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Adaptive Input Design for LTI Systems
László Gerencsér, Håkan Hjalmarsson, Fellow, IEEE, and Lirong Huang

Abstract—Optimal input design for parameter estimation
has obtained extensive coverage in the past. A key problem
here is that the optimal input depends on some unknown
system parameters that are to be identified. Adaptive de-
sign is one of the fundamental routes to handle this prob-
lem. Although there exist a rich collection of results on this
problem, there are few results that address dynamical sys-
tems. This paper presents sufficient conditions for conver-
gence/consistency and asymptotic optimality for a class of
adaptive systems consisting of a recursive prediction error
estimator and an input generator depending on the time-
varying parameter estimates. The results apply to a gen-
eral family of single input single output linear time-invariant
systems. An important application is adaptive input design
for which the results imply that, asymptotically in the sam-
ple size, the adaptive scheme recovers the same accuracy
as the off-line prediction error method that uses data from
an experiment where perfect knowledge of the system has
been used to design an optimal input spectrum.

Index Terms—Linear time-invariant (LTI), recursive pre-
diction error (RPE), single-input single-output (SISO).

I. INTRODUCTION

W ITH the rapid developments in model-based engineer-
ing, compare with the petrochemical industry where it

is reported that all plants employ model predictive control, the
high cost of modeling is coming more and more into focus as
a limiting factor [1]. Often the only practical means to model-
ing is data-driven modeling, i.e., system identification. For this
type of modeling, the major part of the cost is associated with
performing experiments on the plant in question. A key variable
here is the duration of the experiments since it strongly couples
to costs in terms of personnel, energy, material and production
losses.

For dynamical systems, it has been shown that careful design
of the experiment can lead to quite drastic reduction in the
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required experimental time as compared to standard white noise
excitation or step testing [2], [3]. It has also been stressed that
the experimental conditions are essential for making system
identification robust with respect to many of the design variables
that are involved, e.g., model structure and orders, and with
respect to the resulting end performance [4].

The aforementioned observations have prompted renewed
interest in optimal experiment design—a topic that has been
studied extensively over the past decades, see, e.g., [5]–[12]
and references therein. Recent advances include novel compu-
tationally tractable algorithms [13], least-costly and application
oriented frameworks [14], [4], closed-loop methods [15]–[19],
and extensions to non-linear models [20]–[22].

A key problem in optimal experiment design is that the op-
timal experiment typically depends on the system parameters
that are to be identified. One of the fundamental routes to cope
with this problem is to employ adaptive schemes, meaning that
as information from the system is gathered the experimental
conditions are changed. Adaptive design is usually called se-
quential design in the statistics literature, where there exist a
rich collection of results and applications (see, e.g., [23] and the
references therein).

When only the input excitation is considered part of the exper-
iment design, we will use the terminology input design. Adaptive
input design has been studied in many works in engineering lit-
erature (see, e.g., [24]–[28] and [29]). However, as pointed out in
[30] and [28], there are few results that address this problem for
dynamical systems. Given the increasing practical relevance of
input design, it is becoming urgent to provide a solid theoretical
foundation for such methods.

When the system is linear time-invariant and belongs to
the model set, and the input is (quasi-)stationary, it is only
the second-order properties of the input that asymptotically
(in the sample size) influence the model quality. Thus, in this
case, it is the spectrum, or equivalently the autocorrelation se-
quence, of the input that is the design variable in optimal input
design. The actual input sequence can be generated by filter-
ing white noise through an input spectrum shaping filter corre-
sponding to a stable spectral factor of the optimal input spectrum
[13]. Building on this, an obvious approach to adaptive input
design is to combine a recursive identification scheme with a
time-varying input spectrum shaping filter, computed from the
solution of the optimal input design problem using the most
recent model estimate as a substitute for the true system.

Such a certainty equivalence approach leads to an adaptive
feedback system where, similar to adaptive control, the input
properties change over time depending on the response of the
system. From a performance perspective, there are several issues
that are non-trivial to analyze:

(i) Under which conditions will the parameter estimates of
such a procedure converge?
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(ii) If the algorithm converges, will it be consistent, i.e. will
the model parameters correspond to the true system
parameters?

(iii) If the algorithm converges to a correct system descrip-
tion, how does the resulting (large sample) accuracy
compare to the accuracy an oracle, having access to
the unknown true parameters for the experiment de-
sign already at the beginning of the experiment, could
achieve?

In regards to (iii), notice that even if the parameters converge
to the true values so that, as the experiment time progresses
towards infinity, the input behaves closer and closer to a sta-
tionary signal having the optimal spectrum, suboptimal experi-
mental conditions prevail in the meantime and it is not evident
that the algorithm is able to catch up with the accumulated loss
of accuracy this causes—this strongly depends on the rate of
convergence of the algorithm.

An early version of the above concept was presented in [24].
A severe limitation was that the parameter estimation was not
recursive, requiring re-identification using all past data for each
new measurement. Furthermore, no statistical analysis was pro-
vided and even if, for this off-line algorithm, (i) and (ii) can
be dealt with rather straightforwardly using results from [31],
(iii) is non-trivial to analyze since the input signal is non-
stationary. Subsequently the recursive certainty equivalence ap-
proach, adopted in this contribution, was outlined in [27], but
without details of formal treatment of (i)–(iii), the technical
foundations of which were given in the paper [32] that appeared
a few months later. Recently, [28] takes a different approach and
focus on a smaller class of problems, namely identification of
ARX systems with input filter of finite impulse response (FIR)
type as in [24]. The advantage of using ARX-models is that the
analysis of the recursive least-squares method can be carried out
with a powerful result in [33].

There exists an extensive body of literature on general recur-
sive stochastic algorithms, e.g. [34]–[40]. However, the avail-
able results, representing variations of what is loosely called the
ODE method, do not seem to be applicable to prove a certainity
equivalence principle for adaptive input design in general. The
key technical advance needed for the proof of such results has
been developed in [32] by proving a very strong form of an ODE
principle for general recursive estimation schemes introduced
in [34] and discussed in much details in [36].

Building on this work, the objective of this paper is to provide
the complete theoretical foundations of the adaptive input design
framework outlined in [27], providing results for (i)–(iii), hereby
validating current practice in input design.

While we will cover (i) and (ii), our primary objective will

be to deal with (iii). In particular, with θ∗, θ̂n and ˆ̂
θ∗n denoting

the true parameter vector, the parameter estimate in the adaptive
algorithm, and the off-line parameter estimate obtained from
an experiment using the optimal input, respectively, we will be
interested in establishing conditions for when adaptive input
design asymptotically yields the same asymptotic accuracy as
the optimal non-adaptive design in the sense that

√
n(θ̂n − θ∗)

and

√
n(ˆ̂θ∗n − θ∗)

have the same asymptotic covariance matrix. A pre-requisite
for this is (of course) that the recursive estimation algorithm is
able to achieve this when the optimal input is used. In prov-
ing these kind of results, we formulate and prove a novel, sig-
nificantly stronger form of certainty equivalence: namely, we

show that θ̂n − ˆ̂
θ∗n = o(n−1/2) in a sense explained below, see

Theorem 4.1. Another ambition has been to cover the general
class of single-input single-output (SISO) linear time-invariant
(LTI) systems and associated model structures considered in
[41]. The recursive prediction error (RPE) approach [34], [36]
fulfills these objectives. However, in its initial form, this algo-
rithm requires a so-called boundedness condition ensuring some
kind of stability of the state process associated with the RPE al-
gorithm and a projection mechanism to ensure that the estima-
tors stay in a compact domain, and one generally cannot exclude
the possibility that the sequence of estimates gets trapped at the
boundary where the projection takes place. A variety of ideas
have emerged to rectify these deficiences. In this paper we fol-
low the method put forward in [32], [39], where stability of the
state-process is ensured assuming a specific form of joint stabil-
ity of the state-transition matrices, and the projection is replaced
by a resetting mechanism which allows almost sure convergence
to the true parameter vector to be established together with a
rate of convergence for the moments of the estimation error.
A restrictive assumption here is that the asymptotic prediction
error criterion is only allowed to have the true parameter vector
as stationary point. This is a more severe conditition than iden-
tifiability. However, for a method that, as in the case of RPE, is
based on gradient based non-linear search the best one can hope
for is that convergence takes place to the set of stationary points.
Notice that the corresponding off-line result [31], which proves
convergence to the global minimum, makes the assumption that
the global minimum can be found-something that is not easy
to guarantee in practice using gradient based methods, on-line
as well as off-line. However, as our focus is (iii), which has
convergence to the true system parameters as a pre-requisite,
we have chosen to base our algorithm and analysis on the work
[39], [32], thus avoiding the issue of clustering at the boundary.
Recently, a novel recursive algorithm for ARMAX models has
been proposed in [40] using expanding truncations for which
an almost sure convergence result has been established. Unfor-
tunately, for our considerations, this convergence result applies
only when the input is white and, furthermore, the asymptotic
accuracy of this algorithm is not known, and hence, at least at
present, this algorithm is not suited to our purpose.

