proof: Fix arbitrarily an initial state ξ ∈ R−Rmin , and let
u∗ be the SOAV optimal control for the initial state ξ. From
the proof of Theorem 2, u∗(t) has discontinuities at points such
that qj (t) = p∗(t)Tbj ∈ S � {0,±a1 , . . . ,±aN−1}, where ak

is defined in (15). Take arbitrarily j and an element a ∈ S.
Since p∗(t) = e−AT tp0 for some p0 ∈ Rn , we have qj (t) =
pT

0 e−Atbj . Therefore qj (t) = a implies a− pT
0 e−Atbj = 0, or

[
a −pT

0
]
exp

([
0 0

0 −A

]

t

)[
1

bj

]

= 0.

The number of zeros on [0, T ] of the function on the left
hand side is less than n(1 + TΩ/π) according to [22]. Count-
ing the elements of the sets S = {0,±a1 , . . . ,±aN−1} and
{1, 2, . . . ,m} yields the estimate (23). In particular, if Umin =
0, the switching instants of the SOAV optimal control for ξ ∈ R
consist of all t such that qj (t) ∈ {±a1 , . . . ,±aN−1}, and the
estimate (24) holds. �

IV. VALUE FUNCTION

In this section, we investigate the value function in the SOAV
optimal control. The value function is the optimal value of the
SOAV optimal control, defined by

V (ξ) � min{J(u) : u ∈ U(ξ)}, ξ ∈ R
where J(u) is defined in (4). From the existence
theorem (Theorem 1), this is well-defined. In this section, we
will show the continuity of the value function V (ξ). This prop-
erty plays an important role to prove the stability when the
optimal control is extended to model predictive control (see

Section V below). To prove the continuity, the following lem-
mas are fundamental.

Lemma 3: The value function V (ξ) is convex onR.
Proof: See Appendix C. �
Lemma 4: For α ≥ mJmin , let

Rα �
{∫ T

0
e−AtBu(t)dt : ‖u‖∞ ≤ 1, J(u) ≤ α

}
.

Then the setRα is closed for every α ≥ mJmin .
Proof: See Appendix D. �
Lemma 5: If the pairs (A, b1), (A, b2), . . ., (A, bm ) are con-

trollable, then we have

R = {ξ : V (ξ) ≤ 2mT}.
In particular,

∂R = {ξ : V (ξ) = 2mT}.
Proof: See Appendix E. �
From these lemmas, we show the continuity of the value

function V (ξ) based on the discussion given in [23].
Theorem 6 (Continuity of V ): If the pairs (A, b1), (A, b2),

. . ., (A, bm ) are controllable, then V (ξ) is continuous onR.
Proof: Define

V (ξ) �
{

V (ξ), ξ ∈ R,

2mT, ξ ∈ Rn −R.

It is sufficient to show that V (ξ) is continuous on Rn .
First, we show that V (ξ) is continuous at every ξ ∈ ∂R.

Fix ξ ∈ ∂R. For α that satisfies α ≥ 2mT or α < mJmin , the
set {ξ : V (ξ) > α} is empty or Rn , respectively. For α with
mJmin ≤ α < 2mT , we have

{ξ : V (ξ) > α} = Rn − {ξ : V (ξ) ≤ α}
which is open from Lemma 4 since

{ξ : V (ξ) ≤ α} = {ξ : V (ξ) ≤ α} = Rα .

It follows that the set {ξ : V (ξ) > α} is open for every real
number α, and hence V (ξ) is lower semi-continuous on Rn .
Then we have

V (ξ) ≤ lim inf
η→ξ

V (η). (25)

On the other hand, we have

lim sup
η→ξ

V (η) ≤ 2mT, (26)

from Lemma 5. Therefore,

V (ξ) ≤ lim inf
η→ξ

V (η) ≤ lim sup
η→ξ

V (η) ≤ 2mT = V (ξ)

from (25), (26), and Lemma 5. This yields

V (ξ) = lim
η→ξ

V (η)

which means that V (ξ) is continuous at every ξ ∈ ∂R.
Since V (ξ) is convex onR from Lemma 3 andR contains the

origin in its interior from the controllability of the pairs (A, b1),



2756 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 6, JUNE 2017

(A, b2), . . ., (A, bm ), [19, Theorem 17.3, Corollary 17.1], V (ξ)
is continuous at every point in intR [24, Theorem 10.1, p. 44].

Therefore V (ξ) is continuous on Rn , and then V (ξ) is con-
tinuous onR. �

V. AN EXTENSION TO MPC

In this section, we extend the finite-horizon SOAV optimal
control discussed above to infinite-horizon model predictive
control (MPC).

Suppose that we are given a sequence {tk}k∈N of sampling
instants. We assume that

0 = t0 < t1 < t2 < · · · (27)

and there exists τ > 0 such that

τ ≤ tk+1 − tk ≤ T, k = 0, 1, 2, . . . (28)

We also assume that the initial state x(0) = x0 ∈ R is given.
At each sampling instant tk , the SOAV optimal control, say uk ,
with horizon length T is computed by solving the SOAV optimal
control problem (Problem 1) with ξ = x(tk ). We then apply
uk (t) on the k-th time interval [tk , tk+1]. If each optimization
has the optimal solution, then this process gives a control

u(t) = uk (t− tk ), t ∈ [tk , tk+1], k = 0, 1, 2, . . . (29)

From the assumptions (27) and (28), the control u(t) is defined
for all t ∈ [0,∞).

A. Stability

Here we investigate the stability of the closed-loop system
with the model predictive control given in (29). More precisely,
the question here is whether the origin is stable in the sense
of Lyapunov regardless of the choice of sampling instants {tk}
with the control (29).

Note that the state x(t) for t ∈ [0, t1 ] obviously exists in the
reachable set R while the control u0 is used, since every point
out of the setR needs a time duration more than T to be steered
to the origin by any control v with ‖v‖∞ ≤ 1. Therefore, we
have x(t1) ∈ R, and the next optimal control u1 exists on the
next interval [t1 , t2 ]. Then the state x(t) for t ∈ [t1 , t2 ] lies in
the reachable set R while the control u1 is used. It follows that
the state x(t) lies in the reachable setR for all t ∈ [0,∞) under
this situation and each optimization has the optimal solution, and
hence the control u is well defined. Then the continuity of the
value function (Theorem 6) leads to the stability of the closed-
loop system, as described in the following theorem. Our proof
is based on the Lyapunov’s stability theorem [25, Theorem 4.1].

Theorem 7 (stability): If the pairs (A, b1), (A, b2), . . .,
(A, bm ) are controllable and Umin = 0, then the origin is stable
in the sense of Lyapunov regardless of the choice of the sam-
pling instants t0 , t1 , . . . that satisfy (27) and (28) when we use
the control u defined in (29).

Proof: Fix a sequence {tk}∞k=0 of sampling instants that
satisfy (27) and (28). Also fix a positive real number ε > 0. We
can take a real number r ∈ (0, ε) such that

Br � {ξ ∈ Rn : ‖ξ‖ ≤ r} ⊂ R

sinceR contains the origin in its interior from the controllability
of the pairs (A, b1), (A, b2), . . ., (A, bm ). From Theorem 6, V (ξ)
is continuous on ∂Br , and then we can define

α � min
‖ξ‖=r

V (ξ).