The paper starts off in Section II by introducing the system
and model assumptions, together with the input signal genera-
tion mechanism that will be employed. The latter depends on
the estimated parameter vector. Off-line prediction error iden-
tification is discussed in Section III. The complete adaptive
algorithm, comprising the true system, the recursive estimation
algorithm and the input generator, is presented in Section IV.
Formal results on convergence/consistency and asymptotic dis-
tribution are provided at the end of the section. These results are
quite general in that they make no specific use of the functional
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relationship between the parameter estimate and the input gen-
erator, other than that this is a sufficiently smooth map. These
results are then placed in the context of adaptive input design in
the following Section V, where a complete adaptive input design
algorithm is presented, together with the result that this algo-
rithm achieves the same asymptotic accuracy as an oracle. The
algorithm is illustrated on a numerical example in Section VI.
Conclusions are provided in Section VII. Most of the proofs are
provided in appendices.

Notation: Throughout the paper, unless otherwise specified,
we will employ the following notation. Our problem will be em-
bedded in an underlying complete probability space (Ω,F , P ),
where Ω is the sample space, F is the σ-algebra that defines
events E in Ω which are measurable, i.e., for which the prob-
ability P (E) is defined. Let E[·] be the expectation operator
with respect to the probability measure. If A is a vector or ma-
trix, its transpose is denoted by AT . If P is a square matrix,
P > 0(P < 0) means that P is a symmetric positive (negative)
definite matrix of appropriate dimensions while P ≥ 0(P ≤ 0)
is a symmetric positive (negative) semidefinite matrix. If the
square matrix P is nonsingular, its inverse is denoted by P−1 .
Im stands for the identity matrix of dimension m, 0m×n stands
for the zero matrix of dimensions m × n, 0m = 0m×1 stands for
the zero vector of dimension m, and 0 denotes the zero matrix
of appropriate dimensions. Denote by ρ(·) the maximum eigen-
value, minimum eigenvalue, and spectral radius of a matrix,
respectively. For a vector, let ‖ · ‖ denote the Euclidean norm
and for a matrix the norm induced by the Euclidean norm. Un-
less explicitly stated, matrices are assumed to have real entries
and compatible dimensions.

II. LTI SYSTEM, INPUT SIGNAL AND MODEL

For the sake of clarity we present our results for single-input-
single-output (SISO) systems. Extension to multi-input-multi-
output systems is straightforward along the lines of [27].

Let us consider a SISO, finite-dimensional linear stochas-
tic control-system described compactly by the state-space
equations

ξy
n+1 = Ayξy

n + Byun + Kyen ,

yn = Cyξy
n + en . (1)

Here, u = (un ) is the control-signal, e = (en ) is the noise-
signal, y = (yn ) is the observed output signal, and ξy = (ξy

n )
is the state-variable, all of them real-valued scalars, except pos-
sibly the real-valued state-vector ξy

n . For the sake of simplicity
we assume that the system is at rest prior to time n = 0, in par-
ticular un = 0, en = 0 and ξy

n = 0 for n < 0. This will be no
limitation in terms of the asymptotic analysis we will consider.

As the system will be operating in open loop, stability will be
required.

Condition 2.1: The system matrix Ay has all its eigenvalues
strictly inside the unit circle.

The noise signal is subject to the following condition.
Condition 2.2: The noise process is e = (en ), n ≥ 0 is an

independent and identically distributed (i.i.d.) sequence with
zero-mean and a positive finite variance, say σ2

e , i.e.

E[en ] = 0, 0 < E[e2
n ] = σ2

e < ∞.

Moreover, for some c > 0 we have

E[ec e2
n ] < ∞. (2)

The input signal u is the output of the following state-space
equations:

ξ
u
n+1(η) = Au (η)ξ

u
n + Bu (η)wn,

un (η) = Cu (η)ξ
u
n (η) + Du (η)wn. (3)

Here, η is a parameter vector that influences the state-space
matrices and hence can be used to control the spectrum of the
input signal; it will be tuned over time by the adaptive algorithm.
However, for the time being η will be considered fix, taking its
values from an open set Dη ⊂ Rnη . To indicate signals that are
generated by time-invariant filters we use overline notation, e.g.
un (η) as in (3) and yn (η) for yn in (1) when u is generated by
(3) with η fix.

The signal w driving u in (3) is subject to the following
condition.

Condition 2.3: The random process w = (wn ), n ≥ 0 is an
i.i.d. sequence with zero-mean and variance 1, i.e., for all n ≥ 0,
we have

E[wn ] = 0, E[w2
n ] = 1.

Moreover, the processes w = (wn ) and e = (en ), n ≥ 0 are in-
dependent. Finally, for some c > 0, we have

E[ec w 2
n ] < ∞. (4)

The objective is to identify a model of the transfer functions
from the input u and the noise e to the output y of the system
(1). However, despite that we only are interested in the input-
output relationships, we will use a model of state-space type
as it will be used in a time-varying fashion in our adaptive al-
gorithm. Its state-space matrices A(θ), B(θ), C(θ), and K(θ)
are parametrized by a, to be identified, parameter vector θ be-
longing to some open domain Dθ ∈ Rnθ . Thus, the model is
given by

ξn+1(θ; η) = A(θ)ξn (θ; η) + B(θ)un (η) + K(θ)en ,

yn (θ; η) = C(θ)ξn (θ; η) + en . (5)

Such a model can be expressed in transfer function form as

yn = G(q, θ)un + H(q, θ)en

where G(q, θ) and H(q, θ) are rational functions in the back-
wards shift operator q−1 . This model class encompass a wide
variety of standard black-box structures such as output-error,
Box-Jenkins and ARMAX, as well as parametrized state-space
models. It also includes tailor-made transfer function and state-
space models, e.g. where the parameters have physical interpre-
tations. For details, we refer to [41].

III. OFF-LINE PREDICTION ERROR IDENTIFICATION

To identify the system parameter θ we proceed mostly along
standard lines of arguments. We provide a summary for the sake
of defining our notations and conditions.
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A. The Prediction Error

Notice that the noise e in (1) can be computed as

ξy
n+1 = Ayξy

n + Byun + Ky (yn − Cyξy
n )

= (Ay − KyCy )ξy
n + Byun + Kyyn ,

en = −Cyξy
n + yn .

For a pair of tentative values θ ∈ Dθ and η ∈ Dη , let
us therefore define the estimated noise process εn (θ; η) for
n ≥ 0 by

ξn+1(θ; η) = (A(θ) − K(θ)C(θ))ξn (θ; η)

+ B(θ)un (η) + K(θ)yn (η),

εn (θ; η) = − C(θ)ξn (θ; η) + yn (η), (6)

with 0 initial conditions. The cost function based on N ob-
servations y0 , · · · , yN −1 , obtained as the negative conditional
likelihood function in the case when e is Gaussian, modulo
constants, is defined by

VN (θ; η) =
N −1∑

n=0

1
2

ε2
n (θ; η). (7)

The off-line estimator ˆ̂
θN (η) is defined as the global minimizer

of VN (θ; η) w.r.t. θ in Dθ .

B. The Prediction Error Gradient

To minimize the cost function (7) in practice we need to com-
pute its gradient w.r.t. θ. Then we get for the partial derivatives
w.r.t. θ, the column vector

Vθ,N (θ; η) :=
∂

∂θ
VN (θ; η) =

N −1∑

n=0

εθ,n (θ; η)εn (θ; η) (8)

where εθ,n (θ; η) = ∂εn (θ; η)/∂θ. In standard procedures, the
estimate is obtained by setting the partial derivatives w.r.t. θ
equal to 0, i.e., solving the equation

Vθ,N (θ; η) = 0. (9)

A rigorous definition of ˆ̂
θN (η) in this context, taking account

the possibility of multiple solutions or no solutions, was given
in [42].

For actual computations, we need the gradient process
εθ,n (θ; η). Denote by subscript θk

the partial differential with
respect to an arbitrary element of θ. Then differentiation of (6)
yields that the complete gradient of εn (θ; η) with respect to θ
can be generated by a set of state-space systems, indexed by
k = 1, . . . , nθ , coupled in parallel

ξθk ,n+1(θ; η) = (A(θ) − K(θ)C(θ))ξθk ,n (θ; η)

+ (A(θ) − K(θ)C(θ))θk
ξn (θ; η)

+ Bθk
(θ)un (η) + Kθk

(θ)yn (η),

εθk ,n (θ; η) = − C(θ)ξθk ,n (θ; η) − Cθk
(θ)ξn (θ; η). (10)

Here, we notice that εθk ,n (θ; η) is the output of a state-space
system with inputs ξn (θ; η), un (η) and yn (η), and A(θ) −
K(θ)C(θ) as state-transition matrix.

Note that the state transition matrix of the overall system
above is block-diagonal, with diagonal blocks equal to A(θ) −
K(θ)C(θ). A time-varying version of the above system will be
incorporated into our adaptive algorithm, see (24).

C. Asymptotic Properties

In the process of system identification, the search domain for
the systems parameters will be denoted by Dθ0 , with Dθ0 being
a compact domain contained in Dθ . In formulating the technical
details we need the following definitions.