From Remark 2, we have V (ξ) > mJmin for the initial state ξ �=
0, and hence α > mJmin . Take β ∈ (mJmin , α). Then the set
Rβ ∩ ∂Br is empty, and Rβ contains the origin and is convex.
Hence we haveRβ ⊂ intBr . From the continuity of V (ξ) at the
origin, there exists δ > 0 such that ‖ξ‖ ≤ δ implies

mJmin ≤ V (ξ) ≤ β. (30)

When we use the control u defined in (29) for ξ with ‖ξ‖ ≤ δ,
it is clear that we have

V (xξ (t)) ≤ V (ξ), ∀t ≥ 0 (31)

where xξ (t) is the state with xξ (0) = ξ and is obtained by using
u. Therefore for ξ with ‖ξ‖ ≤ δ we have V (xξ (t)) ≤ β for all
t ≥ 0 from (30) and (31). Since Rβ ⊂ Br ⊂ Bε , for any initial
state ξ with ‖ξ‖ ≤ δ we have xξ (t) ∈ Bε for all t ≥ 0, which
means that the origin is stable in the sense of Lyapunov. �

Remark 3 (Practical Stability): As noted above, the state
starting from any initial state in the reachable set R remains
in R regardless of the choice of alphabet set U . Hence even if
Umin > 0, we can guarantee at least the boundness of the state
for all time t ≥ 0, since the setR is compact for any finite T > 0
[26]. This guarantees the practical stability discussed in [21].

B. Numerical Optimization

Here we propose a numerical computation algorithm to solve
the (finite-horizon) SOAV optimal control problem to obtain a
discrete-valued control input.

For simple systems, such as single or double integrators,
the discrete-valued control can be obtained in a closed form
via Pontryagin’s minimum principle as the discussion in [13,
Chap. 8] for L1 optimal control. However, for general linear
time-invariant systems, one should rely on numerical computa-
tion. For this, we adopt a time discretization approach to solve
the SOAV control problem. This approach is standard for nu-
merical optimization; see e.g. [27, Sec. 2.3]. We then derive an
algorithm for the optimization based on the alternating direc-
tion method of multipliers (ADMM) [14]–[16]. This algorithm is
simple but much faster than the standard interior point method.

We first divide the interval [0, T ] into ν subintervals, [0, T ] =
[0, h) ∪ · · · ∪ [(ν − 1)h, νh], where h is the discretization step
chosen such that T = νh. We here assume (or approximate)
that the state x(t) and the control u(t) are constant over each
subinterval. On the discretization grid, t = 0, h, . . . , νh, the
continuous-time system (1) is described as

xd [l + 1] = Adxd [l] + Bdud [l], l = 0, 1, . . . , ν − 1

where xd [l] � x(lh), ud [l] � u(lh), and

Ad � eAh , Bd �
∫ h

0
eAtBdt.
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Set the control vector

z �
[
ud [0]T , ud [1]T , . . . , ud [ν − 1]T

]T ∈ Rmν .

Let ξ be the initial state, that is, x(0) = ξ. Then the final state
x(T ) can be described as

x(T ) = xd [ν] = ζ + Φz

where ζ � Aν
dξ and

Φ �
[
Aν−1

d Bd, Aν−2
d Bd, . . . , Bd

] ∈ Rn×mν .

Rename the discrete values in U as

r1 � −UN , r2 � −UN−1 , . . . , rL � UN

where L � 2N and the weights for J(u) in (4) as

p1 = pL � wN , p2 = pL−1 � wN−1 , . . . , pN = pN +1 � w1 .

Then the SOAV optimal control problem is approximated by

minimize
z∈Rm ν

L∑

i=1

pi‖z − ri‖�1

subject to ‖z‖�∞ ≤ 1, Φz + ζ = 0, (32)

where ‖ · ‖�1 and ‖ · ‖�∞ are the �1 and �∞ norms in Rmν ,
respectively. The optimization problem (32) is reducible to lin-
ear programming [11], and can be solved by standard numerical
software packages, such ascvxwith MATLAB [28], [29], based
on the interior point method. However, for large scale problems,
the computational burden of such an algorithm becomes heavy,
and hence we give a more efficient algorithm based on ADMM.

1) Alternating Direction Method of Multipliers
(ADMM): We here briefly review the ADMM algorithm. The
ADMM solves the following type of convex optimization.

minimize
z∈RN 1 ,y∈RN 2

f(z) + g(y)

subject to y = Ψz (33)

where f : RN1 �→ R ∪ {∞} and g : RN2 �→ R ∪ {∞} are
proper lower semi-continuous convex functions, and Ψ ∈
RN2×N1 . The algorithm of ADMM is given, for y[0], w[0] ∈
RN2 and γ > 0, by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z[j + 1]← arg minz∈RN 1

{
f(z) + 1

2γ

∥
∥y[j]−Ψz − w[j]

∥
∥2}

y[j + 1]← proxγg

(
Ψz[j + 1] + w[j]

)

w[j + 1]← w[j] + Ψz[j + 1]− y[j + 1]
(34)

for j = 0, 1, 2, . . ., where proxγg denotes the proximity operator
of γg defined by

proxγg (z) � arg min
y∈RN 2

γg(y) +
1
2
‖z − y‖2 .

We recall a convergence analysis of ADMM by Eckstein-
Bertsekas [15].

Theorem 8 (Convergence of ADMM [15]): Consider the op-
timization problem (33). Assume that ΨTΨ is invertible
and that a saddle point of its unaugmented Lagrangian

L0(z, y, w) � f(z) + g(y)− (Ψz − y)Tw exists. Then the se-
quence {(z[j], y[j])}j∈N generated by Algorithm (34) con-
verges to a solution of (33).

2) Reformulation Into ADMM-Applicable Form: In
what follows, we reformulate our optimization problem de-
scribed in (32) into the standard form in (33) to apply ADMM.

Let Ω1 � {z ∈ Rmν : ‖z‖�∞ ≤ 1} be the unit-ball of the
infinity norm, and Ω2 � {−ζ} be the singleton consisting of
the vector −ζ. Define the indicator function of a nonempty
closed convex set by

ιΩ(z) �
{

0, if z ∈ Ω,

∞, otherwise.

Then, we can rewrite the optimization problem (32) as

minimize
z∈Rm ν

L∑

i=1

pi‖z − ri‖�1 + ιΩ1 (z) + ιΩ2 (Φz). (35)

Introducing new variables y1 , . . . , yL+2 such that yi = z (i =
1, . . . , L + 1), and yL+2 = Φz, we can translate (35) into

minimize
z∈RN 1 ,y∈RN 2

L∑

i=1

pi‖yi − ri‖�1 + ιΩ1 (yL+1) + ιΩ2 (yL+2)

subject to y = Ψz (36)

where N1 � mν, N2 � (L + 1)mν + n, y � [yT
1 · · · yT

L+2]
T ∈

RN2 , and

Ψ �
[
I . . . I ΦT

]T ∈ RN2×N1 .

Finally, by setting

f(z) � 0,

g(y) �
L∑

i=1

pi‖yi − ri‖�1 + ιΩ1 (yL+1) + ιΩ2 (yL+2)

the optimization problem (36) is reduced to the standard from
of (33).

3) Computation: Since f = 0, the first step of (34) be-
comes strictly convex quadratic minimization, which boils down
to solving linear equations, that is,

z[j + 1] = arg min
z∈Rm ν

1
2γ ‖y[j]−Ψz − w[j]‖2

= (ΨTΨ)−1ΨT(y[j]− w[j])

=
(
(L + 1)I + ΦTΦ

)−1
v[j]

where

v[j] �
L+1∑

i=1

(yi [j]− wi [j]) + ΦT(yL+2[j]− wL+2[j]).

Note that the inverse matrix
(
(L + 1)I + ΦTΦ

)−1
can be com-

puted off-line.
On the other hand, the second step of (34) can be sepa-

rated with respect to each yi . For yi (i = 1, . . . , L), we have
to compute the proximity operator of the �1 norm with shift ri ,
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which is reduced to a simple soft-thresholding operation: for
l = 1, . . . ,mν,

[
proxγpi ‖·−ri ‖1 (z)

]
(l) = ri + proxγpi |·|(z(l) − ri)

= ri + sgn(z(l) − ri(l))max{|z(l) − ri | − γpi, 0}
where (·)(l) denotes the l-th entry of a vector. Here we use the
shift property of the proximity operator (see, e.g., [30]).