Definition 3.1: A random process {s̄n}n≥0 is said to be
M-bounded, which is denoted by s̄n = OM (1), if Mk (s̄) :=
supn≥0 E1/k

[|s̄n |k
]

< ∞ for all 1 ≤ k < ∞.
Suppose that {tn} is a sequence of positive numbers. We

write s̄n = OM (tn ) if s̄n/tn = OM (1).
Definition 3.2: A stochastic process z = (zn (ω)), n ≥ 0 de-

fined on a probability space (Ω,F , P ) is called asymptotically
wide sense stationary with exponentially decaying error if it can
be approximated by a wide sense stationary (w.s.st.) process
z = (z(s)

n (ω)),−∞ < n < ∞ so that zn − z
(s)
n = OM (αn ) for

n ≥ 0 with some 0 < α < 1.
The signals generating the off-line estimate are given by (1)

(the system), (3) (the input generator), (6) (the prediction er-
ror), and (10) (the prediction error gradient). Under Condition
2.1, with Dθ being such that A(θ) − K(θ)C(θ) is stable for
all θ ∈ Dθ , and with the input generator (3) being stable for
η ∈ Dη , it is easily seen that the joint process (ε(θ; η), εθ (θ; η))
is asymptotically w.s.st. with exponentially decaying error lo-
cally uniformly for θ ∈ Dθ and for η ∈ Dη . It follows that the
following asymptotic cost function is well-defined:

W (θ; η) = lim
n→∞

1
2
E[ε2

n (θ; η)]. (11)

Smoothness of W (θ; η) w.r.t. (θ; η) in the open domain
Dθ × Dη will follow along standard lines under appropriate
conditions, see Condition 3.2 below. Now we introduce the no-
tion that the true system is in the model set.

Condition 3.1: For any η ∈ Dη there is a unique θ∗ ∈
intDθ0 such that εn (θ∗; η) = en .

Condition 3.1 is often decomposed into two separate con-
ditions: i) identifiability, i.e., each θ corresponds to a unique
prediction error transfer function from u and y to ε(θ), and ii) a
persistence of excitation condition on the input u [41].

We will require the following smoothness condition.
Condition 3.2: The matrices A(θ), B(θ), C(θ) and K(θ) are

four-times continuously differentiable functions of θ in Dθ .
With Conditions 3.1 and 3.2 in force it follows that for any

η ∈ Dη , θ∗ is the unique global minimizer of W (θ; η) and,
under the stability assumption we introduced above for Dθ , it
follows from [31] that the off-line estimator converges to θ∗
with probability 1 for any feasible η. Furthermore, the estimator
will have the asymptotic covariance matrix

lim
N →∞

N · E[(ˆ̂θN (η) − θ∗)(ˆ̂θN (η) − θ∗)T ] (12)

equal to the Cramér-Rao lower bound for Gaussian noise, re-
gardless of the distribution of the actual noise see [43], [41].
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The asymptotic covariance matrix is given by

σ2
e R̃−1(θ∗; η) (13)

where

R̃(θ; η) := lim
n→∞E[εθ,n (θ; η)εT

θ,n (θ; η)]. (14)

IV. RECURSIVE ESTIMATION WITH AN ADAPTIVE INPUT

A. Introduction

A Gauss-Newton type of recursive estimator is given by

θ̂n = θ̂n−1 − 1
n

R̂−1
n εθ,n εn ,

R̂n = R̂n−1 +
1
n

(εθ,n εT
θ,n − R̂n ) (15)

where εn and εθ,n are on-line estimators of εn (θ̂n−1) and
εθ,n (θ̂n−1), respectively. The algorithm is started from some
initial conditions θ̂0 and R̂0 .

In (15), εθ,n εn can be considered an estimate of the gradient

Wθ (θ; η) = lim
n→∞ E[εθ,n (θ; η)εn (θ; η)] (16)

and R̂n a Gauss-Newton estimate of the Hessian Wθθ (θ; η) at
the current estimate of θ∗, i.e., at θ = θ̂n . In order to ensure that
the estimator does not leave its domain of definition Dθ , and
even stays in a compact domain, say Dθ0 , recursive estimation
schemes such as (15) typically need to be complemented with
either a stopping mechanism or a resetting mechanism, see [44]
and [39].

In this work, we consider the recursive estimation algorithm
(15) modified by a resetting mechanism. For this purpose, we
first consider two compact truncation domains Dθ0 ⊂ Dθ and
DR0 ⊂ DR = Rnθ ×nθ + , the latter denoting the set of nθ by nθ

symmetric positive definite matrices. For now, we impose only
the minimal condition that the initial values satisfy θ̂0 ∈ intDθ0

and R̂0 ∈ intDR0 . Then we first define a temporary value for
the next estimate as

θ̂n+1− = θ̂n − 1
n + 1

R−1
n εθ,n+1εn+1 , (17)

Rn+1− = Rn +
1

n + 1
(εθ,n+1ε

T
θ,n+1 − Rn ), (18)

Then define (θ̂n+1 , Rn+1) to be equal to (19)
{

(θ̂n+1−, Rn+1−), θ̂n+1− ∈ Dθ0 , Rn+1− ∈ DR0

(θ̂0 , R0), otherwise.
(20)

In regards to εn and εθ,n , here we employ the standard proce-
dure [36] of making the off-line expressions (6) (the prediction
error), and (10) (the prediction error gradient) time-varying by
replacing θ with the current estimate. A major feature of our al-
gorithm is that we will also allow the input generator to be model
dependent, i.e. we will allow η to be a function of θ, η = η(θ),
and use the current estimate as θ in this relationship, making
also (3) time-varying. The motivation for this is that the desired
experimental conditions may depend on the true system. At this
time we assume the minimal condition that η(·), defined on Dθ,

Fig. 1. Schematic of the adaptive system. Variables within parentheses
are state variables.

is a continuous function of θ. We will return to the topic of adap-
tive input design in the next section. This leads to the following
time-varying adaptive system:

ξy
n+1 = Ayξy

n + Byun + Kyen ,

yn = Cyξy
n + en , (21)

ξu
n+1 = Au (η(θ̂n ))ξu

n + Bu (η(θ̂n ))wn,

un = Cu (η(θ̂n ))ξu
n + Du (η(θ̂n ))wn, (22)

ξn+1 = (A(θ̂n ) − K(θ̂n )C(θ̂n ))ξn

+ B(θ̂n )un + K(θ̂n )yn , (23)

εn = − C(θ̂n )ξn + yn ,

ξθk ,n+1 = (A(θ̂n ) − K(θ̂n )C(θ̂n ))ξθk ,n

+ (A(θ̂n ) − K(θ̂n )C(θ̂n ))θk
ξn

+ Bθk
(θ̂n )un + Kθk

(θ̂n )yn , (24)

εθk ,n = − C(θ̂n )ξθk ,n − Cθk
(θ̂n )ξn , k = 1 . . . nθ .

The schematic of these equations is given in Fig. 1.
To compactify the notation, we will collect the state vectors

for the system comprising (3) (the input generator), (1) (the
system), (23) (the prediction error), and (24) (the prediction
error gradient), into one single state vector

Φn :=
[
(ξu

n )T (ξy
n )T (ξn )T (ξθ,n )T

]T

with (ξθ,n ) denoting the concatenation of the column vectors
(ξθk ,n ).

We shall also extend the above adaptive algorithm with an
estimator of σ2

e , see (28) below, as the noise variance of-
ten is required in experiment design. Then for some matrices
AΦ(θ), BΦ(θ), CΦ(θ) and DΦ(θ), we can write the entire adap-
tive system as follows.
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Adaptive system

θ̂0 ∈ intDθ0 , R̂0 ∈ intDR0 , σ̂2
0 = 0, (25)

Φn+1 = AΦ(θ̂n )Φn + BΦ(θ̂n )
[
wn

en

]
, (26)

[
εn

εθ,n

]
= CΦ(θ̂n )Φn + DΦ(θ̂n )

[
wn

en

]
, (27)

σ̂2
n+1 = σ̂2

n +
1

n + 1
(ε2

n − σ̂2
n ), (28)

θ̂n+1− = θ̂n − 1
n + 1

R̂−1
n εθ,n+1εn+1 , (29)

R̂n+1− = R̂n +
1

n + 1
(εθ,n+1ε

T
θ,n+1 − R̂n ), (30)

(θ̂n+1 , R̂n+1) =
{

(θ̂n+1−, R̂n+1−), θ̂n+1− ∈ Dθ0 , R̂n+1− ∈ DR0

(θ̂0 , R̂0), otherwise.
(31)

From Fig. 1, we see that the subsystems generating the input,
the system, the prediction error and the prediction error gradient
are connected in cascade. This implies that the state-transition
matrix AΦ(θ) in (26) is lower block triangular. Furthermore,
each block on the diagonal of AΦ(θ) is either Au (η(θ)), Ay or
A(θ) − K(θ)C(θ).

B. Asymptotic Properties

In this section, we will analyze the adaptive system (25)–(31)
as n grows towards infinity. Our main interest is the behavior of
θ̂n . Our analysis is based on the results of [39] and extended in
[32].

Let η∗ = η(θ∗) denote the optimal experimental setting as-

suming that the system parameter θ∗ is known, and let ˆ̂
θN (η∗)

denote the off-line estimator of θ∗ under the optimal experi-
mental conditions. Then our ultimate goal is to establish the
asymptotic equivalence of the recursive estimator θ̂N generated
by our adaptive algorithm and the optimal off-line estimator
ˆ̂
θN (η∗) in a technical sense to be specified in Theorems 4.1 and
4.1 below.

A pre-requisite for this analysis is to establish the overall
stability of the time-varying system. We will base our analysis
on the joint spectral radius.

Definition 4.1: For a given set of fixed size square matrices,
say A, the joint spectral radius is defined as

λ(A) = sup
I

lim sup
n

||A(n) · · ·A(1)||1/n , A(k) ∈ A (32)

with I denoting the set of all possible infinite selection of se-
quences A(k). The setA, is said to be jointly stable if λ(A) < 1.