For yL + 1 and yL + 2 , the computation of the proximity oper-
ators of the indicator functions are required. Since the proximity
operator of the indicator function of a nonempty closed convex
set Ω equals to the metric projection PΩ onto Ω, the updates
of yL+1 and yL+2 are reduced to calculating PΩ1 and PΩ2 ,
respectively. We can compute PΩ1 as follows:

PΩ1 (z) �
{

z, if ‖z‖�∞ ≤ 1,

z̃, otherwise

where

z̃ �
[
sgn(z(1))min{|z(1) |, 1} . . . sgn(z(mν ))

min{|z(mν ) |, 1}
]T

.

Meanwhile, PΩ2 = P{−ζ} is simply given by

PΩ2 (z) � −ζ.

As addressed in [16], ADMM tends to converge to modest ac-
curacy within a few tens of iterations. This property is favorable
in real-time control systems.

Remark 4: For numerical computation of the SOAV optimal
control, one may adapt the theory of Hamilton-Jacobi equations
with viscosity solutions [18, Section 19.3]. We leave this to
future work.

VI. EXAMPLE

In this section, we give two examples of model predictive
control (MPC) based on the SOAV optimal control.

A. Example 1

We first consider a single-input system represented in

ẋ(t) =

[
0 1

2 1

]

x(t) +

[
0

1

]

u(t)

with the initial state x(0) = [5,−5.4]T . For this system, at
each sampling instant tk , k = 0, 1, 2, . . ., we solve the (finite-
horizon) SOAV optimal control problem with the cost function

J(u) =
3∑

i=1

wi(|u− Ui |+ |u + Ui |), (37)

where w1 = 0.3, w2 = 0.3, w3 = 0.4, U1 = Umin = 0, U2 =
0.5, and U3 = 1. Let the horizon length T = 3 and the sampling
instants be given by t1 = 2.5, t2 = 3.5, t3 = 5.5, t4 = 8, t5 = 9,
and t6 = 10. Here we note that the boundary of the reachable set

Fig. 1. Reachable set R and the state variable x(t) = [x1 (t), x2 (t)]T
according to the proposed control u(t) based on SOAV (solid line)
and the L2 -based control (dash-dotted line). An enlarged figure is also
shown.

R defined in (5) of this system is given by (see [13, Section 7.3])

∂R =

{[
x1

x2

]

∈ R2 : x1 =
2y1 + y2

6
, x2 =

−y1 + y2

3
,

[
y1

y2

]

∈ R1 ∪R2

}

,

R1 =

{[
y1

y2

]

∈R2 : y2 = −2

(
2

1 + eT − y1

)2

+ 1 + e−2T ,

|y1 | ≤ eT − 1

}

,

R2 =

{[
y1

y2

]

∈ R2 : y2 = 2

(
2

1 + eT + y1

)2

− 1− e−2T ,

|y1 | ≤ eT − 1

}

,

and Fig. 1 shows the set R. Hence we have x(0) ∈ R, and
the MPC according to the SOAV optimization are well defined
for all t ≥ 0 from the discussion in Section V. For this
example, we apply ADMM algorithm with y[0] = w[0] =
[0, 0, . . . , 0]T ∈ RN2 , γ = 0.5, N1 = 100, and N2 = 702.
The ADMM iteration is stopped when we have
‖z[j + 1]− z[j]‖ < 10−6 , where z[j] is defined by (34).

Fig. 2 shows the control u defined by (29) and Fig. 1 shows
the state trajectory according to u. We used a standard desktop
computer with a 3.2 GHz Intel Core i5 processor, and then
(finite-horizon) optimal controls uk are obtained in up to 0.037
second on average. Certainly, we can see that the control u takes
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Fig. 2. Discrete-valued control by SOAV MPC.