We will need the following assumption.
Condition 4.1: Let Dη0 ⊂ Rnη be a compact set. The joint

spectral radius of Σu = {Au (η)) : η ∈ Dη0} is less than one.
Since the input generator (3) is in the hands of the user,

Condition 4.1 can be ensured using techniques from the theory
on stability of linear time-varying systems. As we will see in
Section V, in adaptive input design Au (·) does typically not

depend on η, in which case the condition on the joint spectral
radius of Σu is trivially satisfied.

Condition 4.2: The joint spectral radius of Σθ = {A(θ) −
K(θ)C(θ) : θ ∈ Dθ0} is less than one.

In transfer function notation, the stability condition on
A(θ) − K(θ)C(θ) corresponds to that the transfer functions
H−1(q, θ) and H−1(q, θ)G(q, θ) are stable. This is a standard
condition [41], however joint stability as required in Condition
4.2 is at first sight certainly restrictive. However, joint stability
represents the state-of-the art in recursive parameter estimation
and in fact it is often tacitly assumed in the literature. More-
over, this assumption was justified, under appropriate technical
modifications of standard procedures, in [32]. The arguments
presented there applies in our case.

Remark 4.1: Observe that Condition 4.2 is trivially satisfied
for ARARX models, i.e., models of the type

A(q)yt = B(q)ut +
1

D(q)
et ,

where A(q), B(q) and D(q) are parametrized polynomi-
als in q−1 . This follows since H−1(q, θ) = A(q)D(q) and
H−1(q, θ, θ)G(q, θ) = B(q)D(q). The ARARX model is a
stochastic model commonly used in economics, engineering,
health and medical science literature (see, e.g., [45]–[52] and
the references therein).

For ARMAX models, i.e., models of the type

A(q)yt = B(q)ut + C(q)et ,

Condition 4.2 can be relaxed when the input is not adaptively
updated, e.g., the method in [40] applies to white inputs.

We now have the following stability result.
Lemma 4.1: Suppose that η(·), defined on Dθ, is a continu-

ous function of θ, and the image of Dθ0 is a subset of Dη0 . Then
Conditions 2.1, 4.1 and 4.2 imply that the set of state-transition
matrices AΦ(θ) with θ ∈ Dθ0 is jointly stable.

Proof: The result is a direct consequence of Lemma 1.1 of
Appendix A. �

It follows that, under the conditions of the lemma above, the
map from u and e to Φ as defined by (25)–(31) is BIBO stable
in Lp for any 1 ≤ p ≤ ∞.

The following smoothness assumptions for the input genera-
tor mechanism will be required.

Condition 4.3: The matrices Au (η), Bu (η), Cu (η) and
Du (η) are four-times continuously differentiable on an open
domain Dη , satisfying Dη0 ⊂ Dη ⊂ Rnη .

Condition 4.4: The map η(θ) is four-times continuously dif-
ferentiable on Dθ and its image of Dθ0 is a subset of Dη0 ,
defined in Condition 4.1.

For recursive algorithms of the type (15) one can at best
find a stationary point of W (θ; η). A critical assumption in the
ensuing developments is the following condition, which is a
strengthening of Condition 3.1.

Condition 4.5: With Dη as in Condition 4.1, the equation

Wθ (θ; η) = 0 (33)

has the unique solution θ = θ∗, which is assumed to belong
to intDθ0 , for any η ∈ Dη . Moreover it is assumed that θ∗
is locally identifiable, i.e., the Hessian-matrix Wθθ (θ∗; η) is
positive definite for any η ∈ Dη .
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The verification of the above condition is far from trivial.
In the remarkable paper [53], Åström and Söderström prove
that in the case of an ARMA process Dy = Ce, using stan-
dard parametrization, the above condition holds under minimal
conditions on C and D.

It is well known that the algorithm (25)–(31) can be viewed as
finite-difference equations which has a natural connection with
a set of ordinary differential equations (ODEs) (see [34], [36],
[54] and [35]). The ODE associated with the algorithm is given
as follows (see, e.g., [34], [39] and [32])

d
dt

θt = −1
t
R−1

t Wθ (θt , η(θt)), (34a)

d
dt

Rt =
1
t

(
R̃(θt , η(θt)) − Rt

)
(34b)

for t ≥ 1 with initial condition for t = 1 equal to (θ0 , R0) =
(θ̂0 , R̂0).

The adaptive system (25)–(31) has a particular structure that
we will explore. In order to express these properties, we intro-
duce the joint vector-variable z =

[
θT (vec R)T

]T
, and

define the corresponding domains of definitions and search
domains as D = {z : θ ∈ Dθ, R ∈ DR} and D0 = {z : θ ∈
Dθ0 , R ∈ DR0}. We also let

d
dt

zt =
1
t
h(zt) (35)

denote the vectorized version of the ODE (34).
Lemma 4.2: Let Conditions 3.1, 3.2, 4.3, 4.4, and 4.5 be in

force. Then:
i) It holds that

Wθη (θ∗; η) = 0 (36)

for any η ∈ Dη .
ii) The equation

Wθ (θ; η(θ)) = 0 (37)

has the unique solution θ = θ∗ in Dθ .
iii) It holds that

Wθθ (θ∗; η) = R̃(θ∗; η) > 0 (38)

for any η ∈ Dη .
iv) The ODE (34) has unique equilibrium θt = θ∗ and R̂t =

R∗ := R̃(θ∗; η(θ∗))
v) The Jacobian of h in (35), evaluated at z∗ =[

(θ∗)T (vecR∗)T
]T

, has the structure
[−Inθ

0
∗ −In2

θ

]
. (39)

Proof: Consider (33) as an implicit function to be solved for
θ. Differentiating w.r.t. η, we immediately get Wθη (θ∗; η) = 0
for any η ∈ Dη , implying i). ii) follows from i) and Condition
4.5. For iii), we notice that from (16) it follows that Wθθ (θ∗; η)
consists of two terms, R̃(θ∗; η) and

lim
n→∞ E[εθθn (θ∗; η)εn (θ∗; η)].

By Condition 3.1, εn (θ∗; η) = en which is independent of
εθθn (θ∗; η), since the latter quantity is a function of {ek}, k < n

only. Hence, the term above is zero and iv) follows. Finally, v)
follows from i). �

Condition 4.6: Let the unique solution to (35) with
zs = ξ for s ≥ 1 be denoted z(t, s, ξ). Also let z0 =[
(θ0)T (vecR0)T

]T
. Let D0 ⊂ D be a compact truncation

domain such that z∗ ∈ intD0 .
The following conditions hold:

i) There exist compact convex sets D′
θ0 ⊂ Dθ and D′

R0 ⊂
DR such that, with D′

0 = {z : θ ∈ D′
θ0 , R ∈ D′

R0}
z(t, s, ξ)∈D′

0 for ξ∈D0 and z(t, s, ξ)∈D for ξ ∈ D′
0

(40)
for all t ≥ s ≥ 1. In addition limt→∞ z(t, s, ξ) = z∗ for
ξ ∈ D′

0 ,
ii) We have an initial estimate z0 = ξ0 such that for all t ≥

s ≥ 1 we have z(t, s, ξ0) ∈ intD0 .
Applying [32], we get the remarkable result that the recursive

estimator θ̂n generated by our adaptive algorithm is asymptot-
ically equivalent to the optimal off-line estimator, in a sense
specified in the theorem below.

Theorem 4.1 Consider the adaptive system (25)–(31). Let
the following conditions be in force:

1) Stochastic processes: Conditions 2.2 and 2.3.
2) Smoothness: Conditions 3.2, 4.3 and 4.4.
3) Identifiability: Conditions 3.1 and 4.5.
4) Stability: Conditions 2.1, 4.1, and 4.2.
5) ODE: Conditions 4.6.

Then we have

θ̂n − ˆ̂
θn (η∗) = OM (n−1/2−δ ), (41)

for some constant δ > 0.
Proof: See Appendix B. �
For the interpretation of the result, recall that it can be shown,

following the arguments of [42] step by step, that we have

ˆ̂
θn (η∗) − θ∗=− 1

n
σ2

e (R∗)−1
N −1∑

n=0

εθ,n (θ∗; η∗)en + OM (n−1).

It follows that ˆ̂
θn (η∗) − θ∗ = OM (n−1/2). Since the difference

between θ̂n and ˆ̂
θn (η∗) is order of magnitude OM (n−1/2−δ ),

we conclude that statistically important properties ˆ̂
θn (η∗) will

be automatically inherited by θ̂n . In particular, consider the

covariance matrix of ˆ̂
θn (η∗) − θ∗, which is readily seen to be

E[ ˆ̂θn (η∗) − θ∗)(ˆ̂θn (η∗) − θ∗)T ]

=
1
n

σ2
e (R∗)−1 + O(n−1). (42)

As a direct consequence of the above we have the following
corollary.

Corollary 4.1: Consider the adaptive system (25)–(31) and
let the assumptions in Theorem 4.1 be in force. Then the covari-
ance matrix of the error process (θ̂n − θ∗) satisfies

E[(θ̂n − θ∗)(θ̂n − θ∗)T ]

=
1
n

σ2
e (R∗)−1 + O(n−1−δ ), (43)
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for some δ > 0.

V. ADAPTIVE INPUT DESIGN

We will now apply the results presented in the previous s
ection to the case where the input generator (3) corresponds to
the solution of an optimal input design problem. We will tailor
our results to the general frameworks in [13], [14], [4], which
consists of the two steps: (i) Design of the input spectrum by way
of a semidefinite program (SDP), and (ii) spectral factorization
of the corresponding spectrum, yielding the input generator.

The main objective is to establish conditions under which
Theorem 4.1 holds, as this will then establish that adaptive input
design asymptotically achieves the same accuracy as optimal
input design in the sense that the asymptotic distribution of√

n(θ̂n − θ∗) for the adaptive scheme is the same as for the
off-line case using the optimal input. The condition related to
the input generator are Conditions 4.1, 4.3, and 4.4. This means
that our main tasks are to establish stability of the time-varying
linear system (3) and that the map from the model parameters
to the state space matrices in (3) is sufficiently smooth.

For these considerations, the essential characteristic of the
optimal input design problems in the aforementioned references
is that they can be formulated as

minη∈Rn η , γ∈Rn γ γ1 (44)

s.t. M(η, γ, θ) ≥ 0, (45)

where (45) is a Linear Matrix Inequality (LMI), i.e. M(η, γ, θ)
is affine in the decision variables η and γ, so that the problem is
an SDP.

The decision variable η =
[
η1 . . . ηnη

]T ∈ Rnη con-
tains the coefficients in a finite expansion of the input spectrum

Φu (eiω , η) =
nη∑

k=1

ηk (Bk (eiω ) + B∗
k (eiω )), (46)

where {Bk}nη

k=1 are stable rational basis functions. It is common
to use an input generator of FIR type. This corresponds to the
basis

Bk (z) =
{

1/2 k = 1,
z−(k−1) k > 1.

(47)

The matrix M(η, γ, θ) is block diagonal where each block cap-
tures, e.g., signal constraints/criteria and model quality con-
straints/criteria, see below. The formulation (44)–(45) covers
both the case where a model quality measure is optimized sub-
ject to constraints on the used signals, or the opposite formula-
tion (known as least-costly design [14]).

The auxiliary variable γ =
[
γ1 . . . γnγ

]T ∈ Rnγ

is (partly) used to incorporate a condition that ensures that Φu ,
defined in (46), is non-negative. The latter can be ensured by the
positive real lemma (see, e.g., [13, Lemma 2.1]) and corresponds
to an LMI. For the case of an input generator of FIR type, i.e.,

the basis(47), it takes the form

K(Q; {Au,Bu , Cu ,Du}) :=
[

Q − (Au )T QAu −(Au )T QBu

−(Bu )T QAu −(Bu )T QBu

]
+
[

0 (Cu )T

Cu 2Du

]
≥ 0

(48)

where

Au =
[

0nη −2 Inη −2
0 0T

nη −2

]
, Bu =

[
0nη −2

1

]
,

Cu = Cu (η) = [ηnη
· · · η2 ], Du = Du (η) =

1
2
η1 . (49)

The unique elements of Q = QT ≥ 0 are elements of γ.
K(Q; {Au,Bu , Cu ,Du}) is thus one of the blocks of
M(η, γ, θ).

Signal constraints are in terms of constraints on signal spectra,
either energy constraints or frequency-by-frequency constraints.
To illustrate the expressions involved, with the input spectrum
given by (46), the input energy for an experiment of length N
can, using Parseval’s theorem, be expressed as

NE[u2
t (η)] =

N

2π

∫ π

−π

Φu (eiω , η) dω =
nη∑

k=1

βk ηk (50)

where βk = N
2π

∫ π

−π (Bk (eiω ) + B∗
k (eiω ))dω. Similarly, the

noise-free output energy of a model can be expressed as

NE
[(

C(θ)(qI − A(θ))−1B(θ)ut(η)
)2
]

=
nη∑

k=1

αk (θ) ηk

where

αk (θ) =
N

2π

∫ π

−π

∣∣C(θ)(eiω I − A(θ))−1B(θ)
∣∣2

× (Bk (eiω ) + B∗
k (eiω ))dω. (51)

The blocks of (45) that correspond to model quality measures
are affine functions of the information matrix. Modulo a normal-
ization constant, the information matrix corresponds to R̃(θ; η)
defined in (14). Employing Parseval’s formula and (46), we can
write

R̃(θ; η) =
nη∑

k=1

ηk R̃k (θ) + R̃e(θ), (52)

where

R̃k (θ) =
1
2π

∫ π

−π

Γu (eiω , θ)Γ∗
u (eiω , θ)(Bk (eiω ) + B∗

k (eiω ))dω,

(53)

R̃e(θ) =
1
2π

∫ π

−π

Γe(eiω , θ)Γ∗
e(e

iω , θ)dω (54)

where Γu (z, θ) and Γe(z, θ) are stable rational vector-valued
functions for θ ∈ Dθ , see [13], [41]. The term R̃e is due to
the noise excitation. Thus the information matrix is an affine
function of η, and hence the blocks of (45) that correspond to
model quality measures are affine functions of η as well.
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The expressions (51), (53)–(54), are representative for the
type of dependence between M and θ. In summary, the optimal
input design frameworks of [13], [14], [4] lead to SDPs that can
be written as (44)–(45), with

M(η, γ, θ)

=
nη∑

k=1

ηk Mk (θ) +
pγ∑

k=1

γk Mnη +k (θ) + Mnη +pγ +1(θ) (55)

where

Mk (θ) =
1
2π

∫ π

−π

Γ̃k (eiω , θ)Γ̄∗
k (eiω , θ) (56)

where in turn {Γ̃k (z, θ)} and {Γ̄k (z, θ)} are vector-valued ratio-
nal transfer functions in z, with coefficients possibly depending
on θ, stable on Dθ0 .

It is clear from (55) that (44)–(45) is an SDP in η and γ.
Spectral factorization of the resulting spectrum (46) yields a
stable filter which we denote Gu (z, η(θ)). Realizing this filter
in state-space form gives the input generator (3). The filter will
share poles with the basis functions {Bk (q)}nη

k=1 . Thus it is only
the numerator coefficients that depend on η so Gu can be written

Gu (z, η) =
∑m

k=0 gk (η)z−k

d(z)
, (57)

for some fix denominator polynomial d(z). We can thus realize
the filter in state-space form (3) using a controllable form [55],
where Au and Bu are fixed matrices and where Cu and Du

depend linearly on the filter coefficients {gk (η)}m
k=1 .

Remark 5.1: It may not be possible to generate all possible
information matrices using a finite expansion (46) of the input
spectrum. This can be guaranteed using the so-called partial
correlation parametrization which is a linear infinite dimen-
sional parametrization of the input spectrum, chosen such that
(52) still has a finite number of nonzero terms. Using partial
correlation also leads to optimal input design problems of the
type (44)–(45), but the computation of the spectral factor Gu

differs. We refer to [13] for details.
We now summarize the adaptive input design algorithm that

we will analyze.
For the above algorithm, we have the following result.
Theorem 5.1: Suppose that

(i) M(η, γ, θ) in (45) is given by (55)–(56), where
{Γ̃k (z, θ)} and {Γ̄k (z, θ)} are vector-valued rational
transfer functions in z, with coefficients possibly de-
pending on θ, stable on Dθ .

(ii) Problem (44)–(45) is well posed in the sense that for
each θ ∈ Dθ , the minimum is bounded from below.
Assume also that (45) is strictly feasible for any θ in
Dθ .

(iii) Problem (44)–(45) has a unique solution for every
θ ∈ Dθ .

(iv) Conditions 2.1, 2.2, 2.3, 3.2, 4.2, 4.5, and 4.6 hold.
Then {θ̂n} generated by Algorithm 5.1 possesses the proper-

ties stated in Theorems 4.1 and Corollary 4.1.

Algorithm V.1:
1) Parametrization: Choose stable rational basis functions

{Bk (z)}nη

k=1 in the input spectrum expansion (46).
2) Initial estimate: Define compact sets Dθ0 ⊂ Rnθ and

DR0 ⊂ Rnθ ×nθ + and take θ̂0 ∈ intDθ0 , R0 ∈ int
DR0 and n = 0.

3) Generate input process: Take {wn}, to be used as the
signal generating the input (see Fig. 1), to be a
sequence of independent random variables satisfying
Condition 2.3.

4) Input spectrum update: Compute the optimal solution
η(θ̂n ) to (44)–(45).

5) Input filter update: Compute the corresponding stable
minimum phase input filter Gu (z, η(θ̂n )), with struc
ture (57), by spectral factorization of the correspo
nding input spectrum Φu (eiω , η(θ̂n )).

6) Input generator update: Compute the controllable
state-space realization of transfer function
Gu (z, η(θ̂n )), giving Au (η(θ̂n )), Bu (η(θ̂n )),
Cu (η(θ̂n )) and Du (η(θ̂n )).

7) Measurement update: Compute and apply the input
signal un+1 , generated by (3) with η = η(θ̂n ), to the
true system and collect a new measurement yn+1
from the true system.

8) Parameter estimate update: The updated recursive
estimate θ̂n+1 is computed by (29)–(31).

9) Iterate: Replace n by n + 1 and go to step 4).

Corollary 5.1: Let

zn = F (q)

⎡

⎣
Φn

εn

εθ,n

⎤

⎦,

where Φn , εn and εθ,n are defined in (26)–(27), and where F (q)
is a stable transfer function matrix. Then

1
n

n∑

k=1

zkzT
k−τ (58)

exists almost surely for any integer τ . The limit equals the
corresponding correlation for the same signals when the input is
generated by (3) with η taken as the solution to (44)–(45) with
θ = θ∗, the parameter vector corresponding to the true system.