Fig. 3. Quantized MPC v(t) by L2 optimal control: the recursive feasi-
bility is lost at 3rd sampling time (t = 5.5).

only discrete values 0, 0.5, and 1, and the state converges to the
origin, which are not inconsistent with Theorems 2 and 7.

For comparison, we also compute the quantized control based
on L2 optimal control, that is, we optimize the following L2 cost
function

J2(v) � ‖v‖22 =
∫ T

0
|v(t)|2dt

among all feasible controls, instead of J(u) in (37), and quantize
the control value to the nearest value in U on each time interval
[tk , tk + T ]. The obtained MPC v(t) is shown in Fig. 3, and the

Fig. 4. State x(t) = [x1 (t), x2 (t)]T according to the SOAV MPC with-
out state constraints.

associated state is shown in Fig. 1. We observe that the state
according to this control v(t) diverges from the origin because
of the quantization error of the control. Eventually, at the 3rd
sampling instant (t = 5.5) the state goes out of the reachable
setR, where we can not take any finite-horizon feasible control,
and hence the recursive feasibility is lost.

B. Example 2

We next take state constraints into account. Here we consider
the following system

ẋ(t) =

[
0 1

−2 −1

]

x(t) +

[
0

1

]

u(t).

Let the initial state be given by x(0) = [5, 5]T , and take T = 5,
wi = 0.1i (i = 1, 2, 3, 4), U1 = Umin = 0, U2 = 0.3, U3 = 0.6
and U4 = 1 in each finite-horizon SOAV optimization. The sam-
pling instants are taken as t1 = 4, t2 = 8, t3 = 9, and t4 = 10.

Fig. 4 shows the resultant state trajectory according to the
MPC based on the SOAV optimization. In the example, the
lower bounds of xi(t) are about−1.62 and−5.19, respectively.
Then we add the following state constraints:

−1.2 ≤ x1(t) ≤ 6, −5 ≤ x2(t) ≤ 6, t ≥ 0, (38)

into each finite-horizon SOAV optimal control problem in MPC.
Figs. 6 and 5 show the obtained MPC and the associated state
trajectories, where we used a software package cvx with MAT-
LAB. We can see that the obtained control takes only values
in U while the state satisfies the constraints given in (38) and
converges to the origin. In this paper, although we have ana-
lyzed the SOAV optimization with a magnitude constraint only
for control inputs, this indicates compatibility of the SOAV op-
timization with state constraints.
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Fig. 5. State x(t) = [x1 (t), x2 (t)]T according to the control in Fig. 6.

Fig. 6. Discrete-valued control by SOAV MPC with a state constraint.

VII. CONCLUSION

In this paper, we have proposed sum-of-absolute-values
(SOAV) optimization for discrete-valued control. We have
shown the existence and uniqueness theorems of the SOAV
optimal control. We have also given conditions for the SOAV
optimal control to generate a discrete-valued control signal. The
obtained discrete-valued control has a finite number of switches,
of which an upper bound has been derived. Furthermore we have
investigated the continuity of the value function, by which the
stability has been proved when the (finite-horizon) SOAV opti-
mal control is extended to model predictive control (MPC). For
MPC, a fast algorithm based on ADMM is proposed. A simula-
tion result has been illustrated to show the effectiveness of the
proposed method. Future work includes mathematical analysis
when constraints are added to state variables.

APPENDIX A
PROOF OF LEMMA 1

Fix any j ∈ {1, 2, . . . ,m}. First, we show that the value of
Jj (u) for each u ∈ {u ∈ L1 : ‖u‖∞ ≤ 1} is greater than or
equal to Jmin , and then we show the minimum Jmin is achieved
by u = 0.

Fix a control u with ‖u‖∞ ≤ UN = 1, and define

E0,j � {t ∈ [0, T ] : −U1 ≤ uj (t) ≤ U1},

E +
k,j � {t ∈ [0, T ] : Uk < uj (t) ≤ Uk+1},

E −
k,j � {t ∈ [0, T ] : −Uk+1 ≤ uj (t) < −Uk} (39)

where k = 1, 2, . . . , N − 1. Let γj � μ(E0,j ) and γ±k,j �
μ((E±k,j ). Since these sets are pairwise disjoint and satisfy

E0,j ∪
N−1⋃

k=1

(E +
k,j ∪ E −

k,j ) = [0, T ]

we have

γj +
N−1∑

k=1

(γ +
k,j + γ −k,j ) = T (40)

from the countable additivity of the Lebesgue measure. Let

λ±k,j � ±
∫

E±k , j

uj (t)dt.

An elementary computation yields

φi,j (u) =
∫ T

0

(|uj (t)− Ui |+ |uj (t) + Ui |
)
dt

= 2Ui

(
γj +

i−1∑

k=1

(γ +
k,j + γ −k,j )

)
+ 2

N−1∑

k=i

(λ +
k,j + λ −k,j )

for i = 1, 2, . . . , N , where we define
∑0

k=1 = 0 and
∑N−1

k=N =
0. Then for k = i, i + 1, . . . , N − 1, we have

λ±k,j = ±
∫

E±k , j

uj (t)dt ≥ Ukγ±k,j ≥ Uiγ
±
k,j .

It follows from (40) that

φi,j (u) ≥ 2Ui

(
γj +

N−1∑

k=1

(γ +
k,j + γ −k,j )

)
= 2UiT

and hence

Jj (u) ≥ 2T

N∑

i=1

wiUi = Jmin .

Therefore each part of the cost function J(u) takes values greater
than or equal to Jmin , and Jj (u) attains the minimum Jmin when
u = 0.
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APPENDIX B
PROOF OF LEMMA 2

Fix j. Take any initial state

ξ ∈
{∫ T

0
e−AtBu(t)dt : ‖uj‖∞ ≤ Umin , ‖u‖∞ ≤ 1

}
.

Then there exists a control u satisfying

ξ =
∫ T

0
e−AtBu(t)dt, ‖uj‖∞ ≤ Umin , ‖u‖∞ ≤ 1.

Since

Jj (−u) = 2T
N∑

i=1

wiUi = Jmin

and −u ∈ U(ξ), we have ξ ∈ Rj,min .
Conversely, take any initial state ξ ∈ Rj,min and let u ∈ U(ξ)

denote a control such that Jj (u) = Jmin . Define sets E±k,j and
Ej as in the proof of Lemma 1. Then we can easily show that

∫

E±k , j

(±uj (t)− Uk )dt = 0

for every k = 1, 2, . . . , N − 1. Since uj (t)− Uk and−uj (t)−
Uk are positive on E +

k,j and E −
k,j for every k respectively, we

have μ((E±k,j ) = 0 for every k. Therefore μ((Ej ) = T from
(40), that is, ‖ − uj‖∞ ≤ U1 = Umin . Also, since the control u
steers the initial state ξ to the origin at time T , we have

ξ =
∫ T

0
e−AtB

(−u(t)
)
dt

and it follows that

ξ ∈
{∫ T

0
e−AtBu(t)dt : ‖uj‖∞ ≤ Umin , ‖u‖∞ ≤ 1

}
.

APPENDIX C
PROOF OF LEMMA 3

Fix initial states ξ, η ∈ R and a scalar λ ∈ (0, 1). From The-
orem 1, there exist optimal controls uξ and uη for the initial
states ξ and η, respectively. Then we have λξ + (1− λ)η ∈ R
since R is convex, and the control λuξ + (1− λ)uη is feasible
for the initial state λξ + (1− λ)η. From the convexity of φi,j in
J(u) (see (4)), we have

V
(
λξ + (1− λ)η

) ≤ J
(
λuξ + (1− λ)uη

)

=
N∑

i=1

m∑

j=1

wiφi,j

(
λuξ + (1− λ)uη

)

≤
N∑

i=1

m∑

j=1

wi

(
λφi,j (uξ ) + (1− λ)φi,j (uη)

)

= λJ(uξ ) + (1− λ)J(uη )

= λV (ξ) + (1− λ)V (η).