Proof: See Appendix C. �
Remark 5.2: By Corollary 4.1, it follows that Theorem 5.1

shows that the adaptive Algorithm 5.1 asymptotically recovers
the same accuracy as using the optimal input during the experi-
ment together with the off-line prediction error method.

Remark 5.3: It follows from (58) that the sample input power

ū2
n :=

1
n

n∑

k=1

u2
k (59)

converges almost surely to the power of the optimal input signal.
Furthermore, for σ̂2

n defined by (28), it follows that σ̂2
n → σ2

e

almost surely.
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Remark 5.4: The condition on well-posedness is not restric-
tive. For example, it is trivially satisfied for the common ob-
jective of minimizing some measure of the experimental effort,
e.g., the input energy.

Remark 5.5: Condition 4.5 implies that the solution to (44)–
(45) has to correspond to a nonzero input spectrum for any θ in
Dθ .

Theorem 5.1 requires strict feasibility of the SDP (44)–(45).
In the next lemma we establish that this holds generally for the
constraints used in [4], [13], [14]. We state the results for the
commonly used FIR basis, but the results are straightforward to
extend to a general stable rational set of basis functions.

Lemma 5.1: Let Z be a positive (semi-)definite matrix. Then
the LMI (48) associated with the positivity condition Φu (ω) ≥
0,∀ω and the quality constraint

R̃(θ; η) ≥ Z (60)

are strictly feasible.
Proof: See Appendix D. �
Remark 5.6: Not all quality constraints in [4], [13], [14] are

of the type (60). For example, [13] employ quality constraints
of the type

μ − TrZ ≥ 0
[

Z V ∗

V R̃(θ; η)

]
≥ 0

(61)

where μ and V are fix quantities, and where Z = ZT ∈ Rpz ×pz

is an auxiliary variable. If we take Z = μ/(2pz )I , Schur com-
plement gives that the condition

R̃(θ; η) − V Z−1V ∗ = R̃(θ; η) − 2pz

μ
V V ∗ > 0 (62)

implies (61) with strict inequalities, i.e. strict feasibility. The
condition (62) is of the type (60) and hence Lemma 5.1 applies
also to constraints of the type (61).

Remark 5.7: It is straightforward to extend Theorem 5.1 to
the case where the system operates in closed loop with a fix
stabilizing LTI controller, and the experiment design problem
concerns designing the optimal reference signal. The expres-
sions for signal spectra and the information matrix become more
involved, but retain the structure (55)–(56) that we rely on for
the theorem.

Remark 5.8: For input design problems where some sig-
nal size measure is the objective function, the first phase of
Algorithm 5.1 may generate excessive excitation if the trajec-
tory of the parameter estimate {θn} passes through models that
correspond to systems that are difficult to identify, i.e. require
large signal sizes in order to achieve the quality specified by
(44)–(45). A practical way to avoid this is to limit the signal
size in an initial phase.

VI. APPLICATION TO MINIMUM VARIANCE CONTROL

A. Optimal Input Design for Minimum Variance Control

In this Section we will study the problem of optimal open loop
input design when the model is to be used for (approximate)
minimum variance control of an ARMAX system

A(q, θ)yn = B(q, θ)un + C(q, θ)en , (63)

where A(q, θ) = 1 + a1z
−1 + . . . + ana

z−na , B(q, θ) = b1
z−1 + . . . + bnb

z−nb and C(q, θ) = 1 + c1z
−1 + . . . +

cnc
z−nc , and where θ = [a1 . . . ana

b1 . . . bnb
c1 . . . cnc

]T .
We will assume that the system is minimum phase, i.e.,
znb B(z, θ) =

∑nb

k=1 bkznb −k has all its roots strictly inside the
unit circle.

The minimum variance controller for (63) under the minimum
phase assumption is given by [56]

un = −K∗(q, θ)yn , K∗(q, θ) :=
C(q, θ) − A(q, θ)

B(q, θ)
. (64)

Using an estimate θ̂N of the model parameters θ, and the cer-
tainty equivalence principle, i.e. replacing the unknown param-
eter by its estimate, leads to use of the controller K∗(q, θ̂N )
which gives the closed-loop output

yn (K∗(θ̂N ), θ) :=
1

1 + B (q ,θ)
A(q ,θ) K(q, θ̂N )

C(q, θ)
A(q, θ)

en .

Following [57]–[59] we will use the degradation from the ideal
performance as performance measure, i.e. we take

J(θ̂N , θ) = E[y2
n (K∗(θ̂N )|θ̂N ] − E[y2

n (K∗(θ)))2 ]

= E[(y2
n (K∗(θ̂N ))|θ̂N ] − σ2

e

= E

⎡

⎣

⎛

⎝ 1

1 + B (q ,θ)
A(q ,θ) K(q, θ̂N )

C(q, θ)
A(q, θ)

en

⎞

⎠
2
∣∣θ̂N

⎤

⎦

− σ2
e .

Here, expectation is taken with respect to the noise sequence
{en}, while keeping the estimate θ̂N fix. This means that
J(θ̂N , θ) measures the increase in output variance that occurs
when the parameter estimate θ̂N is used instead of the true θ in
the minimum variance controller. To account for the random-
ness of the identification experiment we will also take expec-
tation over the distribution of the identified model parameters
θ̂N ; we denote this expectation by Eθ̂N

[·]. We will thus use

Eθ̂N
[J(θ̂N , θ)] as measure of the performance degradation. This

is thus the performance degradation, as compared to the mini-
mum variance controller, that can be expected by i) performing
an identification experiment, ii) computing an estimate θ̂N , and
iii) applying the controller K∗, with the unknown θ substituted
by θ̂N , to the true system and computing the increase in output
variance.

The performance degradation Eθ̂N
[J(θ̂N , θ)] depends on the

experimental conditions and the objective of is to choose these
such that the performance degradation is minimized. For com-
putational tractability we will, again following [57]–[59], use
the asymptotic performance degradation

V̄ (θ) := lim
N →∞

NEθ̂N
[J(θ̂N , θ)] (65)

as our performance degradation measure. Experience [57]–
[59] shows that V̄ (θ) is an accurate approximation of
NEθ̂N

[J(θ̂N , θ)] even for fairly small sample sizes N . It is
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straightforward to show that [32]

V̄ (θ) = σ2
e Tr{W (θ)R̃−1(θ; η)}, (66)

where

W (θ) = E

[(
∂yn (K∗(η))

∂η

∣∣
η=θ

)T
∂yn (K∗(η))

∂η

∣∣
η=θ

]
.

(67)

For large model orders, it was shown in [57] that a closed loop
identification experiment using the minimum variance controller
(64) minimizes V̄ over all possible experimental conditions.
This was later shown to hold also for models of finite order
[58], [59]. Here, we will restrict the experiment to be open loop
and consider the case when the input generator is of FIR type,
i.e. we will use the basis (47).

Simple computations then give that Γu in (53) and Γe in (54),
respectively, can be expressed as

Γu (q, θ) =

⎡

⎢⎢⎢⎣

B (q ,θ)
C (q ,θ)A(q ,θ) Γna

(q)

−1
C (q ,θ) Γnb

(q)

0nc ×1

⎤

⎥⎥⎥⎦,

Fe(q, θ) =

⎡

⎢⎢⎢⎣

1
A(q ,θ) Γna

(q)

0nb ×1

−1
C (q ,θ) Γnc

(q)

⎤

⎥⎥⎥⎦, Γn (q) =

⎡

⎢⎣

q−1

...

q−n

⎤

⎥⎦.

To emphasize that V̄ (θ) is a function of the spectrum parameters
we write V̄ (θ, η). We will consider the optimal input design
problem consisting of minimizing the performance degradation
subject to a constraint pu on the input power, i.e.

minη V̄ (θ, η)

s.t. E[u2
n ] ≤ pu , Φu (eiω , η) ≥ 0, ∀ω,

(68)

where V̄ (θ, η) can be expressed as (66). Taking W 1/2(θ) to be
the matrix square root of W (θ), this weighted trace problem
can, using Schur complemnt, be expressed as the semi-definite
program

minη ,Z,Q Tr{Z}

s.t.

[
Z W 1/2(θ)

W 1/2(θ)
∑nη

k=1 R̃k (θ) ηk + R̃e(θ)

]
≥ 0,

η1 ≤ pu , K(Q, {Au (η), Bu (η), Cu (η),Du (η)})≥ 0
(69)

where K(Q, {Au (η), Bu (η), Cu (η),Du (η)}) is given in (48).
For details, see [13]. Observes that (69) conforms to the structure
of (44)–(45). The unique elements of Z and Q in (69) corre-
spond to the vector γ in (44)–(45), the left-hand sides of the
three inequalities in (69) correspond to three diagonal blocks of
M(η, γ, θ) in (45). In adaptive input design, θ in (69) is replaced
by the most recent estimate.

Fig. 2. Bode diagram of system dynamics and noise dynamics.

B. Numerical Illustration

We will now consider the case where

A(q, θ) = (1 − 0.6q−1)2(1 − 0.7q−1)2 ,

B(q, θ) = c (1 − 0.98 eiπ/20q−1)(1 − 0.98 e−iπ/20q−1),

C(q, θ) = (1 − 0.8q−1)(1 + 0.8q−1)

where c is adjusted so that the static gain B(1, θ)/A(1, θ) =
1. The noise variance σ2

e = 0.001. The Bode diagrams of
the system dynamics B(q, θ)/A(q, θ) and noise dynamics
C(q, θ)/A(q, θ) are shown in Fig. 2.

In the experiment design, the input power bound pu = 1 and
nη = 10. The model uses na = 4, nb = 3 and nc = 2.

We will compare 4 different methods in a Monte Carlo study
consisting of M = 48 experiments, where each experiment con-
sists of N = 10.000 input/output samples. For each method, the
sample mean of the performance degradation is computed for
sampling time n as

J̃n :=
n

M

M∑

k=1

J(θ̂k
n , θ)

where θ̂k
n is the parameter estimate at time n, 1 ≤ n ≤ N , in ex-

periment k, 1 ≤ k ≤ M . We have normalized with n since then,
at least according to the asymptotic theory, J̃n is independent
of n.

The methods we compare are:
i) The input is white noise with power pu and θ̂k

n is com-
puted using the MATLAB System Identification Toolbox
(SITB) off-line prediction error method as implemented
in the function armax.

ii) The input is taken as white noise filtered through a filter
which is the stable minimum phase spectral factor cor-
responding to the optimal spectrum of problem (69). θ̂k

n

is computed off-line as in i).
iii) Algorithm 5.1 is used. The recursive estimator uses the

SITB algorithm rarmax and the optimal input design
problem (69) is solved using YALMIP [60] and SeDuMi
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Fig. 3. Sample mean J̃n of the performance degradations over the
different Monte Carlo experiments. Horizontal dashed blue and solid
black lines correspond to the asymptotic theory when the input is white
and optimal, respectively. Blue dotted: Method i)—White input/off-line.
Black dashed: Method ii)—Optimal input/off-line. Red solid: Method iii)—
Adaptive input/on-line. Red dotted: Method iv)—Adaptive input/off-line.

[61]. The first n = ninit := 500 samples uses the same
white input as Method i). The algorithm is then initial-
ized at n = ninit := 500 with the off-line estimate from
Method i) (which uses a white input). The initial R̂0 is
taken as the inverse of the estimated covariance matrix
for the off-line estimate, normalized with the estimated
noise variance. To obtain initial conditions for the states
of the recursive estimator that correspond to this ini-
tial estimate and uncertainty, we use the fact that when
recursive PEM is applied repeatedly to a data set, its
estimate approaches that of the off-line estimate [36].
Thus rarmax is applied 51 times to the data set con-
sisting of the first ninit samples and the final states from
rarmax are taken as initial states when computing θ̂k

n

for n = ninit + 1. For this start-up procedure, the off-
line estimate is used as initial estimate and R̂0 is as
described above. The initial states are taken to be zero.
For n = ninit + 1 and onwards, θ̂k

n is computed using
recursive PEM using the SITB function rarmax.

iv) The adaptive input generated in iii) is used but the pa-
rameter estimates are computed off-line as in i).

Thus, three different data generation mechanisms have been
used: a white input, the optimal input and an adaptively gen-
erated input. The same white noise sequence has been used as
noise {en} in all cases. Also, the same white noise sequence has
been used as source for the input in all three cases.

Fig. 3 shows the sample mean J̃n of the performance
degradations over the different Monte Carlo experiments. Here
we see that using a white input (Method i)) gives significantly
worse performance than the other methods. As the methods
using the adaptive input use the same input as Method i) prior
to n = 500, they have the same performance as this method
at n = 500 but then start to catch up with the performance of
Method ii) (which uses the optimal input). The on-line estimate
takes somewhat longer time to catch up than the off-line
estimate (both use the same data).

VII. CONCLUSION

In this contribution, we have shown that an on-line estimator
of system parameters controlling a parameter-dependent input
generator has the same asymptotic behavior in a strong sense
as an off-line estimator using experimental conditions set up
under the hypothesis that the system is known. The result holds
for stable SISO LTI systems and for a wide class of model
structures.

As an application, we have proposed an optimal adaptive
input design method for stable LTI systems based on the cer-
tainty equivalence principle. This is a formal development of
the scheme outlined in [27], which establishes convergence and
asymptotic efficiency, based on the results of [32]. The asymp-
totic theory is backed-up by a finite-sample simulation study.

In terms of contributions to recursive estimation per se,
the condition on joint stability of the state transition matri-
ces in question, phrased in [32], has been refined, and a rel-
evant auxiliary result for block-triangular matrices has been
given. In addition a clarification, needed for the proof of [32,
Theorem 4.3] has been added.

APPENDIX

A. Proof of Lemma 4.1

The proof follows directly from the following general result:
Lemma A.1: Let A be a bounded family of 2 × 2 block-

triangular matrices with fixed sized, square diagonal blocks,
denoted by A11 and by A22 . Then the joint stability of the set
of diagonal blocks A11 and by A22 , say A11 and A22 , implies
that A itself is jointly stable.

Proof: The conditions of the lemma trivially imply that the
the time-varying linear system

x1
n+1 = A11,nx1

n + u1
n , (70)

x2
n+1 = A21,nx1

n + A22,nx2
n + u2

n (71)

is BIBO stable in L∞. Hence, by [62], it follows that the joint
spectral radius of A is less than 1.

B. Proof of Theorem 4.1

We start by observing that the adaptive system (25)–(31) has
the format

φn+1 = A(xn )φn + B(xn )ẽn , (72)

xn+1− = xn +
1

n + 1
Q(φn+1), (73)

xn+1 = xn+1− if xn+1− ∈ D0 , (74)

xn+1 = x0 if xn+1−ε|D0 , (75)

where φn = Φn , A = AΦ , B = BΦ , xn = θ̂n , and ẽn =[
wn en

]T
, and where Q is a quadratic function. To avoid

divergence, the estimates xn are enforced to stay in a compact
truncation domain D0 . In [32], this scheme was coined DFL
scheme with resetting after [63], [34].

If xn converges, the behavior of (72) will approach that of
what is called the frozen-system, a parameter-dependent Rr -
valued vector-valued stochastic process (φn (x)), with n ≥ 0
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and x ∈ D ⊂ Rp denoting the parameter, where D is an open
domain, defined by the state-space equation

φn+1(x) = A(x)φn (x) + B(x)en (76)

with some non-random initial condition φ0(x). The mean-field,
defined as

G(x) = lim
n→∞EQ(φn (x)) (77)

plays a central role in the analysis. More precisely, the behavior
of the associated ODE

żt =
1
t
G(zt), zs = ξ, s ≥ 1 (78)

determine the asymptotic properties of the DFL-scheme. For
the adaptive system (25)–(31), G corresponds to h in (35), and
under the conditions of the theorem it follows that G(x) is
well defined. From v) in Lemma 4.2 it follows that the adaptive
system we consider is a partially stochastic Newton method [32].
Splitting x as x =

[
(x1)T (x2)T

]T
where x1 corresponds to

θ, and Q accordingly, Theorem 4.4 in [32] gives

x1
N − x1∗ =

1
N

N∑

n=1

Q1(φn (x∗)) + OM (N−1/2−δ ) (79)

with some δ > 0, We will set aside the verification of the con-
ditions for this theorem for the moment and proceed by noting
that (79) yields a particularly useful insight into the relationship
between recursive and off-line estimators. Namely, define the
off-line estimator x̂N of x∗ as “the solution” of

UN (x) =
N∑

n=1

Q1(φn (x)) = 0 (80)

with respect to x. Then it is easy to see that the result given in
[42] can be extended at no cost. Noting that the Jacobian matrix
of the right-hand side of the associated ODE at x = x∗ is of the
form given in (39), we get for the first component of x̂N

x̂1
N − x1∗ =

1
N

N∑

n=1

Q1(φn (x∗)) + OM (N−1). (81)

Note that the dominant term of the r.h.s is identical with the
dominant term on the r.h.s. of (79). Let us write ̂̂xN = xN for
the recursive estimator of x∗. Then we arrive at the following
result, see [32, (4.7)]:

̂̂x
1
N − x̂1

N = OM (N−1/2−δ ). (82)

It follows, among others, that the asymptotic covariance matrix
of the off-line estimator x̂1

N , if it exists, equals the asymptotic

covariance matrix of the recursive estimator ̂̂x
1
N .

The result (82) is exactly (41) that we would like to
prove. What remains is thus to verify that the conditions of
Theorem 4.4 in [32] are satisfied. Before this, however, a com-
ment is due: It is claimed in [32] that Theorem 4.4 follows di-
rectly from Theorem 4.3 which follows directly from Theorem
4.2, which in turn directly follows from Theorem 4.1, for which
a complete proof is given. To justify these claims we give a hint
showing the interconnection between discrete time (Theorems

4.2–4.4) and continuous time results (Theorems 4.1). For this
we note that the statement of Theorem 4.2 of [32] implies that
Theorems 4.3 is equivalent to saying that, under the conditions
of the theorem, we have

xN − x∗ =
∫ N

t=1

∂y

∂ξ
(N, t, x∗)

1
t
Q(φ

c
t (x

∗))dt

+OM (N−1/2−δ ),

where Q(φ
c
t (x

∗)) is a piecewise constant extension of
Q(φn (x∗)) to real values t.

To see the equivalence of the two representations of xN −
x∗ we have to note only that || ∂y

∂ξ (N, t, x∗) − ∂y
∂ξ (N,n, x∗)|| ≤

C( n
N )α−1 1

n , and then apply the moment inequality given as
Theorem 1.1 in [64].