APPENDIX D
PROOF OF LEMMA 4

First, we note that the setRα is well defined for α ≥ mJmin
since mJmin is the minimum of the cost function from Lemma 1.

Fix α ≥ mJmin , and take a sequence {ξl} in Rα that con-
verges to ξ∞ ∈ Rn . It is sufficient to show that ξ∞ ∈ Rα .

For each ξl ∈ Rα , there exists a control ul such that

ξl =
∫ T

0
e−AtBul(t)dt, ‖ul‖∞ ≤ 1, J(ul) ≤ α.

Since the set {u ∈ L∞ : ‖u‖∞ ≤ 1} is sequentially compact
in the weak∗ topology of L∞, there exist a measurable function
u∞ with ‖u∞‖∞ ≤ 1, and a subsequence {ul ′ } such that each
component {uj,l ′ } converges to uj,∞, the j-th component of
u∞, in the weak∗ topology of L∞. Clearly, we have

ξ∞ =
∫ T

0
e−AtBu∞(t)dt.

Define J±l ′ as (9) and Jl ′ � J+
l ′ + J−l ′ . Then we have

J(u∞) = lim
l ′→∞

Jl ′ ≤ lim
l ′→∞

J(ul ′) ≤ α

which is verified from (10) and (11). It follows that ξ∞ ∈ Rα .

APPENDIX E
PROOF OF LEMMA 5

First, we show

∂R = {ξ : V (ξ) = 2mT}. (41)

Fix ξ ∈ ∂R, then the feasible control for the initial state ξ is
only the time optimal control, which is determined uniquely and
takes only ±1 for almost all t ∈ [0, T ] since the pairs (A, b1),
(A, b2), . . ., (A, bm ) are controllable [31], [19, Theorem 12.1].
Let us denote the time optimal control by u� , and let F+

j , F−j ⊂
[0, T ] be the set on which u�

j takes 1 and−1, respectively, that is,

u�
j (t) =

{
1, if t ∈ F+

j ,

−1, if t ∈ F−j

and μ((F+) + μ((F−) = T . Then we have

V (ξ) = J(u�) = 2
N∑

i=1

m∑

j=1

wi

(
μ((F+

j ) + μ((F−j )
)

= 2mT.

Conversely, fix an initial state ξ ∈ R such that V (ξ) = 2mT .
If ξ ∈ intR, then there exist a scalar λ ∈ [0, 1) and a vector
η ∈ ∂R such that ξ = λη. As we proved above, we have V (η) =
2mT . It follows from the convexity of V that

V (ξ) = V (λη) ≤ λV (η) + (1− λ)V (0)

= 2λmT + (1− λ)V (0)

which yields

2mT ≤ V (0) (42)

since V (ξ) = 2mT .



2762 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 6, JUNE 2017

However, since u = 0 is feasible for the initial state 0, we
have

2mT

N∑

i=1

wiUi ≤ V (0) ≤ J(0) = 2mT

N∑

i=1

wiUi

from Lemma 1. This implies

V (0) = 2mT
N∑

i=1

wiUi < 2mT
N∑

i=1

wi = 2mT. (43)

Thus a contradiction occurs between (42) and (43), and hence
ξ /∈ intR. SinceR is closed [26], we have ξ ∈ ∂R.

Next, we show

R = {ξ : V (ξ) ≤ 2mT}.
From (41), it is sufficient to show

intR = {ξ : V (ξ) < 2mT}. (44)

First, fix an initial state ξ ∈ intR, then there exist a scalar λ ∈
[0, 1) and a vector η ∈ ∂R such that ξ = λη, and V (η) = 2mT
from (41). It follows from (43) that

V (ξ) ≤ λV (η) + (1− λ)V (0)

= 2λmT + (1− λ)V (0) < 2mT.

Conversely, for any initial state ξ such that V (ξ) < 2mT , we
have ξ ∈ intR from (41). Thus (44) follows, and the proof is
completed.
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