We are now ready to verify the conditions of [32,
Theorem 4.3]. Starting with Condition 3.7, notice first that the
elements of AΦ and BΦ are multinomials in the elements of
the state-space matrices of the model and the input generator
(3), and the derivatives of A(θ), B(θ), C(θ), and D(θ). This and
Conditions 3.2, 4.3 and 4.4 imply that AΦ and BΦ are three times
continuously differentiable. Furthermore, the joint stability con-
dition in Condition 3.7 is implied by Lemma 4.1. Conditions 3.8
and 3.9 on the driving noise ẽn are trivially satisfied by the i.i.d.
Conditions 2.2 and 2.3. In regards to [32, Condition 3.4], we
notice that part (iii) is a trivial corollary of part (i), and hence
can be removed. Parts (i) and (ii), save for (3.21), follow from
Condition 4.6, where a minor typo is also corrected, relaxing the
original formulation: convergence of y(t, s, ξ) to x∗ is required
for ξ ∈ D′

0 rather than for ξ ∈ D.
For (3.21), it can be shown, using a compactness argument,

that if the Jacobian matrix

A∗ =
∂G(x)

∂x

∣∣
x=x∗ (83)

is stable (having all its eigenvalues on left half of the complex
plane), then

∥∥∥∥
∂

∂ξ
y(t, s, ξ)

∥∥∥∥ ≤ C0(s/t)α (84)

with some C0 ≥ 1, α > 0 for all ξ ∈ D′
0 and t ≥ s ≥ 1 follows

from the remaining components of Condition 3.4. This situation
holds in this case as v) in Lemma 4.2 gives that all eigenvalues
of A∗ are −1.

Finally, we notice that the validity of Theorem 4.3 also re-
quires a correction of the theorem. The correction is that we
explicitly require that G(x) = 0 has a unique solution x∗ in D,
in accordance with Condition 3.3. In our setting, this follows
from iv) in Lemma 4.2.

Now, in the case of adaptive experiment design the off-line
estimator defined in the context of the general estimation method
under (80) would be defined, according to (8) and (9), by

Vθ,N (θ; η(θ)) =
N −1∑

n=0

εθ,n (θ; η(θ))εn (θ; η(θ)) = 0. (85)

Let this (uncomputable) off-line estimator be denoted by ˆ̄θN (η).
Then the arguments given in [42] can be applied step by step to
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yield that

ˆ̄θN (η) − θ∗ = − 1
N

(R∗)−1
N∑

n=1

εθ,n (θ∗; η(θ∗))en + OM (N−1)

(86)
since εn (θ∗; η(θ∗)) = en . Then Theorem 4.1 implies that
ˆ̄θN (η) − θ̂N = OM (N−1/2−δ ).

Now if we consider the off-line estimator ˆ̂
θN (η∗), obtained

under optimal experimental conditions defined by

Vθ,N (θ; η∗) =
N −1∑

n=0

εθ,n (θ; η∗)εn (θ; η∗) = 0 (87)

then, applying the arguments given in [42] once again, we get

that ˆ̂
θN (η∗) − θ∗ can be written exactly as the right hand side

of (86). Therefore, we have ˆ̄θN (η) − ˆ̂
θN (η∗) = OM (N−1). It

follows that ˆ̂
θN (η∗) − θ̂N = OM (N−1/2−δ ), as stated.

C. Proof of Theorem 5.1

The results follow from Theorem 4.1 and Theorem 4.1 if
we can verify Conditions 4.3, 4.4 and 4.1. As noted before
Theorem 5.1, Az can be kept fix and since the basis functions
{Bk (q)}nη

k=1 are stable its spectral radius is less than one. Thus
Condition 4.1 holds trivially.

Let us now examine the map from θ to η. Firstly, (55)–(56)
imply that M(η, γ, θ) is continuously differentiable of any order
with respect to θ on Dθ . Secondly, if the (primal) problem
(44)–(45) is strictly feasible and bounded from below, and the
solution is unique, [65, Theorem 1] gives that the solution is
differentiable with respect to perturbations of M . The essence
of the proof is that the equations (9) in [65] have a non-singular
Jacobian permitting the implicit function theorem to be applied.
The result of Theorem 1 in [65] can be extended by noting
that the equations in (9) are continuously differentiable of any
order, and hence the implicit function theorem gives that the
solution is continuously differentiable of any order with respect
to perturbations of M [66]. In summary, the map from θ to η, as
defined by (44)–(45), is continuously differentiable of any order
under the assumptions of the theorem. Thus Condition 4.4 has
been verified.

Next, we study the map from η to the filter coefficients
of Gu (q, η), i.e. the spectral factorization step. For simplic-
ity of exposition, we restrict our analysis to the FIR case where
B1(z) = 1/2 andBk (z) = z−k+1 for k > 1. The case of general
rational stable basis functions can be handled along the same
lines but is more involved. Consider

Gu (z) =
nη∑

k=1

gkz−(k−1) ,

Φ(z) = Gu (z)Gu (z−1) =
nη∑

k=1

ηk (z−(k−1) + z(k−1)).

We will use the implicit function theorem [66] to
prove that the map from η =

[
η1 , . . . , ηnη

]T
to g =[

g1 , . . . , gnη

]T
, defined by Φ(z) = Gu (z)Gu (z−1) is

continuously differentiable of any order. Firstly, the map from
g to η is given by

η(g) :=
∮

|z |=1
Gu (z)Gu (z−1)Γ(z)

dz

z

where here Γ(z) =
[
1 z−1 . . . z−nη +1

]T
. Differentiation

under the integral sign, the Jacobian of this map is

J(g) : =
∮

|z |=1

(
Gu (z)Γ(z)ΓT (z−1)

+ Gu (z−1)Γ(z)ΓT (z)
) dz

z
.

Let g 
= 0, let α =
[
α1 α2 . . . αnη

]T
and let α(z) =

αT Γ(z) be the associated polynomial (in z−1) of degree nη − 1.
Suppose that J(g)α = 0 for an g 
= 0. This can be expressed

J(g)α :=
∮

|z |=1
(Gu (z)α(z−1) + Gu (z−1)α(z))Γ(z)

dz

z
= 0.

(88)

Here, Gu (z)α(z−1) + Gu (z−1)α(z) is a symmetric polynomial
in z−(nη −1) , . . . , znη −1 . Hence, expression (88) implies that
this polynomial is identically zero. If α 
= 0, it must hold that
α(z) = Gu (z) since Gu (z) and Gu (z−1) are coprime. But then
Gu (z)α(z−1) + Gu (z−1)α(z) = 2Gu (z)Gu (z−1) is nonzero,
contradicting our assumption that g 
= 0. Hence, α = 0 is the
only solution to J(g)α = 0 and J(g) is non-singular. Using
this and that η(g) is continuously differentiable of any order, it
follows from the implicit function theorem that the map from
η to g is continuously differentiable of any order. This implies
Condition 4.3.

The convergence of sample correlations of the type (58) fol-
lows in exactly the same way as (B.2) in [28]. This concludes
the proof.

D. Proof of Lemma 5.1

We start with the positivity condition. With r̃ =[
ηnη

. . . η2
]T

, we can write the matrix in (48) as
[

Q (Cu )T

Cu 2Du

]
− [

Au Bu
]T

Q
[
Au Bu

]

=
[

Q r̃
r̃T η1

]
−
[

0 0
0 Q

]
.

This is a positive definite matrix if we take r̃ = 0 and Q to be
diagonal with strictly monotonically increasing elements along
the diagonal, and take η1 to be greater than the maximal value
of Q.

Maintaining r̃ = 0, (52) gives

R̃(θ; η) = η1 R̃1(θ). (89)

Take α ∈ Rpθ to have unit norm. Then

αT R̃1(θ)α =
1
π

∫ π

−π

|α(eiω , θ)|2dω > 0 (90)

where α(z, θ) = αT Λ(z, θ) is a stable rational function. The
inequality follows since |α(eiω , θ)|2 is positive and has at most
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a finite number of zeros on the unit circle. Combining (89)–(90)
gives that the minimum eigenvalue of R̃(θ; η) can be made as
large as desired by picking η1 large enough.

In summary, η1 large enough and η2 = . . . = ηnη
= 0 ensures

feasibility of the constraints in Lemma 5.1, and the lemma has
been proven.
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systems with non-stationary inputs—Asymptotic analysis with applica-
tion to adaptive input design,” Automatica, vol. 45, no. 3, pp. 623–633,
Mar. 2009.

[29] L. Huang, H. Hjalmarsson, and L. Gerencsér, “Adaptive experiment design
for ARMAX systems,” in Proc. 51st IEEE Conf. Decision and Control,
Maui, HI, 2012.

[30] H. Hjalmarsson, “From experiment design to closed loop control,” Auto-
matica, vol. 41, no. 3, pp. 393–438, Mar. 2005.

[31] L. Ljung, “Convergence analysis of parametric identification methods,”
IEEE Trans. Autom. Control, vol. AC-23, pp. 770–783, May 1978.

[32] L. Gerencsér, “A representation theorem for recursive estimators,” SIAM
J. Control and Optimiz., vol. 44, no. 6, pp. 2123–2188, 2006.

[33] T. Lai and C. Wei, “Least-squares estimates in stochastic regression-
models with applications to identification and control of dynamic sys-
tems,” Ann. Statist., vol. 10, no. 1, pp. 154–166, 1982.

[34] L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans. Au-
tom. Control, vol. AC-22, no. 4, pp. 551–575, Aug. 1977.

[35] H. Kushner and G. Yin, Stochastic Approximation and Recursive Algo-
rithms and Applications. New York: Springer-Verlag, 2003.
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